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ABSTRACT 15 

Quantitative genetics states that phenotypic variation is a consequence of genetic and environmental 16 

factors and their subsequent interaction. Here, we present an enviromic assembly approach, which 17 

includes the use of ecophysiology knowledge in shaping environmental relatedness into whole-genome 18 

predictions (GP) for plant breeding (referred to as E-GP). We propose that the quality of an 19 

environment is defined by the core of environmental typologies (envirotype) and their frequencies, 20 

which describe different zones of plant adaptation. From that, we derive markers of environmental 21 

similarity cost-effectively. Combined with the traditional genomic sources (e.g., additive and 22 

dominance effects), this approach may better represent the putative phenotypic variation across diverse 23 

growing conditions (i.e., phenotypic plasticity). Additionally, we couple a genetic algorithm scheme 24 

to design optimized multi-environment field trials (MET), combining enviromic assembly and 25 

genomic kinships to provide in-silico realizations of the future genotype-environment combinations 26 

that must be phenotyped in the field. As a proof-of-concept, we highlight E-GP applications: (1) 27 

managing the lack of phenotypic information in training accurate GP models across diverse 28 

environments and (2) guiding an early screening for yield plasticity using optimized phenotyping 29 

efforts. Our approach was tested using two non-conventional cross-validation schemes to better 30 

visualize the benefits of enviromic assembly in sparse experimental networks. Results on tropical 31 

maize show that E-GP outperforms benchmark GP in all scenarios and cases tested. We show that for 32 

training accurate GP models, the genotype-environment combinations' representativeness is more 33 

critical than the MET size. Furthermore, we discuss theoretical backgrounds underlying how the 34 

intrinsic envirotype-phenotype covariances within the phenotypic records of (MET) can impact the 35 

accuracy of GP and limits the potentialities of predictive breeding approaches. The E-GP is an efficient 36 

approach to better use environmental databases to deliver climate-smart solutions, reduce field costs, 37 

and anticipate future scenarios.  38 

 39 
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1 INTRODUCTION 40 

Environmental changing scenarios challenge agricultural research to deliver climate-smart 41 

solutions in a time-reduced and cost-effective manner (Tigchelaar et al., 2018; Ramírez-Villegas et al 42 

2020; Cortés et al., 2020). Characterizing crop growth conditions is crucial for this purpose (Xu, 2016), 43 

allowing a deeper understanding of how the environment shapes past, present, and future phenotypic 44 

variations (e.g., Ramírez-Villegas et al. 2018; Heinemann et al., 2019; Cooper et al., 2014; de los 45 

Campos et al., 2020; Costa-Neto et al., 2021b; Antolin et al., 2021). For plant breeding research, mostly 46 

based on selecting the best-evaluated genotypes for a target population of environments (TPE), this 47 

approach is useful to discriminate genomic and non-genomic sources of crop adaptation. Thus, the 48 

concept of 'envirotyping' (environmental + typing, Cooper et al., 2014; Xu, 2016) emerges to establish 49 

the quality of a given environment in the delivery of quality phenotypic records, mostly to train accurate 50 

predictive breeding approaches capable of guiding the selection of most productive and adapted 51 

genotypes (Resende et al., 2020; Costa Neto et al., 2021a; Crossa et al., 2021).  52 

From envirotyping, it is possible to check the quality of a certain environment, which is directly 53 

related to how the observed growing conditions in a particular field trial could be related to the most 54 

frequent environment-types (envirotypes) that occur in the breeding program TPE or target region (e.g., 55 

Heinemann et al., 2019; Cooper et al., 2021; Antolin et al., 2021). In agricultural research, the quality 56 

of a certain environment is directly related to how it can limit the expression of the genetic potential of 57 

the certain crop for a certain trait, such as suggested by the movement called 'School of de Wit' since 58 

1965 (see Bouman et al., 1996). Thus, for the plant breeding research, this is also direct factors such 59 

as genotype × environment interaction (e.g., Allard, 1964; Finlay and Wilkinson, 1963) and its 60 

implications of how the target germplasm under selection (or testing) can perform across the target 61 

growing conditions in which the candidate cultivars will be cropped. 62 
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Prediction-based tools have leveraged modern plant breeding research to an extent in which 63 

phenotyping is still required (Crossa et al., 2017), although prediction-based tools and simulations can 64 

support more comprehensive and faster selection decisions (Galli et al., 2020; Cooper et al., 2021; 65 

Crossa et al., 2021). One of the most widely used predictive tools is the whole-genome prediction (GP, 66 

Meuwissen et al., 2001), developed and validated for several crop species and application scenarios 67 

(Crossa et al., 2017; Voss-Fels et al., 2019), such as the selection among populations and the prediction 68 

of the performance of single-crosses across multiple environments. For the latter, the most important 69 

use of GP mostly relies on the better use of the available phenotyping records and large-scale easy-70 

managed genomic information to expand the spectrum of evaluated single-crosses in silico (Messina 71 

et al., 2018; Rogers et al., 2021). Those phenotypic records (e.g., grain yield and plant height) are 72 

collected from existing field trials that experience a diverse set of growing conditions, carrying within 73 

them an intrinsic environment-phenotype covariance. Consequently, the GP has a limited accuracy 74 

under multiple-environment testing (MET) due to genotype × environment interaction (G×E) (Crossa 75 

et al., 2017), meaning that each genotype has a differential response for each environmental factor that 76 

assembles what we call 'environment' (time interval across crop lifetime involving a specific 77 

geographic location and agronomic practice for a particular crop). Therefore, novel ways to include 78 

environmental data (Heslot et al., 2014; Jarquín et al., 2014; Ly et al., 2018; Millet et al., 2019; Gillberg 79 

et al., 2019; Costa-Neto et al., 2021a) and process-based crop growth models (CGM) (Messina et al., 80 

2018; Toda et al. 2020; Robert et al., 2020; Cooper et al., 2021) in GP are considered the best pathways 81 

to fix it. Most of the success achieved by such approaches lies in a better understanding of the visible 82 

ecophysiology interplay between genomics and environment variation (Gage et al., 2017; Li et al., 83 

2018; Guo et al., 2020; Costa-Neto et al., 2021b). 84 

The explicit integration of enviromic and genomic sources is an easy way to lead GP to a wide 85 

range of novel applications (Crossa et al., 2021), such as improving the predictive ability for untested 86 
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growing conditions (Guo et al., 2020; de los Campos et al., 2020; Jarquín et al., 2020; Costa-Neto et 87 

al., 2021a), to optimize MET networks and to screen genotype-specific reaction-norms (Ly et al., 2018; 88 

Millet et al., 2019). This is excellent progress for predictive breeding (i.e., the range of prediction-89 

based selection tools for crop improvement) and accelerating research pipelines to deliver higher yields 90 

and adapted genotypes for target scenarios. However, most of the current studies on this topic vary in 91 

accuracy and applicability, mostly due to (1) the processing protocols used to translate the raw-data 92 

into explicit environmental covariables (ECs) with biological meaning in explaining G×E over 93 

complex traits, (2) the lack of a widely-used envirotyping pipeline that, not only supports the design of 94 

field trials, but also increases the accuracy of the trained GP models and, in addition, (3) for CGM, a 95 

possible limitation is the increased demand for the phenotyping of additional intermediate phenotypes 96 

(i.e., biomass accumulation and partitioning, specific leaf area), which can involve managed iso-97 

environments and expert knowledge in crop modeling (Cooper et al., 2016; Toda et al., 2020; Robert 98 

et al., 2020). The latter can be expensive or difficult for plant research programs in developing 99 

countries, which generally have low budgets to increase the phenotyping network and install 100 

environmental sensors. In addition, most developing countries are located in regions where 101 

environments are subject to a broader range of stress factors (e.g., heat stress). 102 

Therefore, here we revisit Shelford's Law (Shelford, 1931) and other ecophysiology concepts 103 

that can provide the foundations for translating raw-environmental information into an enviromic 104 

source for predictive breeding, hereafter denominated as enviromic assembly. The benefits of using the 105 

so-called 'enviromics-aided GBLUP' (E-GP) under existing experimental networks are presented, 106 

followed by the E-GP application to optimize field-based phenotyping. Finally, we benchmark E-GP 107 

with the traditional genomic-best unbiased prediction (GBLUP) to discuss the benefits of enviromic 108 

data to reproduce G×E patterns and provide a virtual screening for yield plasticity. 109 

 110 
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2 MATERIAL AND METHODS 111 

The material methods are organized in the following manner: First, we briefly address the 112 

concepts underlying the novel approach of enviromic assembly inspired by Shelford's Law. The data 113 

sets are then presented, along with the statistical models and prediction scenarios used to show the 114 

benefits of large-scale environmental information in GP across multi-environment trials (MET). 115 

Finally, we present a scheme to optimize phenotyping efforts in training GP over MET and support the 116 

screening for maize single-crosses' yield plasticity. 117 

2.1 Theory: adapting the Shelford Law of Minimum 118 

Consider two experimental networks (MET) of the same target population of environments (TPE, 119 

e.g., the different locations, years, and crop management) under different environmental gradients due 120 

to year or location variations (Fig.1). For two genotypes evaluated under both conditions (G1, G2), the 121 

potential genetic-specific phenotypic plasticity (Allard and Bradshaw, 1964) (curves) is expressed as 122 

different reaction-norms (dotted lines), resulting in distinct observable G×E patterns (Fig.1a-b). In the 123 

former MET (Fig.1a), both genotypes experience a wider range of possible growing conditions (large 124 

interval between the two vertical solid lines), which result in an intricate G×E pattern (crossover). 125 

Conversely, in the latter MET (Fig.1b), the same genotypes experience a reduced range of growing 126 

conditions yet lead to a simple G×E pattern (non-crossover). It is feasible to conclude that, although 127 

the genetic variation is essential for modeling potential phenotypic plasticity of genotypes (curves, 128 

Fig.1a-c), the diversity of environmental growing conditions dictates the observable G×E patterns 129 

