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Summary: COBREXA.jl is a Julia package for scalable, high-performance constraint-
based reconstruction and analysis of very large-scale biological models. Its primary pur-
pose is to facilitate the integration of modern high performance computing environments
with the processing and analysis of large-scale metabolic models of challenging complex-
ity. We report the architecture of the package, and demonstrate how the design promotes
analysis scalability on several use-cases with multi-organism community models.
Availability and implementation: https://doi.org/10.17881/ZKCR-BT30.
Contact: christophe.trefois@uni.lu, wei.gu@uni.lu

1 Introduction1

Understanding metabolic interactions in cells is a crucial step to investigate disease2

mechanisms and to discover new therapeutics (Cook and Nielsen, 2017; Apaolaza3

et al., 2018; Brunk et al., 2018). Constraint-Based Reconstruction and Analysis4

(COBRA) is a promising methodology for analyzing various metabolic processes5

at the organism- and community- levels (Fang, Lloyd, and Palsson, 2020). The6

main idea behind COBRA is to represent an organism as a constrained set of inter-7

connected reactions and metabolites based on genomic sequencing data. This leads8

to a straightforward interpretation of metabolism as a constrained linear system,9

which enables the utilization of a wide range of well-developed analysis methods10

(Orth, Thiele, and Palsson, 2010).11
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The increasing ubiquity of genomic sequencing has led to a rapid expansion12

in the number and complexity of genome-scale metabolic models, e.g. the human13

metabolic model that has more than 80,000 reactions (Thiele et al., 2020). Recent14

automated reconstruction tools can generate models spanning the entire primary15

metabolism of both pro- and eukaryotes (Machado et al., 2018). Consequently,16

metabolic models are becoming considerably larger in scale than their predeces-17

sors, which is further compounded by the construction of multi-member commu-18

nity models. This growth implies increasing analysis complexity (see Figure S1),19

which in turn drives the need to develop analysis software that can accommodate20

this complexity. While computing the solutions to the underlying constrained op-21

timization problems is hard to accelerate and parallelize, many analysis types can22

be decomposed into individual invocations of the optimizer, which may be paral-23

lelized. However, despite continued efforts (Heirendt, Thiele, and Fleming, 2017),24

this remains challenging due to the scalability limits of existing software imple-25

mentations.26

Here, we present COBREXA.jl, a package for implementing and running dis-27

tributed COBRA workflows. The package is implemented in the Julia program-28

ming language (Bezanson et al., 2017), enabling facile extension with user-defined29

numeric-computing routines, and interoperability with many high-performance30

computing packages. It provides a ‘batteries-included’ solution for scaling analy-31

ses to make efficient use of high-performance computing (HPC) facilities, giving32

researchers a powerful toolkit for executing complicated high-volume workflows,33

such as the creation and exploration of digital metabolic twins in personalized34

medicine (Björnsson et al., 2020), and analysis of extensive microbial commu-35

nities in ecology and biotechnology. We report the implementation architecture,36

and substantiate how the design accommodates future extensions and scaling of37

common analysis tasks.38

2 Implementation and results39

COBREXA.jl is an open architecture solution, providing interchangeable build-40

ing blocks for implementing complicated COBRA workflows. Common analysis41

methods, such as flux balance, flux variability, and gene knockout analyses (Gud-42

mundsson and Thiele, 2010), are implemented as ready-to-use functions that may43

be easily composed and customized. Most importantly, the building blocks are de-44

signed so that the constructed workflows can be easily separated into parallelizable45

analysis steps and executed on multiple computation nodes in HPC environments46
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Figure 1: Schema of an example custom analysis construction that examines
flux variability in many variants of a model, its distributed execution with CO-
BREXA.jl, and collection of many results in a multi-dimensional array.

(as illustrated in Fig. 1). The concurrent execution of such workflows results in47

significant computational speedups, without requiring user expertise in parallel48

programming.49

The design of COBREXA.jl distinguishes it from other COBRA implemen-50

tations, which typically provide parallelization support for only a few selected51

methods, and no current support for parallelization of custom method variants.52

For example, parallel single-gene deletion analysis is commonly supported, but a53

variant that explores the flux variability in knockouts must be reimplemented and54

parallelized by the user.55

A variety of model exchange and representation formats are supported, includ-56

ing MATLAB format (Heirendt, Arreckx, et al., 2019); object-oriented JSON for-57

mat (Ebrahim et al., 2013), and SBML (Keating et al., 2020). Additionally, im-58

plementation of the workflows in Julia results in highly optimized execution of the59

code at the cost of minor pre-compilation overhead, which benefits large, data-60

heavy use cases. A detailed architecture overview is provided in Supplementary61

Section S1.62

To evaluate the effect of the new architecture and optimizations on the per-63

formance and scalability of COBRA analyses, we benchmarked COBREXA.jl on64

use-cases that benefit from parallelization. We compared its performance to that65

obtained with COBRApy (Ebrahim et al., 2013) and COBRA Toolbox (Heirendt,66

Arreckx, et al., 2019), which are the widely adopted tools for running COBRA67

workflows. Running on a 256-CPU multi-node cluster, COBREXA.jl was able68

to fully utilize the available distributed computing resources and outperform the69

implementation of flux variability analysis in other packages by a factor of be-70

tween 2× and 10×, even on relatively small models (Supplementary Table S2).71

We further demonstrated that COBREXA.jl is able to parallelize and distribute72

custom workloads by re-implementing the production envelope functionality of73

COBRApy; leading to speedups of over 10×, even on a single 16-core computa-74
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tion node (Supplementary Table S3). Consequently, we expect that the COBRA75

methods implemented in COBREXA.jl will enable reliable acceleration of many76

current and future workloads by simply adding more computing resources. The77

results are further discussed in Supplementary Section S3.4.78

3 Conclusion79

COBREXA.jl is a new package developed for large-scale distributed processing80

of constraint-based biological models. It differs from the other implementations81

of COBRA methods (Heirendt, Arreckx, et al., 2019; Ebrahim et al., 2013) by fo-82

cusing on computational efficiency, and simplifies high-level construction of par-83

allelized user-defined analysis methods. This is required for performing extensive84

analyses of large models, future-proof extensibility, and workload distribution that85

enables effective utilization of the common HPC infrastructure resources. The86

package thus enables fast analysis of datasets that may pose challenges for the cur-87

rently available tools, such as the comprehensive human gut microbiome models.88
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