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Abstract 

Individual behavior and local context are processes that can influence the structure and 

evolution of ecological interactions. In trophic interactions, consumers can increase their 

fitness by actively choosing resources that enhance their chances of exploring them 

successfully. Upon searching for potential resources, they are able to decide which one 

to choose according to their fitness benefit and maneuverability. Mathematical modeling 

is often employed in theoretical studies to understand the coevolutionary dynamics 

between these species. However, they often disregard the individual consumer behavior 

since the complexity of these systems usually requires simplifying assumptions about 

interaction details. Using an individual-based model, we model a community of several 

species that interact antagonistically. The trait of each individual is modeled explicitly 

and is subjected to the interaction pressure. In addition, consumers can actively choose 

the resources that guarantee greater fitness. We show that active consumer choice can 

generate coevolutionary units over time. It means that the traits of both consumers and 

resources converge into multiple groups with similar traits, exerting reciprocal selective 

pressure between them. We also observed that network structure has a greater 

dependence on the parameter that delimits active consumer choice than on the intensity 

of selective pressure. Consequently, this parameter can closely match empirical 

networks. Thus, we consider that the inclusion of consumers’ active choice behavior in 

the models plays an important role in the ecological and evolutionary processes that 

structure these communities. 

Keywords: Antagonism, Coevolution, Interaction network, Modularity, Resource Selection, 

Specialization  
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Introduction 

Ecological interactions build the architecture of biodiversity in biological 

communities [1]. In trophic interactions such as parasitism, parasitoidism, predation or 

herbivory, individuals of one trophic level (consumers) exploit individuals of the trophic 

level below, as food resources. Consequently, these interactions result in increased 

consumer fitness at the expense of resource fitness. A foraging consumer will generally 

encounter different kinds of resources and they can decide which one to choose 

according to some ‘currency’ of biological fitness (e.g., rate of net energy intake, 

handling time, predator avoidance) [2,3]. This decision-making process known as ‘active 

predator choice’, leads the consumers to use some resources more often than others, 

given an encounter with each type of resource [4], e.g., birds that typically eat mollusks 

of particular sizes or species [5]; nest parasites that use the host’s nests whose eggs 

are similar to their own [6–8]; insects that differ in their oviposition patterns based on 

plant defense traits [9–12]; prey choice by hematophagous insects [13] or parasitoid 

insects that choose their prey through chemical signals [14]. 

Little is known about the evolutionary effects of adaptive diet choice on the 

dynamics and composition of ecological communities [15]. Theoretical studies on active 

consumer choice have been restricted to population dynamics, not considering its effect 

on community evolution [16,17]. However, ecological and evolutionary processes can 

be combined via natural selection [18] and occur on contemporary scales [19]. These 

eco-evolutionary dynamics, such as the relationship between the ecology of 

populations, communities and the evolution of functional traits, generates information 

that would not be expected in isolation [20]. The outcomes of eco-evolutionary 

dynamics between antagonistic species are generally related to the strength of selection 

imposed by the interaction [21,22]. The modeling of the active choice is simplified by 

assuming a random choice behavior combined with another function that determines 

the probability of interaction to occur successfully, depending on the adjustment of traits 

between consumer and resource [22,23]. This assumption implies that the consumer 

does not evaluate the resource’s trait, which increases the chances that it interacts with 

a resource that results in small fitness despite the presence of better resources 
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available in its neighborhood. Such simplification may be understood as equivalent to 

active choice behavior since the imposed probability function will favor those 

interactions with a higher probability of success. However, this simplification does not 

limit the trait range that a consumer will try to interact. A first theoretical step addressing 

the effect of an active choice on species evolution was made for pairs of antagonistic 

interacting species [24], where it was observed that active consumer choice has 

evolutionary consequences. One of them, for example, is an unexpectable pattern 

where the resource trait is locked in only one of two evolutionary stable trait solutions 

[24]. Nevertheless, a theoretical framework investigating the effects of active consumer 

choice on coevolutionary dynamics in communities remains unknown. 