(Bradshaw, 1965). Thus, the GP platforms for MET may be unbiased with no diversity, and the quality 130 

of environments is not considered.  131 

Approaches such as CGM try to reproduce the phenotypic plasticity curves, while benchmark 132 

reaction-norm models try to reproduce the observable reaction-norm. Both approaches can achieve 133 
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adequate results, although we have observed that (1) CGM demands greater phenotyping efforts to 134 

train computational approaches capable of reproducing the achievable phenotypic plasticity from a 135 

reduced core of phenotypic records from field trials at near-iso environments (e.g., well-watered 136 

conditions versus water-limited conditions for the same planting date and management), (2) CGM 137 

demands additional programing efforts, which, for some regions or crops, can be expensive and limit 138 

the applicability of the method, (3) adequate reaction-norm models over well-designed phenotyping 139 

platforms are not a reality for certain regions of the world with limited resources to invest in precision 140 

phenotyping efforts. 141 

We understand that Shelford's Law of Tolerance (Shelford, 1931) is suitable to explain how the 142 

environment drives plant plasticity and can be incorporated into the traditional GP platforms in a cost-143 

effective way (Fig.1c). It states that a target population's adaptation is modulated as a certain range of 144 

minimum, maximum and optimum threshold limits achieved over an environment gradient (vertical 145 

solid green lines). The genotypes' potential phenotypic plasticity (curves) is not regarded as a linearized 146 

reaction-norm variation across an environmental gradient (Arnold et al., 2019). Instead, it is the 147 

distribution of possible phenotypic expressions dictated by the cardinal thresholds for each biophysical 148 

factor with ecophysiological relevance. Therefore, crops may experience stressful conditions due to 149 

the excess or lack of a target environmental factor, depending on the cardinal thresholds (vertical solid 150 

green lines in Fig.1c), which also rely on some key development stages germplasm-specific 151 

characteristics (e.g., tropical maize versus temperate maize). Consequently, the expected variation of 152 

environmental conditions across different field trials results from a series of environment-types 153 

(envirotypes) acting consistently yet varying in impact depending on the genetic-specific sensibility. 154 

The quality of a certain growing condition depends on the balance between crop necessity and resource 155 

availability, which involves constant effects, such as the type of treatments in a trial (e.g., fertilizer 156 

inputs) and transitory effects variables, such as weather events (e.g., heat-stress).  157 
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From these concepts, we observe that with the use of envirotyping (e.g., typing the profiles of a 158 

particular environment), the environment part of the G×E pattern can be visualized based on the shared 159 

frequency of envirotypes among different field trials. Thus, the enviromic of a certain experimental 160 

network or TPE (the core of possible growing conditions) can be mathematically assembled by (1) 161 

collecting large-scale environmental data, (2) processing this raw data in envirotyping entries for each 162 

real or virtual environment, and (3) processing these envirotyping-derived entries to achieve theoretical 163 

relatedness between the buildup of different environments from the shared frequency of envirotypes. 164 

Thus, the expected envirotypes can be designed relying on the adaptation zones inspired by the model 165 

proposed here, based on Shelford's Law, in which we can envisage the process of deriving 166 

environmental covariables for GP into an ecophysiological-smart way. 167 

2.2 Proof-of-concept data sets 168 

This study used maize as a proof-of-concept crop due to its importance for food security in 169 

developed and developing regions. Two data sets of maize hybrids (single-crosses of inbreed lines) 170 

from different germplasm sources developed under tropical conditions in Brazil (hereafter referred to 171 

as Multi-Regional and N-level) were used.  Both data sets involve phenotypic records of grain yield 172 

(Mg per ha) collected across multiple environments. Details on the experimental design, cultivation 173 

practices, and fundamental statistical analysis are given in Bandeira e Souza et al. (2017) and Alves et 174 

al. (2019). Below we provide a short description of the number of genotypes and environments tested 175 

and the nature of this study's genotyping data. 176 

2.2.1 Multi-Regional Set 177 

The so-called "Multi-Regional set" is based on the germplasm developed by the Helix Seeds 178 

Company (HEL) in South America. It includes 247 maize lines evaluated in 2015 in five locations in 179 

three regions of Brazil (Supplementary Table 1). Genotypes were obtained using the Affymetrix Axiom 180 
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Maize Genotyping Array containing 616 K SNPs (single-nucleotide polymorphisms) (Unterseer et al., 181 

2014). Only SNPs with a minor allele frequency > 0.05 were considered. Finally, a total of 52,811 182 

high-quality SNPs that achieved the quality control level were used in further analysis.  183 

2.2.2 N-level set 184 

The so-called "N-level set" is based on the germplasm developed by the Luiz de Queiroz College 185 

of Agriculture of the University of São Paulo (USP), Brazil. A total of 570 tropical maize hybrids were 186 

evaluated across eight environments, involving an arrangement of two locations, two years, and two 187 

nitrogen levels (Supplementary Table 2). This study's sites involved two distinct edaphoclimatic 188 

patterns, i.e., Piracicaba (Atlantic forest, clay soil) and Anhumas (savannah, silt–sandy soil). In each 189 

site, two contrasting nitrogen (N) fertilization levels were managed. One experiment was conducted 190 

under ideal N conditions and received 30 kg ha−1 at sowing, along with 70 kg ha−1 in a coverage 191 

application at the V8 plant stage. That is the main recommendation for fertilization in tropical maize 192 

growing environments in Brazil. In contrast, the second experiment under low N conditions received 193 

only 30 kg ha−1 of N at sowing, resulting in an N-limited growing condition. This set's genotypes were 194 

also obtained using the Affymetrix Axiom Maize Genotyping Array containing 616 K SNPs (Unterseer 195 

et al., 2014) and minor allele frequency > 0.05. At the end of this process, a total of 54,113 SNPs were 196 

considered in the GP modeling step. 197 

2.3 Envirotyping Pipeline 198 

Below, we present the methods used for data collection, data processing, and implementing what 199 

we call 'enviromic assembly'. This envirotyping pipeline was developed using the functions of the R 200 

package EnvRtype (Costa-Neto et al., 2021) and is available at no cost. All codes for running the next 201 

steps are given in https://github.com/gcostaneto/EGP.  202 
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2.3.1 Environmental sensing (data collection) 203 

In this study, environmental information was used for the main abiotic plant-environment 204 

interactions related to daily weather, soil type, and crop management (available only for N-level set). 205 

Daily weather information was collected from NASA POWER (Sparks, 2018) and consisted of eight 206 

variables: rainfall (P, mm day-1), maximum air temperature (TMAX, °C day-1), minimum air 207 

temperature (TMIN, °C day-1), average air temperature (TAVG, °C day-1), dew point temperature 208 

(TDEW, °C day-1), global solar radiation (SRAD, MJ per m²), wind speed at 2 meters (WS, m s-1 day-209 

1) and relative air humidity (RH, % day-1). Elevation above sea level was obtained from NASA's Shuttle 210 

Radar Topography Mission (SRTM). Both sources were imported into R statistical-computational 211 

environments using the functions and libraries organized within the EnvRtype package (Costa-Neto et 212 

al., 2021b). A third GIS database was used to import soil types from Brazilian soil classification 213 

provided by EMBRAPA and available at https://github.com/gcostaneto/EGP.  214 

2.3.2 Data Processing 215 

Quality control was adopted by removing variables outside the mean ± three standard deviation 216 

and repeated columns. After checking for outliers, the daily weather variables were used to model 217 

ecophysiological interactions related to soil-plant-atmosphere dynamics. The thermal-radiation 218 

interactions computed potential atmospheric evapotranspiration (ET0) following the Priestley-Taylor 219 

method. The slope of the saturation vapor pressure curve (SPV) and vapor pressure deficit (VPD) was 220 

computed as given in the FAO manual (Allen et al., 1998). An FAO-based generic function was used 221 

to estimate crop development as a function of days after emergence (DAE). We assume a 3-segment 222 

leaf growing function to estimate the crop canopy coefficient (Kc) of evapotranspiration using the 223 

following Kc values: Kc1 (0.3), Kc2 (1.2), Kc3 (0.35), equivalent to the water demand of tropical maize 224 

for initial phases, reproduction phases, and end-season stages, respectively. Using the same 3-segment 225 

function, we estimate the crop canopy using a leaf area index (LAI) of LAI = 0.7 (initial vegetative 226 
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phases), LAI = 3.0 (maximum LAI for tropical maize growing conditions observed in our fields), and 227 

LAI = 2.0 (LAI tasseling stage). We computed the daily crop evapotranspiration (ETc) estimated by 228 

the product between ET0 and the Kc from those two estimations. Then, we computed the difference 229 

between daily precipitation and crop evapotranspiration as P-ETc. 230 

The apparent photosynthetic radiation intercepted by the canopy (aPAR) was computed 231 

following aPAR=SRAD×(1-exp(-k×LAI)), where k is the coefficient of canopy, considered as 0.5. 232 

Water deficiency was computed using the atmospheric water balance between input (precipitation) and 233 

output of atmospheric demands (crop evapotranspiration). The effect of temperature on the radiation 234 

use efficiency (FRUE) was described by a three-segment function based on cardinal temperatures for 235 

maize, using the cardinal temperatures 8°C (Tb1, base lower), 30°C (To1, base optimum), 37°C (To2, 236 

upper optimum) and 45°C (Tb2, base upper). This function assumes values from 0 to 1, depending on: 237 

FRUE= 0 if TAVG ≤ Tb1; FRUE = (TAVG - Tb1)/(To1-Tb1) if Tb1 < TAVG < To1; FRUE = 1 if To1 < TAVG < 238 

To2; FRUE = (Tb2 – TAVG)/(Tb2 – To2) if To2 < TAVG < Tb2; and FRUE = 0 if TAVG > Tb2. 239 

Finally, we sampled each piece of weather and ecophysiological information across five-time 240 

intervals in the crop lifetime: from emergence to the appearance of the first leaf (V1, 14 DAE), from 241 

V1 to the fourth leaf (V4, 35 DAE), from V4 to the tasseling stage (VT, 65 DAE), from VT to the 242 

kernel milk stage (R3, 90 DAE) and from R3 to physiological maturity (120 DAE), in which DAE 243 

stands for days after emergence.  244 

2.3.3 Enviromic assembly using typologies (T matrix) 245 

The raw envirotyping data were used to assemble markers for environmental similarity, 246 

depending on the group of the ECs. The first group of ECs involves the transitory effect variables, 247 

which vary in the frequency of occurrence, depending on the crop development cycle. Thus, we design 248 

the expected envirotypes using the number of inputs required to lead crops in at least three levels of 249 
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adaptation: (1) stress by deficit, (2) optimum growing conditions, and (3) stress by excess. These levels 250 

were defined using cardinal thresholds or frequency tables concerning the growing conditions archived 251 

in the experimental network range. Then, from having reviewed the literature, we consider the intervals 252 

for thermal-related variables: 0°C to 9°C (death), 9.1°C to 23°C (stress by deficit), 23.1°C to 32°C 253 

