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Abstract	
Alignment-based	methods	dominate	molecular	biology.	However,	by	primarily	allowing	one-to-
one	comparisons,	these	methods	are	focused	on	a	gene-centered	viewpoint	and	lack	the	broad	
context	essential	to	analyze	how	complex	biological	systems	function	and	evolve.	In	actuality,	a	
gene	is	part	of	genome	where	more	than	one	sequence	contributes	to	the	functional	network	
and	evolutionary	trajectory	of	the	cell.	The	need	for	conservation	of	established	interactions,	is	
arguably	more	important	to	the	evolutionary	success	of	species	than	conservation	of	individual	
function.	To	test	whether	such	contextual	information	exists,	a	distributional	semantics	method	
-	Latent	Semantic	Analysis	(LSA),	was	applied	to	thousands	of	species	proteomes.	Using	natural	
language	 processing,	 Latent	 Taxonomic	 Signatures	 (LTSs)	 were	 identified	 that	 outperformed	
existing	alignment-based	BLAST	methods	when	random	protein	sequences	were	being	mapped	
to	annotated	taxonomy	according	to	GenBank.	LTSs	are	a	novel	proteome	distributed	feature,	
suggesting	 the	 existence	 of	 evolutionary	 constraints	 imposed	 on	 individual	 proteins	 by	 their	
proteome	 context.	 Even	 orphan	 proteins	 are	 exhibiting	 LTSs,	 which	 makes	 their	 uniqueness	
linked	to	a	specific	taxonomic	level	questionable.	Unlike	more	simple	bias,	LTSs	represent	a	self-
similarity	pattern,	where	random	sets	of	species	proteins	show	the	same	statistical	properties	
of	 a	 complete	 proteome	 at	many	 scales.	 Natural	 language	 processing	 and	machine	 learning	
provide	insights	not	easily	discernable	using	alignment	based	methods	suggestive	there	is	more	
to	species	related	differences	than	just	translational	optimization.		
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Background	
The	major	role	of	DNA	is	information	storage.	This	information	enables	function,	development,	
growth	and	reproduction	of	all	known	organisms	and	 is	organized	 in	the	form	of	genes,	gene	
clusters,	chromosomes	and	ultimately	genomes.	If	DNA	represents	the	code	of	life,	the	way	in	
which	 it	 is	 organized	 within	 cells	 as	 a	 genome,	 can	 be	 compared	 to	 the	 organization	 of	 a	
computer	 database	 or	 a	 structured	 document.	 	 Even	 the	 challenges	modern	 databases	 face,	
such	as	data	redundancy,	archiving,	versioning,	replication	etc.	can	be	compared	to	genomes,	
with	 evolution	 constantly	 performing	 unscheduled	 updates.	 Using	 this	 analogy,	 the	 atomic	
information	 unit	 is	 the	 gene.	 A	 gene	 is	 defined	 as	 the	 basic	 physical	 and	 functional	 unit	 of	
heredity	acting	on	stored	 information	to	make	proteins,	which	 in	 return	perform	actual	work	
ensuring	 that	 the	 gene	will	multiply	 and	 persist	 through	 replication.	Genomes,	 however,	 are	
composed	 of	 thousands	 of	 genes	 that	 participate	 in	 complex	 interaction	 networks.	 These	
networks	must	be	conserved	across	evolutionary	time,	which	poses	a	legitimate	question	as	to	
how	individual	genes	and	proteins	retain	information	related	to	inclusion	in	already	established	
networks.	 Molecular	 evolutionary	 studies	 rely	 exclusively	 on	 alignment-based	 homology	 to	
infer	 relatedness,	 yet	 these	 methods	 often	 struggle	 to	 infer	 common	 biological	 function	 or	
interactions	 between	 sequences	 that	 lack	 sufficient	 homology	 to	 be	 aligned	 [1].	 Latent	
Semantic	 Analysis	 (LSA)	 is	 a	method	 based	 on	 natural	 language	 processing	that	 can	 uncover	
information	common	to	sequences	sharing	a	network	or	a	context	but	which	share	little	or	no	
homology	 [2].	 The	concept	behind	LSA	 is	 the	Distributional	hypothesis	 [3],	whereby	 linguistic	
items	with	 similar	 distributions	have	 similar	meanings.	 LSA	has	been	extensively	used	 in	 text	
processing	applications	e.g.	analyzing	 relationships	between	sets	of	documents	 [4].	The	same	
principle	 has	 been	 applied	 to	 studying	 evolution	 by	 analyzing	 the	 distribution	 of	 the	 4-letter	
nucleotide	 code	 of	 genes,	 or	 the	 20-letter	 amino	 acid	 one	 in	 proteins.	 Predating	 alignment-
based	methods,	an	observation	that	genomes	have	species-specific	preference	for	nucleotides,	
summarized	by	Chargaff’s	2nd	 rule	 [5]	helped	solve	 the	double	helical	 structure	of	DNA.	Even	
the	most	 prominent	 alignment-based	methods,	 do	 not	 adhere	 completely	 to	 the	 concept	 of	
optimal	alignment.	Instead,	these	methods	find	k-mers,	which	are	substrings	of	length	k,	used	
as	a	 "signature"	 for	 the	underlying	 sequence	 [6].	This	heuristic	approach	has	been	applied	 in	
domain	 of	 genome	 assembly,	 where	 k-mers	 are	 used	 during	 the	 construction	 of	 De	 Bruijn	
graphs	 [7,8].	 Despite	 the	 fact	 that	 k-mers	 do	 deviate	 from	 an	 ideal	 alignment	 concept,	 this	
approach	has	allowed	 for	some	of	 the	major	advances	 in	molecular	biology.	Despite	 this,	 the	
majority	 of	 biologists	 remain	 sceptic	 of	 alignment-free	 approaches	 that	 teach	 away	 from	
established	molecular	dogma	that	similar	sequences	share	similar	function	or	structure,	which	
is	 conserved	 through	evolution	 if	 the	sequences	confer	biological	 fitness[9].	Although	not	yet	
being	fully	convincing	for	the	mainstream	scientific	majority,	LSA	has	been	successfully	used	to	
predict	 enzyme	 substrate	 specificity	 [10]	 and	 a	 variant	 of	 LSA	 called	 probabilistic	 latent	
semantic	 analysis	 (PLSA)	 was	 used	 to	 analyze	 proteomes	 of	 closely	 related	 pathogens	 [11].	
Others	have	gone	further	and	proposed	bio-vectors	referring	to	biological	sequences	in	general	
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and	more	specifically,	protein-vectors	for	proteins	and	gene-vectors	for	DNA	sequences.	These	
vectors	 achieved	 >90%	 family	 classification	 accuracy,	 outperforming	 existing	 classification	
methods	 [12].	Herein,	all	available	protein	sequences	 from	NCBI	“nr”	database	were	grouped	
according	 to	 source	 organism.	 Resulting	 species	 proteomes	were	 used	 to	 create	 species	 LSA	
model	 that	 were	 correlated	 with	 the	 NCBI	 Taxonomy	 database	 in	 order	 to	 test	 whether	
reductionist	 approach	 favored	 by	 alignment-based	methods	 producing	 a	 gene-centered	 view	
can	be	complemented	by	more	integral,	natural	language	processing	method	putting	emphasis	
on	 context	based	 information.	 The	 results	 indicated	 that	 there	 is	more	 than	 just	bias	behind	
differences	in	species	sequences.	Instead	of	simple	bias,	actual	self-similar	signatures	emerged,	
which	 were	 present	 in	 all	 of	 species	 proteins,	 including	 the	 ones	 currently	 being	 labeled	 as	
taxonomically	 restricted.	 In	 order	 to	 increase	 awareness	 of	 the	 broader	 audience	 alignment-
free	methods	truly	deserve,	we	made	the	LSA	species	model	freely	available	for	all	to	test	on	
http://matrix.pbf.hr/	and	we	plan	to	update	it	on	regular	basis.	

Results	
Alignment-free	approach	to	inferring	species	similarity		
To	 assess	 whether	 different	 proteins	 making	 up	 a	 species	 proteome	 store	 context-based	
information,	 a	 taxonomy-benchmarking	 test	was	 performed	 to	 compare	 the	 results	with	 the	
NCBI	Taxonomy	database.	Latent	Semantic	Analysis	is	able	to	utilize	entire	protein	sets	for	both	
query	 and	model	 creation.	 For	 this	 purpose,	 three	protein	 query	 sets	 of	 different	 sizes	were	
selected	and	deliberately	removed	from	the	remaining	proteomes	used	for	the	LSA	model.	To	
ensure	 the	 same	 benchmarking	 conditions,	 initial	 removal	 of	 500	 proteins	 from	 each	 of	 the	
54,526	proteomes	provided	the	largest	training	set	from	which	two	smaller	training	sets	were	
extracted	(100	and	50	proteins	each).	The	remaining	proteome	was	used	to	build	the	LSA	model	
in	all	 three	benchmarking	 tests.	 The	model	was	built	by	 transforming	protein	 sequences	 into	
lists	 of	 “words”,	 in	 this	 case	 3-peptide	 motifs	 based	 on	 a	 sliding	 window	 approach	
(Supplementary	Figure	1A).	These	3-peptide	frequencies	were	then	weighted,	embedded	in	the	
form	 of	 species	 vectors	 and	 used	 for	 pairwise	 comparison	 based	 on	 cosine	 similarity	
(Supplementary	 Figure	 1B).	 The	 taxonomy	 related	 prediction	 capacity	 of	 the	 LSA	model	was	
assessed	by	challenging	 the	model	with	 the	 three	query	 sets	of	different	 size	 for	each	of	 the	
54,526	 species,	 using	 single	 best-hit	 approach	 (SBH)	 and	 a	 voting	 scheme	 method	 (VSM)	
(Supplementary	 Figure	 1B).	 Briefly,	 for	 each	 taxon	 query	 sequence	 set,	 the	 SBH	 approach	
assigned	 taxonomy	of	 the	most	 similar	 subject	 taxa	vector	 (from	LSA	 training	 set),	whilst	 the	
VSM	method	took	the	five	most	similar	taxa	vectors	from	the	training	set	and	used	these	in	a	
voting	 scenario	 (Supplementary	 Figure	 1C).	 The	 results	 using	 both	 SBH	 and	VSM	approaches	
gave	significant	agreement	with	the	NCBI	taxonomy,	ranging	from	66.9%	-	78.9%	for	SBH	and	
from	82.6%	-	92%	for	VSM.	The	average	taxonomy	correlation	calculated	across	all	taxonomic	
ranks	 from	 the	 smallest	 (50	proteins)	 to	 largest	 (500	proteins)	 sample	used	 in	benchmarking	
tests	are	shown	in	Fig.	1,	A,	B	and	C.	
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A	 	