A huge effort has been made to understand the mechanisms that determine the 

structure of interaction networks in communities [22,23,25–28]. Divergent selection 

regimes, phylogenetic conservation [29,30], habitat heterogeneity [31] and 

morphological attributes [32] may lead to nonrandom patterns of interactions and in the 

tendency of different subsets of species in the network to interact more frequently with 

each other than with the remaining species in the network [29,33–35]. Modularity play 

fundamental roles in ecological community resilience [36] and persistence since 

disturbances are not easily spread to other modules [37]. Besides that, modules have 

been suggested to be candidates for coevolutionary units [25,34]. That means that the 

modules are formed by coevolution and stay stable over time. However, it is not clear to 

date how such convergence could emerge in antagonistic networks, where the resource 

species selection pressure should tend towards divergence, not convergence. 

Here, we integrate individual-based modeling with ecological networks tools to 

move forward our understanding of the role of the individuals’ active choice behavior in 

antagonistic network evolution. Our results demonstrate that the active consumer 

choice is a crucial element in giving rise to and promoting the stability of modules, 

generating coevolutionary units. 
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Methods 

The model 

We simulate an ecological system of two trophic levels that interact 

antagonistically, composed of several species and individuals that are explicitly 

modelled. Consumer attack traits and resource defense traits are subject to selection 

and mutation. The interactions occur through trait matching, that is, the probability of a 

successful interaction increases with the adjustment between the traits of the interacting 

individuals. A closer adjustment between both species traits is advantageous for the 

consumer and detrimental for the resource. Consumers actively choose resources 

within an interaction neighborhood, which represents the possibility of the consumer to 

evaluate the resources near them and choose which one will be attacked. In addition to 

the interaction pressure, we consider a stabilizing external pressure that models all 

types of pressure outside the interaction. This pressure acts as a selective force on 

consumer traits and resources towards a favored trait. Both the pressure of the 

interaction and the stabilizing pressure result in the fitness of the individuals, i.e., the 

contribution of these individuals to the next generation. 

The model considers 𝑀𝑋 resource species with 𝑁𝑋 individuals per species and 

𝑀𝑌 consumer species with 𝑁𝑌 individuals per species. It assumes the existence of a set 

of characters that constitute the defense or attack traits of individuals. Such characters 

may be morphological, physiological, chemical or behavioral and are represented by a 

real number, 𝑍𝑛
𝑖 , where 𝑍 represents the defense (𝑋) or attack (𝑌) trait, 𝑖 the individual 

and 𝑛 the species. For example, 𝑋2
1 indicates the defense trait of individual 1 belonging 

to species 2 and 𝑌3
1 indicates the attack trait of individual 1 belonging to species 3. 

Dynamics 

The dynamics of the model consists of three main steps in the following order: (i) 

the encounter between individuals; (ii) the fitness due to the interaction pressure and 

stabilizing pressure; and (iii) the reproduction (Fig.1). 
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Fig.1| Steps of the model. The dynamics start with the encounter between consumers 

and resources within an interaction neighborhood. Consumer actively chooses and tries 

to interact with the resource that maximizes its fitness. Both consumers and resources 

have their total fitness calculated, composed of the partial fitness due to the interaction 
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and stabilizing pressures. The result of the total fitness is reflected in the individual's 

participation to the next generation. 

(i) Encounters 

(ii) Fitness (𝑾𝒁𝒏
𝒊 ) 

The total fitness of a resource individual (𝑊𝑋𝑛
𝑖 ) or a consumer individual (𝑊𝑌𝑛

𝑖) is given 

by the product of the performance of its trait due to the interaction and the selective 

pressure given by the external stabilizing selection: 

𝑊𝑍𝑛
𝑖 = 𝑊

𝑍𝑛
𝑖
𝑖𝑛𝑡 ×𝑊

𝑍𝑛
𝑖
𝑒𝑥𝑡 1 

 

where, 𝑍 ∈ 𝑋, 𝑌. The details of both selective pressures are detailed below: 

Interaction pressure 

We model the interaction mechanism based on trait matching, where the 

probability that the interaction occurs successfully increases as the difference of the 

consumer trait on resource decreases, according to: 

P
Yn
i →Xm

j = exp [−α(Xm
j
− Yn

i )
2
] , 2 

where 𝛼 is a parameter that controls the intensity of the selective pressure on the 

interaction (Fig. S1a). 