(optimum growing conditions), 32.1°C to 45°C (stress by excess) and 45°C to ∞°C (death). We 254 

computed the classes for accumulated prediction according to our agronomic expertise on rainfall 255 

requirements for tropical maize growing environments: 0mm to 10mm, 10.1mm to 20mm, and 20.1mm 256 

to ∞ mm. For crop evapotranspiration (ETc), we assume the envirotypes 0-6 mm.day-1, 7-10 mm.day-257 

1 ,10-15 mm.day-1 and 16 to ∞ mm.day-1. Finally, for FRUE, we assume the envirotypes based on the 258 

following adaptation zones: impact from 0% to 25% (0-0.25), from 26% to 50% (0.26-0.50), 51% to 259 

75% (0.51-0.75) and 76% to 100% (0.76-1.0). We preferred to adopt a simple discretization for the 260 

remaining variables using a histogram of percentiles (0-25%, 26-50%, 51-75%, 75-100%) of 261 

occurrence for a target envirotype.  262 

The second group involves constant effect variables. In this group, we consider the elevation, 263 

crop management, and soil classification in each environment. Soil information was entered as an 264 

incidence matrix (0 or 1) based on each environment's occurrence. In addition, for the N-level set, 265 

nitrogen input levels were computed as two discrete classes: ideal N = 10 and low N = 30; we entered 266 

this same incidence matrix for soil information. Because both sets have a gradient for elevation, we 267 

used a histogram of percentiles (0-25%, 26-50%, 51-75%, 75-100%) as in the transitory group of 268 

variables. Finally, each designed envirotype × time interval frequency was used as a qualitative marker 269 

of environmental relatedness (the hereafter T matrix, from typologies).  270 
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2.3.4 Assembly of W matrix using quantile covariables (benchmark EC matrix)  271 

The quantitative descriptors of environmental relatedness are the most common method to 272 

include environmental information in GP studies considering reaction-norms. Jarquín et al. (2014) 273 

proposed the creation of the so-called environmental relatedness kinship (KE) carried out with a matrix 274 

of quantitative environmental covariables (W matrix, thus we refer to this environment kinship as 275 

KE,W). Here, this pattern of similarity in KE,W was captured using percentile values (25%; 50%, and 276 

75%) at each of the five-time intervals of development, as suggested by Morais-Júnior et al. (2018) 277 

and expanded by Costa-Neto et al., (2021a). We found 255 and 307 quantitative descriptors for the 278 

Multi-Regional and N-level sets at the end of the process, respectively. In this study, we used this KE,W 279 

as a benchmark method to test the effectiveness of the KE,T matrix and the total absence of 280 

environmental information (baseline genomic model without environmental information, see section 281 

2.4.1).  282 

 283 

2.4 Statistical Models 284 

From a baseline additive-dominant multi-environment GBLUP (section 2.4.1), we tested four 285 

other models, created with the inclusion of two types of enviromic assembly (T or W) and structures 286 

for G×E effects. More details about each statistical model are provided in the next subsections. All 287 

kernel models were fitted using the BGGE R package (Granato et al., 2018) using 15,000 iterations, 288 

with 2,000 used as burn-in and using a thinning of 10. This package was used due to the following 289 

aspects: (1) is an accurate open-source software and; (2) can accommodate many kernels in a 290 

computation-efficient way. 291 
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2.4.1 Baseline additive-dominant GBLUP 292 

The baseline model includes a fixed intercept for each environment and random genetic 293 

variations (additive and dominance). We will refer to this model as GBLUP, which was modeled as an 294 

overall main effect plus a genomic-by-environment deviation (the so-called G+GE model, Bandeira e 295 

Souza et al., 2017), as follows: 296 

                                    𝒚 =  𝟏𝝁 + 𝒁𝐸𝜷 + 𝒁𝐴𝒖𝐴 + 𝒁𝐷𝒖𝐷 + 𝒖𝐴𝐸 + 𝒖𝐷𝐸 + 𝜺                                        (1) 297 

 298 

where 𝒚 = [𝒚𝟏, ⋯ , 𝒚𝒏]′ is the vector of observations collected in each of the 𝑞 environments with 299 

hybrids and 𝟏𝝁 + 𝒁E𝜷 is the general mean and the fixed effect of the environments with incidence 300 

matrix 𝒁𝐸. Genetic variations are modeled using the main additive effects (𝒖A), with 𝒖A ∼301 

𝑁(𝟎, 𝑱𝑞 ⊗ 𝑲A𝝈A
𝟐 ), plus a random dominance variation (𝒖D), with 𝒖D ∼ 𝑁(𝟎, 𝑱𝑞 ⊗ 𝑲D𝝈D

𝟐 ), where 𝝈A
𝟐  302 

and 𝝈D
𝟐  are the variance component for additive and dominance deviation effects; 𝒁A and 𝒁D are the 303 

incidence matrix for the same effects (absence=0, presence=1), 𝑱𝑞 is a q×q matrix of 1s and ⊗ denotes 304 

the Kronecker Product. G×E effects are modeled using a block diagonal (BD) matrix of the genomic 305 

effects, built using 𝒖AE ∼ 𝑁(𝟎, 𝑰𝑞 ⊗ 𝑲A𝝈A
𝟐 ) and 𝒖DE ∼ 𝑁(𝟎, 𝑰𝑞 ⊗ 𝑲D𝝈D

𝟐 ), in which 𝑰𝑞 is a diagonal 306 

matrix of q×q dimension. Residual deviations (𝜺) were assumed as 𝜺 ∼ 𝑁(𝟎, 𝑰𝑛𝝈𝟐), where 𝑛 is the 307 

number of genotype-environment observations. Furthermore, the genotyping data were processed in 308 

two matrices of additive and dominance effects, modeled by: 309 

𝐀 = {0 = 𝐴2𝐴2; 1 =  𝐴1𝐴2; 2 = 𝐴1𝐴1} and 310 

𝐃 = {−2𝑓𝑙
2 = 𝐴2𝐴2; 2𝑓(1 − 𝑓𝑙) =  𝐴1𝐴2; −2𝑓(1 − 𝑓𝑙)2 = 𝐴1𝐴1}, 311 

where 𝑓𝑙 is the frequency of the favorable allele at locus 𝑙. Thus, the genomic-related kinships were 312 

estimated as follows: 313 
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                                                𝑲 =
𝑿𝑿′

trace(𝑿𝑿′)/𝑛𝑟𝑜𝑤(𝑿)
                                                                        (2) 314 

where K is a generic representation of the genomic kinship (𝑲A, 𝑲D), 𝑿 is a generic representation of 315 

the molecular matrix (A or D), and 𝑛𝑟𝑜𝑤(𝑿) denotes the number of rows in 𝑿 matrix. Eq (2) was also 316 

used to shape the environmental relatedness kernels using T or W matrix. This linear kernel for KE was 317 

described by Jarquín et al. (2014), which some other authors named it after "Ω". Thus, here we only 318 

tested the difference between the enviromic source considered for building it and not the merit of the 319 

kernel method as was done in previous works (Costa-Neto et al., 2021a). 320 

2.4.2 GBLUP with enviromic main effects from T matrix (E-GP) 321 

From baseline equation (1), we include a main environmental relatedness effect carried out with 322 

the T matrix (𝒖E,T), as follows (Costa-Neto et al., 2021a): 323 

 324 

                                 𝒚 =  𝟏𝝁 + 𝒁𝐴𝒖𝐴 + 𝒁𝐷𝒖𝐷 + 𝒖𝐴𝐸 + 𝒖𝐷𝐸 + 𝒖𝐸,𝑇 + 𝜺                                            (3) 325 

 326 

with 𝒖E,T ∼ 𝑁(𝒁𝐸𝜷, 𝑲E,T ⊗ 𝑱𝑝𝝈E,T
𝟐 ), where 𝑱𝑞 is a p×p matrix of 1s, is 𝑲E,T the environmental 327 

relatedness created and variance component from the T matrix. If non-enviromic sources are 328 

considered, the expected value for environments is given by 𝒁𝐸𝜷 as the baseline model. In this model, 329 

the G×E effects are also modeled as the BD genomic matrix. Thus, we refer to this model as "E-GP 330 

(BD)". The kernel of enviromic assembly (𝑲𝐸,𝑇) was built using the panel of envirotype descriptors 331 

(T) in the same way as described in equation (2). 332 

From model (3), we substitute the BD for a reaction-norm (RN, Jarquín et al., 2014) based on 333 

the Kronecker product between the enviromic and genomic kinships (Martini et al., 2020) for additive 334 

(𝒖𝐴𝐸,𝑇) and dominance effects (𝒖𝐷𝐸,𝑇): 335 
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 336 

                              𝒚 =  𝟏𝝁 + 𝒁𝐴𝒖𝐴 + 𝒁𝐷𝒖𝐷 + 𝒖𝑇 + 𝒖𝐴,𝑇 + 𝒖𝐷,𝑇 + 𝜺                                          (4) 337 

 338 

with 𝒖A,ET ∼ 𝑁(𝟎, 𝑲E,T ⊗ 𝑲𝐴𝝈AE,T
𝟐 ) and 𝒖D,ET ∼ 𝑁(𝟎, 𝑲E,T ⊗ 𝑲𝐷𝝈DE,T

𝟐 ) where 𝝈AE,T
𝟐  and 𝝈DE,T

𝟐  are 339 

the variance components for enviromic × additive and enviromic × dominance effects performed as 340 

reaction-norms (Costa-Neto et al., 2021a; Rogers et al., 2021), respectively. For short, this model will 341 

be named "E-GP (RN)". 342 

2.4.3 GBLUP with enviromic main effects from W matrix (W-GP) 343 

Finally, in models (4) and (5), we substitute the enviromic assembly derived from T by the 344 

same kernel size derived from W, that is, an environmental relatedness with 𝒖E,W ∼ 𝑁(𝒁𝐸𝜷, 𝑲E,W ⊗345 

𝑱𝑝𝝈E,W
𝟐 ), creating two more models: 346 

 347 

                                  𝒚 =  𝟏𝝁 + 𝒁𝐴𝒖𝐴 + 𝒁𝐷𝒖𝐷 + 𝒖𝐴𝐸 + 𝒖𝐷𝐸 + 𝒖𝐸,𝑤 + 𝜺                                                 (5) 348 

and 349 

                                𝒚 =  𝟏𝝁 + 𝒁𝐴𝒖𝐴 + 𝒁𝐷𝒖𝐷 + 𝒖𝐸,𝑤 + 𝒖𝐴𝐸,𝑤 + 𝒖𝐷𝐸,𝑤 + 𝜺                                            (6) 350 