	 	

B	 	

	 	

C	 	

	 	

D	 	

	 strain	 species	 genus	 family	 order	 class	 phylum	 superkingdom	
SBH	 100%	 98.8%	 90.4%	 91.5%	 93.1%	 92.8%	 98.6%	 100%	

VSM	 0%	 36.2%	 84.1%	 89.8%	 92.6%	 92.7%	 98.4%	 100%	
	

	

Fig.	1.	NCBI	taxonomy	benchmarking	results	for	the	following	sample	sizes:	500,	100	and	50	
random	gene	translations,	using	SBH	(left)	and	VSM	(right).	To	obtain	controls	for	each	actual	
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protein	sequence	used,	two	additional	sets	of	decoy	sequences	mirroring	the	actual	ones	were	
created.	These	were	designated	as	“shuffled”	and	“random”.	Shuffled	decoys	were	created	by	
simple	protein	sequence	shuffling	creating	a	random	order	of	 initial	amino	acids	i.e.	the	single	
amino	 acid	 frequency	 remained	 the	 same	 between	 actual	 and	 shuffled	 sequence,	 while	 the	
random	decoy	sequences	used	the	same	set	of	amino	acids	found	in	the	actual	counterpart	and	
are	of	the	same	length,	but	the	single	amino	acid	frequency	approached	the	normal	distribution	
due	 to	 random	sampling.	 (A)	Randomly	 sampled	protein	 sequences	 ranging	 from	 (A)	 500,	 (B)	
100	and	(C)	50	proteins	per	taxon	were	decomposed	into	constituent	3-peptides,	folded-in	and	
used	 to	 construct	 queries	 to	 search	 against	 54,526	 taxa	vectors	 in	 a	 species	 LSA	model,	 built	
from	 the	 remaining	 sequences.	 (D)	 Table	 displaying	 percentage	 of	 taxa	 included	 in	
benchmarking	tests	for	each	taxonomic	rank	for	both	the	SBH	and	VSM	methods.	Not	all	taxa	
have	 all	 ranks	 listed	 in	 the	 lineages	 and,	 since	 the	 VSM	 method	 includes	 the	 majority	 vote	
amongst	 the	5	best	hits,	 it	 requires	at	 least	 three	taxa	representatives	 for	each	query	and	 for	
each	 rank.	 This	 excluded	 strain	 level	 from	VSM	benchmarking	 and	 significantly	 restricted	 the	
number	of	query	candidates	at	species	level	being	benchmarked.	

These	 results	 suggested	 that	 random	 protein	 subsets	 of	 different	 sizes	 produced	 similar	
taxonomy	mappings,	which	was	surprising	because	of	different	set	sizes	and	random	selection	
of	 proteins	 in	 each	 set.	 To	 test	 this	markedly	 different	 approach	 in	 comparison	 to	 sequence	
alignment,	the	LSA	species	model	was	compared	to	the	widely	used	alignment-based	method	–	
BLAST	[6].	Two	non-overlapping,	same-sized	sets	of	sequences	 from	1,000	arbitrarily	selected	
species	 were	 split	 50/50	 into	 training	 and	 test	 set	 (Supplementary	 Table	 2).	 Taxonomy	
assignments	were	made	the	same	as	before	for	LSA.	LSA	utilizes	multiple	sequences	forming	a	
single	 query	 based	 on	 cumulative	 3-peptide	 frequency	 opposed	 to	 BLAST,	 which	 performs	
solely	sequence-to-sequence	alignment,	a	concession	had	to	be	made	where	a	posteriori	only	
one	 good	 homology	 match	 between	 subject	 and	 query	 datasets	 was	 to	 be	 sufficient	 for	
taxonomic	 assignment	 made	 by	 BLAST	 (see	 Materials	 and	 Methods).	 Quite	 surprisingly,	 the	
alignment-free	natural	language	processing	method	clearly	outperformed	BLAST	(Fig.	2,	A	and	
B),	although	the	comparison	allowed	for	BLAST	to	take	full	advantage	of	coincidental	homology	
between	the	query	and	subject	protein	sets.		

A	 	 	 	 	 	 			B	
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Fig.2.	Taxonomy	benchmarking	results	obtained	by	both	LSA	and	BLAST	for	each	of	the	three	
sample	 sizes	 (500,	 100	 and	 50	 randomly	 selected	 proteins)	 for	 both	 (A)	 SBH	 and	 (B)	 VSM	
methods.	 The	 X-axis	 differs	 between	 the	 two,	 because	 the	 VSM	method	was	 applied	 only	 to	
those	taxa	that	had	more	than	3	representative	organisms,	therefore	the	lowest	level	(“strain”)	
is	missing	from	the	VSM	results.	Full	lines	represent	LSA	results	and	dotted	lines	represent	BLAST	
results.	 Unlike	 results	 from	 the	 initial	 LSA	 benchmarking	 test,	 the	 VSM	method	 gave	 a	 slight	
drop	in	correlation	between	species	and	family	taxonomic	levels,	most	likely	because	there	were	
fewer	 organisms	 with	 3	 or	 more	 species	 or	 genus	 representatives	 in	 the	 1,000	 organisms	
selected	(Supplementary	Table	3)	

This	 comparison	 of	 an	 alignment-based	method	with	 natural	 language	 processing,	 suggested	
that	 LSA	was	 able	 to	 utilize	 some	 additional	 information	 content	 stored	within	 heterologous	
protein	samples	that	was	not	related	to	alignment-based	homology.	

Even	taxonomically	restricted	proteins	exhibit	semantic	properties	shared	with	
their	proteome	
In	order	 to	 further	explore	this	possibility,	coincidental	homology	between	protein	sets	being	
compared	had	to	be	removed.	To	achieve	this,	taxonomically	restricted	sequences	were	used.	
Amongst	 these,	 orphan	 sequences	 are	 the	most	 limited,	 restricted	 to	 only	 one	 or	 just	 a	 few	
species.	These	sequences	are	also	interesting	because	they	are	frequently	associated	with	novel	
phenotypes	 [13–15].	 Therefore,	 the	 capabilities	 of	 LSA	 to	 extract	 knowledge	 from	 sequences	
beyond	 predictions	 obtainable	 using	 distant	 homology	 alignments	 [1]	 could	 be	 further	
explored.	 Declaring	 a	 gene	 or	 protein	 sequence	 as	 an	 orphan	 is	 very	 challenging	 because	
genomic	 databases	 are	 incomplete	 [16].	 This	 is	 why	 the	 LSA	 approach	 was	 tested	 using	
sequences	 obtained	 by	 both	 stringent	 and	 relaxed	 scenario	 to	 account	 for	 the	 level	 of	
homology	remaining	within	the	sequence	sets.	The	relaxed	scenario	included	the	NCBI	Protein	
Clusters	 [17]	 dataset.	 All	 sequences	 within	 the	 proteomes	 of	 taxa	 used	 in	 the	 previous	
benchmarking	experiment	and	listed	in	NCBI	Clusters	were	regarded	as	orphan	candidates	and	
became	part	of	the	relaxed	orphan	dataset	(Supplementary	Table	4).	This	reversal	in	the	way	in	
which	the	Clusters	dataset	was	created	is	analogous	to	alignment-based	methods	and	E-value	
threshold	criteria	used	for	orphan	sequence	identification	[18,19],	and	significantly	reduces	the	
overall	 homology	 between	 Clusters	 and	 orphan	 sequence	 sets	 used	 for	 the	 LSA	 model	 and	
subsequent	queries.	Because	orphan	candidates	were	 those	sequences	not	 listed	 in	 the	NCBI	
Clusters,	this	approach	was	designated	as	“relaxed”.	In	total,	3,913	unique	species	were	present	
in	 both	 the	NCBI	 “nr”	 based	 taxa	 proteome	 collection	 and	NCBI	 Clusters,	with	 >	 100	 orphan	
candidates.	Exactly	100	proteins	randomly	selected	from	both	Clusters	and	the	orphan	dataset	
represented	each	species	twice,	once	as	part	of	homology-rich	Clusters	and	once	as	homology-
poor	orphans.	Taxonomy-benchmarking	tests	comparing	BLAST	to	LSA	were	performed	 in	the	
same	manner	as	previously	described,	with	an	additional	step	in	which	datasets	were	reversed.	
Despite	 favoring	 BLAST,	 the	 LSA	 predictions	 provided	 significantly	 better	 taxonomy	
benchmarking	results	(Fig.	3	A	and	B).		
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A	 	 	 	 	 	 				B	

	 	

Fig.3.	 Relaxed	 orphan	 taxonomy	 benchmarking	 using	 (A)	 SBH	 and	 (B)	 VSM	 methods.	 The	
results	were	obtained	in	a	reciprocal	manner,	in	which	the	subject	and	query	sequence	sets	were	
reversed.	The	combination	in	which	the	relaxed	orphan	dataset	was	used	to	build	both	the	LSA	
subject	 vectors	 and	 blastp	 database,	 and	 where	 the	 Clusters	 dataset	 was	 used	 for	 query	 is	
denoted	with	“orphans_”	prefix.	The	reciprocal	combination	 in	which	the	Clusters	dataset	was	
used	to	the	build	both	the	LSA	model	and	blastp	database,	which	were	queried	using	the	orphan	
dataset	 is	denoted	with	“clusters_”	prefix.	Green	and	red	bars	display	the	correlation	between	
the	LSA	benchmarking	results	and	NCBI	taxonomy	database,	whilst	blue	and	cyan	bars	show	the	
correlation	between	the	results	obtained	using	BLAST.	