When an interaction occurs successfully, the consumer’s fitness due to the 

interaction also depends on the matching. Hence, if the interaction occurs successfully, 

a consumer’s fitness due to the interaction is given by: 

W
Yn
i
int = P

Yn
i →Xm

j , 3 

 

and if the interaction does not occur, 
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W
Yn
i →Xm

j
int = 0. 4 

 

For the resource, both the intensity and number of attacks contribute to a 

decrease in its fitness. The attacks do not directly imply the death of the resource, but 

rather a decrease in its fitness: 

𝑊
𝑋𝑚
𝑗
𝑖𝑛𝑡 = exp [−β(Σ𝑃

𝑌𝑛
𝑖→𝑋𝑚

𝑗 )
2

] 5 

where 𝛽 is a parameter that controls the intensity of the interaction pressure on the 

resource. A higher value of 𝛽 penalizes resources whose phenotypic compatibility with 

the consumer is high, as it increases the impact of the attack of a consumer with high 

phenotypic compatibility with the resource (Fig. S1b). The term 𝛴𝑃
𝑌𝑛
𝑖→𝑋𝑚

𝑗  Eq.(5), 

represents the sum of all successful attacks weighted by the consumers’ interaction 

fitness. It means that a consumer that possesses greater trait matching will cause more 

impact on the consumer’s fitness than a consumer with smaller trait matching. 

Stabilizing pressure 

We include a stabilizing selective pressure, which considers all types of pressure 

outside the interaction and acts as a selective force on traits towards a favored trait, 

both in resources and consumers: 

W
Zn→θn
i
ext = exp [−γZn(Zn

i − θn)
2
] 6 

 

where 𝜃𝑛 it is the trait favored by the external stabilizing selective pressure for a given 

species n and 𝛾 it is a parameter that controls the intensity of the pressure to the 

deviations of 𝜃𝑛. For simplicity we assume 𝛾 constant over species and trophic levels. 

(iii) Reproduction 

We assume that all individuals with non-zero fitness can have offspring which will then 

recompose the population to its original size. Thus, the number of individuals is constant 
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over time, regardless of the number surviving a given generation. Our analyzes 

consider only those cases in which there was no extinction as, given these dynamics, 

extinction events occur only in extreme situations. Therefore, the participation of the 

individual 𝑖 to the next generation is proportional to its fitness relative to other individuals 

of the same species: 

PZni =
Wzn

i

∑ WZn
N2
i=1

7 

 

where 𝑃𝑍𝑛𝑖  it is the probability that an individual of the new generation will inherit the trait 

𝑍𝑛
𝑖  of the individual 𝑖 of the 𝑛 species. 𝑊𝑍𝑛

𝑖  refers to the fitness of the parental individual 

Eq.(7), and 𝛴𝑊𝑍𝑛 the sum of the adaptive values of all individuals of the parental 

species. 

For simplicity, the reproduction is asexual and the offspring assumes the same 

trait value as the parental individual with a mutation coefficient 𝛿, whose value is a 

random number that follows a normal distribution probability: 

P(δ) =
1

σ√2π
e
−δ2

2σ2 8 

 

where 𝜎 is the standard deviation, which we assume constant between trophic levels. 

 

Simulation parameters 

In all the simulations the number of species, the number of consumer and 

resource individuals per species, and the intensity of external stabilizing pressure were 

maintained constant (𝑀𝑋 = 50,𝑀𝑌 = 50; 𝑁𝑋 = 100,𝑁𝑌 = 100, 𝛾 = 1, respectively). The 

traits favored by the stabilizing selection of the resource and resource species were 

obtained from a normal distribution 𝜃 ∼ 𝑁(0,1) (mean equal to 0 and a standard 
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deviation equal to 1). Therefore, the simulated community presented heterogeneity of 

trait values favored by the external stabilizing selection. 

We ran simulations without active consumer choice under different intensities of 

interaction pressures (see values of 𝛼 and 𝛽 in Table 1) to verify their effect on the 

Coevolutionary trait dynamics. The model without this behaviour is obtained by 

assuming the interaction neighborhood is equal to a single resource individual, which 

corresponds to 𝛷 = 0.02%. In simulations with active consumer choice, the intensity of 

interaction pressure was fixed (𝛼 = 0.8 and 𝛽 = 0.2). These two values correspond to 

intermediate values approached in the case without active choice. Also, different sizes 

of the interaction neighbourhoods 𝛷 were evaluated. All the values of parameters and 

variables used in the simulations are described in Table 1. Each simulation consisted of 

10,000 generations. To verify the model’s sensitivity to random events, five replicates of 

each simulation were performed (146,491 networks in model with active choice and 

5,145 in the model without active choice). The simulations were carried out in 

FORTRAN language both in the LCPAD - Central High-Performance Processing 

Laboratory, Federal University of Paraná and through the Amazon web service and will 

be available online.  
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Table 1| Parameters used in the simulations, their values and a short description 
         

Parameter/variable Value Description 

𝑀𝑋, 𝑀𝑌 50, 50 Number of species of resources and con-
sumers. 