 351 

𝒖AE,W ∼ 𝑁(𝟎, 𝑲E,W ⊗ 𝑲𝐴𝝈AE,W
𝟐 ) and 𝒖DE,W ∼ 𝑁(𝟎, 𝑲E,W ⊗ 𝑲𝐷𝝈ED,W

𝟐 ), where 𝑲E,W and 𝝈E,W
𝟐  are 352 

the resulting kinship and the variance components estimated for enviromic assembly from the W 353 

matrix, respectively. Thus, for short, models (5) and (6) will be referred to as "W-GP (BD)" and "W-354 

GP (RN)", respectively. 355 

 356 
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2.5 Study cases for the E-GP platform 357 

In this study, we conceived two cases to highlight the benefits of E-GP to boost efficiency in 358 

prediction-based platforms for hybrid development in maize breeding (Figure 2). The first case (Case 359 

1) involves predicting the single-crosses from different theoretical existing experimental network 360 

setups, where we dissect the predictive ability over four prediction scenarios. In the second case (Case 361 

2), we explore a theoretical conception of a super-optimized experimental network using the most 362 

representative combination of genotypes-environments selected using genomics, enviromic assembly, 363 

and genetic algorithms. Below we detail each case studied. 364 

2.5.1 Case 1: expanding the existing field trials 365 

In the first case (Case 1), we design a novel cross-validation scheme to split the global available 366 

phenotypic information (𝑛), from 𝑝 genotypes and 𝑞 environments, into different training setups. 367 

Consequently, four prediction scenarios were created based on the simultaneous sampling of the 368 

phenotypic information for 𝑆 genotypes and 𝑅 environments. 369 

• G, E: refers to the predictions of the tested genotypes within the experimental network (known 370 

genotypes in known environmental conditions). The size of this set is n[G,E] = n × (
S

p
) × (

R

q
); 371 

• nG,E: refers to predictions of untested (new) genotypes within the experimental network (known 372 

environmental conditions). The size of this set is n[nG,E] = n × (1 −
S

p
) × (

R

q
); 373 

• G,nE: in this scenario, predictions are made under environmental conditions external to those found 374 

within the experimental network. However, there is phenotypic information available within the 375 

experimental network. The size of this set is 𝑛[𝐺,𝑛𝐸] = 𝑛 × (
𝑆

𝑝
) × (1 −

𝑅

𝑞
) ; 376 
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• nG,nE: refers to predicting untested (new) genotypes and untested (new) environmental conditions. 377 

This set's size is 𝑛[𝑛𝐺,𝑛𝐸] = 𝑛 × (1 −
𝑆

𝑝
) × (1 −

𝑅

𝑞
). 378 

Theoretically, if 𝑅/𝑞 = 1, then 𝑛[𝐺,𝑛𝐸] = 𝑛[𝑛𝐺,𝑛𝐸] = 0, equal to the commonly used CV1 scheme 379 

(prediction of novel genotypes in known environments). Different intensities of 𝑅/𝑞 can be sampled, 380 

which permits the testing of different sets of experimental networks. Here we simulated three different 381 

experimental network setups for each tropical maize data set. For the N-level set, we made 3/8, 5/8, 382 

and 7/8; for the Multi-local set 2/5, 3/5, and 4/5. We assumed the same level of genotype sampling as 383 

the training set for all experimental setups, equal to a fraction of  
𝑆

𝑝
= 0.7. Each training setup was 384 

randomly sampled 50 times in order to compute the prediction quality statistics. For this purpose, two 385 

statistics were used to assess the statistical models' performance over these training setups. We 386 

calculated Pearson's moment correlation (𝑟) between observed (𝑦) and predicted (�̂�) values and used 387 

the average value for each model and training setup as a predictive ability statistic. To check the GP's 388 

ability to replace field trials, we then computed the coincidence (CS, in %) between the field-based 389 

selection and the selection-based selection of the top 5% best-performing hybrids in each environment. 390 

2.5.2 Case 2: designing super-optimized field trials 391 

The second case (Case 2) was performed on the optimized training set described below. The first 392 

step was to compute a full-entry G×E kernel, based on the Kronecker product (⊗) between the 393 

enviromic assembly-based relatedness kernel (𝑲𝐸,𝑇, q × q environments) and genomic kinship (𝑲𝐺, p 394 

× p genotypes), thus𝑲𝐺𝐸,𝑇 = 𝑲𝐸,𝑇 ⊗ 𝑲𝐺, with an n × n dimension, in which n = pq. Here we adopted 395 

the kernel made up for additive effects (𝑲𝐺 = 𝑲𝐴) as the genomic kinship, despite the benefits of 396 

dominance effects in modeling G×E. We chose to use only 𝑲𝐴 for simplicity and since additive effects 397 

seems to be a major genomic-related driver of G×E for grain yield in tropical maize (Dias et al., 2018; 398 
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Alves et al., 2019; Costa-Neto et al., 2021a; Roger et al., 2021), a fact that was also observed for Case 399 

1 (see section 3.1). Later, we applied a single-value decomposition in 𝑲𝐺𝐸,𝑇, following 𝑲𝐺𝐸,𝑇 = 𝑼𝑽𝑼𝑻 400 

where U is a total of eigenvalues and V the respective eigenvectors. The number of eigenvalues that 401 

explains 98% of the variance present in 𝑲𝐺𝐸,𝑇 indicate the number of effective SNPs by envirotype-402 

marker interactions, which is also the minimum core of genotype-environment combinations (𝑁𝐺𝐸). 403 

Thus, the reduced phenotypic information of some genotypes in some environments (𝑁𝐺𝐸) was used 404 

to predict a virtual experimental network (𝑁𝑡𝑒𝑠𝑡), involving all remaining single-crosses in all available 405 

environments, thus given by 𝑁𝑡𝑒𝑠𝑡 = 𝑛 − 𝑁𝐺𝐸,  406 

Following this step, a genetic algorithm scheme using the design criteria PEVMEAN was used to identify 407 

the  𝑁𝐺𝐸  combinations of genotypes in environments within the 𝑲𝐺𝐸,𝑇 entries that must be phenotyped 408 

(Misztal, 2016). This optimization was implemented using the SPTGA R package (Akdemir and Isidro-409 

Sánchez, 2019) using 100 iterations: five solutions selected as elite parents were used to generating the 410 

next set of solutions and mutations of 80% for each solution generated. 411 

2.6 Virtual screening for yield plasticity 412 

Finally, we tested each GP model's potentials to predict the genotypes' phenotypic plasticity and 413 

stability across environments using only the 𝑁𝐺𝐸 phenotypic information. First, the prediction ability 414 

was computed for genotypes by correlating the predicted and observed grain yield values across 415 

environments (Costa-Neto et al., 2021a). The second measure was based on the Finlay-Wilkinson 416 

adaptability model's regression slope (Finlay and Wilkinson, 1963). The GP predicted values were 417 

regressed to the observed environmental deviations, as follows: 418 

                                                             𝑀𝑖𝑗 = �̅�𝑖. + 𝑏𝑖𝐼𝑗 + 𝜀𝑖𝑗                                                                 (7) 419 
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where 𝑀𝑖𝑗 is the expected GP-based mean value of grain yield for ith genotype at jth environment, �̅�𝑖. is 420 

the mean genotypic value for ith genotype, 𝑏𝑖 is the genotype plastic response across the mean-centered 421 

standardized environmental score (𝐼𝑗) and 𝜀𝑖𝑗 is the variety of residual deviation sources not accounted 422 

in the model. After this step, the Pearson's product-moment correlation between GP-based (�̂�𝑖) and 423 

phenotypic-enabled estimates were computed as an indicator of the ability to reproduce plastic 424 

responses in silico for the 𝑝 genotypes. For this, the mean squared error is also calculated as: 425 

𝑀𝑆𝐸 = ∑
(𝑏𝑖 − �̂�𝑖)

2

𝑝

𝑝

𝑖=1

 426 

All statistics were computed using the entire data sets and only the top 5% of genotypes selected for 427 

each environment. The latter aimed to check the efficiency of the E-GP method to produce high-quality 428 

virtual screenings for plasticity. 429 

2.7 Data and Code availability 430 

All data sets and codes (in R) are freely available at https://github.com/gcostaneto/EGP. 431 

3 RESULTS 432 

3.1 Case 1: Accuracy in predicting diverse G×E scenarios 433 

A cross-validation scheme was designed to assess the predictive ability of the enviromic-aided 434 

approaches in the face of traditional GBLUP. For that, sample genotypes (70%) and environments were 435 

used to compose a drastically sparse training set for MET (training environments/total of 436 

environments). This helped assess the efficiency of E-GP for Case 1, in which we were able to dissect 437 

the predictive ability (section 3.2.3) in different scenarios of a scarcity of phenotypic records: novel 438 

genotypes in tested environments (nG,E); tested genotypes in untested environments (G,nE), and novel 439 
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genotype and environment conditions (nG, nE). Tables 1 and 2 present the N-level and Multi-Regional 440 

sets results, respectively. Then, these results were gathered for both data sets and four prediction 441 

scenarios in order to check for the joint predictive ability analysis (Figure 3). 442 

3.1.1 Within experimental network (know growing conditions) 443 

The predictions within known environmental conditions of a certain experimental network 444 

involve scenarios G,E and nG,E. For the G,E scenario (classical ‘training set’), all models 445 

outperformed the GBLUP in any setups N-level set, and most of the setups of Multi-Regional set. The 446 

highest values of predictive ability were observed for enviromic-aided GP models using the block-447 

diagonal matrix for G×E effects (BD), that is, the E-GP (BD) and W-GP (BD), respectively. Two 448 

general trends were observed: the size of the experimental setup has a small effect on GP models' 449 

accuracy. Secondly, higher accuracy gains were observed for the N-level set (Table 1), with a higher 450 

number of entries (more genotypes and more environments). The accuracy gains in this N level set 451 

ranged from +8% (r = 0.83 for E-GP RN at 7/8 experimental setup), in relation to r = 0.77 (GBLUP), 452 

to +24% (r = 0.92 for W-GP RN at 3/8 experimental setup), in relation to r = 0.74 (GBLUP). In 453 

contrast, for the Multi-Regional set (Table 2), both RN-G×E models reduced the accuracy (on average, 454 