Semantic	properties	of	species	proteins	are	completely	independent	of	alignment-
based	homology	
To	completely	rule	out	the	effect	of	coincidental	homology,	all	alignment-detectable	homology	
was	 removed	 from	 the	 query	 sequence	 sets.	 To	 achieve	 this,	 a	 sample	 of	 100	 species	 was	
randomly	 selected,	 with	 all	 four	 kingdoms	 of	 life	 having	 at	 least	 one	 representative.	 In	 this	
sample,	 a	 two-stage	 filtering	 process	 removed	 all	 alignment-detectable	 homology	 (see	
Materials	and	Methods).	In	first	stage,	protein	family	members	could	be	detected	and	removed	
using	Hidden	Markov	models	 [20]	and	Pfam	 [21].	 In	 the	 second	 step,	extensive	BLAST	of	 the	
remaining	 sequences	 against	 the	 54,526	 species	 proteomes	 was	 performed	 to	 remove	 the	
remaining	homology.	What	proteins	remained	after	this	filtering	became	part	of	the	stringent	
orphan	 dataset	 (Supplementary	 Dataset	 1).	 An	 LSA	 model	 was	 built	 using	 54,526	 species	
proteomes,	 with	 the	 orphan	 sequences	 removed.	 The	 benchmarking	 test	 was	 performed	
without	BLAST	comparison,	because	the	second	step	of	stringent	filtering	made	this	redundant.	
The	results	showed	that	84%	of	species	represented	solely	by	orphan	sequences,	when	used	as	
a	queries	against	LSA	model	displayed	similarity	to	other	related	taxa	(Fig.	4,	A	-	E).		
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A	 	 	 	 	 	 				B	

	 	

C	 D	

	 	

E	

	 strain	 species	 genus	 family	 order	 class	 phylum	 superkingdom	

TP	-	SBH	 11	 13	 15	 22	 26	 34	 53	 80	

TP	-	VSM	 -	 2	 10	 21	 23	 33	 48	 72	

Number	of	
organisms	used	
as	query	-	SBH	

100	 100	 83	 81	 81	 77	 98	 100	

Number	of	
organisms	used	
as	query	-	VSM	

-	 12	 61	 73	 79	 77	 93	 100	

Total	number	of	
unique	taxId	per	
taxonomy	rank	

100	 98	 79	 68	 58	 32	 29	 4	

		Unique	taxId	
coverage	-	SBH	 11%	 13.3%	 16.5%	 27.9%	 34.5%	 50%	 65.5%	 100%	

		Unique	taxId	
coverage	–	VSM	 -	 2%	 11.4%	 22.1%	 27.6%	 46.9%	 62.1%	 75%	

	

Fig.4.	 Stringent	 orphan	 taxonomy	 benchmarking	 results	 based	 on	 randomly	 sampled	 100	
organisms.	Results	 for	 (A)	SBH	and	(B)	VSM	methods.	For	each	orphan	sequence,	 three	decoy	
sequences	 were	 included	 in	 the	 analysis.	 These	 decoys	 were	 used	 to	 create	 “shuffled”,		
“random”	 and	 “mixed”	 datasets.	 Shuffling	 the	 entire	 orphan	 dataset	 and	 then	 re-populating	
each	subject	taxon	with	the	same	number	of	proteins	taken	from	this	collective	mix	made	the	
“mixed”	dataset.	The	total	number	of	positive	taxonomic	matches	(TP)	for	each	rank	 is	shown	
for	(C)	SBH	and	(D)	VSM	methods.	Horizontal	dashed	lines	at	the	bottom	of	each	plot	denote	the	
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expected	taxonomic	recognition	threshold	(as	defined	by	the	query	sequence	being	restricted	on	
the	lowest	taxonomic	level)	(E)	Tabular	overview	of	results	where	the	first	two	rows	display	TP	
count	at	 each	 taxonomic	 level.	 The	 third	and	 the	 fourth	 rows	 show	 the	number	of	organisms	
available	 as	 a	 query	 at	 each	 taxonomy	 level.	 The	 fifth	 row	 gives	 the	 number	 of	 unique	
taxonomic	 identifiers	 amongst	 the	 100	 selected	 organisms	 –	 representing	 the	 taxonomic	
diversity	 of	 the	 sample.	 The	 sixth	 and	 seventh	 rows	 display	 the	 percentage	 of	 taxonomic	
diversity	within	query	organisms	that	was	successfully	covered	by	positive	matches	(total	unique	
taxId	per	rank	/	unique	taxId	per	positive	matches)	for	both	SBH	and	VSM	methods.	

To	 rule	out	 the	possibility	of	obtaining	comparable	 results	by	chance,	 “mixed”	and	“random”	
decoy	 sequences	were	used	as	 controls	 (Fig.	 4,	A	 and	B).	 The	majority	of	positive	 taxonomic	
assignments	were	achieved	beyond	the	homology	restriction	level	(Fig.4,	C	and	D).	This	strongly	
implied	 that	 LSA	 established	 relationships	 between	 orphan	 proteins	 and	 related	 species	
proteomes,	 based	 on	 taxonomy	 and	 in	 the	 total	 absence	 of	 alignment-detectable	 homology.	
This	common	taxonomy-related	denominator	was	further	highlighted	by	the	“mixed”	query	set,	
which	was	constructed	 from	sequences	of	mixed	origin.	Unlike	“shuffled”	or	“random”	decoy	
sequences,	by	using	actual	 sequences	of	mixed	 taxonomic	origin,	 real	 information	content	of	
the	protein	sequences	was	used	but	the	taxonomic	contribution	was	removed.	Mixed	sequence	
results	were	most	 comparable	 to	 those	of	 random	decoys	and	performed	 significantly	worse	
than	 actual	 or	 shuffled	 sequences.	 This	 confirmed	 the	 importance	 of	 3-peptide	 frequency	
patterns	within	species	proteomes	and	indicated	that	all	proteins	sharing	a	proteome	context	
include	 additional	 information	 content,	 even	 in	 the	 complete	 absence	 of	 alignment-based	
homology.	 True	 orphans	 are	 considered	 to	 be	 a	 subset	 of	 taxonomically	 restricted	 proteins,	
which	are	unique	to	a	specific	taxonomic	level.	In	contrast	to	non-orphan	proteins,	orphans	are	
believed	to	be	unique	to	a	species,	however	these	results	(Fig.	4	C	and	D)	 indicate	that	this	 is	
not	the	case	when	alignment-free	similarity	methods	are	used.	

More	than	just	bias	–	species	proteomes	exhibit	distinct	3-peptide	frequency	
signatures	
Different	species	have	different	codon	usage	preferences.	A	major	difference	between	codon	
frequency	 and	 amino	 acids	 frequency	 is	 that	 different	 codons	 can	 code	 for	 the	 same	 amino	
acid,	while	 different	 combinations	 of	 amino	 acids	 result	 in	 different	molecules.	 Codon	 usage	
bias	is	a	well-accepted	phenomenon,	but	the	consequence	of	biased	DNA	translated	to	biased	
proteins	on	a	genome	wide	scale	is	somewhat	less	well	known	[22].	Different	species	may	have	
different	preferences	for	specific	amino	acids	codons	and	consequently,	these	codons	will	occur	
at	uneven	frequencies	 in	the	population	causing	preferences	for	specific	amino	acids	to	differ	
[23,24].	 Following	 this	 rationale,	 LSA	was	 used	 to	 investigate	 the	 possible	 existence	 of	more	
systematic	biases	between	entire	collections	of	species	proteins	-	proteomes.	This	was	tested	
using	both	 random	sequence	 sets	 sharing	 solely	 coincidental	 homology	 and	orthologous	 sets	
sharing	 maximal	 homology	 across	 species.	 Shuffling	 sequences	 is	 commonly	 used	 to	 create	
decoy	 datasets	 when	 estimating	 false	 discovery	 rates	 [25,26].	 Since	 LSA	 can	 utilize	 multiple	
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sequences	 as	 query	 and	 notionally	 “amplify”	 signals	 coming	 from	 individual	 sequences,	 this	
method	might	not	 suffice.	To	 test	whether	 this	was	 the	case,	each	3-peptide	 in	 the	“actual”,	
“shuffled”	 and	 “random”	 datasets	 was	 counted	 for	 >	 27	 million	 proteins,	 from	 each	 of	 the	
54,526	taxa	used	throughout	this	study	(Fig.5	A).	

A	 	 	 	 	 	 	 B	

	
	

C	 D	

	 	

E	 F	
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Fig.5.	 All	 of	 species	 proteins	 exhibit	 taxonomy-related	 signatures.	 3-peptide	 frequency	
distribution	 and	 selected	 taxa	 3-peptide	 frequency	 plots.	 (A)	 3-peptide	 frequencies	 were	
calculated	from	a	sample	of	27,263,000,00	proteins.	The	frequencies	(Y-axis)	were	calculated	for	
“actual”	 (blue),	 “shuffled”	 (red)	 and	 “random”	 (cyan)	 sequences.	 The	 X-axis	 represents	 3-
peptides	 sorted	 by	 decreasing	 frequency	 using	 the	 “actual”	 sequence	 dataset	 for	 reference.	
Shuffled	 and	 random	 3-peptide	 frequencies	 were	 shifted	 equally	 on	 the	 x	 and	 y-axis	 to	 be	
discernible.	Only	 the	most	 frequent	5,658	3-peptides	are	being	displayed.	 (B)	Random	protein	
samples	containing	a	different	percentage	of	a	complete	proteome	displaying	a	“signature”	 in	
the	form	of	a	fractal	pattern,	as	seen	here	 in	a	randomly	selected	bacterium.	(C)	Two	random	
plant	 species	 proteomes	 each	 represented	 by	 a	 random	 selection	 of	 100	 proteins	 by	 100	
iterations.	Each	iteration	was	folded	into	LSA	vector	space	and	displayed	using	a	2-dimensional	
PCA	plot	(D)	The	same	two	plant	species,	each	represented	50	times	using	random	100	proteins	
(with	 virtually	 no	 homology	 between	 two	 species	 proteins	 sets)	 and	 another	 50	 times	 by	 a	
different	set	of	100	shared	orthologous	proteins	(with	the	highest	possible	degree	of	homology	
between	two	species	protein	sets).	(E)	3-peptide	frequency	plots	displaying	similar	signatures	of	
3	 species	 of	 Streptococcus.	 (F)	 8	 different	 taxa	 “signatures”,	 3	 Streptococcus	 species,	 3	
Streptomyces	 species,	 1	 species	 of	 Bifidobacterium	 and	 1	 species	 of	 Propionibacterium.	 A	
Savitzky-Golay	filter	was	used	for	smoothing	of	all	plots	displayed.	Closely	related	species	have	
more	similar	signatures.	

