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Abstract 

The National Center for Advancing Translational Sciences (NCATS) has been actively generating 

SARS-CoV-2 high-throughput screening data and disseminates it through the OpenData Portal 

(https://opendata.ncats.nih.gov/covid19/). Here, we provide a hybrid approach that utilizes NCATS 

screening data from the SARS-CoV-2 cytophatic effect reduction assay to build predictive models, 

using both machine learning and pharmacophore-based modeling. Optimized models were used to 

perform two iterative rounds of virtual screening to predict small molecules active against SARS-

CoV-2. Experimental testing with live virus provided 100 (~16% of predicted hits) active 

compounds (Efficacy > 30%, IC50 ≤ 15 μM). Systematic clustering analysis of active compounds 

revealed three promising chemotypes which have not been previously identified as inhibitors of 

SARS-CoV-2 infection. Further analysis identified allosteric binders to host receptor angiotensin-

converting enzyme 2, which were able to inhibit the entry of pseudoparticles bearing spike protein 

of wild type SARS-CoV-2 as well as South African B.1.351 and UK B.1.1.7 variants.  
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In December 2019, a novel coronavirus strain SARS-CoV-2 began to spread in Wuhan, China1 and 

eventually led to an alarming global pandemic. As of May 2021, the pandemic has reached over 

154 million cases and the resulting complications have caused more than 30 million deaths 

worldwide2. Numerous strategies have been employed to find a reliable COVID-19 therapy 

including vaccine development, drug repurposing, and developing novel small molecule SARS-

CoV-2 inhibitors3–6. The FDA has now issued emergency use authorization for multiple vaccines; 

however, the outbreak is far from under control, especially due to the emergence of several SARS-

CoV-2 variants. As per a recent CDC report, there are 13 variants, 5 of which are classified as 

variants of concern7,8. 

 

At the beginning of the pandemic, the National Center for Advancing Translational Sciences 

(NCATS) started a COVID-19 drug repurposing campaign and created the OpenData Portal to 

make all data generated utilizing SARS-CoV-2 related assays publicly accessible9. The COVID-19 

targeted high-throughput screening (HTS) campaigns at NCATS apply a wide range of 

biochemical and cell-based assays, including the cytopathic effect assay (CPE) of live SARS-CoV-

2 in Vero-E6 cells10. More recently, NCATS included testing of therapeutics against different 

SARS-CoV-2 variants (https://opendata.ncats.nih.gov/variant/assays).  

 

Drug discovery is a time- and resource-intensive process; virtual screening to identify small 

molecule protein modulators offers significant advantages, especially when used to complement 
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traditional HTS methodology11,12. Multiple in silico studies have been reported which employ 

virtual screening of small molecule databases13–18. However, in the majority of published COVID-

19-related virtual screening communications, hit compounds were not experimentally validated in 

SARS-CoV-2 assays or were not counterscreened for cytotoxicity, rendering the results 

inconclusive. 

 

While many efforts are focused on repurposing existing drugs19,20, we performed a hybrid virtual 

screening of two in-house libraries (∼140k compounds) in an effort to identify new chemotypes 

with antiviral activity and limited cytotoxicity, utilizing the NCATS publicly available screening 

data. This hybrid approach integrates quantitative structure-activity relationship (QSAR) and 

ligand-based pharmacophore modeling, followed by experimental testing of predicted hits in the 

CPE and cytotoxicity assays. We executed two iterative rounds of virtual screening; hit 

compounds identified in the first round were experimentally tested and these data were utilized to 

enrich the training dataset for the proposed hybrid approach used in the second round (Fig. 1). 

 

These efforts resulted in a total of 100 compounds (out of 640 virtual screening hits; hit-rate 

~16%) which showed inhibition (half-maximum inhibitory concentration, IC50 ≤ 15 μM; Efficacy 

> 30%) in the CPE assay and minimal cytotoxicity (IC50 > 30 μM), where 68 of them had an 

efficacy greater than 70%. Interestingly, three novel antiviral chemotypes emerged with multiple 

(≥3) active structural analogs in each cluster. Some preliminary structure-activity relationships 

(SARs) were identified within each cluster, which further validates these chemotypes as candidates 

for further medicinal chemistry optimization as novel SARS-CoV-2 inhibitors.  
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In an effort to elucidate the mechanism of action, hit compounds/chemotypes were tested across 

several viral targets. Six novel SARS-CoV-2 CPE inhibitors, identified as allosteric ACE2 binders 

(using microscale thermophoresis), blocked viral entry as assessed by a pseudoparticle entry assay 

(PP assay). In most cases, ACE2 binding showed a direct correlation to activity in the PP assay. 

