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w1 exceedance or pest peak) and (ii) the spatio-temporal pest introductions. For example, when pest thresh-
12 old exceedance occurs in a patch, we apply a treatment in this patch and, to define the event episode as
w3 a point, we extract the time ¢ of threshold exceedance, the pest density maximum in the patch with its
1 Euclidean coordinates (z, y), and the average pest density over the patch. In Figure 2, two simulations are
us  shown for different time steps, where the spatio-temporal occurrences of pest inoculations and treatments
us  within different landscape allocations are highlighted. This example also illustrates the conjecture that the
w7 spatial hedge structure plays a role for pest dynamic by influencing its evolution jointly in space and time.
us  Deeper exploratory quantitative analyses of spatio-temporal relationships between different types of points
1 are proposed in the Supporting information, while we focus on statistical model-based analyses in what

1o follows.

Figure 2: Two simulation examples (by row) illustrating the spatio-temporal pest dynamics depending on
landscape structure through pest inoculations, and through pest density peaks after threshold exceedances.

s 3 Methods: STPP-based analysis of pest-predator dynamics

i 3.1 Pest density as STPP

155 Point patterns representing individual or event distributions in space and time can be modelled as STPPs (see
12 Diggle (2003); Illian et al. (2008); Baddeley et al. (2015) for formal definitions). Each point can be endowed

15 with additional qualitative or quantitative information defined as a “point mark”. In our application, the
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155 pattern of events is defined by the coordinates in space and time of pest peaks with both qualitative (pest
157 inoculation) and quantitative marks (pest maximum density). Thanks to the theory of STPPs it is possible
158 to analyse the point distribution properties locally in space and time, and to estimate models for predictive
150 purposes (e.g., number of events, point-to-point correlations, and distribution of their numerical or categorical
10 marks). We focus on modelling the point process intensity function (local point density) (Illian et al., 2013).
1er Our modelling goal is to predict the intensity of pest density peaks and the associated values of maximum
12 pest density, and explain their variability in space, through time and across different simulations. We divided
163 the spatial domain in a relatively large number of small cells, and we assume a homogeneous point process
164 intensity within each cell during each interval of time. The spatial discretisation we use is shown in Figure
165 [3} and background on its structure and construction is provided in the Supplement.

166

ww 3.2  Pest density peak meta-modelling

For predicting the intensity of pest density peaks and associated values of maximum pest density, we develop
and estimate regression equations for multi-type STPPs. Both global and local landscape features, species
life-history traits, and the occurrences of pest introductions, pest peaks and treatments are used as covariate
information. We construct two separate generalized linear model (GLM) formulas as meta-models that
incorporate the available covariate information. Response variables and covariates are evaluated over each
spatial cell (Figure [3)) and time step. The spatio-temporal (ST'C'), spatial (SC) and population dynamics

(PDC) covariates put the spatio-temporal event patterns, landscape structure and population dynamics into

relation:
12 20 23
STC(s,t) =Y Brzk(s,t), SC(s)= Y Brak(s), PDC = > Brzy, B€R®, (1)
k=1 k=13 k=21
168 The B vector gathers the covariate coefficients to be estimated separately for each model, and the values

19 2z are covariates summarised in Table [I] and provided for each space-time cell. More information on their
o selection and computation is given in the Supporting information, as well as residual analysis to evaluate

i the predicted values obtained by the GLMs.
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Table 1: Covariates used in the space-time regression model of pest density peak patterns. The temporal
unit d stands for day.