𝑁𝑋, 𝑁𝑌 100, 100 Number of resource and consumer indi-
viduals by species 

δ random number that follows a normal 
distribution probability which standard 
deviation is  σ 

Mutation coefficient 

σ 0.02 The standard deviation used to calculate 
phenotypic variation due to reproduction 

γ 1 Stabilizing pressure intensity 

θ θ ∼ 𝒩(0,1) for consumers and re-
sources 

Trait favoured by stabilizing pressure 

α 0, 0.05, 0.1, 0.2, 0.4, 0.8†, 1.6, 3.2, 6.4 Intensity of interaction pressure on the 
consumer 

β 0, 0.05, 0.1, 0.2†, 0.4, 0.8, 1.6, 3.2, 
6.4, 12.8, 25.6, 51.2, 102.4 

Intensity of the interaction pressure on the 
resource 

Φ from 0.02% to 20% an increase by 1% 
and from 20.2% to 100% an increase 
by 10% 

Size of the interaction neighbourhood 
(0.02 % implies that the attack is without 
active choice) 

 

† represents values of 𝛼 e 𝛽 that were kept constant in simulations that the effects of 

variation in the interaction neighborhood size was investigated. 

Data analysis 

Interaction persistence networks 

To evaluate the persistence of interactions over time we built an interaction persistence 

network, from the matrix of size 𝑁𝑥 × 𝑁𝑦, where each row and column represent a 

resource and a consumer species, respectively. The value of each cell indicates the 

number of generations in which at least one interaction between the given pair of 

species was recorded. To avoid transient effects, we only used the data for the last 
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4,000 generations, sampled at every 200 generations, resulting in 21 networks per 

simulation. We have also analyzed the interaction network for each time, where each 

cell of the matrix represents the number of interactions between a pair of species (see 

Supplementary Material). 

The interaction persistence networks were characterized using established network 

metrics: connectance (C), modularity (M) [38] and specialization index (H2’)[39]. The 

measure of all the mentioned metrics was implemented through the bipartite package 

and performed in an R [40] environment. Modularity was measured using the 

DIRTLPAwb+ algorithm using the computeModules function [41]. Specialization H2’ was 

measured using the H2fun function [41]. Both metrics use quantitative matrices. The 

connectance (C) was calculated in binary matrices and refers to the ratio between the 

number of non-zero cells by the matrix size [41]. The connectance indicates the 

percentage of all interaction occurred during the analyzed time. Higher values of 

modularity in the interaction persistence networks indicate that species interactions 

occur more often (in time) in a subgroup of species than between them. Similarly, the 

higher the specialization index, it means that a pair of species persists their interaction 

over time more intensely than expected by the abundance of species. 

Results 

In most cases, active consumer choice led to coevolutionary trait dynamics with 

stable groups of tightly interacting species that exert reciprocal selection on traits. 

Within each module, the resource traits converge into a narrow range of values, 

surrounded by consumer traits (Fig. 2a and Fig.S2). Smaller neighborhoods induced 

more extreme trait dynamics, with average trait values reaching double the amplitudes 

of larger neighborhoods (see Fig. 2a: 𝛷 = 4%). In these smaller neighborhoods, there 

was a high frequency of interactions (darker colors in Fig 2b and Fig. S3) between 

consumers and resources within each module over generations. That is, all species 

interact with each other inside the modules in most generations. In larger 

neighborhoods, due to a higher opportunity of encounters with preferred resources, the 

frequency of interactions over generations between all species inside the module 
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decreased (lighter colors). However, the presence of interactions highlights that, among 

the species in the same module, a consumer species changes its choice of interaction 

over time. This alternation is maintained over the generations, but it is locked inside the 

module without breaking the unit of coevolution. Stable coevolutionary units were not 

observed in scenarios without active consumer choice (Fig 2c, Fig S4) and the 

interactions occur between almost all species regardless of the interaction pressure 

intensity (Fig. 2d). Additionally, we observed that even higher interaction pressure 

intensities do not promote coevolutionary units, but instead drive species to extinction 

(Fig. S4). 