-3%). For the BD-G×E models, small gains in accuracy (from +4% to +8%) were observed. 455 

That is also a trend for the second prediction scenario (nG,E), in which the Multi-Regional set 456 

presented an average gain of 10% for all enviromic-aided GP models with BD-G×E, and a reduction 457 

of 10% for all RN-G×E models. Conversely to the previous scenario (G,E, within the experimental 458 

network, using known genotypes), the nG,E is one of the most important plant breeding scenarios. It 459 

represents the ability of predict new single-crosses, within the know environmental gradient, borrowing 460 

genomic and enviromic information from the phenotypes of the relatives. Thus, expand the spectrum 461 

of possible genotypes using know growing conditions from the past. For the N-level set, gains up to 462 
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100% were observed for all enviromic-aided models using any G×E structure. No differences were 463 

observed between enviromic-aided models and experimental setups. On average, all enviromic-aided 464 

models achieved a predictive ability of approximately r = 0.66 across all experimental setups (3/8, 5/8, 465 

and 7/8, Table 1). In contrast, the GBLUP model has been impacted with reduced accuracy and a lack 466 

of phenotypic records. The highest gains in predictive ability were observed for scenario 3/8, average 467 

+118% for BD-G×E models, and +119% for RN-G×E models. 468 

3.1.2 Across experimental network (new growing conditions) 469 

The predictions within new environmental conditions across the experimental network involve 470 

G,nE and nG,nE. Both scenarios represent the ability of using the available phenotype information 471 

collected from experimental network in order to predict novel growing conditions using genomic or 472 

genomic+enviromic data sources. For the G,nE, the E-GP models outperformed W-GP and GBLUP 473 

across most experimental setups, despite small differences between the enviromic-aided approaches. 474 

For the E-GP BD at the N-level set (Table 1), the gains in predictive ability ranged from +24% (r = 475 

0.49 at 7/8 setup, Table 1), in relation to r = 0.40 (GBLUP), to +35% (r = 0.57 at 5/8 setup), in relation 476 

to r = 0.43 (GBLUP). However, for scenario 3/8, these gains were equal to +10% (r = 0.57) in relation 477 

to the +13% archived by the benchmark W-GP RN (r = 0.58), both over the r = 0.53 from GBLUP. In 478 

scenario 7/8, W-GP was outperformed by GBLUP, with a reduction in accuracy between -18% and -479 

16%, where the E-GP made better use of the large phenotypic information available for training GP 480 

models (gains from +20% to +24% over GBLUP). A similar pattern was observed for the Multi-481 

Regional set (Table 2), in which the gains of E-GP ranged from +4% to +6% across all setups, and W-482 

GP ranged from -3% to +6% under the same conditions. 483 

The second scenario involving novel growing conditions also predicts novel genotypes (nG,nE) 484 

into account. Thus, all predictions were based on the phenotypic records from reassembled genotypes 485 
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and considering the environmental similarity conceived from enviromics. With a large experimental 486 

network and genomics, the E-GP models outperformed W-GP and GBLUP when predicting new G×E. 487 

Observed accuracy gains ranged from 33% (r = 0.39 for E-GP RN) to 40% (r = 0.42 for E-GP BD), in 488 

experimental setup 7/8 (Table 1), where GBLUP achieved r = 0.30, and from 47% (r = 0.46 for E-GP 489 

BD) to 51% (r = 0.48 for E-GP BD), at the experimental setup 5/8, where GBLUP achieved r = 0.32. 490 

Unlike observations in the other prediction scenarios, the models RN-G×E outperformed BD-G×E in 491 

experimental setups 3/8 (N-Level set) and 2/5 (Multi-Regional set). 492 

3.2 Accuracy trends across diverse experimental setups 493 

This section highlights the main target of our Case 1 study, in which the predictive ability was 494 

achieved using the merged information of scarce genotypes at some environments. Joint accuracy 495 

trends showed that E-GP was useful at increasing GP accuracy (Fig.3a) and explaining the phenotypic 496 

variation sources in both maize data sets (Supplementary Table 3-4). For scenarios with reduced 497 

phenotypic information (e.g., 3/5, 3/8, and 4/8), any model with some degree of environmental 498 

information outperformed the GBLUP for all scenarios. The E-GP approach (purple colors in Figure 499 

3a) better captured envirotype-phenotype relations and converted them into accuracy gains among 500 

these models. This is also reflected in the E-GP efficiency as a predictive breeding tool capable of 501 

reproducing field-based trials (Fig.3b).  502 

Regarding the G×E structures, the contribution of RN-G×E is significant only for drastically 503 

lacking phenotypic records (training setup 3/8), leading to the conclusion that the use of a main-effect 504 

is substantial for most cases E-GP is enough to increase accuracy in GBLUP. For setup 2/5 (Multi-505 

Regional Set), no differences were observed between all the GP models. 506 

The coincidence between the GP-based selection and the in-field selection (CS, %) ranged from 507 

~35% to ~50%, in models with some environmental information, while it ranged between 30% and 508 
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40% for GBLUP (without environmental information). For the E-GP approach accounting for a wide 509 

number of phenotypic records in the training set (7/8, 3/5, and 4/5), values of CS up to 55% were found. 510 

Among these models, it seems that the RN-G×E reduces the CS estimates concerning the BD-G×E 511 

based models. Considering both figures 3a and 3b, it is possible to suggest that predictive ability does 512 

not imply an increase of CS, that is, in the power of selecting the best performing genotypes in certain 513 

environments. However, the drastic increase in the E-GP accuracy in relation to the other models leads 514 

us to infer that despite the lower rise in CS, the E-GP models are useful when predicting GE for a vast 515 

number of single-crosses. 516 

3.3 Case 2: enviromic assembly with optimized training sets for genomic prediction 517 

Those results lead us to investigate Case 2 (Fig.2), where we checked the possibility of training 518 

efficient and biologically accurate GP scenarios from super-optimized training sets. Then, we checked 519 

the potential of using these optimized field trials for predicting novel G×E under the so-called “virtual 520 

experimental networks”. This approach were implemented by combining two selective phenotyping 521 

approaches (Misztal, 2016; Akdemir and Isidro-Sánchez, 2019), aiming to identify combinations of 522 

genotypes and environments using in-silico representations of the enviromic assembly × genomic 523 

kinships.  524 

3.3.1 Predicting G×E at virtual experimental networks 525 

The process of designing virtual networks in maize hybrid breeding involved two steps 526 

(Supplementary Fig 1). First, we used a single-value decomposition (SVD)-based algorithm to select 527 

the effective number of individuals (NGE) (Misztal, 2016) representing at least 98% of the variation of 528 

𝑲𝐺,𝐸𝑇. It was done in 𝑲𝐺,𝐸𝑇 because this kernel represents an in-silico representation of envirotypes 529 

and genotypes (Akdemir and Isidro-Sánchez, 2019). Under sparse MET conditions, it led to a training 530 
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size equal to NGE = 67 and NGE = 49 for the N-level set (n = 4,560) and Multi-Regional set (n = 1,235), 531 

respectively. It represents only 1.5% and 4% of the whole experimental network; Supplementary Fig. 532 

2-3. For didactic purposes, from here onwards, we will represent the values of NGE as the training set 533 

size/number of genotypes. 534 

We also checked the use of all environments, although the accuracy differences were tiny in relation 535 

to this sparse MET scenario (Table 3). Furthermore, small differences were achieved by E-GP and W-536 

GP models with BD-G×E, but both higher than RN-G×E and GBLUP (Fig 4). Major differences were 537 

highlighted as follows: 538 

• For within-field trials, predictive ability ranged from r = 0.76 (W-GP) to r = 0.87 (E-GP); 539 

• For virtual-networks, it ranged from r = 0.14±0.11 (GBLUP) to r = 0.60±0.06 (E-GP); 540 

• In virtual-networks, the predictive ability of models trained with drastically reduced phenotypic 541 

records ranged from r = 0.10 (GBLUP, NGE = 67/4560) to r = 0.58 (E-GP, NGE = 67/4560) and 542 

r=0.18 (GBLUP, NGE = 49/1235) to r=0.81 (E-GP, NGE = 49/1235). 543 

The predictive ability was computed considering only the top 5% of genotypes in each environment 544 

and data set. The objective was to verify if the GP approaches could adequately predict the performance 545 

of the best-evaluated genotypes in the field. For the Multi-Regional set, the predictive ability ranged 546 

from r = 0.098 (GBLUP, NGE = 210/1235) to r = 0.579 (W-GP BD, NGE = 49/1235) and r = 0.578 (E-547 

GP BD, NGE = 49/1235); For the N-level set, W-GP outperformed E-GP, leading to r = 0.554 (W-GP 548 

BD, NGE = 536/4560) in front of r = 0.554 (E-GP RN, NGE = 67/4560) but with less phenotyping data. 549 

In contrast, the best E-GP model at the higher number of genotypes and environments evaluated in the 550 

field r = 0.484 (E-GP RN, NGE = 536/4560) were outperformed by the same model, yet with less 551 

phenotyping data r = 0.554 (E-GP RN, NGE = 67/4560). For GBLUP, the effective size of the training 552 

set was important, ranging in predictive ability from r = 0.070 (NGE = 67/4560) to r = 0.152 (NGE = 553 
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536/4560). The result of both sets suggests that when using enviromic-aided approaches, the use of 554 

fewer amounts of, but more representative, phenotyping information is better than more amounts of, 555 

yet less representative, phenotyping data. 556 

Figure 4 was created using the average values of Table 3. This figure shows that the optimization 557 

was more effective for growing conditions contrasting across macro-regions (Fig. 4a) than for 558 

experimental networks involving fewer locations (Fig. 4b). Notably, it is possible to drastically reduce 559 

field costs for experimental networks conducted across diverse locations. However, for screening 560 

management conditions, greater precautions must be considered with the use of E-GP.  561 

3.3.2 Predicting genotype-specific plasticity and environmental quality 562 

In this step, we checked these models' ability to produce virtual screenings for yield plasticity 563 