When	displayed	on	the	same	plot,	the	3-peptide	frequency	of	“shuffled”	sequences	exhibited	a	
similar	pattern	to	the	“actual”	sequences,	strongly	implying	that	shuffling	was	not	sufficient	for	
the	 collection	 of	 proteins	 to	 lose	 the	 taxonomic	 signature.	 This	 was	 confirmed	 using	 a	 two-
sample	Kolmogorov-Smirnov	test	 (KS	statistic=0.02474	and	p_value=0.062596	for	α=0.05	with	
critical	value	D_crit=0.0255695)	calculated	on	5,658	of	the	most	frequent	3-peptides	from	the	
“actual”	 protein	 dataset.	 While	 sequence	 shuffling	 can	 make	 a	 single	 sequence	 sufficiently	
random	 for	 alignment-based	 methods,	 it	 was	 not	 sufficient	 for	 LSA	 using	 more	 than	 one	
sequence	to	construct	meaningful	queries,	even	in	the	absence	of	alignment.	This	explained	the	
difference	between	 the	“shuffled”	decoy	 results	when	compared	 to	 results	 for	 the	“random”	
and	“mixed”	datasets.	The	3-peptide	frequency	pattern	was	an	integral	feature	exhibited	by	all	
proteins	making	up	a	proteome	(Fig.	5B).	Whilst	the	proceeding	benchmarking	results	(Fig.	1	A,	
B	and	C)	 indicated	these	signatures	were	species	specific	and	robust,	this	had	to	be	tested	by	
repeated	subsampling	of	different	proteome	samples.	Although	each	sample	was	a	completely	
different	mixture	of	species	proteins,	the	boundary	between	species	remained	stable	(Fig.	5C).	
Perhaps	 the	 most	 striking	 confirmation	 of	 robustness	 was	 obtained	 when	 orthologous	
sequence	 samples	 were	 mixed	 with	 random	 sequences	 (Fig.	 5D).	 Even	 when	 same	 sets	 of	
orthologs	were	 used,	 the	 species	 vector	 clustering	 remained	 stable	 despite	 ortholog	 protein	
family	 relatedness.	 Smoothed	 histograms	 of	 3-peptide	 frequency	 data	 were	 used	 to	
demonstrate	 signature	 similarities	 between	 closely	 related	 taxa	 (Fig.	 5	 E	 and	 F).	 These	
proteome-distributed	features	were	designated	‘Latent	Taxonomic	Signatures’	(LTSs)	because	is	
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the	information	is	both	hidden	and	discernible	from	information	obtained	by	alignment-based	
homology.	 The	 discovery	 of	 LTSs	 posed	 an	 intriguing	 question,	 how	 did	 genes	 belonging	 to	
different	 gene	 families	 manage	 to	 produce	 a	 feature	 distributed	 amongst	 different	 proteins	
that	constituted	species	proteomes?		

Are	taxonomic	signatures	resulting	from	context	dependent	evolution?		
Besides	originating	from	related	organisms,	 it	 is	difficult	to	explain	any	commonality	between	
proteins	displaying	LTSs.	The	same	LTSs	were	observed	 in	heterogeneous	protein	subsamples	
encoded	by	genes	from	different	gene	families	that	shared	only	genome	and	proteome	context,	
but	 no	 alignment-based	 homology.	 This	 suggested	 that	 all	 protein-coding	 genes	 within	 taxa	
evolve	 in	 a	 concerted	 manner,	 dependently	 of	 taxonomic	 context.	 Previous	 results	
demonstrated	that	not	even	orphan	sequences	were	exempt	from	this	(Fig.	4).	However,	these	
datasets	 represented	 heterogeneous	 collections	 of	 functionally	 and	 structurally	 unrelated	
species	 proteins.	 Although	 random	 sampling	 is	 usually	 the	 method	 of	 choice	 for	 testing	
hypotheses,	to	further	validate	universality	for	the	proposed	constraint,	the	occurrence	of	LTSs	
was	also	established	in	non-random,	homogenous	protein	samples.	To	accomplish	this,	protein	
families	were	used	 to	 collect	 sequences	and	 further	 sub-divided	 into	 taxonomic	 groups,	with	
each	group	folded-into	a	single	LSA	vector	 to	represent	 the	group.	Each	of	 these	vectors	was	
created	using	3-peptides	from	highly	homologous	sets	of	proteins	characterized	by	significant	
sequence	 similarity	 and	 a	 well-defined	 alignment.	 These	 vectors	 represented	 both	 protein	
families	and	contributing	taxa,	and	were	compared	pairwise	within	the	same	protein	family	e.g.	
“intra-class”,	 and	 to	 the	 entire	 collection	 of	 species	 vectors,	 based	 on	 whole	 proteome	 3-
peptide	 frequencies	 e.g.	 “inter-class”.	 Cosine	 based	 comparison	 was	 performed	 with	 two	
possible	 outcomes,	 “selfish”	 or	 “altruistic”.	 A	 null	 hypothesis	 assumed	 that	 there	 was	 no	
relationship	 between	 the	 taxonomic	 origin	 of	 the	 proteins	 and	 the	 outcomes.	 Hence,	 the	 3-
peptide	 frequency	pattern	 for	 any	 given	protein	 family	 taxonomic	 group	was	expected	 to	be	
more	similar	when	compared	“intra-class”	than	“inter-class”.	A	high	degree	of	homology	within	
protein	 family	versus	no-homology	within	a	collection	of	proteins	contributing	to	a	proteome	
would	certainly	have	indicated	this.	To	test	this	hypothesis,	two	control	datasets	were	added,	
the	"mixed”	control	dataset,	with	sequences	 randomly	sampled	 from	a	protein	 family	 (mixed	
taxonomic	 origin,	 but	 possibly	 biased)	 and,	 being	 completely	 taxonomically	 independent,	 an	
"HMM”	control	dataset	where	protein	sequences	were	 replaced	by	 the	consensus	sequences	
generated	 from	 a	 protein	 family	 HMM	model	 [20],.	 In	 cases	 where	 the	 observed	 intra-class	
similarity	 was	 greater	 than	 any	 of	 the	 inter-class	 similarities,	 the	 outcome	 was	 regarded	 as	
“selfish”.	 In	 the	 opposite	 scenario,	 when	 one	 or	 both	 inter-class	 similarities	 prevailed,	 the	
outcome	was	regarded	as	“altruistic”.	The	results	of	these	comparisons	indicated	more	similar	
and	abundant	inter-class	outcomes	than	intra-class	similarity	outcomes	(Fig.	6A).	
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A	

Protein	family,	
taxonomic	grouped	
protein	sets	

Total	number	of	
Pfam	families	tested	

%	of	SELFISH	
outcomes	

%	of	ALTRUISTIC	
outcomes	

Total	number	of	
outcomes		

SPECIES	 468	 590,563	(29,3%)	 1.424,886	(70,7%)	 2.015,449	

GENUS	 201	 26,300	(25,1%)	 78,556	(74,9%)	 104,856	

MIXED	SPECIES	 468	 1.600,332	(79,4%)	 415,117	(30,6%)	 2.015,449	

MIXED	GENUS	 201	 75,798	(72,3%)	 29,058	(37,7%)	 104,856	

HMM	SPECIES	 468	 2.015,449	(100,0%)	 0	(0,0%)	 2.015,449	

HMM	GENUS	 201	 104,856	(100,0%)	 0	(0,0%)	 104,856	
	

B	 C	 D	

	 	 	

E	 F	 G	

	 	 	

Fig.6.	Taxonomy	context	dependence	 tested	on	468	Pfam	protein	 families	 in	which	proteins	
were	grouped	according	to	species,	and	201	families	where	proteins	were	grouped	according	
to	 genus	 (Supplementary	 Table	 5).	 (A)	 Table	 summarizing	 the	 experimental	 outcomes	 for	
“actual”	(no	prefix),	“mixed”	(prefix	MIXED)	and	HMM	(prefix	HMM)	datasets.	HMM	consensus	
sequences	 produced	 exclusively	 “selfish”	 outcomes,	 whilst	 the	 majority	 of	 actual	 sequence	
outcomes	 were	 “altruistic”.	 (B)	 HMM	 taxonomy	 independent	 inter-	 and	 intra-class	 cosine	
similarity	 plots	 constructed	 from	 a	 random	 selection	 of	 10,000	 family-taxa	 combinations	
showing	best	 recorded	 intra-class	 (selfish)	and	 inter-class	 (altruistic)	 cosine	 values	 for	 each	of	
the	 10,000	 pairwise	 comparisons.	 Selfish	 outcomes	 are	 characterized	 by	 significantly	 higher	
recorded	 cosine	 values	 as	 expected.	 (C)	 Cosine	 plot	 from	 a	 random	 selection	 of	 the	 10,000	
pairwise	 family-taxa	 actual	 protein	 set	 combinations	 representing	 “selfish”	 and	 “altruistic”	
outcomes.	Selfish	outcomes	are	characterized	by	significantly	lower	and	more	variable	recorded	
cosine	 similarities	 compared	 to	 “altruistic”	 outcomes,	 which	 indicated	 an	 evolutionary	
constraint	 imposed	 by	 species.	 (D)	 “Mixed”	 species	 inter-	 and	 intra-class	 cosine	 plot	 for	 a	
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random	selection	of	10,000	pairwise	comparisons.	(E)	HMM	consensus	sequences	error	bar	plot.	
(F)	Mixed	proteins	error	bar	plot.	 (G)	Actual	proteins	error	bar	plot.	 In	all	 error	bar	plots,	 the	
height	of	the	bars	is	the	mean	intra-class	and	inter-class	similarity	represented	as	a	cosine	value,	
for	both	species	and	genus	grouped	sequences.	The	error	bars	are	a	+1/-1	standard	deviation	
about	the	mean.	For	the	inter-class	similarities,	an	average	of	two	best	cosine	values	obtained	
by	comparison	with	species	LTSs	are	given.	For	all	three	datasets	(HMM,	actual	and	mixed),	all	
possible	pairwise	combinations	were	used	in	the	table	and	only	10,000	random	combinations	for	
the	plots.		

