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Summary

More than 40% of the germline variants in ClinVar today (May, 2021) are designated as Variants
of Uncertain Significance (VUS). That is, there is insufficient evidence to determine the clinical
impact of these variants, which confounds the clinical management of the individuals who carry
them. These variants remain unclassified in part because the patient-level data needed for
their interpretation is largely siloed, due to its sensitive nature. Federated analysis offers the
potential to overcome this problem by “bringing the code to the data”: analyzing the sensitive
patient-level data computationally within its secure home institution, and providing researchers
with valuable insights from data that would not otherwise be accessible. We tested this principle
with a federated analysis of breast cancer patients and controls from clinical data at RIKEN,
derived from the BioBank Japan repository. We used as exemplars variants in BRCA1 and
BRCAZ2, genes for which variants designated as pathogenic confer significant risk of breast,
ovarian, and other cancers. By sharing analysis software workflows, we were able to analyze
these data within RIKEN’s secure computational framework, without the need to transfer the
data, gathering evidence for the interpretation of several variants. This exercise serves as a
proof of concept, and represents an approach to help realize the core charter of the Global
Alliance for Genomics and Health (GA4GH): to responsibly share genomic data for the benefit
of human health. The workflows are available at Dockstore at
https://dockstore.org/workflows/github.com/BRCAChallenge/federated-analysis/cooccurrence:m
aster, and the source code is available on GitHub at
https://github.com/BRCAChallenge/federated-analysis.

Introduction

One obvious example of how genetic variation can impact human health is the risk of cancer
presented by pathogenic variation in the BRCA7 and BRCAZ2 genes. Pathogenic BRCA1/2
variants greatly increase risk of female breast and ovarian cancer (Kuchenbaecker et al. 2017),
and confer significant risk of pancreatic, prostate and male breast cancer (Castro et al. 2013;
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Vietri et al. 2020; Mersch et al. 2015; Ruddy and Winer 2013). Genetic testing that identifies a
pathogenic variant in these genes enables individuals and their families to better understand
their heritable cancer risk, and to manage that risk through strategies such as increased
screening, cascade testing of family members, and risk-reducing surgery and medication (Pilié
et al. 2019; Tuffaha et al. 2018). However, these risk-reducing strategies are not available to
an individual found to carry a Variant of Uncertain Significance (VUS), a rare variant for which
there is insufficient evidence to assess its clinical significance. While individually rare, these
VUS are collectively abundant. As of May 2021, ClinVar (Landrum et al. 2018), the world’s
leading resource on the clinical significance of genetic variants, reports that 8,592/25,028
(34.3%) of BRCA1/2 variants therein are designated as VUS, while an additional 1,204 (4.8%)
have conflicting interpretations. In other words, roughly 40% of BRCA1/2 unique variants in
ClinVar have no clear clinical interpretation. Meanwhile, there are many more variants that have
been observed in individuals but are not yet in ClinVar: the Genome Aggregation Database
(gnomAD) (Karczewski et al. 2020) includes an additional 35,635 BRCA1/2 variants compiled
from genomic sequencing research cohorts. Patients of non-European ancestry are
significantly more likely to receive a VUS test report from BRCA1/2 testing (Kurian 2010), a
disparity that stems largely from historical biases in genetic studies (Landry et al. 2018; Sirugo,
Williams, and Tishkoff 2019).

The VUS problem persists in large part because VUS are rare variants; no single institution can
readily gather a sufficient set of observations for robust variant classification. Data sharing
would seem to be the natural solution, but faces logistical challenges. Variant interpretation
often requires some amount of case-derived information: clinical observations of the variant in
patients and their families together with their cancer history. However, case-level data is
sensitive and private, and can rarely be shared directly due to regulatory, legal and ethical
safeguards (Harris and Wyndham 2015). Yet sharing data on rare genetic variants is critical for
the advancement of precision medicine, as advocated by organizations including the GA4GH
(Siu et al. 2016), the American College of Molecular Geneticists (ACMG) (ACMG Board Of
Directors 2017) and the Wellcome Trust (Wright et al. 2019). Fortunately, most variant
interpretation does not require the case-level data per se, but rather variant-level summaries of
information derived from those data. The ACMG/AMP Guidelines for variant interpretation
(Richards et al. 2015), which specify forms of evidence for interpreting genetic variants, indicate
use of variant-level summary evidence including population frequencies (BA1, BS1, PM2),
segregation of the variant and the disorder in patient families (PP1, BS4), case-control analysis
(PS4), and observations of the VUS in cis and in trans with known pathogenic variants (PM3
and BP2, depending on the disorder). What is needed is an approach to derive this
variant-level evidence from siloed case-level datasets without the need for direct access.