Index Covariate Spatial reference  Range Unit
Spatio-temporal (STC)
1 No. of treatments in the patch at ¢ — 1 patch 0-40 -
2 No. of treatments in the patch cumulated up to t — 2 patch 0-97 -
3 No. of treatments in neighbor patches at t — 1 patch 0-337 -
4 No. of treatments in neighbor patches cumulated up to ¢ — 2 patch 0-861 -
5 No. of pest density peaks at t — 1 cell 0-15 -
6 No. of pest density peaks cumulated up to ¢ — 2 cell 0-36 -
7 No. of pest density peaks in neighbor cells at ¢ — 1 cell 0-45 -
8 No. of pest density peaks in neighbor cells cumulated up to ¢ — 2 cell 0-97 -
9 No. of pest introduction in cell at t — 1 cell 0-30 -
10 No. of pest introduction in cell cumulated up to ¢ — 2 cell 0-30 -
11 No. of pest introduction in neighbor cells at ¢ — 1 cell 0-30 -
12 No. of pest introduction in neighbor cells cumulated up ¢ — 2 cell 0-39 -
Spatial (SC)
13 Cell dimension cell 0-0.069 km?
14 Binary indicator if the cell is among 2 patches cell 0-1 -
15 Binary indicator (1/0) if the cell is among 3 or more patches cell 0-1 -
16 Proportion of hedges within the buffer centered in the cell buffer 0-1 %
17 Proportion of crops within the buffer centered in the cell buffer 0-1 %
18 Landscape crop and hedge aggregation landscape 0-5.54 -
19 Landscape crop proportion landscape 0-1 %
20 Landscape hedge proportion landscape 0-1 %
Population dynamics (PDC)
21 Pest diffusion in crop patch landscape 0.06-12  km?2d~1
22 Predator diffusion in crop patch landscape 0.07-12  km?2d~!
23 Predator migration from hedge to crop landscape 0.1-1
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Figure 3: Spatial discretisation of the regression models. Complete mesh discretisation (light grey), mesh
cells used in the analysis (dark grey), landscape patches (black). Cell centroids of different colour refer to
different cell types: cell in patch center (red), cell connecting exactly two patches (green), cell connecting

more than two patches (blue).

3.2.1 Meta-model for the occurrence intensity of pest density peaks

To model the occurrence intensity of pest density of pest peak points, we consider a GLM with Poisson

response, i.e., we combine a log-link function with a Poisson response distribution:

A(s,t) = exp (8) + STC(s,t) + SC(s) + PDC) (2)

with global intercept 33 and coefficients of the other variables to be estimated. The value \(s,t) represents
the average number of pest peaks occurring in a unit of space and time around the point (s, t), and is assumed

to be constant within each cell of the mesh during each time interval of 0.1.
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e 3.2.2 Meta-model for magnitudes of pest density peaks

180 'To model the maximum pest density value associated with each pest peak point, we consider a log-Gaussian

w1 GLM, i.e., we combine a log-link function with a Gaussian response distribution:

Pras(s, 1) = exp (ﬁ(fw + STC(s,t) + SC(s) + PDC + (s, t)) (3)

122 with global intercept 6(}; mae and coefficients of the other variables to be estimated, where P4, (s,t) is the
183 maximum pest density value associated to the point where the treatment is applied conditional to the occur-
s Tence of such a point. The term £(s,t) ~ N(0,02) corresponds to the spatially and temporally independent
155 and identically distributed Gaussian error terms.

186

« 4 Results: spatiotemporal drivers of pest hotspots in pest-predator
190 agroecological system

19 We present main results obtained by estimating the GLMs in Equations [2] and [3] Additional results of a
10 covariate correlation analysis and of residual analysis are reported in the Supporting information; they show
11 that the models defined in Equations [2] and [3| appropriately capture the spatio-temporal variability of the
102 observed data (i.e., population dynamic model outputs).

193

194 The estimated GLM coefficients for the models in Equations [2] and [3] are summarized in Figure [d Prior
15 to estimation, covariates have been normalised to empirical mean 0 and variance 1 to compare more easily
16 the magnitudes of estimated effects.

197 We first discuss the strongest effects corresponding to points outside the inner rectangle in Figure [dh.
s The strongest positive effects on the number of pest peaks arise for covariates favouring pest dynamics.
1o Specifically, crop coverage at local scale (i.e., in the buffer) and at global scale (i.e., in the whole landscape)
20 favours the abundance of suitable habitat for pests, which can easily spread and find resources. Regarding
201 the pest peak value, the cell size has the strongest positive contribution. An explanation is that the pest
22 density is likely to be highest where the inoculation takes place, and a large cell is more often inoculated
203 than a smaller cell. By contrast, cell dimension contributes the strongest negative effect on the number
2a of peaks, since peaks tend to concentrate in the periphery of the patches, thus in cells containing borders

s among different patches.