 

Fig.2| Coevolution under and without active consumer choice. (a-b) Coevolutionary 

trait dynamics under active choice in different sizes of interaction neighborhoods. (c-d) 

Coevolutionary trait dynamics without active choice behavior, but under different 

interaction pressures. Figures (a) and (c) show the average trait of each consumer 

species (blue) and each resource species (purple). Figures (b) and (d) represent the 

matrices of interaction persistence: the frequency of generations in which at least one 

interaction between a pair of species was recorded. The absence of interaction is 

represented by the color white. Network metrics: M = Modularity; H2’ = Specialization; C 

= Connectance; Note that active choice behavior limits species interactions to 

subgroups, evidencing the stability of the evolutionary units. 
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As the size of the interaction neighborhood increases, the network tends to be 

more modular, specialized, less connected and consumer success decreases (Fig S6). 

However, for 𝛷 between approximately 0.2% and 1%, this trend is inverted for all 

metrics. This inversion occurs when the first coevolutionary units emerge, but with only 

two or three modules, which increases the interactions between species, explaining the 

metric inversions (Figs S2 and S6). For 𝛷 around 1% and higher, the metrics follow the 

initial trend again (Fig S6). However, between approximately 1% and 10%, the 

coevolutionary units oscillate between two and four modules, varying both over time and 

over replicates. For Φ around 10% and higher, the coevolutionary units stabilize (Figs. 

S2 and S3 and Fig 2). To avoid this initial variation, we restrict the next results to 𝛷 >

10. 

The network metrics showed considerable difference according to consumer 

choice behaviour. Without active choice but varying the interaction pressure (𝛼 and 𝛽) 

connectance ranges from 0.47 to 0.51; modularity from 0.17 to 0.22; and specialization, 

from 0.08 to 0.14. With active choice, and 𝛷 > 10, connectance ranges from 0.29 to 

0.48; modularity from 0.41 to 0.65 and specialization, from 0.19 to 0.32. Then, networks 

with active consumer choice were more modular, more specialized, less connected, and 

with lower consumer success in relation to networks without active choice behaviour 

(Fig. 3). 
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Fig3| Network metrics with and without active choice behavior. Active choice 

promotes networks with lower connectance and higher modularity and specialization. 

The purple color indicates the model with active choice, the yellow color indicates the 

model without active choice. The violin plot shows the distribution of the data and the 

boxplots presents the summary statistics median and interquartile ranges. 

Discussion 

In this study, we investigated the role of individual active choice behavior on 

coevolutionary trait dynamics and antagonistic network structure of species with 

antagonistic interactions. Our results reveal that active choice can drive significant 

changes in trait distributions, on the selective regimes and on patterns of interactions 

that shape the structure and dynamics of antagonistic networks. We demonstrate that 

the active choice behavior generates modules that are persistent in evolutionary time, 
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which can be interpreted as co-evolutionary units. These results highlight the 

importance of individual behavior and the effects of adaptive diet choice on eco-

evolutionary dynamics. 

The model with active choice behavior allows each consumer individual to 

choose to interact with the resource in its neighborhood that maximizes its fitness. The 

simulations showed that, under this condition, subgroups of resource species converge 

their traits around a single value, while subgroups of consumer species converge their 

traits around one of two values - below or above resource traits values - locking the 

resource trait evolution (Fig.2a). These subgroups of resource and consumer species 

then form a temporal stable module with almost no interaction between modules. The 

mechanism behind this stability is probably the same observed for the model with two 

species [24]. That study analytically showed that active choice behavior locks the 

resource trait because any variant resource that maximizes consumer fitness will not go 

unnoticed by the consumer. Here, a small variation in a resource trait makes it a better 

resource choice by any of the surrounding consumers, reducing the resource fitness. 

On the other hand, without active choice, small variations in the resource trait are more 

likely to go unnoticed by the consumer, so that the temporal stability of the module as 

well the convergence of species traits are broken (Fig. 2b). Thus, higher pressure 

intensity on the interaction (𝛼 and 𝛽) is not a sufficient ingredient to increase modularity 

and trait convergence. 