Federated analysis offers such an approach. Rather than an institution sharing its case-level
data with external collaborators, those collaborators share an analysis workflow with the
institution. The institution runs the workflow on their cohort, generating variant-level data that is
less sensitive and can be shared more openly. This can yield valuable evidence for variant
interpretation without the sensitive data leaving the home institution (Suver et al. 2020).
Container technologies support this approach by bundling the software and all its dependencies
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into a single module for straightforward installation and deployment on a collaborator’s system
(Schulz et al. 2016). These technologies include Docker (Turnbull 2014), Singularity (Kurtzer,
Sochat, and Bauer 2017) and Jupyter (Toomey 2017). Containers and workflows can be shared
on the Dockstore platform (O’Connor et al. 2017) so that multiple institutions can execute
exactly the same software, promoting reproducibility.

We developed analysis workflows to mine tumor pathology, allele frequency, and variant
co-occurrence data for BRCA1 and BRCAZ2 from breast cancer patient cohorts at RIKEN,
derived from BioBank Japan (Momozawa et al. 2018). This analysis allowed the assessment of
new variant interpretation knowledge from a cohort that would not otherwise be accessible. In
addition to generating new knowledge on these genetic variants, this yielded new knowledge on
the genetics of the Japanese population, which is underrepresented in most genetic knowledge
bases.

Design

In principle, one could share access to a protected genomics dataset by transferring that data to
a trusted third party, such as a secure cloud, but a dataset which contains personally-identifiable
information generally cannot or should not be moved from its secure source location. Indeed,
the BIOBANK Japan data is prohibited from anonymous export. Federated analysis leaves the
data securely in place and instead moves the analytic software (which tends to be many orders
of magnitude smaller in size than a research cohort) to the data host institution. We designed
our federated analysis software to be transparent, modular, and reusable. The analysis
software creates multiple reports that capture data quality, tumor pathology, allele frequency,
and variant co-occurrence.

Any researcher analyzing a dataset must first ensure that the data values are interpreted
correctly; this is especially true when the researcher cannot interact with the data locally. The
data quality report addresses that need by providing basic statistics (such as minimum,
maximum, mean, mode, and median) and reporting the number of missing or unexpected data
values. For this report, we expose a JSON configuration file which defines each of the fields of
interest, here as exemplified for the content of the tumor pathology file. The report could be
used to check data quality for any delimited file, with or without a header. This data quality
represents a general solution which can be reused for other data sets.

In addition to this generic, domain-agnostic data quality report, we provide hooks to call a
custom, domain-specific report which can be leveraged to identify data anomalies in a known
domain. In our research, we leveraged this feature to implement a tumor pathology report in
which we calculate the number and proportion of triple-negative breast cancers of all breast
cancers for which ER, PR, and HER2 test results are available. This pathology report reads a
tab-delimited file which contains sample identifiers. Even though these sample identifiers are
anonymized, we did not want to risk exposing any identifier in the results. Asking our
collaborators to review the results before making them available to us is prone to human error
and does not account for more subtle and nefarious ways of exporting privacy-sensitive data.
Accordingly, encoded our pathology report software in Structured Query Language (SQL) which
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is the most prolific language used in data analysis. SQL, as a declarative language, omits
low-level programming details, making it easier to read and interpret. SQL concisely declares
which columns to use and what operations to perform on them, enabling readers to more readily
detect privacy violations. The tumor pathology report takes as input that same tumor pathology
file, and for each pathology feature outputs a summary of the number and proportion of patients
stratified by pathogenic variant status, with an odds ratio, confidence interval, and Fisher’s exact
p-value for the comparison. Additionally, the report includes a comparison of mean age at
diagnosis (and entry) for the different patient groups. This can be extended to measure the
statistics for any stratification of gene and pathology data.