We further validated these six novel inhibitors in PP assays using both the South African and the 

UK SARS-CoV-2 variants: two compounds showing submicromolar activity against both variants.  

 

To the best of our knowledge, this is the first study that reveals novel inhibitors of multiple SARS-

CoV-2 variants with elucidated mechanism of action. The curated dataset and optimized prediction 

models are publicly available via github (https://github.com/ncats/covid19_pred) as well as 

NCATS Predictor website (https://predictor.ncats.io/).  

 

Results 

Hybrid approach for in silico screening 

Combination of ligand- and structure-based methods into consensus approach has been used earlier 

to discover novel actives against various targets21–23, since it improves the precision and reduces 

false positives24. In this study, we combined QSAR modeling with pharmacophore-based 

screening to identify novel chemotypes active against SARS-CoV-2. We used a consensus of the 

predictions based on the two approaches (Fig. 1) to select compounds for experimental validation. 

 

Model Performance - Stratified Bagging  

The performance of QSAR models based on different combinations of descriptors and stratified 

bagging (SB) approach is provided in Supplementary Table 1. It was measured by different 
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metrics, including operating characteristic area under the curve (ROC AUC). All developed 

models showed ROC AUC values > 0.75. In the 1st round of modeling, the consensus of 

descriptors (RDKit, Morgan and Avalon) provided the best performance with ROC AUC = 0.80 on 

the test set. SB models generated in the 1st round of screening are referred to as SB-1. After 

obtaining the experimental results from the 1st round of virtual screening, we updated our SB 

model (referred to as SB-2). In the 2nd round of modeling, the consensus of descriptors (RDKit, 

Morgan and Avalon) showed improved results with ROC AUC = 0.84 on the test set.  

 

Ligand-based Pharmacophore Modeling 

For the 1st round of ligand-based pharmacophore (LBP) modeling, we used the 48 active 

compounds: clustering based on pharmacophore-based similarity (cluster distance of 0.4, 0.6, 0.7, 

and 0.8), followed by generation of ligand-based hypotheses led to a total of 44 pharmacophore 

hypotheses (merged-features pharmacophore (MFP) and shared-features pharmacophore (SFP)). 

Taking the computational constraints into account, 15 pharmacophore models that hit the majority 

(> 20%) of active versus inactive (Supplementary Table 2) were selected for virtual screening. The 

ligand-based pharmacophore models generated in the first round of screening are referred to as 

LBP-1. For the 2nd round, referred to as LBP-2, we considered 53 actives and followed the same 

protocol as above. This resulted in 55 pharmacophore hypotheses (MFP and SFP). Pharmacophore 

models (20) were then selected for virtual screening. All pharmacophore hypotheses generated in 

this study are presented in the supporting information (Supplementary Table 3). In general, the 

pharmacophoric sites such as hydrogen bond acceptor (HBA), hydrogen bond donor (HBD), 

aromatic ring, hydrophobic sites, and positive ionizable groups were prudently characterized.  
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Experimental Testing of 1st Round in silico Screening Hits 

The 320 compounds selected from the 1st round of in silico screening (see Methods for details) 

were tested in the CPE assay in a 5-point dilution series, with concentrations ranging from 20 µM 

to 124 nM. To exclude compounds with cytotoxic effects, the compounds were counter-screened 

in a cell viability assay. Out of the 320 compounds tested, 46 compounds showed a SARS-CoV-2 

CPE inhibiting activity with a maximum response (MaxResponse) greater than 30% and IC50 

values of 3-15 µM. Of these 46, 42 compounds did not show any cytotoxicity or modest toxicity 

with an efficacy < 25% (Supplementary Table 4). This gives us a positive predicted value (PPV) 

(i.e., the fraction of model predicted positives that are experimentally confirmed) of 13%, which is 

3-fold higher than the PPV calculated from the training set (PPV= 4%). 