Intra-	and	inter-class	cosine	similarity	measures	for	all	three	datasets	gave	the	same	frequency	
distributions	based	on	Mann-Whitney	U	Test	(p	=	0).	A	Chi-Squared	Test	on	the	outcomes	from	
all	three	datasets	(Fig.6,	A)	rejected	the	null	hypothesis	(p=0	with	a	significance	level	of	0.05).	
Experimental	 outcomes	 obtained	 from	 the	 HMM	 dataset	 represented	 a	 gene-centered	 view	
expectation.	 However,	 in	 the	 case	 of	 actual	 sequences,	 this	 was	 not	 the	 case.	 Inter-class	
similarity	 outcompeted	 intra-class	 homology	 (Fig.6	 B	 and	 C).	 This	 was	 further	 supported	 by	
mean	values	from	the	cosine	similarity	measures.	The	mean	cosine	value	for	the	HMM	control	
dataset	was	significantly	higher	(0.992)	for	both	species	and	genus	groups	in	selfish	outcomes,	
compared	 to	 0.981	 for	 the	 altruistic	 outcomes.	 Conversely,	 actual	 sequences	 afforded	
significantly	 lower	 mean	 cosine	 values,	 with	 0.879	 (species)	 and	 0.886	 (genus)	 for	 “selfish”	
outcomes,	compared	to	“altruistic”	outcomes	of	0.954	(species)	and	0.960	(genus).	The	mixed	
dataset	was	more	aligned	with	the	HMM	dataset	outcomes.	However,	because	some	families	
had	taxonomic	biases,	the	outcomes	were	also	largely	mixed	(Fig.6,	A	and	D).	Data	used	for	this	
experiment	 were	 evaluated	 by	 constructing	 error	 bar	 charts	 to	 display	 inter-	 and	 intra-class	
cosine	 similarities	 for	 all	 three	 datasets	 (Fig.	 6,	 E,	 F	 and	G).	 These	 charts	 suggested	 that	 the	
amount	 of	 uncertainty	 was	 highest	 in	 the	 actual	 dataset,	 when	 “selfish”	 outcomes	 were	
allocated.	 When	 “altruistic”	 outcomes	 were	 observed,	 the	 degree	 of	 uncertainty	 was	 much	
lower	and	comparable	with	the	control	HMM	dataset.		

Discussion	
Statistical	analysis	of	homology	between	biological	sequences	is	a	standard	approach	to	identify	
conserved	sites	and	motifs	that	correlate	with	biological	knowledge,	such	as	structure	and	how	
this	relates	to	function	[27].	Function	related	knowledge	is	commonly	assigned	solely	based	on	
sequence	 alignments.	 However,	 this	 kind	 of	 homology	 based	 annotation	 provides	 limited	
insight,	 for	 example,	 complementation	 studies	 between	 mutations	 in	 a	 protein	 can	 infer	
interactions	between	amino	acid	residues	not	readily	observed	within	an	alignment	[28].		Thus,	
a	 longstanding	 problem	 in	 bioinformatics	 is	 inferring	 the	 information	 encoded	 in	 a	 biological	
sequence,	when	there	is	 little	or	no	sequence	homology.	A	promising	new	field	of	research	in	
biology	 is	natural	 language	processing,	with	the	original	task	of	determining	the	meaning	of	a	
word	 (i.e.	 semantics)	 from	 the	 contexts	 in	 which	 the	 words	 appear	 [3]	 being	 translated	 to	
biological	 sequences.	 Natural	 language	 processing	 and	 distributional	 semantics	 have	
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increasingly	been	adopted	in	biology,	as	an	alternative	to	alignment-based	homology	[29–31].	
In	this	study,	Latent	Semantic	Analysis	(LSA)	was	applied	to	a	large	number	of	different	species	
proteomes,	 spanning	complete	 range	of	 taxonomic	diversity	 found	 in	 current	databases.	This	
LSA	 based	 species	 model	 identified	 conceptual	 content	 from	 heterogeneous	 collections	 of	
proteins	 contributing	 to	 proteomes,	 by	 establishing	 associations	 between	 3-peptides	 that	
occurred	 in	 similar	 contexts.	 The	 resultant	 3-peptide	 signatures	 were	 discernible	 features	
characterizing	 each	 species	 proteome,	 where	 protein	 subsets	 of	 a	 proteome	 produced	
signatures	that	were	small	replicas	of	the	whole	species	proteome	ones,	resembling	self-similar	
property	of	fractals.	A	major	difference	between	this	approach	and	sequence	alignment	is	that	
an	alignment	is	primarily	an	analytical	method,	restricted	to	comparisons	between	contiguous	
sequences	and	subsets	of	conserved	residues.	Conversely,	natural	language	processing	and	LSA	
represent	a	more	holistic	approach,	which	places	dispersed	motifs	into	the	context	of	entirety.	
Consequently,	 species	 can	 be	modeled	 as	 a	 collection	 of	 random	 sequences,	 as	 opposed	 to	
being	 reduced	 it	 to	 a	 single	 gene	 or	 protein	 family	 representative.	 The	 alignment	 is	 not	 a	
prerequisite	 for	 this	 kind	 of	 modeling,	 since	 vectors	 that	 represented	 species	 proteomes	
provided	 valid	 taxonomic	 knowledge,	 even	 in	 the	 total	 absence	 of	 meaningful	 sequence	
alignment	(Fig	3.	A	and	B,	Fig	4.	A	and	B).	Evolution	is	biased	towards	selecting	conserved	amino	
acids	that	are	consistent	with	fitness	[32].	Taking	a	gene-centered	view,	evolutionary	success	is	
directly	 linked	 with	 the	 ability	 to	 generate	 as	many	 near-identical	 copies	 in	 a	 population	 as	
possible.	Hamilton	mathematically	set	foundations	for	this	reproductive	fitness	as	a	measure	of	
evolutionary	 success	 in	 his	 “Inclusive	 Fitness”	 theory	 of	 1964	 [33].	 Results	 presented	 herein	
suggested	that	notion	of	a	successful	replicator	encoding	solely	self-contained	information	was	
incomplete.	 No	 gene	 or	 protein	 exists	 as	 an	 atomic	 entity	 but	 resides	 within	 a	 taxonomic	
context.	 In	such	a	context,	transgenerational	transmission	of	a	gene	or	protein	would	unlikely	
be	 successful	 without	 additional	 information	 that	 describes	 reciprocal	 interactions	 between	
other	 genes	 comprising	 the	 genome	 and	 equally,	 other	 proteins	 representing	 the	 proteome.	
Thus,	 the	 total	 information	 content	 in	 a	 genome	 and	 proteome	 is	 inextricably	 linked	 by	
integration	between	these	salient	features.	LTSs	indicated	a	bi-directional	relationship	between	
the	species	and	protein	content	within	the	species.	In	this	relationship,	genes	affected	species	
but	 the	 genomic	 and	 proteomic	 context	 of	 species	 constrained	 individual	 gene	 and	 protein	
evolution.	A	concerted	change	would	be	 required	 in	order	 to	preserve	both	primary	 function	
and	the	majority	of	contextual	information.	Restrictions	on	the	independence	of	chromosome	
evolution	and	examples	of	concerted	evolution	phenomena	are	well	known	[34,35],	but	have	
been	 less	 well	 demonstrated	 at	 the	 level	 of	 entire	 genomes	 or	 proteomes	 [36].	 Another	
concerted,	 but	 only	 recently	 explained	 process,	 is	 conservation	 of	 replication	 timing	 order,	
which	 has	 been	 shown	 to	 orchestrate	 the	 global	 epigenetic	 state	 of	 individual	 cells.	 The	
principle	 behind	 this	 process	 is	 the	 continuation	 of	 previously	 established	 functional	
interpretation	 of	 the	 information	 stored	 in	 the	 genes	 [37],	 which	 follows	 the	 rationale	
described	in	this	study.		
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Beside	 random	 protein	 samples,	 even	 highly	 homologous	 groups	 of	 proteins	 from	 different	
protein	 families	 displayed	 greater	 affinity	 towards	 a	 proteome	 context	 than	 towards	
constituent	 family	 sequences,	 when	 modeled	 semantically.	 Finally,	 the	 most	 surprising	
confirmation	of	this	constraint	came	from	orphan	protein	sequences.		Based	solely	on	sequence	
alignment,	orphan	sequences	are	considered	both	taxonomically	 restricted	and	de	novo,	with	
no	 apparent	 relatedness	 to	 established	 protein	 families.	 Results	 presented	 in	 this	 study	
indicated	 that	 even	 the	 most	 stringently	 defined	 orphan	 sequences	 were	 not	 taxonomically	
restricted,	 since	 they	 were	 also	 found	 to	 posses	 LTSs.	 This	 placed	 orphan	 sequences	 in	
proximity	 to	 taxonomically	 related	 organisms	 outside	 the	 alleged	 “restriction	 zone”	 (Fig	 4.	 C	
and	 D).	 Since	 protein	 evolution	 is	 a	 direct	 consequence	 of	 changes	 and	 selection	 of	 DNA	
polymorphisms	and	mutations,	 the	real	question	 is	what	could	have	caused	both	constrained	
and	concerted	evolutionary	pattern	observed	by	LTSs?	Thus	far,	the	only	plausible	evolutionary	
process	 that	 acts	 to	 maximize	 genomic	 and	 phenotypic	 cohesiveness	 linked	 to	 speciation	 is	
Molecular	drive.	Understanding	how	 information	 in	a	 genome	and	proteome	are	 inextricably	
linked	to	a	context,	and	how	context	 is	conserved	between	subsequent	generations	warrants	
further	experimentation.	