The variant frequency and co-occurrence report was written to report on the variant counts
stratified by patient group (affected vs. control) for estimating allele frequencies; and to report on
variants of uncertain significance (VUS) which co-occur in trans either with known pathogenic
variants in complex heterozygous genotypes, or with themselves as homozygous genotypes.
The program takes as input a VCF file and outputs JSON files with the variant counts and the
co-occurring variant information. While our research focuses on VUS in BRCA1 and BRCA2
genes, the software was written to work with any genes. All the configuration is passed as
command-line options to the program to define such parameters as gene name, whether the
data are phased, and which human genome version to use as genomic coordinates. Moreover,
all the Python libraries required to run this code are included in the Docker container.

Federated computing is being widely adopted, but it does present its own challenges in data
privacy and system security. Docker containers are, to an extent, “black boxes”. In order to
ascertain whether the analysis is truly both secure and privacy-preserving, an auditor would
need to inspect the Dockerfile definition of the container as well as all the software that runs in
the container. We mitigated this risk by writing output to local text files which were examined by
the RIKEN team before being shared externally. Additionally, we published the software as
open source so it may be directly inspected by collaborators. A second, related problem is that
one cannot readily determine whether software might damage or compromise the security of the
system on which it runs. One promising solution to this problem is certification, such as through
the GA4GH Cloud Testbed currently under development. This testbed infrastructure will initially
serve as a platform for testing compliance with GA4GH standards, and will extend to
encompass performance benchmarking. In the future, this platform could potentially also report
activity that suggests a security risk, such as the details of outgoing network or disk traffic; and
publishing these certification results could fit well within the framework of container libraries
such as Dockstore.

Methods

The Dataset: Our analysis revolved around a case-control association studie of individuals of
Japanese ancestry: 7,104 breast cancer patients and 23,731 controls (Momozawa et al. 2018).
These data reside at RIKEN, and cannot be accessed outside of RIKEN. The dataset reports
the variants in coding regions of 11 genes associated with hereditary breast, ovarian, and


https://paperpile.com/c/E4rV6b/D2Oz
https://doi.org/10.1101/2021.06.04.447169

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.04.447169; this version posted June 6, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

pancreatic cancer syndrome, including BRCA1 and BRCAZ2. Additionally, the dataset reports
the tumor pathology of the breast cancer patients, including ER, PR and HER2 status. The
controls within this cohort are individuals who were at least 60 years old when sequenced and
who have neither personal nor family history of cancer.

Variant Interpretation Evidence: We developed Docker containers to collect data for two forms
of evidence (ACMG code/s designated in parenthesis): allele frequencies (BA1, BS1) and
variant co-occurrences (BS2). In addition, we estimated in silico predictions of variant
pathogenicity (BP4, PP3) using the BayesDel method for annotation of predicted missense
substitutions and insertion-deletion changes (Feng 2017; Tian et al. 2019).

Allele Frequencies: By the AMCG/AMP standards, the frequency of a variant in a large, outbred
population can offer three different forms of evidence for variant interpretation. First, when the
variant is observed at a far greater frequency than expected for the disorder in question, this is
such a strong indicator of benign impact (BA17) that the variant can be considered benign
without any further evidence. Second, when the variant’s frequency does not meet the BA1
threshold but is still greater than expected for the disorder, the frequency represents strong
evidence (BS1) that can contribute to a benign interpretation. Third, when the variant is absent
from controls or reference population datasets, its absence represents moderate evidence
(PM2) that can contribute to a pathogenic interpretation (Richards et al. 2015). While gnomAD
is commonly used as source of population frequencies, gnomAD 3.1 contains data from only
2,604 East Asian genomes (Tiao and and Goodrich 2020) while gnomAD 2.1 contains data from
9,977 exomes (Francioli et al. 2018); gnomAD 2.1 contained 76 Japanese exomes, while the
number of Japanese genomes in gnomAD 3.1 is unknown. So a Japanese biobank with tens of
thousands of samples might plausibly contain additional evidence not available through
gnomAD. When considering population frequencies, one must consider the source of the
samples and whether individuals affected by the disorder are likely to be present in the dataset
(Harrison, Biesecker, and Rehm 2019). Accordingly, we evaluated the non-cancer subset of
gnomAD and the control samples from BioBank Japan. Each ClinGen Variant Curation Expert
Panel (VCEP) determines the precise rules for applying the ACMG/AMP standard to the genes
and diseases under their purview, including the population frequency thresholds for BA1 and
BS1 evidence. By the proposed rules of BRCA ClinGen Variant Curation Expert Panel (VCEP),
the threshold for BA1 evidence is an allele frequency of greater than 0.001 while the BS1
frequency threshold is 0.0001 (Parsons, Tudini, and Spurdle 2020; Parsons and Spurdle 2021).