 

Experimental Testing of 2nd Round in silico Screening Hits and Validation 

The selected 320 compounds from the 2nd round of in silico screening (see Methods for details) 

were also tested in the CPE assay in a 5-point dilution series, with concentrations ranging from 20 

µM to 124 nM. For the 2nd round testing, out of the 320 compounds, 65 compounds were identified 

with anti-SARS-CoV2-2 activity having a MaxResponse > 30% and IC50 values of 3-15 µM. Of 

these 65 compounds, 58 did not show any cytotoxicity or minimal toxicity ( efficacy < 30%; 

Supplementary Table 5). Moreover, 27 of these 58 compounds exhibited an IC50 ≤ 10 µM in the 

CPE reduction assay. This further improved the PPV value to 18%. 

 

For validation, 69 compounds were ‘cherry-picked’ and retested in the CPE reduction assay in 

duplicate as an 8-point dilution series, with concentrations ranging from 20 µM to 78 nM. 53 of 

the retested compounds were confirmed to have CPE inhibitory activity with an efficacy > 30% 
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and IC50 of 5-25 µM, and five of them exhibited an IC50 ≤ 10 µM with no notable cytotoxicity 

(Supplementary Table 6). The five most potent and efficacious compounds (1-5) from the follow-

up CPE assay are shown in Fig. 2a.  

 

Clustering and Preliminary SAR Analysis 

Hierarchical cluster analysis of the 100 CPE reducing compounds, identified in the two rounds of 

virtual screening, revealed three promising chemotypes (Fig. 2b), where three or more active 

structural analogs were identified (IC50 ≤ 15 μM and efficacy ≥ 70 %) and no notable cytotoxicity 

(IC50 ≤ 30 μM). Importantly, some preliminary structure-activity relationships (SAR) could be 

established for chemotypes where the analogs analyzed (and present in in-house compound 

libraries) were structurally similar enough for direct comparison. The most promising analogs from 

each of the three chemotypes, activity in the CPE assay, as well as in vitro physicochemical 

properties are shown in Fig. 3 and Table 1. 

 

Within chemotype A, 26 analogs were tested from internal compound libraries and upon screening, 

three (compounds 6-8) have IC50 values ranging from 8.9 - 14.1 μM and efficacy ≥ 83% (Fig. 3a). 

Although conclusive SAR trends were limited, the anti-SARS-CoV-2 activity (and cytotoxicity) is 

sensitive to substitutions on the phenyl ring attached to the oxazole and both the position (3- vs 4-) 

and structure of the piperidinyl-amide. 

 

Within chemotype B were 18 in-house structural analogs, eight of which (compounds 9-16) have 

promising IC50 and efficacy values (Fig. 3b). Analogs of this cluster were too structurally very 

diverse to analyze for conclusive SAR trends. With the exception of 10 which suffers from poor 
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solubility, CPE-actives from this series have favorable solubility and permeability. Similar to 

chemotype A, all suffer from short metabolic half-time (T1/2) in rat liver microsomes. 

 

Quinazoline-containing chemotype C provided 10 promising analogs (compounds 2, 4, 5, 17, 18, 

20-23), including three (2, 4, 5) of the most active compounds identified in the study (Table 1). 

Most of the notably active analogs contain variously substituted piperazines at the 2-position of the 

quinazoline core and 2-methyl-benzylamine at the 4-position. However, the open-chain (vs 

piperazine) analog (2) is also quite active, suggesting a 2-position diamine with an ethylene spacer 

is perhaps part of the parent pharmacophore. Methyl- and ethyl- substitutions off the 4-position of 

the benzylamine phenyl ring (18 and 17, respectively) were well tolerated, while 4-fluoro (22) and 

4-phenyl substituents reduced the activity. Similar to chemotypes A and B, this series has 

favorable solubility and permeability but suffers from poor metabolic T1/2. However, it seems the 

metabolic liability can be mitigated via addition of an N-aminoethyl group off the piperazine ring 

(4; T1/2 > 30 min). 