MATERIALS	AND	METHODS	
 
Obtaining	data	
All	protein	sequences	were	collected	from	NCBI	“nr”	database	for	each	of	the	species	included	
in	 LSA	 model	 (https://www.ncbi.nlm.nih.gov/refseq/about/nonredundantproteins/).	 Proteins	
were	linked	to	taxa	using	python	programs	we	have	written,	which	relied	on	accession	to	taxId	
mapping	 files	 provided	 by	 NCBI	 Taxonomy	 database	
(https://ftp.ncbi.nlm.nih.gov/pub/taxonomy).	 NCBI	 Taxonomy	 database	 was	 used	 as	 a	
reference	taxonomy	database	to	benchmark	LSA	against.	All	used	protein	data	was	stored	in	a	
local	copy	of	a	simple	relational	database	we	made	using	SQLite	and	python	scripts.		A	Python	
framework	 for	 the	 analysis	 and	 visualization	 of	 trees	 (http://etetoolkit.org/)	 was	 used	 for	
dealing	with	the	NCBI	Taxonomy	database	[38].	 It	was	used	to	make	a	 local	copy	of	the	NCBI	
Taxonomy	database,	and	 it	was	 later	used	 in	our	programs	to	convert	 from	taxId	to	scientific	
names	 (and	 vice	 versa)	 and	 to	 establish	 taxonomic	 ranks,	 names	 and	 lineages.	 For	 relaxed	
orphan	 dataset,	 NCBI	 Protein	 Clusters	 repository	 was	 used	
(https://ftp.ncbi.nih.gov/genomes/CLUSTERS/)	in	combination	with	the	local	copy	of	“nr”	based	
SQLite	relational	database.	For	stringent	orphan	dataset,	we	have	downloaded	current	release	
of	 Pfam-A	 HMM	 models	 (ftp://ftp.ebi.ac.uk/pub/databases/Pfam/current_release/Pfam-
A.hmm.gz)	 and	 used	 HMMER	 v.3	 (http://hmmer.org/)	 to	 scan	 protein	 family	 HMM	 models	
against	 previously	 selected	 proteome	 sequence	 sets	 which	 were	 extracted	 from	 the	 local	
database	and	written	in	form	of	simple	multi-FASTA	protein	files.	Pfam-A	dataset	was	also	used	
for	the	“selfish”	vs	“altruistic”	genes	experiment	as	a	source	of	protein	family	HMM	models.	
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Transforming	proteomes	into	“words”		
Let	𝐴𝐴	be	set	of	20	natural	amino	acids.	Let	𝑝 =  𝑎!𝑎!𝑎!…𝑎!represent	protein,	where	
𝑎!  ∈  AA and	𝑛	is	length	of	protein.		

We	define	triplet	𝑡! 	as		

𝑡! =  𝑎!𝑎!!!𝑎!!! ,	for	each	𝑖 < 𝑛 − 2	

Truncated	singular	value	decomposition		
After	𝑚×𝑛	matrix	𝐴	 has	 been	 created	 and	 properly	weighted,	 a	 rank-k	 approximation	 (𝑘 ≪
min (𝑚,𝑛))	of	matrix	𝐴,	𝐴!,	is	computed	using	truncated	singular	value	decomposition	(T-SVD).	
Singular	value	decomposition	is	a	technique	closely	related	to	eigenvector	decomposition	and	
factor	 analysis,	 used	 to	 model	 the	 associative	 relationships.	This	 allows	 for	 both	 integrative	
proteome	comparison	and	topic	modeling	of	3-peptide	motifs	within	protein	sequences.	With	
truncated	SVD,	matrix	𝐴	 is	factored	into	the	product	of	3	matrices:	𝑚×𝑘	term-concept	vector	
matrix	𝑈!,	 a	 𝑘×𝑘	 singular	 values	 matrix	 𝛴!	 and	 𝑛×𝑘	 document-concept	 vector	 matrix	 𝑉!.	
Singular	 value	 decomposition	 allows	 the	 arrangement	 of	 the	 space	 to	 reflect	 the	 major	
associative	patterns	in	the	data,	and	ignore	the	smaller,	 less	important	influences.	As	a	result,	
terms	(in	our	case	3-peptides)	that	did	not	actually	appear	in	a	document	may	still	end	up	close	
to	 the	document,	 if	 that	 is	 consistent	with	 the	major	patterns	of	association	 in	 the	data.	The	
truncated	SVD	captures	most	of	the	important	underlying	structure	in	the	interrelation	of	terms	
(3-peptides)	and	documents	(proteomes)	and	at	the	same	time	much	of	the	noise	that	causes	
poor	retrieval	performance	is	eliminated.	In	the	reduced	space,	semantically	related	terms	and	
documents	probably	 lay	 near	 each	other	 since	 the	 SVD	attempts	 to	obtain	 the	 fundamental,	
semantic	structure	of	the	term-document	(3-peptide	–	proteome)	space.	Matrices	and	process	
are	illustrated	below	(Fig.	7).	

	
Fig.7.	 An	 overview	 of	 T-SVD	 of	 3-peptide	 (terms)	 –	 species	 proteomes	 (documents)	matrix.	
With	truncated	SVD,	3-peptide	-	species	matrix	is	factored	into	the	product	of	3	matrices	in	the	
following	order	(left	to	right):	𝑚×𝑘	3-peptide-topic	(e.g.	concept)	vector	matrix	𝑈!	followed	by	
𝑘×𝑘	 singular	 values	matrix	𝛴!	 and	 final	𝑛×𝑘	 species-concept	 vector	 matrix	𝑉!	 which	 is	 the	
source	of	our	species	proteome	vectors.	
	
Latent	semantic	analysis		
Typically,	 database	 is	 organized	 so	 that	 information	 is	 retrieved	 by	 literally	 matching	 exact	
terms	in	documents	with	those	of	a	query.	Since	there	is	usually	great	amount	of	common	3-
peptides	 in	different	species	proteome,	the	literal	terms	in	a	query	may	not	match	those	of	a	
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relevant	document.	A	better	approach	would	allow	users	to	retrieve	information	based	on	the	
meaning	 of	 a	 document.	 Latent	 Semantic	 Analysis	 (LSA)	 [2]	 is	 an	 extension	 of	 the	
vector	space	retrieval	 method	 in	 which	 the	 dependencies	 between	 terms	 are	
explicitly	considered	in	 the	 representation	 and	 exploited	 in	 retrieval.	 This	 is	 done	 by	
simultaneously	modeling	 all	 the	 interrelationships	 among	 terms	 and	documents.	The	 LSA	is	 a	
retrieval	method	 that	 builds	 upon	 the	 prior	 research	 in	 information	 retrieval	 -	 Vector	 Space	
Model,	 using	 the	 Singular	 Value	 Decomposition	 (SVD)	 [39]	 to	 reduce	 the	 dimensions	 of	 the	
term-document	space.	 In	vector-space	retrieval,	a	document	 is	 represented	as	a	vector	 in	𝑚-
dimensional	space,	where	𝑚	is	the	number	of	terms	in	the	lexicon	being	used.	Each	component	
of	 the	vector	reflects	a	concept	associated	with	the	given	document.	More	formally,	 let	𝑚	be	
the	number	of	words	(3-peptides)	in	the	dictionary,	𝑛	the	number	of	documents	(species)	and	
𝑑! ∈  ℝ!,	𝑖 =  1,… ,𝑛,	tf-idf	representation	of	i-th	document.	Then	the	term-document	matrix	
𝐴	has	the	following	form:		

𝐴 =  (𝑑!,… ,𝑑!)	

𝐴	 is	usually	very	 large	and	very	sparse	matrix	since	the	number	of	 terms	in	each	document	 is	
significantly	 less	 than	 the	 number	 of	 terms	 in	 the	 entire	 document	 collection.	Once	 a	 term-
document	matrix	is	constructed,	local	and	global	weightings	are	applied	to	increase	or	decrease	
the	relative	 importance	of	terms	within	documents.	We	must	also	represent	the	query	by	the	
tf-idf	scheme,	the	vector	𝑞 ∈  ℝ!.	We	would	now	like	to	calculate	the	singular	decomposition	
of	the	matrix	𝐴 =  𝑈𝛴𝑉! 		which	has	the	following	shape:	

𝑑!,… ,𝑑! =  𝑢!,… ,𝑢! 𝛴 (𝑑!,… ,𝑑!)
!!

	

Suppose	we	construct	 the	matrices	𝑈! ,𝛴!  𝑖 𝑉!.	The	representation	of	 the	document	 (species)	
𝑑! 	in	the	vector	space	{𝑢!,… ,𝑢!}	is	

𝑑! =     σ!  (𝑑!)!
 !"#$$%!%#&'

!

!!!

∗      𝑢!     
!"#$# !"#$%&

	

The	singular	value	of	σ! 	represents	the	importance	of	i-th	basis	vector,	𝑢!.	The	columns	of	the	
matrix	𝛴!𝑉!! 	 T	 represent	 the	 coefficients	of	documents	 (species)	 in	 the	newly	 created	 lower	
dimension	space,	i.e.	latent	space.	In	order	to	be	able	to	compare	the	query	(a	set	of	proteins	
sharing	a	proteome)	with	documents	(species),	we	must	represent	the	query	within	the	latent	
space.	Namely,	we	look	for	the	coordinates	of	this	vector	in	the	space	spanned	by	the	columns	
of	 the	matrix	𝑈!	 .	 If	we	denote	by	𝑞	projection	of	 the	vector	q	on	that	space,	 then	we	know	
that:	
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𝑞 =  𝑈!𝑈!!𝑞	

Thus,	the	vector	𝑈!!𝑞	 represents	the	coefficients	of	the	vector	q	 in	the	 latent	space,	 i.e.,	 the	
space	spanned	by	the	columns	of	the	matrix	𝑈!.	The	coefficients	of	other	documents	(species)	
in	 the	 latent	 space	 are	 given	 by	 the	 columns	 of	 the	matrix	𝛴!𝑉!!.	 In	 order	 to	 avoid	 explicit	
computation	of	the	matrix	𝛴!𝑉!!we	define	

𝑞 =  𝛴!!!𝑈!!𝑞	

This	is	also	called	folding-in	method	[40].	Once	the	query	is	projected	into	the	term-document	
space,	cosine	similarity	measures	is	applied	to	compare	the	position	of	the	new-created	query	
to	the	positions	of	the	terms	or	documents	in	the	reduced	term-document	space.	We	compare	
the	query	𝑞	with	the	documents	(species)	by	comparing	𝑞	with	the	columns	of	the	matrix	𝑉!!.	
In	the	end,	we	count	

cos𝛩! =  
𝑑!  𝑞

𝑑! !
 𝑞 !

	

for	each	𝑗 =  1,… ,𝑛.	

Practical	application	of	natural	language	processing		
All	 LSA	 related	modeling	was	 performed	 using	Gensim.	Gensim	 is	 an	 open-source	 library	 for	
unsupervised	topic	modeling	and	natural	language	processing,	using	modern	statistical	machine	
learning.	 Gensim	 is	 implemented	 in	 Python	 and	 Cython	 (https://radimrehurek.com/gensim/)	
and	was	installed	as	part	of	a	python	virtual	environment	with	all	of	the	dependencies.	Beside	
Gensim,	numpy	(https://numpy.org/)	and	scipy	(https://www.scipy.org/)	were	used	for	vector	
operations	 and	 statistical	 analyses.	 Figures	 were	 created	 using	 matplotlib	
(https://matplotlib.org/)	 and	 Jupyter	Notebook,	which	were	 in	 the	 same	 virtual	 environment	
Gensim	was	installed	in.	All	of	the	libraries	and	code	written	was	deployed	on	x86_64	Debian	
based	Linux	Ubuntu	18.04.5	LTS	local	server	machine	with	2	Intel	Xeon	E5-2650	2.00GHz	CPUs,	
8	 cores	per	 socket	 and	2	 Threads	per	 core	 and	264	GB	RAM.	 This	 server	 also	hosts	 the	web	
accessible	version	of	LSA	based	species	model.	This	model	was	deployed	as	a	web	application	
making	it	easy	for	anyone	to	explore	taxonomic	context	of	selected	proteins,	which	is	simple	to	
use,	 requiring	 no	 programming	 or	 NLP	 knowledge	 and	 no	 alignment-based	 homology	 in	 the	
proteins	being	compared:	http://matrix.pbf.hr/.	
	