12
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Figure 4: Estimated regression coefficients for the models of peak occurrence intensity (z-axis) and the model
of the peak value (y-axis). Dot colours indicate covariate types: STC (orange), SC (blue), PDC' (green).
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206 Pest diffusion has the strongest negative effect on pest peak values, it may be due to a dilution effect.
27 In addition, since high pest diffusion allows the pest to easily move, pest population tends to spread homo-
28 geneously over the whole landscape. Therefore, few local hotspots arise, and the pesticide threshold is less
200 often exceeded. Both response variables related to pest peaks are also strongly reduced by local predator
a0 presence, which in turn is mainly driven by a high local presence of hedges. The spatio-temporal covariate
au group (STC) shows generally weaker effects on pest dynamics, except for the local cumulated number of pest
a2 peaks during earlier time intervals. It positively influences the number and the value of pest peaks since
a3 pests are already present at high density in the surrounding area if there have been peaks during earlier
a1 intervals. Such locations may have characteristics that make them particularly pest-prone and favourable
25 for pest dynamics.

216 The zoom in Figure [db shows covariate effects with a lower magnitude. High numbers of pest peaks along
2 with high peak concentration values (top-right quadrant in Figure J4) are relatively strongly favoured by the
a8 presence of previous peaks in the same cell or in the surrounding ones (both at ¢t — 1, and cumulated up to
20 t—2). Similarly, an elevated number of introductions in neighbouring cells leads to high pest concentration
20 due to pest spillover. On the other hand, the application of treatments locally in the patch or in neighbouring
a1 patches at previous time steps leads in general to a decrease of both the number and the concentration value
2 of peaks.

23 Results show a negative effect of hedge proportion in the buffer on pest activity. However, there also arises
24 a weaker but positive effect of the hedge proportion over the whole landscape, which may appear counter-
25 intuitive at first glance. Since response variables are evaluated at cell scale, having a large hedge proportion
26 in the whole landscape but a low proportion of hedges in the buffer clearly results in a concentration of
27 pest where hedges are missing. In addition, hedges help to keep the pest below the treatment threshold
28  and therefore favour its propagation through the landscape (see |Zamberletti et al.| (2021)); therefore, the
29 pest may reach areas of lower predation pressure more easily and pull out. In addition, our model shows
20 that the landscape aggregation has a weak positive effect on peak occurrence numbers at cell level. Pest
2 density threshold exceedances occur homogeneously over large areas of contiguous crop, but these peaks
2 are of relatively small magnitude because hotspots with high pest clusters and concentration do not build
23 up. Predator spillover (i.e., movement from hedge to field) results in a decrease of the number of threshold
2 exceedances, but it may increase pest peak values since the predators are not homogeneously present in
25 the patches and over the whole landscape. Predators have stronger influence near hedges (e.g., in cells

26 overlapping different patches) but less in the center of the patch (central cells).

14
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= B Discussion

28 In this work we propose post-model scaling using regression meta-models based on marked STPPs. This
20 approach enabled us to assess and compare the contribution of different spatio-temporal covariates and
o life-history traits to the direction and strength of variation in crucial events of population dynamics issued
2 from spatially explicit models. The use of statistical regression meta-models makes our approach flexible
22 and easy to implement, while numerous and diverse covariates describing local and global characteristics
23 can be incorporated. We applied our methodology to the outputs of a SEM describing the biological control
24 in agricultural landscapes of a crop pest by its natural predator. We found significantly different effects of
25 landscape structures at various spatial scales on the population dynamics patterns.