Modules have been suggested to be candidates for coevolutionary units 

[22,25,34], implying that modules are formed by coevolution and stay stable over time. 

Inside the modules, the species interact with each other, exerting strong reciprocal 

selection on traits, shaped by a similar regime of selective pressures [25,31]. Andreazzi 

et al. (2017) proposed a model for antagonistic interactions, and observed that 

coevolutionary units can emerge from antagonistic interaction, but only when the fitness 

consequence is higher for the consumers than victims. Here we show that active choice 

implies a higher increase in modularity and stability than in the models without active 

choice (Fig 3). Since the enlargement of the interaction neighborhood increases the 
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fitness consequence for the resources, our model supports that evolutionary units can 

emerge even under high pressure on resources. 

Coevolutionary units have been suggested as a product of cospeciation and 

arms race. Under These hypotheses, the consumers are predicted to have evolutionary 

patterns of diversification that are congruent with the patterns of their resources, where 

closely related resource species would have similar defenses and closely related 

consumers would feed on closely related resources [42,43]. However, these hypothesis 

has little support in empirical studies [42,44–47], except for tight specialized interactions 

[48]. The incongruence between host and parasite phylogenies, for example, has 

previously been explained in terms of host switching, extinction, duplication events and 

failure of the parasite to speciate in response to host speciation [49]. In fact, our model 

does not predict interaction only between pairs of species, which would be the first step 

of cospeciation. We show that the coevolutionary units in antagonistic interactions also 

produce convergent traits, independently of cospeciation (or any speciation, as our 

model has static species), and even when the consumer can choose among all 

resources (𝛷 = 100), species interact with almost all other species within the module. 

Further studies must be done to investigate if diversification patterns could emerge from 

our model. 

The mechanism behind the coevolutionary units may be the emergence of 

convergent traits among individuals of the same trophic level, for example the presence 

of mainly white flowers inside the module in mutualistic interactions networks ([34]; [25]; 

[31]). This arises due to the reciprocal fitness benefit among the two trophic levels, 

which does not occur in antagonistic interactions, and thus trait convergence is not 

expected. However, it has been observed that where distantly related plant species 

share a common assemblage of herbivores, they are likely to defend themselves with 

similar strategies [50]. Besides, consumers experience a selection pressure to evolve 

specific traits adapted to consuming the existing resource species [51] that is, they 

“track” resource defenses and not resource species per se [43]. For example, closely 

related herbivores prefer Inga (tree) hosts with similar defenses rather than closely 

related Inga [52]. Regardless of these examples, there is not yet a mechanistic 
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explanation on why distant related resources would converge their traits since they 

could develop different strategies to defend themselves. Our results suggest that 

resource trait convergence promotes attack dilution: when resources converge their 

traits, the pool of options for a consumer increases and the chance of a specific 

individual being attacked decreases. In other words, with different resource species with 

similar phenotypes, the effects of the attacks of the consumers are diluted among the 

resources inside the module. 

In this study, we were able to evaluate the effects of active choice behavior in 

eco-evolutionary dynamics using simplifications (see methods). We suggest that future 

studies include more ingredients in modeling to capture more information about this 

mechanism. For example: (i) asexual inheritance can be a limitation for generalization of 

the model, although there are several types of antagonistic interaction in which the 

interacting species present asexual reproduction, as in interactions between bacteria 

and viruses [53–57] or bacteria and protists [58,59], bacteria and nematodes [60,61], 

daphnias and parasites [62,63]; (ii) the spatial homogeneity disregards the differences 

between landscapes, as well as gene flow limitations [31,64]; (iii) although the model 

has an evolutionary time scale, it does not allow speciation, which could reveal how the 

individual behavior can promote species diversification; (iv) finally, the equivalence 

between generations of consumers and resources disregards differences in consumer 

and resource life spans, when it is common to have several generations of consumers 

in relation to a single generation of the resource, as in parasite-host relationships [34]. 

To conclude, we show that consumer active choice of resources that maximize 

their fitness is a crucial element for the emergence of coevolutionary units, that is, 

modules formed through the coevolutionary process. Moreover, as far as we know, this 

work is the first to demonstrate the mechanism of dilution by which traits converge in 

antagonistic networks. 
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