(Fig.5). We used the Finlay-Wilkinson method (FW, Eq. 7) over the predicted GY means of each 564 

genotype i in environment j (𝑀𝑖𝑗). Hence, we compared the ability of E-GP in the prediction of: (1) 565 

individual genotypic responses across environments, (2) the gradient of environmental quality (ℎ𝑗), 566 

and (3) the plasticity coefficient (b1) of the FW model describing the rate of responsiveness to h. The 567 

results in Fig 5 involves a joint analysis of both data sets. 568 

All models that included some degree of enviromic assembly outperformed the GBLUP-based 569 

approach when predicting individual genotype responses across the MET (Fig 5a). The median values 570 

of r ranged from r =0.17 (GBLUP), in which 45% of the genotypes were not well predicted (red colors), 571 

to r = 0.83 (E-GP), in which up to 60% of the genotypes were very well predicted (purple colors). The 572 

inclusion of any enviromic assembly and G×E structure led to drastic gains in accuracy for a particular 573 

genotype response across contrasting (and unknown) G×E conditions (gains up to ~378%). However, 574 

the BD structure outperformed RN in terms of resolution (many purple colors in Fig 5a). A major part 575 
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of the accurately predicted performance of genotypes across environments ranged from r = 0.75 to r 576 

=1.0. Due to this, for the next figures, we plotted only the E-GP considering the BD-G×E structure. 577 

GBLUP was unable to correctly reproduce ℎ𝑗  for an in-silico study using the FW model (Fig.5b). 578 

We observe that E-GP better describes the ℎ𝑗  gradient (mean-centered average values of GY for each 579 

environment), with r near to 1 (correlation between observed and predicted environmental quality) also 580 

suggesting a low bias (slope = 0.924 between observed and predicted values). Consequently, this was 581 

reflected in the quality of yield plasticity predictions (Fig.5c-e), as yield plasticity was represented as 582 

linear responsiveness over the environmental variation. The graphical representation of genotype-583 

specific linear reaction norms dictated by the linear regression slope (b1) was likely more similar to E-584 

GP than GBLUP about those observed in field-based testing (Fig 5b). The accuracy for b1 ranged from 585 

r = 0.08 (GBLUP) to r = 0.43 (E-GP), an increase of 437%. 586 

4 DISCUSSION 587 

Large-scale envirotyping, or simply enviromics, is an emerging field of data science in 588 

agricultural research and modern breeding program routines. We demostrated that enviromics is the 589 

science capable of bringing together environment information and quantitative genomics into an 590 

ecophysiology-smart manner. In this study, we presented the first report on (1) the use of Shelford's 591 

Law to guide the assembly of the enviromics for predictive breeding purposes over experimental 592 

networks; (2) the integration of enviromic assembly-based kernels with genomic kinship into 593 

optimization algorithms capable of designing selective phenotyping strategies and (3) a break of the 594 

paradigm relying on the fact that phenotyping a higher number of genotypes at higher number of 595 

environments do not always contribute to increasing the accuracy of GP for contrasting G×E scenarios, 596 

but there are pieces of evidences suggesting that enviromics increases accuracy under sparse multi-597 

environment networks; (4) report that the process of deriving markers of environmental relatedness, 598 
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here named 'enviromic assembly', is crucial for the implementation of low-cost GP platforms over 599 

multi-environmental conditions.  600 

In this study, we also envisage that the process of enviromic assembly is supported by a strong 601 

theoretical background in ecophysiology, illustrating the potential uses of environmental information 602 

to increase the accuracy of predictive breeding for yield and plasticity. Our results indicate that the E-603 

GP platform (Figure 2) can fit two types of prediction scenarios in plant breeding programs: (1) better 604 

use of the available phenotypic records to train more accurate GP models capable of aiding the selection 605 

of genotypes across multi-environmental conditions and (2) a method that reduces costs for field-based 606 

testing and enables an early screening for yield plasticity under crossover G×E conditions. 607 

Furthermore, we show that any model with some degree of enviromic assembly (by typology or 608 

quantitative descriptors) is always better to reproduce the genotypes' environmental quality of field 609 

trials and phenotypic plasticity.  610 

Below we discuss the aspects that support the use of E-GP for multi-environment predictions, 611 

involving the importance of breaking the paradigm that states that enviromics are not necessary to 612 

predict G×E accurately. We then discuss how the genomic and enviromic sources are linked in the 613 

phenotypic records collected from the fields and how this type of knowledge can improve the quality 614 

of the prediction-based pipelines for crop improvement. Finally, we envisage possible environmental-615 

assembly applications supporting other predictive breeding fields, such as optimizing crop modeling 616 

calibration and how it can couple a novel level of climate-smart solutions for crop improvement as 617 

anticipating the plasticity of a large number of genotypes using reduced phenotypic data. 618 

4.1 Why are enviromics important for multi-environment genomic prediction? 619 

Genomic prediction (GP) platforms were first designed to model the genotype-to-phenotype 620 

relations under single environment conditions, e.g., in a breeding program nursery (Lorenzana and 621 
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Bernardo, 2009; Windhausen et al., 2012; Zhao et al., 2012; Zhang et al., 2015). Under these 622 

conditions, the micro-environmental variations within breeding trials (e.g., spatial gradients in soil 623 

properties) are minimized in the phenotypic correction step by separating useful genetic patterns and 624 

experimental noises (non-genetic patterns). However, those phenotypic records carry the indissoluble 625 

effects of macro-environmental fluctuations of certain weather and soil factors that occurred during 626 

crop growth and development (Li et al., 2018; Vidotti et al., 2019; Millet et al., 2019; Guo et al., 2020; 627 

Jarquín et al., 2020). That seems to be of no concern when predicting novel genotypes under these 628 

same growth conditions (the CV1 scheme for single-environment models) yet becomes noise for multi-629 

environment prediction scenarios. It is a consequence of the macro-environment fluctuations in the 630 

lifetime of the crops (Allard and Bradshaw, 1964; Bradshaw, 1965; Arnold et al., 2019), responsible 631 

for modulating the rate of gene expression (e.g., Jończyk et al., 2017; Liu et al., 2020) and fine-tuning 632 

epigenetic variations and related to transcriptional responses (e.g., Vendramin et al., 2020; Cimen et 633 

al., 2021).  634 

For each unit that we call "environment" (field trial at the specific year, location, planting date, 635 

and crop management), there are various environmental factors such as water availability, canopy 636 

temperature, global solar radiation, and nutrient content in the soil. The expression of some genotype 637 

in some phenotype is then limited by the certain key environmental factors, acting in different levels 638 

of crop development as preconized by School of de Wit' since 1965 (see Bouman et al., 1996). 639 

However, we revisited the Shelford’s theory, which suggests that a population's fitness is given by the 640 

amount and distribution of resources available for its establishment and adaptation (Shelford, 1931).  641 

Thus, we reinterpret this concept by assuming that the relation between input availability (deficit, 642 

optimum amount, or excess) across different crop development stages drives the amount of the genetic 643 

potential expressed in phenotypes produced by the same genotype for a given environment. Therefore, 644 

it provides the foundations to elaborate the argument that there is also an indissoluble envirotype-645 
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phenotype covariance in the phenotypic records that is interpreted as a G×E interaction for each 646 

environment. Because of that, we envisage that any environmental relatedness kernel must account for 647 

it in any way.  648 

The pioneer approaches to measuring crop adaptability use the average value of a given trait in 649 

a given environment as an environmental quality index (e.g., Finlay and Wilkinson, 1963). However, 650 

the problem with this approach is that it explains the quality of the environment realized by the 651 

genotypes evaluated in it, making it inefficient to explain the drivers of environmental quality and 652 

incapable of predicting untested growing conditions, as observed in our results for Case 2 using 653 

GBLUP without enviromic data. In addition, our results for Case 1 highlight that it is a limit in accuracy 654 

for traditional GBLUP across MET, in which the accuracy remains almost the same, regardless of the 655 

number of phenotypic records available. 656 

A second intrinsic covariance can interpret this last result within the phenotypic records, which 657 

is the genotype-envirotype covariance. By adapting the Quantitative Genetics theory to the terminology 658 

used here, we can infer that each genotype reacts differently to each envirotype, resulting in a given 659 

phenotype. This phenotype is then used to provide small crop phenology differences (genetically 660 

determined window sizes for each development stage). Recent but pioneer works have been carried 661 

out to understand the genetic and environmental determinants of flowering time in sorghum (Li et al., 662 

2018) and rice (Guo et al., 2020). That can be indirectly interpreted as cardinal differential thresholds 663 

for temperature response. Jarquín et al (2020) proved that it is possible to increase the ability of GP in 664 

predictive novel G×E by coupling information of day-length in the benchmark GP models. For all these 665 

examples reported above, we can infer that, when trying to predict a novel genotype, by borrowing 666 

genotypic information from the relatives at different environments, it is impossible to reproduce the 667 

genotype-envirotype covariance without adding any enviromic information into the model.  668 
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The presence of both genotype-envirotype and envirotype-phenotype covariances might explain 669 

the gains in the predictive ability due to the use of multi-environment GP models in contrast to single-670 

environment GP models (Bandeira e Souza et al., 2017; de Oliveira et al., 2020) and why deep learning 671 

approaches have successfully captured intrinsic G×E patterns and translated them into gains in 672 

accuracy (Montesinos-López et al., 2018; Crossa et al., 2019; Cuevas et al., 2019). Conversely, this 673 

also might explain the need to incorporate secondary sources of information in the prediction of grain 674 

yields across multiple environments (Westhues et al., 2017; Ly et al., 2018; Millet et al., 2019; Costa-675 

Neto et al., 2021a; 2021b; Jarquín et al., 2020), as well as the possible limitations of CGM approaches 676 

contrasting scenarios differing from those targeted near-iso conditions of CGM calibration (e.g., 677 

Cooper et al., 2016; Messina et al., 2018). Thus, an alternative can be supervised approaches to 678 

describe the environmental relatedness, such as in this paper, and perhaps unsupervised algorithms 679 

capable of taking advantage of the covariances related to the genotype-phenotype, genotype-680 

envirotype, and envirotype-phenotype dynamics. 681 

4.2 Sometimes main-effect enviromics is better than reaction-norm models 682 

Our results from Case 1 show that the inclusion of enviromic sources (for main-effects or 683 

explicitly incorporated in the RN-G×E structure) led to a better description of the envirotype-phenotype 684 

covariances, which was reflected in accuracy gains. At our data and Bayesian approach used, it is worth 685 

highlighting that incorporating enviromic sources does not replace the incorporation of a design matrix 686 

for environments (here used as fixed effects) as it is commonly associated in previous studies of GP 687 

reaction-norm. Here we show that enviromic sources came up as tentative to capture the envirotype-688 

phenotype covariances. The cross-validation scheme used in Case 1 allowed us to observe that the joint 689 

prediction of different genotype-environment conditions (Fig 3) might better highlight how enviromic 690 

sources can contribute to increasing the predictive ability of GP, mostly due to its usefulness in 691 

approaching the environmental correlation among field trials. It shows more transparency for the 692 
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influence of the scenarios G,nE and nGnE, in which we had a considerable lack of phenotypic 693 

information in training GP. We can infer that schemes such as CV1 (only nG,E) are the least adequate 694 

option to show the benefits of coupling enviromics in GBLUP. However, looking at a drastically sparse 695 