 

Mechanism of Action Studies 

In efforts to elucidate the mechanism of action of virtual screening hits active in the CPE reducing 

assay, compounds were tested for their activity against some key events necessary for viral entry 

and replication. The SARS-CoV-2 main protease (Mpro) represents an attractive target for anti-viral 

drug development because its inhibition prevents the formation of mature functional viral proteins 

and thus, viral replication25. As such, active compounds were screened in the SARS-CoV-2 Mpro 

enzymatic assay, however no activity was observed. 
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Compounds were also tested for their ability to interrupt the binding of the SARS-CoV-2 receptor 

binding domain (RBD) of the spike protein to the host receptor ACE2 using an AlphaLisa 

proximity assay, in combination with a counter-assay, to identify false positive hits. The 

compounds showed activity in both RBD-ACE2 AlphaLisa and in the TruHit counterscreen (see 

Methods for details), rendering to inconclusive results.  

 

Nonetheless, we tested the compounds for their binding to ACE2 using microscale thermophoresis 

(MST) followed by a SARS-CoV-2 pseudoparticle (PP) entry assay, to explore if a molecule 

interacting with the viral receptor could interfere with host cell entry. In parallel, the compounds 

were tested in an ACE2 enzymatic assay. Six compounds were identified as ACE2 binders with an 

equilibrium dissociation constant (Kd) ≤ 20 µM, with no inhibitory or agonistic activity in ACE2 

enzymatic assay (Table 2). 

 

All six compounds were able to inhibit the PP entry into ACE2-overexpressing HEK293 cells, 

where the molecule with the strongest affinity to ACE2 showed the highest activity in PP entry 

inhibition (Table 2). Since these compounds do not bind S protein, we hypothesized their activity 

should be independent of S protein sequence and thus, active against different strains of SARS-

CoV-2. Therefore, we tested them against other strains of SARS-CoV-2. As result, we found that 

compounds inhibited the entry of pseudoparticles bearing S proteins of South African B.1.351 and 

UK B.1.1.7 variants with the same or greater potency compared to the wild type (Fig. 4). 
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Discussion 

A traditional QSAR modeling approach relies on the assumption that the biological activity of 

small molecules is correlated with their physicochemical properties or the so-called structural 

descriptors26, however it does not consider the 3D geometric features of the molecules. This results 

in an incomplete description of ligand-target interactions. Furthermore, QSAR models are also 

restricted to their applicability domain, i.e. the chemical space within which the models are 

originally trained27. To overcome these shortcomings, a hybrid approach was developed which 

combines QSAR models with pharmacophore screening that can retrieve ligands with structurally 

diverse scaffolds.  

 

Utilization of the hybrid approach led to 4-fold improvement of the hit-rate and revealed multiple 

novel scaffolds with activity against SARS-CoV-2. More importantly, 44 compounds 

experimentally confirmed as active in the CPE reduction assay did not show appreciable 

cytotoxicity. 

 

Further analysis of active analogs revealed some preliminary SAR, although trends were limited 

due to significant structural differences within the set of analogs. This supports the hypothesis that 

these compounds are acting on a common target or via a shared mechanism to inhibit viral 

proliferation, thus decreasing the viral cytopathic effect. Overall, the chemotypes identified 

showed good efficacy and potency as screening hits. These preliminary screening results clearly 

warrant further investigation of each chemotype via medicinal chemistry to thoroughly explore and 

establish the SAR, as well as optimize physicochemical properties.  
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In an effort to elucidate the mechanism of action, active compounds were screened against some 

previously established SARS-CoV-2 targets which have been shown to mediate antiviral activity: 

SARS-CoV-2 Mpro and RBD-ACE2 protein-protein interaction. None of the identified hits 

exhibited activity against these targets. 

 

Interestingly, we identified six CPE-active compounds which are ACE2 binders and inhibitors of 

viral entry. We assume these molecules are allosteric binders to ACE2, as they did not inhibit 

ACE2 enzymatic activity, meaning they did not at least interfere with the substrate binding. 

Although these compounds do not interrupt the RDB-ACE2 interaction, they were able to inhibit 

the entry of pseudoparticles resembling wild-type as well as other variants of SARS-CoV-2. These 

compounds might interfere with the conformational change of S protein bound to ACE2 and/or 

influence the endosome environment, such as the pH decrease in the endosomal lumen, which 

triggers the conformational change of S protein. The compounds showed some reduced inhibitory 

activity, compared to SARS-CoV-2 PP, in the counterscreen experiments with PP containing the G 

protein of vesicular stomatitis virus (VSV-G). VSV-G do not utilize ACE2 for host cell binding 

but require low endosomal pH for a conformational change to induce membrane fusion. ACE2-

overexpressing HEK293 cells were used for all PP assays, consequently these compounds could 

bind to ACE2, trap within the endosomes and affect the VSV-G PP entry. Further experimentation 

is required to determine the exact mechanism by which these compounds hinder viral entry.   