26 The adaptation of our approach of defining a marked STPP meta-model may be relevant and insightful
a7 in various contexts. Examples are occurrence locations and times of earthquake epicentres (Lombardo et al.|
28 [2019), wildfires (Opitz et al., |2020)), epidemiological outbreaks (White et al [2018a)), biodiversity hotspots
29 and species distribution (Soriano-Redondo et all |2019)), pollutant concentrations (Lindstrom et al., [2014])
0 or local maxima or minima in meteorological events (Heaton et al., [2011). In most ecological process
1 space and time are closely intertwined and not separable as in our case, where pest introductions and
2 subsequent peaks depend on local temporal dynamics driven by local spatial structure. Thus, here, we
»3  designed our approach to allow for joint analysis of spatial and temporal scales. For ecological processes
x4 related to those we study, [White et al.| (2018a) addressed how landscape structure impacts simulated disease
»s  dynamics in an individual-based susceptible—infected—recovered model. They quantified disease dynamics
26 by outbreak maximum prevalence and duration, coupled with landscape heterogeneity defined by patchiness
»7  and proportion of available habitat. They find that fragmentation promotes pathogen persistence, except
»s  for simulation with high conspecific density, slower recovery rates and larger perceptual ranges, where more
0 complex disease dynamics emerged; the most fragmented landscapes were not necessarily the most conducive
%0 to outbreaks or pathogen persistence. Our work has similar thrust by exploring the effect of landscape
s heterogeneity on pest density peaks. However, by taking advantage of the STPP modelling, we focus on
%2 spatio-temporal positions of peaks, and we investigate which factors locally influence occurrence intensity
»%3 and magnitude of these events. The meta-model allowed us to depict complex spatial dynamics and patterns
x¢ even if multiple processes occur at competing scales (White et al.,|2018b)). To assess fine-scale biodiversity,
s |Azaele et al| (2015 captured species patterns through correlations among different species’ abundances
x6 across sample plots. Therefore, they used counts over spatial units (i.e., plots), determined by the sampling
%7 design and leading to relatively large counts, and they contrasted their results with common species—area

x%s curves (Fritsch et al.l 2020)). They concluded that this mathematical framework provides a common language

15
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x%0  to link different spatial scales. Our approach goes beyond a purely descriptive ” geostatistical” analysis since
a0 we take into account the space-time position of each of the points as well as their relationships with nearby
o key elements. This representation parsimoniously summarises spatially continuous dynamics into discrete
oz occurrences of spatio-temporal key events and allows modeling them for explanatory and predictive purposes.
a3 Our regression model for occurrence intensities also aggregates individual events, but we work with relatively
o small counts by choosing appropriate, problem-specific space-time units.

275 Ecosystem patterns and processes can cover a wide range of space and time, and they depend on multiple
as  drivers acting over different scales (Fritsch et al. |2020)). Problematic loss and the lack of information may
a7 arise in procedures of scaling-up or scaling-down when coupled with the complexity of the involved systems.
s Our work strikes a pragmatic balance with respect to the inevitable trade-off between model simplicity, to
a9 obtain clear insights into important factors, and model complexity, to achieve a more complete and realistic
;0 representation of the system (Lacy et al., 2013]). Spatio-temporal meta-models present a flexible solution
s by capturing the functional linkages between model components. They show potential to reveal properties
22 in ecological systems that are difficult to identify when considering only the complex model output with
23 large data volumes as a whole (Lacy et al.,[2013). Our STPP model allowed for a relatively complex spatio-
24 temporal local analysis of system dynamics. It therefore provides insights into the role of different effects
25 and takes process-specific scales into account by using categorical or numerical marks. Through statistical
s inferences it becomes possible to identify significant relationships of key events with their drivers focusing on
27 biotic interactions, habitat heterogeneity and spatio-temporal stochastic effects predictions (Baddeley et al.,
2 [2015).

289 A large body of literature on meta-models (or surrogate models, or emulators) in various disciplines
20 focuses on Gaussian processes or machine-learning techniques (e.g., |[Forrester et al., 2008} Kleijnen, 2015]),
21 whereas our work highlights the potential of point-process-based approaches for dynamical systems. This
22 novel way of conducting meta-analyses is applicable to various collections of relevant events arising in dy-
203 namical processes available at high spatio-temporal resolution. We emphasise that our methods leverage
2 spatio-temporal and multivariate point pattern techniques, while the state-of-the-art in point pattern anal-
25 yses deals mostly with purely spatial patterns or does not well represent the temporal dimension (Wiegand
26 et all [2017)). Our extensions are well-suited for spatio-temporal mechanisms and population dynamic pa-
27 rameters where the assessment of their relative and joint role is crucial for characterising emerging diversity
208 patterns.