MET condition (joint prediction scenarios) shows that enviromics improves the accuracy of GP as the 696 

size of the MET also increases. Predictions are made up of tiny experimental networks. 697 

4.3 Differences in using environmental covariables (W) and typologies (T) 698 

Regarding the enviromic assembly approaches used in this study, there was evidence that using 699 

typologies as envirotype descriptors (T matrix) is more biologically accurate in representing 700 

environmental relatedness than quantitative descriptors (W matrix) based on quantile covariables. This 701 

increase in biological accuracy was reflected in the statistical accuracy and then boosted plant breeders' 702 

ability to carry out selections across multi-environment conditions. Further efforts in this sense must 703 

be devoted to increasing the level of explanation of the genotype-envirotype covariances, which can 704 

also take advantage of Shelford's Law to refine the limits of tolerance for particular genotypes. Thus, 705 

different genotypes will be under the influence of a diverse set of envirotypes, which can be realized 706 

for the same environmental factor (e.g., solar radiation, air temperature, soil moisture) according to its 707 

occurrence across crop lifetime (e.g., vegetative stage) and the adaptation zone designed from 708 

ecophysiology concepts (e.g., temperature cardinals defining which temperature level results in stress 709 

and optimum growing condition). 710 

A second difference may be explained by the fact that quantitative environmental covariates are 711 

not an additive effect to compose an environment variation. Despite this, we agree with Resende et al. 712 

(2020), and we adapted the idea of envirotypes as markers of environment relatedness in a different 713 

manner. For example, the common use of mean values of covariates such as rainfall, solar radiation, 714 

and air temperature, in reality, represents a non-additive between each other; yet, they are very well 715 
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correlated for a given site-planting date condition, even when using strategies to deal with collinearity, 716 

such as partial least squares (e.g., Vargas et al., 2006; Porker et al., 2020;). We can use an example as 717 

a given day of crop growing in which a large amount of rainfall has occurred. We can suppose that the 718 

sky is cloudy, with less radiation and lower temperature. Thus, using such G-BLUP inspired approach 719 

is not an ideal solution to estimate the environmental variance. Conversely, the environmental 720 

typologies (T) are based on frequencies (ranging from 0 to 1), where the sum of all frequencies are 721 

equal to 1 (100% of the variation). In addition, those typologies can be built for a given site using 722 

historical weather data, adapting the approach of Gillberg et al. (2019) and de los Campos et al. (2020). 723 

As presented in section 2.4.2, if no typologies are considered, the expected environment effect is given 724 

for a fixed-environment intercept (with 0 variance within and between environments). Despite this fact, 725 

another option is using nonlinear kernel methods to estimate only the environment-relatedness, as this 726 

approach takes advantage of nonlinear relationships among covariates (Costa-Neto et al., 2021a,b).  727 

4.4 Does more phenotype data mean more accuracy in multi-environment prediction? 728 

This study shows that environmental information can break the paradigm that claims that more 729 

phenotype information leads to greater accuracy of GP models over MET. Our results highlight that 730 

the traditional GBLUP models assume that the variation due to G×E is purely genomic-based across 731 

field trials, leading to an implicit conclusion that the yield plasticity is constant (slope ~ 0) for all 732 

genotypes, which is unrealistic. It also reflects that G×E patterns are non-crossover (scale changes in 733 

performance across different variations), that is, a well-performing genotype will always be good 734 

across environments, and a poorly performing genotype has the same trend for all environments. 735 

Despite the gains achieved in predicting the quality of a novel environment and the plasticity for tested 736 

and untested genotypes, we noticed that the inclusion of enviromic sources also leads to the unrealistic 737 

conclusion that all genotypes respond in the same way the gradient of climate and soil quality. Our 738 

results show a reasonable accuracy in predicting yield plasticity, but further efforts must be made to 739 
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improve this approach's explanation of the yield plasticity as a nonlinear variation across the gradient 740 

of environmental factors. 741 

The use of selective phenotyping strategies made up with enviromic assembly × genomic 742 

kinships showed a drastic reduction of in-field efforts. Combined with enviromic-aided GBLUP 743 

models, it led to almost the same predictive ability achieved using a wide number of genotypes and 744 

environments for a large experimental network. Thus, we can enumerate the benefits of the enviromic 745 

approaches tested in this study as (1) the possibility of training prediction models for yield plasticity 746 

with reduced phenotyping efforts, (2) a consequence of the assembly of enviromics with genomics 747 

allowing the selection of the genotype-environment combinations that best represents the main inner 748 

covariances among phenotypes produced by different environments (the genotype-phenotype, 749 

envirotype-phenotype dynamics mentioned above). 750 

Considering both enviromics approached, we conclude that the advantages of E-GP over W-GP 751 

can be enumerated as (1) the flexibility to design a wide number of environment-types assuming 752 

different frequencies of occurrence of key stressful factors in crop development; (2) it allows the use 753 

of historical weather and in-field records to compute trends of certain envirotypes at certain 754 

environments, which can be coupled into (3) the definition of TPE and characterization of mega-755 

environments, as the main approach used for this relies on the study of the frequency of occurrence of 756 

the main environment-types (e.g., Heinemann et al., 2019). For the latter, for example, the T matrix 757 

proposed here is just an arrangement of an environment × typology matrix, in which each entry 758 

represents its frequency of occurrence at a particular time interval of the crop lifetime. Conversely, the 759 

advantages of W-GP over E-GP rely on plasticity in creating large-scale envirotype descriptors with 760 

reasonable biological accuracy.  761 

 762 
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4.5 Can we envisage climate-smart solutions from enviromics with genomics? 763 

Modern plant breeding programs must deliver climate-smart solutions cost-effectively and time-764 

reduced (Crossa et al., 2021).  By climate-smart solutions, we mean (1) adopting cost-effective 765 

approaches capable of providing fast and cheap solutions to face climate change (2) a better resource 766 

allocation for field trial efforts to collect representative phenotype information to feed prediction-based 767 

platforms for crop improvement, such as training accurate GP models and CGM-based approaches 768 

capable of guiding several breeding decisions, (3) a better understanding of which envirotypes most 769 

limit the adaptation of crops across the breeding TPE, revising historical trends and expecting future 770 

scenarios (e.g., Ramirez-Villegas et al., 2018; 2020; Heinemann et al., 2019) (4) understanding the 771 

relationship between secondary traits and their importance in explaining the plant-environment 772 

dynamics for given germplasm at given TPE (e.g., Cooper et al., 2021). However, most of those 773 

objectives will be hampered if the MET-GP platforms do not consider models with a higher biological 774 

meaning (Hammer et al., 2019) and reliable environmental information. A cost-effective solution for 775 

that, if the breeder has no access to sensor network tools, relies on the use of remote sensing tools to 776 

collect and process basic weather and soil data, such as those available in the EnvRtype R package 777 

(Costa-Neto et al., 2021b). 778 

If selective phenotyping is added in the enviromics-aided pipeline for GP (Supplementary Fig 779 

1), additional traits and the possibility of screening genotypes across a wide number of managed 780 

environments will increase. It can support field trials' training for CGM approaches, which demands 781 

phenotyping of traits across crop life, such as biomass accumulation and partitioning among different 782 

plant organs. Finally, using models considering an explicit environmental gradient of key-783 

environmental factors is a second alternative for this approach. It can be done to discover the genetic 784 

determinants of the interplay between plant plasticity and environment variation. As a wide range of 785 

genes reacts to each gradient of environmental factors, the use of whole-genome regressions of 786 
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reaction-norm for each environmental factor must be useful to screen potential genotypes (in our case, 787 

single-crosses) for a diverse set of scenarios (e.g., increased heat stress). Pioneer works used this 788 

methodology in wheat breeding (Heslot et al., 2014; Ly et al., 2018) inspired other cereal crop 789 

applications.  790 

For example, Millet et al. (2019) fine-tuned the methodology by creating a two-stage analysis of 791 

factorial regression (FR) involving environmental data, followed by a GP based on the genotypic-792 

specific sensibility for key environmental factors found in the FR step. In general, studies involving 793 

FR analysis found that the effect of high temperatures at grain-filling and maturation (Epinat-Le Signor 794 

et al., 2001; Romay et al., 2010), water balance at flowering (Epinat-Le Signor et al., 2001; Millet et 795 

al., 2019) and intercept radiation at the vegetative phase (Millet et al., 2019) are the main drivers of 796 

G×E for yield components in maize. Thus, Millet et al. (2019) explores this opportunity offered by FR 797 

to use genotypic-specific regressions, which coupled with genomic data, led to an increase of the 798 

accuracy of MET-GP by 55% concerning the benchmark environmental similarity model made up of 799 

mean values of environmental factors, as proposed by Jarquín et al. (2014).  800 

From the aspects mentioned above, we envisage that the use of GP for multi-environment 801 

predictions must account for some degree of ecophysiological reality while also considering the 802 

balance and the relation between parsimony and accuracy (Hammer et al., 2019; Costa-Neto et al., 803 

2021b; Cooper et al., 2021). Here we also highlight in our literature review that multi-environment GP 804 

must account for the impact of (1) resource availability in the creation of biologically accurate 805 

platforms in training CGM-based approaches and delivering reliable envirotyping information for 806 

those purposes, (2) availability of the knowledge of experts in training CGM approaches. Thus, 807 

ecophysiology concepts to provide solutions for raw environmental data processing in enviromic 808 

assembly information for predictive purposes seem to be a cost-effective alternative to leverage 809 

accuracy involving parsimony and biological reality.  810 
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6 TABLES 997 

Table 1. Predictive ability (± standard error) of the genome-based prediction models (GP) for the N-level set of 998 
tropical maize hybrids (570 hybrids × 2 locations × two years × two nitrogen managements). Bold values denote 999 
higher predictive ability values for each scenario: G,E (known genotypes at known growing conditions), G,nE 1000 
(known genotypes at new growing conditions), nG, E (new genotypes at known growing conditions), and nG, 1001 
nE (new genotypes at new growing conditions). 1002 