LSA	model	of	species	
LSA	uses	a	term-document	matrix,	which	describes	the	occurrences	of	terms	in	documents.	In	
our	model,	we	replace	documents	with	taxa,	and	words	(also	called	terms)	with	all	occurring	3-
peptides	extracted	 from	proteins	within	species	proteomes.	 In	order	 to	 transform	proteomes	
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into	LSA	vector	space,	we	decomposed	the	entire	constituent	proteins	into	3	consecutive	amino	
acid	residues	e.g.	3-peptides.	This	is	the	same	length	BLAST	[6]	uses	as	default	“word”	size	for	a	
protein	 sequence.	 In	 our	 case,	 this	 was	 accomplished	 by	 first	 lowercasing	 all	 the	 protein	
sequences	 followed	 by	 decomposition	 into	 consecutive	 3-peptides	 using	 a	 sliding	 window	
method,	with	frame	equaling	3	amino	acids	and	“sliding”	step	equaling	to	one	(Supplementary	
Figure	 1A).	 Applying	 dimensionality	 reduction	 (SVD)	 we	 have	 embedded	 distributional	
information	on	all	occurring	3-peptides	into	400-dimensional	LSA	vector	space.	This	allowed	us	
to	 compare	 entire	 species	 proteomes	 and	 explore	 their	 distributional	 semantic	 similarity	 by	
correlating	 it	 with	 established	 taxonomic	 classification	 using	 cosine	 similarity	 as	 metric	
(Supplementary	Figure	1B).	Final	result	aggregates	proteome	information	on	tens	of	thousands	
of	 taxa	 collected	 from	 both	 NCBI	 Taxonomy	 database	 and	 non-redundant	 protein	 database.	
There	 are	more	 taxa	 in	 these	databases;	 however,	we	have	 included	only	 those	 represented	
with	more	 than	100	proteins.	 In	order	 to	handle	big	protein	data,	we	 restricted	 the	maximal	
number	of	protein	sequences	to	be	included	in	the	LSA	model	to	no	more	than	5,000	proteins	
per	 taxon.	 This	 means	 that	 for	 all	 taxa	 which	 have	 proteomes	 represented	 with	 more	 than	
5,000	proteins,	 5,000	proteins	were	 randomly	 selected,	while	 for	 the	 rest	 of	 the	 taxa	having	
protein	 datasets	 between	 100	 and	 5,000	 proteins,	 entire	 protein	 sets	 were	 tokenized	
(Supplementary	 Table	 1).	 This	model	 is	 an	 example	 of	 the	 “bag	 of	 words”	model	 [3],	 which	
disregards	3-peptide	ordering	but	keeps	their	multiplicity.	On	this	model,	first	a	term	frequency	
-	inverse	document	frequency	(TF-IDF)	weighing	scheme	was	implemented	[41].	During	TF-IDF	
transformation,	3-peptides	which	were	rare	in	the	training	corpus	had	their	weights	increased	
without	changing	the	vector	dimensionalities.	Finally,	we	have	used	LSA	to	transform	from	TF-
IDF	weighted	space	into	a	latent	space	of	a	lower	dimensionality.	In	our	case,	we	have	chosen	
400	dimensions	empirically	[42].	The	entire	process	is	summarized	below	(Fig.	8).	

	
Fig.8.	An	overview	of	LSA	based	species	model.	Species	proteomes	are	represented	as	“bags	of	
3-peptides”.	 First	 step	 of	 transforming	 species	 proteomes	 into	 400-dimensional	 vector	 space	
(here	depicted	in	simple	2D)	includes	building	a	dictionary,	which	simply	counts	each	3-peptide	
occurrence	in	each	species	proteome.	In	the	second	step,	3-peptide	counts	are	weighted	by	TF-
IDF	 that	 gives	more	weight	 to	 those	 3-peptides	 occurring	 frequently	within	 species	 proteome	
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and	seldom	within	the	rest	of	the	species	proteomes	in	the	initial	matrix.	Finally,	SVD	is	used	to	
transform	weighted	3-peptide	counts	into	400-dimensional	species	vector	space.		
	
Taxonomy	mapping	(benchmarking)	tests		
Random	subsampling	was	used	to	create	proteome	subsets	used	for	taxonomy	mapping.	In	all	
four	 cases,	 the	 actual	 proteins	 being	 tokenized	 and	 folded	 into	query	 vectors	were	 searched	
against	the	LSA	species	model	and	two	different	methods	have	been	applied	in	order	to	assign	
taxonomic	 information	 to	query	vectors.	 First	method	named	“single	best	hit”	 (SBH),	directly	
maps	taxonomic	information	belonging	to	most	similar	subject	vector	(by	cosine	value)	to	the	
query.	 If	 this	 assignation	 correlates	 with	 the	 NCBI	 Taxonomy	taxId	of	 query	 proteome	 it	 is	
regarded	 as	 positive	match,	 otherwise	 it	 is	 negative.	 Second	method	 is	 the	 “voting	 scheme”	
(VSM),	which	is	based	on	taxonomic	information	from	5	highest-ranking	subject	vectors	(based	
on	 cosine)	 and	 used	 in	 a	 voting	 scenario.	 This	 scenario	 requires	 unambiguous	 taxonomic	
majority	 among	 the	 highest-ranking	 subjects.	 If	 this	majority	 correlates	with	NCBI	 Taxonomy	
taxId	 for	 the	 query	 proteome	 it	 is	 regarded	 as	 positive	 match	 otherwise	 it	 is	 negative	
(Supplementary	Figure	1C).	 In	case	there	is	no	majority	vote,	the	benchmarking	result	for	this	
query	 is	 regarded	 as	 negative.	Other	 difference	 between	 SBH	 and	VSM	methods	 is	 the	 total	
number	of	valid	query	proteomes.	In	case	of	SBH	the	query	space	is	the	same	as	the	number	of	
taxa	 in	 initial	LSA	matrix	(subject	space).	 In	case	of	VSM,	query	size	 is	somewhat	smaller.	The	
reason	 for	 this	 discrepancy	 is	 the	 fact	 that	 the	 voting	 scheme	 relies	 on	 majority	 vote.	 This	
majority	 in	 worst-case	 scenario	 means	 3:2	 ratio	 between	 subject	 taxa	 and	 therefore,	 query	
space	is	restricted	only	to	those	taxa,	which	have	at	least	three	representatives	in	all	taxonomic	
ranks	 benchmarked.	 This	 also	 implies	 that	 VSM	 will	 not	 be	 including	 the	 lowest	 “strain”	
taxonomic	 level,	 into	 benchmarking	 results,	 unlike	 SBH.	 Since	 cosine	 value	 is	 used	 as	 taxa	
proximity	 metrics,	 we	 have	 created	 two	 new	 proximity	 values	 called	 “adjacency	 score”	 and	
“similarity	 interval”.	 These	 values	 serve	 the	 role	 of	making	 taxonomic	 assignations	 based	 on	
cosine	similarity	between	query	and	subject	taxa	vectors	simpler	and	more	intuitive.	Adjacency	
score	is	calculated	using	formula	below:	
𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑦_𝑠𝑐𝑜𝑟𝑒 = !""

!"# !"#_!"#$% !!"# (!"#_!"#$%)
 	(𝑐𝑜𝑠_𝑣𝑎𝑙𝑢𝑒 −min cos_value )	

Because	 cosine	 range	of	 [0,1]	 is	 very	 narrow,	when	querying	 LSA	 species	model	we	 get	 very	
dense	 distribution	 of	 subject	 cosines.	 This	 is	 why	 in	 our	 web	 application	 “Matrix	 of	 Life”	
(http://matrix.pbf.hr)	only	the	most	similar	100	subject	vectors	taxonomy	information	is	being	
displayed.	 Therefore	we	 decided	 to	 “stretch”	 obtained	 cosine	 values	 and	 present	 them	on	 a	
scale	ranging	from	0	to	100.	The	formula	above	transforms	cosines	 into	adjacency	scores	 in	a	
way	that	the	minimal	reported	cosine	maps	to	0	and	the	maximal	one	to	100.	Similarity	interval	
is	even	simpler	to	interpret.	Essentially,	we	have	divided	the	[min(cos_value),	max(cos_value)]	
interval	on	5	equal	parts	and	counted	subjects	contained	within	each	part.	All	subjects	within	
this	new	interval	get	a	score	ranging	from	1	to	5	(1	for	being	the	first	interval,	5	for	being	in	the	
last).	
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Comparison	between	LSA	and	BLAST		
For	 BLAST	 comparison,	 we	 have	 used	 locally	 compiled	 and	 installed	 NCBI	 BLAST	 2.9.0+	with	
“makeblastdb”	application	 to	produce	BLAST	databases	 from	 the	 same	proteome	sets,	which	
were	used	to	construct	LSA	vector	spaces.	Same	query	proteome	sets	were	used	for	both	LSA	
queries	and	“blastp”	queries.	 In	order	 to	 compare	LSA	benchmarking	 results	using	previously	
described	 SBH	 and	 VSM	methods	 for	 taxonomic	 assignations	we	 have	 decided	 to	 use	 BLAST	
favoring	conditions.	For	comparison	with	SBH,	 in	case	of	BLAST	obtained	results,	best	E-value	
(lowest)	 overall	 HSP	 (High-scoring	 Segment	 Pair)	 obtained	 by	 searching	 all	 query	 proteins	
against	 all	 subject	 taxa	 proteins	was	 used.	 For	 comparison	with	 VSM	method	 same	 “blastp”	
search	was	performed,	but	in	this	case	best	five	HSPs	overall	(based	on	E-values)	were	used	to	
infer	votes	and	assign	taxId	to	query	if	there	is	a	majority	vote.	This	concession	had	to	be	made	
because	 unlike	 LSA,	 which	 utilizes	 information	 stored	 within	 multiple	 query	 sequences,	
performing	 a	 single	 search	 across	 all	 subject	 vectors,	 BLAST	 is	 limited	 to	 information	 stored	
within	 a	 single,	 contiguous	 sequence	 and	 performs	M×Nsample	 pairwise	 comparisons	 for	 each	
query,	Nsample	being	the	sample	size	(500,	100	or	50	sequences)	and	M=Ntaxa×Nsample,	where	in	
this	 case	 Ntaxa=	 1,000.	 This	 concession	meant	 that	 for	 BLAST	 only,	 the	 best	 overall	 pairwise-
comparison	 was	 used	 to	 make	 taxonomic	 assignations,	 and	 all	 other	 matches	 were	
disregarding.	