299 We have constructed a collection of predictor variables in which spatio-temporal covariates (STC) con-
s0 tribute spatio-temporally structured information, such as the number or magnitudes of previous or concomi-

s tant events around a given location and time, to convey information related to the local evolution of pest
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s2  dynamics. In a similar context, |[Le Gal et al.| (2020)) highlighted the important influence of the interplay
33 between the landscape structure and the timing of CBC measures on the delivery of pest control services.
s0  They showed that increased semi-natural habitat proportion at the landscape level enhances the visitation
35 rate of pest-colonised crop cells, but it also reduces the delay between pest colonisation and predator arrival
36  in the crop fields. In our model, we have opted for simulating the time and position of pest arrival according
7 to a Poisson process with intensity proportional to crop area. We found that locations showing frequent and
s high density peaks in previous time steps are likely to incur new peaks. On the other hand, local previous
w0 treatments in a patch negatively influence the dynamics since they efficiently reduce the pest density in this
a0 patch. Introductions of pest act as an accelerator of local pest dynamics, and after a short period we often
su  assist to both high frequency and high magnitudes of peaks in the surrounding fields.

312 Spatial covariates (SC) in our regression meta-models are time-invariant landscape characteristics that
a3 may influence pest peaks. Crop proportion is the main driver for pest in our models, and leads to a clear
s positive response of pest insects to increasing cover of a suitable crop (Ricci et al., |2019; [Rand et al., 2014
a5 [Zhao et al., 2015; [Avelino et al.,|2012; [Tscharntke et al., [2007). Our results show that considering it at local
as  scale or at global scale leads to different peak patterns. When crop aggregation and percentage coverage are
a7 high in the whole landscape, exceedance events of pest density are relatively homogeneously spread over the
ss  area with generally relatively low pest density values throughout. Instead, when high crop coverage is only
a0 local (i.e., in the buffer), the resulting pattern shows a locally higher number of exceedance events with high
20 peaks; pests find their preferred habitat in a more limited space and tend to concentrate there. |Zamberletti
s et al.|(2021) showed that in landscapes with strong aggregation of crop fields the area of contiguous crop may
2 cause a dilution effect, with a positive effect on pest population, a negative effect on treatment occurrence,
33 and a positive effect on the treatment numbers in the whole landscape. Therefore, if treatments are necessary
34 in a patch, they tend to arise in relatively high numbers over the full observation period. Hedge distribution
3 and proportion can be viewed as a proxy for predator presence and reveal when predators may play a role in
s reducing pest density (Bianchi et al. 2006} 'Tscharntke et al., |2007)). The effects attributed to semi-natural
sr  habitat (e.g., hedges) are ambiguous with both positive, negative or neutral impacts on CBC (Chaplin-
2 |Kramer et al., [2011; [Karp et al.,|2018). In our models, total hedge proportion has a small but positive effect
39 on both the number and the magnitude of peaks. A reason could be that the global proportion of hedges
a0 does not inform about hedge connectivity and distribution (e.g., homogeneously or in clusters). If there
s is a high hedge coverage, predators are expected to be homogeneously distributed in the landscape, thus
3 stabilising the pest population and potentially reaching an equilibrium in the whole landscape for pest and
33 predator density. However, this does not imply that pest density remains under the treatment threshold; it

13¢  could happen that other parameters influence its dynamics by favouring pest population (e.g., crop coverage

17
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a5 or pest growth rate) or decreasing predator presence in field (e.g., mortality, spillover from hedge). This
36 results in a homogeneous predator presence that is not sufficient to prevent pest density from exceeding
37 the threshold. In our model, another reason could stem from statistical confusion in the regression models
38 between the effects of global hedge proportion and global crop proportion since the simulated landscape
30 model tends to position hedges more often in crop areas than in the rest of the landscape. However, when
o focusing on local buffers around a cell, local hedge structure, and the resulting predator concentration, play
s a bigger role by reducing both number of pest peaks and their magnitude.

32 Population dynamics covariates (PDC) in our models are related to species traits. Here we consider the
a3 effect of varying population parameters related to species mobility in the environment. We focus on how the
se  structure of landscape elements influences species spread with respect to the studied events. We find that
us  predator diffusion ability over the landscape is fundamental to reduce the presence of pest. Interestingly,
us  we do not notice the same effect for predator migration speed from hedge to field. This predator trait acts
w7 strongly at locations close to hedges, i.e., around patch borders, with a strong decrease in the number of
us peaks, while the peak value is not affected but is high mainly in the patch core areas.

39 In the agro-ecological context, our analysis aids prediction and management decisions. For example,
0 improved understanding of local spatio-temporal relationships and dynamics helps to schedule specific local
1 control strategies by targeting the locations that frequently suffer from pest peaks and the moments when

2 local control strategies can be expected to be most efficient to control pest dynamics.
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