Training Setup Model 
Prediction Scenario 

G, E G, nE nG, E nG, nE 

7/8 

Environments 

GBLUP 0.771± 0.064 0.397±0.046 0.310±0.054 0.297±0.029 

E-GP (BD) 0.903±0.115 0.493±0.169 0.615±0.022 0.416±0.153 

E-GP (RN) 0.833±0.118 0.477±0.199 0.613±0.040 0.394±0.193 

W-GP (BD) 0.915±0.115 0.333±0.208 0.614±0.025 0.242±0.189 

W-GP (RN) 0.885±0.117 0.327±0.210 0.613±0.031 0.23±0.196 

5/8 

Environments 

GBLUP 0.747±0.049 0.432±0.046 0.294±0.026 0.323±0.04 

E-GP (BD) 0.905±0.056 0.554±0.144 0.659±0.015 0.464±0.113 

E-GP (RN) 0.833±0.056 0.570±0.132 0.660±0.025 0.475±0.104 

W-GP (BD) 0.931±0.057 0.449±0.286 0.659±0.019 0.347±0.253 

W-GP (RN) 0.897±0.056 0.501±0.229 0.660±0.026 0.395±0.198 

3/8 

Environments 

GBLUP 0.739±0.040 0.527±0.080 0.295±0.015 0.394±0.044 

E-GP (BD) 0.899±0.026 0.534±0.081 0.660±0.012 0.388±0.038 

E-GP (RN) 0.823±0.026 0.566±0.086 0.663±0.015 0.420±0.041 

W-GP (BD) 0.924±0.026 0.532±0.08 0.660±0.015 0.384±0.038 

W-GP (RN) 0.886±0.025 0.579±0.088 0.663±0.020 0.424±0.041 

 1003 

 1004 
Table 2. Predictive ability (± standard error) of the genome-based prediction models (GP) for the Multi-Local 1005 
set of tropical maize hybrids (247 hybrids × 5 locations in different regions of Brazil). Bold values denote the 1006 
higher predictive ability values for each scenario: G,E (known genotypes at known growing conditions), G,nE 1007 
(known genotypes at new growing conditions), nG, E (new genotypes at known growing conditions), and nG, 1008 
nE (new genotypes at new growing conditions). 1009 
 1010 

Training Setup Model 
Prediction Scenario 

G, E G, nE nG, E nG, nE 

4/5 

Environments 

GBLUP 0.953±0.040 0.497±0.072 0.552±0.171 0.340±0.138 

E-GP (BD) 0.987±0.006 0.526±0.054 0.599±0.097 0.363±0.131 

E-GP (RN) 0.873±0.084 0.520±0.064 0.496±0.126 0.358±0.143 

W-GP (BD) 0.989±0.005 0.527±0.056 0.599±0.098 0.361±0.131 

W-GP (RN) 0.931±0.057 0.492±0.078 0.501±0.130 0.366±0.125 

3/5 

Environments 

GBLUP 0.927±0.045 0.528±0.066 0.543±0.208 0.381±0.142 

E-GP (BD) 0.984±0.006 0.556±0.052 0.597±0.097 0.400±0.131 

E-GP (RN) 0.845±0.073 0.550±0.059 0.477±0.120 0.385±0.135 

W-GP (BD) 0.987±0.005 0.555±0.053 0.598±0.095 0.394±0.132 

W-GP (RN) 0.915±0.049 0.514±0.072 0.483±0.124 0.392±0.119 

2/5 

Environments 

GBLUP 0.913±0.050 0.552±0.063 0.538±0.223 0.409±0.149 

E-GP (BD) 0.982±0.006 0.574±0.051 0.593±0.095 0.410±0.135 

E-GP (RN) 0.831±0.069 0.572±0.060 0.468±0.117 0.394±0.134 

W-GP (BD) 0.986±.004 0.575±0.051 0.592±0.096 0.411±0.139 

W-GP (RN) 0.906±0.046 0.539±0.067 0.476±0.119 0.404±0.116 
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Table 3. Predictive ability of the genomic prediction models (GP) for two tropical maize data sets (Multi-1013 
Regional and N-level) produced using the effective number of phenotypic records (NGE, genotypes-1014 
environments observations) and for the scenarios Field Trials (predicting NGE) and Virtual Network (predicting 1015 
n – NGE, where n is the number of genotypes by environments available in the full data set). The reference "full" 1016 
and "5%" in parentheses represents the predictive ability produced with all genotypes and using only the top 1017 
5%, respectively 1018 

Scenario 
Models 

GBLUP W-GP (BD) W-GP (RN) E-GP (BD) E-GP (RN) 

Multi-Regional set      

Field Trials      

NGE = 210 (full) 0.698 0.962 0.892 0.964 0.893 

NGE = 210 (5%) 0.991 0.995 0.992 0.997 0.998 

NGE = 49 (full) 0.738 0.941 0.840 0.942 0.840 

NGE = 49 (5%) 0.991 0.991 0.991 1.000 1.000 

Virtual Network      

NGE = 210 (full) 0.175 0.794 0.787 0.793 0.787 

NGE = 210 (5%) 0.098 0.736 0.750 0.713 0.715 

NGE = 49 (full) 0.190 0.810 0.788 0.810 0.789 

NGE = 49 (5%) 0.241 0.759 0.755 0.758 0.706 

N-level set      

Field Trials      

NGE = 536 (full) 0.982 0.984 0.775 0.991 0.775 

NGE = 536 (5%) 0.964 0.861 0.861 0.998 0.999 

NGE = 67 (full) 0.983 0.981 0.718 0.989 0.719 

NGE = 67 (5%) 0.967 0.833 0.802 0.998 1.000 

Virtual Network      

NGE = 536 (full) 0.196 0.608 0.612 0.601 0.612 

NGE = 536 (5%) 0.152 0.554 0.545 0.406 0.484 

NGE = 67 (full) 0.102 0.574 0.572 0.578 0.573 

NGE = 67 (5%) 0.070 0.545 0.539 0.379 0.510 
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 1020 

7 Figure Captions 1021 

 1022 

Fig. 1. Ecophysiological insights to translate raw-environmental data into enviromic sources. a. Representation of 1023 
an experimental network involving an unknown number of environments from a theoretical TPE and two genotypes (G1 1024 
and G2). The range of the environmental gradient is delimited by the space between the two vertical green lines. Each 1025 
genotype has a nonlinear function describing the genetic limits of their phenotypic plasticity (curves) and genetic 1026 
potential (horizontal dotted lines) of a given trait. Diagonal dotted lines denote the observed reaction-norm experienced 1027 
by those genotypes; b. representation of a second experimental network involving the same genotypes, but different 1028 
environments were sampled from the theoretical TPE. c. adaptation of Shelford's Law of Tolerance, describing the 1029 
cardinal (or biological) genetic limits (vertical green lines) to determine the amount of the factor that results in different 1030 
adaptation zones. Across these zones, crop performance is described by zones of stress caused by deficit or excess 1031 
(physiological tolerance range) and zones of optimal growing conditions that allow the plants to express the genetic 1032 
potential for a given trait (optimum range). The core of possible environmental variations contemplated as putative 1033 
phenotypic plasticity for a given genotype, germplasm, or crop species. 1034 
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 1035 

 1036 

Fig. 2. Workflow of the E-GP considering the two study cases (Case 1 and Case 2) of this study 1037 

 1038 

 1039 
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 1045 

Fig. 3. Joint accuracy trends of GP models for each training setup of existing experimental networks. a. Predictive 1046 

ability computed with the correlation (𝑟) between observed (𝑦) and predicted (�̂� ) values for the grain yield of each 1047 

genotype in each environment, over three experimental setups (number of environments used/total of environments) for 1048 

both maize sets (N-level and Multi-local), using 70% of the genotypes as a training set and the remaining 30% as a testing 1049 

set. b. Coincidence index (CS) between the field-based and prediction-based selection of the best 5% genotypes in each 1050 

environment for the same experimental setups and data sets. Dots and triangles represent the point estimates of predictive 1051 

ability and CS for models involving a block diagonal genomic matrix for G×E effects (dotted) and an enviromic × 1052 

genomic reaction-norm G×E effect (triangle). Trend lines were plotted from the partial values of each sample (from 1 to 1053 

50) and three prediction scenarios (nG, E; G, nE and nG, nE) by using the gam() integrated with smoothness estimation in 1054 

R. Black dotted lines represent the benchmark GBLUP method, considering the effect of the environment as a fixed 1055 

intercept. Yellow two-dash lines represent the GBLUP involving the main effect from quantitative descriptors (W 1056 

matrix). Finally, solid dark pink lines represent the GBLUP involving the main effect of envirotype descriptors (T 1057 

matrix). Thus, the latter represents the E-GP based approach for Case 1 (predictions under existing experimental 1058 

networks). 1059 
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 1065 

Fig. 4. Accuracy of GP models trained with super-optimized experimental networks. Predictive ability (r) plus 1066 

standard deviation measured by the correlation between observed and predicted values for each model in the optimized 1067 

Multi-Regional Set (a); and for the N level Set (b). Barplots were colored according to the type of environmental 1068 

covariable (ECs) used: none (black), envirotype descriptor (T matrix, wine), and quantitative descriptor (W matrix, 1069 

yellow). 1070 
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 1073 

Fig. 5. Accuracy of GP models in reproducing the genotype-specific plasticity. a. The panel of predictive ability (r) 1074 

explaining the plasticity of genotypes across environments. This statistic was estimated for each individual (hybrid) by 1075 

correlating observed and predicted values across environments. Individuals with values below 0 were considered 1076 

unpredictable and marked in red. b. ability of the prediction-based tools to reproduce an existing experimental network's 1077 

environmental quality (hj). In the X-axis, we find the hj computed using the phenotypic records of a current experimental 1078 

network. In the Y-axis, the hj values are presented considering a virtual experimental network built up using GBLUP and 1079 

E-GP (with BD) predictions. c-e. Yield plasticity panels denoting each genotype's G×E effects across the hj values for 1080 

observed field-testing screening (c) concerning prediction-based (d-e). Only the 5% best genotypes in each environment 1081 

were used to create this plot. Each line was colored with the genotype-specific plasticity coefficient (b1). For the N-level 1082 

set, the full-optimized set (536 hybrids over eight environments) was used. 1083 
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