 

To accelerate further research on finding of small molecules active against SARS-CoV-2 we 

provided the best developed prediction models and modeling sets via github 
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(https://github.com/ncats/covid19_pred) and through the NCATS Predictor website 

(https://predictor.ncats.io/).  
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Figures and Tables 

 

 

Fig. 1: Flowchart of the virtual screening strategy adopted in this study. 
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b 

 

Fig. 2: a. Five most potent and efficacious compounds identified, along with in vitro/physico-

chemical ADME data. aIC50: half-maximal inhibitory concentration value obtained from the CPE 

assay in 8-point dose response, measured in duplicate. bEfficacy: maximum inhibitory effect 

observed in CPE assay. cT1/2: metabolic half-life measured in rat liver microsome lysates reported 

in minutes, with a minimum detectable half-life of 1 minute. dPAMPA (parallel artificial 

membrane permeation assay) is reported as a metric of the passive permeability of the compounds 

(1x10-6 cm/s). eSolubility – pION µSOL assay for kinetic aqueous solubility determination, pH 7.4. 

b. Three chemotypes (A-C) identified as active in the CPE assay. 
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Fig. 3: Notably active chemotypes (a) A and (b) B which show no notable cytotoxicity (IC50 ≤ 30 

μM). aIC50: half-maximal inhibitory concentration values obtained from the CPE assay in 8-point 

dose response, measured in duplicate. b Values represent data obtained from 5-point dose response, 

measured in duplicate. cEfficacy: maximum inhibitory effect observed in CPE assay. dT1/2: 

metabolic half-life measured in rat liver microsome lysates reported in minutes, minimum 

detectable half-life of 1 minute. ePAMPA (parallel artificial membrane permeation assay) is 

reported as a metric of the passive permeability of the compounds. fSolubility – pION µSOL assay 

for kinetic aqueous solubility determination, pH 7.4.  
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Table 1. Notably active chemotype C which show no notable cytotoxicity (IC50 ≤ 30 μM). aIC50: 

half-maximal inhibitory concentration values obtained from the CPE assay in 8-point dose 

response, measured in duplicate. b Values represent data obtained from 5-point dose response, 

measured in duplicate. cEfficacy: maximum inhibitory effect observed in CPE assay. dT1/2: 

metabolic half-life measured in rat liver microsome lysates reported in minutes, minimum 

detectable half-life of 1 minute. ePAMPA (parallel artificial membrane permeation assay) is 

reported as a metric of the passive permeability of the compounds. fSolubility – pION µSOL assay 

for kinetic aqueous solubility determination, pH 7.4.  
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ID Structure 
PP Assay, 

IC50 (μM)
a
 

CPE Assay, 

IC50 (μM)
b
 

ACE2 binding,  

Kd (μM)
d
 

1 

 

 

 

1.15 5.01 0.43 

2 

 

2.89 6.31 1.83 

5 

 

 

 

4.08 10 16.7 

24 

 

 

 

5.14 5.62
c
 10.6 

25 

 

 

 

5.14 10 6.55 

19 

 

 

 

10.3 11.2
c
 2.24 
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Table 2. Compounds identified as ACE2 binders and inhibitors of viral entry in PP assay. 

aActivity in the SARS-CoV-2 PP assay. bIC50: half maximal inhibitory concentration values 

obtained from the CPE assay in 8-point dose response, measured in duplicate. cValues represent 

data obtained from 5-point dose response, measured in duplicate. dACE2 binding affinity (Kd) 

measured by MST.  
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Fig. 4: Dose-response curves of the six ACE2 binding compounds in PP and cytotoxicity assays. 

a, compound 1; b, compound 2; c, compound 5; d, compound 24; e, compound 25; f, compound 

19. WT – wild type SARS-CoV-2 variant assay; SA – South African B.1.351 variant assay; UK – 

a b 

f e 

c d 
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UK B.1.1.7 variant assay; VSV-G – PP assay containing the G protein of vesicular stomatitis 

virus; Tox – cytotoxicity assay. 
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