Stringently	defined	taxonomically	restricted	(orphan)	proteins		
Using	 Python	 scripts	 we	 wrote,	 two-stage	 orphan	 candidate	 filtering	 was	 performed	 on	
randomly	selected	100	taxa	proteomes.	Since	the	taxonomic	composition	of	the	initial	dataset	
is	 dominantly	 Bacterial	 (92%	 of	 taxa),	 while	 the	 other	 three	 superkingdoms	 represent	 5,5%	
(Eukaryota),	2,5%	(Archaea)	and	0,5%	(Viruses).	We	have	sampled	100	taxa	more	equally	from	
all	 four	 superkingdoms	 to	 ensure	 they	 all	 have	 their	 representatives.	 First	 stage	 orphan	
candidate	filtering	included	screening	for	protein	family	members	using	Pfam	database.	Pfam	is	
a	 large	 collection	of	protein	 families,	 each	 represented	by	multiple	 sequence	alignments	 and	
hidden	Markov	models	(https://pfam.xfam.org/).	For	this	screening,	Pfam-A	collection	of	HMM	
profiles	was	used	since	 it	 is	based	on	the	same	non-redundant	(“nr”)	protein	sequences	from	
the	NCBI	 ftp	 site	 (https://ftp.ncbi.nlm.nih.gov/refseq/),	 which	we	 used	 to	 create	 LSA	 species	
model.	 Screening	 was	 performed	 using	 HMMER	 “hmmscan”	 search	 program	 and	 Pfam-A	
collection	of	HMM	models	 to	search	against	each	of	 the	100	 taxa	proteomes	 in	100	selected	
taxa.	Default	“hmmscan”	E-value	threshold	of	10.0	was	used.	Results	of	this	search	were	saved	
in	 tabular	 formatted	 files,	 which	were	 parsed,	 and	 only	 proteins	with	 no	 detectable	 protein	
family	signal	were	retained	(proteins	which	were	not	included	in	the	“hmmscan”	report).	These	
proteins	were	selected	as	 first	stage	or	“candidate”	orphans.	 In	the	second	stage	“candidate”	
orphan	proteins	from	the	first	stage	were	used	as	queries	in	a	“blastp”	search.	This	second	step	
served	to	remove	all	those	proteins,	which	passed	first	stage,	but	still	might	have	homologs	that	
are	 not	 assigned	 to	 particular	 protein	 family.	 In	 order	 to	 construct	 blast	 database	 for	 this	
second	step,	from	each	of	the	54,526	taxa	having	more	than	1,000	proteins,	500	proteins	were	
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randomly	sampled	and	written	as	a	single	FASTA	file	that	was	turned	into	a	“blastp”	searchable	
database	using	“makeblastdb”	command.	In	this	manner	we	could	perform	BLAST	search	with	
all	the	first	stage	candidate	orphan	proteins	in	reasonable	time	on	our	server	machine,	without	
compromising	opportunity	to	catch	stray	homologs	within	entire	taxa	range	we	plan	to	query	
against.	The	most	commonly	used	“blastp”	E-value	threshold	for	orphan	identification	is	greater	
or	equal	than	1e-3	[17].	We	made	this	threshold	1,000x	more	stringent	and	set	it	to	>=	1.0	for	
all	 BLAST	 hits	 outside	 of	 the	 organism	 orphan	 belongs	 to.	 Each	 of	 the	 100	 taxa	 used	 for	
construction	of	query	vectors	had	to	be	represented	with	at	least	50	orphan	proteins	left	after	
both	 stages	of	orphan	 filtering	process.	These	proteins	made	 the	“stringent”	orphan	dataset.	
Probability	of	obtaining	the	same	or	greater	number	of	taxonomic	matches	by	chance,	for	each	
taxonomic	rank	can	be	calculated	based	on	multinomial	distribution.	More	formally,	if	we	have	
r	 +	 1	 subsamples,	𝐴!,𝐴!,… ,𝐴! ,𝐴!!!,	 then	 the	 probability	 of	 drawing	 at	 least	 𝑖!, 𝑖!,… , 𝑖! 	 of	
elements	𝐴!,𝐴!,… ,𝐴! 	with	replacement,	in	n	repeated	draws	equals:	

 𝑝  =
𝑛

𝑘!, 𝑘!,… , 𝑘! , 𝑘!!!!!,!!,…,!!,!!!!
!!!!!,!!!!!,…,!!!!!

!!!!!!⋯!!!!!!!!!!

𝑝!
!!  𝑝!

!! …  𝑝!
!!𝑝!!!

!!!! 	

This	 formula	 considers	 the	 fact	 that	 dataset	 is	 imbalanced,	 meaning	 taxa	 distribution	 is	 not	
uniform.	Due	 to	our	 limited	 computational	 resources	we	 could	not	 calculate	probabilities	 for	
taxonomic	ranks	that	had	more	diverse	composition,	therefore	we	have	calculated	probabilities	
of	a	more	probable	event.	This	event	can	be	described	as	drawing	all	positively	identified	taxa	
at	 least	 once.	 The	 same	multinomial	 distribution	 applies,	 and	 if	 we	 have	 r	 +	 1	 subsamples,	
𝐴!,𝐴!,… ,𝐴! ,𝐴!!!,	then	the	probability	of	drawing	at	least	one	of	elements	𝐴!,𝐴!,… ,𝐴! 	with	
replacement,	in	n	repeated	draws	can	be	described	as:	

𝑝  =
𝑛

𝑘!, 𝑘!,… , 𝑘! , 𝑘!!!(!!,!!,…,!!)∊ ℕ,   !!!! ∊ ℕ!   
!!!!!!⋯!!!!!!!!!!

𝑝!
!!  𝑝!

!! …  𝑝!
!!𝑝!!!

!!!! 	

	

Latent	Taxonomic	Signatures	visualized	
To	 produce	 illustrations	 of	 newly	 discovered	 shared	 sequence	 feature	 –	 Latent	 Taxonomic	
Signatures	(LTSs),	Savitzky-Golay	filter	was	utilized	[43].	This	filter	first	convolves	data	by	fitting	
successive	 sub-sets	 of	 adjacent	 data	 points	with	 a	 low-degree	 polynomial	 by	 the	method	 of	
linear	 least	 squares.	 Python	 includes	 this	 filter	 in	 Scipy	 (savgol_filter)	 so	 we	 implemented	 it	
within	our	code	to	generate	plots	showing	LTSs	of	several	selected	organisms.	For	these	plots,	
3-peptide	frequency	data	used	for	LSA	species	model	training	was	used,	smoothed	by	Savitzky-
Golay	windows	length	999,	and	4th	order	polynomial.	
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Context	dependent	evolution	
In	order	 to	make	 this	 experiment,	we	 collected	protein	 sequences	 from	 those	Pfam	 families,	
which	could	be	decomposed	taxonomically	 into	groups	having	at	 least	100	protein	sequences	
per	taxa.	There	were	468	such	families	fulfilling	this	condition	on	the	species	level.	We	collected	
an	additional	dataset	consisting	of	protein	family	sequences	grouped	under	genus	level.	Genus	
level	dataset	contained	201	Pfam	families,	and	it	was	constructed	to	be	independent	from	the	
species	level	dataset,	meaning	that	it	did	not	include	proteins	from	taxa	already	included	in	the	
species	dataset.	Together,	these	two	datasets	shared	188	Pfam	families;	therefore	difference	in	
the	 genus	 dataset	 was	 13	 additional	 families.	 Species	 dataset	 aggregated	 protein	 sequences	
from	2,350	 taxa,	while	 the	 genus	 dataset	 aggregated	 protein	 sequences	 from	 additional	 570	
taxa,	not	 included	 in	 species	dataset.	 In	 total,	292,000	protein	 sequences	 (randomly	 sampled	
100	 proteins	 per	 taxa)	 and	 2,920	 taxa	 were	 part	 of	 this	 experiment.	 In	 order	 to	 produce	
taxonomically	 unbiased	 control	 samples,	 to	 serve	 as	 positive	 control	 for	 actual	 proteins	
encoded	by	genes	of	different	organisms,	we	have	used	the	Pfam	protein	family	HMM	models	
in	order	to	generate	100	protein	sequences	per	taxon,	from	a	fully	configured	HMMER	protein	
family	search	profile.	This	was	accomplished	using	“hmmemit	 -p”	option	which	 is	available	 in	
new	HMMER3	program	suite	 installed	 locally	on	our	machine.	We	did	 this	 in	order	 to	obtain	
sequences	fully	consistent	with	a	sequence	family	consensus,	thus	representing	taxonomically	
unbiased,	 e.g.	 “selfish”	 behavior.	 This	 option	 allowed	 us	 to	 sample	 sequences	 from	 a	 fully	
configured	 HMMER	 search	 profile,	 so	 we	 could	 obtain	 homologous	 sequences	 by	 HMMER	
implemented	 HMM	 definition,	 including	 non-homologous	 flanking	 sequences,	 allowing	 us	 to	
come	as	close	as	possible	to	the	theoretical	template	of	the	protein	family.	After	collecting	and	
sorting	all	protein	sequences,	taxonomically	grouped	Pfam	family	proteins	were	folded	into	LSA	
400-dimensional	 vector	 space.	 Intra-class	 comparisons	 refer	 to	 comparisons	 between	 taxa	
vectors	 belonging	 to	 the	 same	 protein	 family.	 On	 the	 other	 hand,	 inter-class	 comparisons	
correspond	 to	 comparisons	 between	 vectors	 made	 from	 protein	 family	 proteins	 and	 Latent	
Taxonomic	Signatures	extrapolated	from	entire	proteomes.	
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