in Silico Prediction: By ACMG/AMP standards, if multiple lines of computational evidence predict
that a variant will impact either protein function or RNA splicing, that observation can contribute
to a pathogenic interpretation (PP3). Conversely, if multiple lines of computation evidence
predict that the variant will have no functional impact, that observation can contribute to a
benign interpretation (BP2). We estimated the probability that the variant would impact protein
function with BayesDel (Feng 2017), a meta-predictor that has been shown to outperform most
others (Tian et al. 2019). By the proposed rules of the BRCA ClinGen VCEP, a BayesDel score
of less than 0.3 predicts a benign interpretation while a BayesDel score of greater than 0.3
predicts a pathogenic interpretation (Parsons, Tudini, and Spurdle 2020; Parsons and Spurdle
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2021).

in trans co-occurrence: In fully penetrant diseases with dominant patterns of inheritance, if one
observes a VUS in trans (on the opposite copy of the gene) with a known pathogenic variant in
the same gene in an individual without the disease phenotype, that observation represents
evidence of a benign impact. For BRCAZ2 (and more recently BRCA1), co-occurrences of two
pathogenic variants in the same gene are associated with Fanconi Anemia, a rare debilitating
disorder characterized by deficient homologous DNA repair activity, bone marrow failure, early
cancer onset and a life expectancy that rarely extends past 40 (Auerbach 2009). Consequently,
when an older individual is observed with a BRCA1 or BRCA2 VUS as either a homozygous
genotype or a compound heterozygous genotype (in trans with a pathogenic variant in the same
gene), that observation suggests a benign interpretation for the VUS. One caveat is that most
clinical sequencing does not report phase; any single co-occurrence of two variants might be in
trans or in cis. However, if a VUS co-occurs with two different pathogenic variants in two
different patients, one can assume that at least one of those co-occurrences is in trans
(Tavtigian et al. 2006). Based on these clinical observations, VUS homozygosity or compound
heterozygosity with a known pathogenic variant in an individual known or inferred to be without
Fanconi Anemia features provides strong evidence against pathogenicity (BS2) (Parsons,
Tudini, and Spurdle 2020; Parsons and Spurdle 2021).

Analysis Approach: We created a Docker container with Python 3.73 code which (a) collects
observational statistics on tumor pathology, (b) gathers variant counts for estimating allele
frequencies and (c) identifies VUS which either co-occur with a known pathogenic variant in the
same gene, or which co-occur with themselves (i.e. homozygous VUS). When reporting
co-occurrences, we also reported the age of the patient, to review data against expectations of
age at presentation of Fanconi Anemia. In order to identify VUS, we checked the classifications
provided by the ClinGen-approved ENIGMA expert panel in BRCA Exchange (Cline et al. 2018),
If the clinical significance was ‘Unknown’, or if the variant did not appear in BRCA Exchange,
then we labeled the variant a VUS. We applied this container to the BioBank Japan samples.
We identified BRCA1 or BRCAZ2 variants which appeared as homozygotes and/or co-occurred
with a known pathogenic variant in the same gene. Sequencing data was not phased, but
details on the co-occurring variant/s were provided to aid inference of whether a VUS was in cis
or in trans.

Results

We describe here an example of how federated analysis can add information of value for variant
interpretation. We analyzed a case-control study of Japanese individuals whose case-level data
resides at RIKEN (Momozawa et al. 2018). Since these data are not accessible to external
researchers, the UC Santa Cruz team developed analysis software, in the form of a Docker
container, and shared it with the RIKEN team. The RIKEN team applied the container to
analyze this cohort in situ, within their secure institutional environment, generating variant-level
summary data that contained no personal information and can be shared more openly. The
QIMR Berghofer team then applied these data to variant interpretation.
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As an initial quality control exercise, we replicated the contents of Supplemental Table 4 from a
previous publication on these data (Momozawa et al. 2018), using the values from the tumor
pathology report. This table contrasts the patients with or without pathogenic variants in terms
of factors including family history of seven types of cancer; estrogen, progesterone and
herceptin receptor status; and age at diagnosis. We were able to replicate this table precisely,
indicating that we were able to process the data accurately. This exercise also demonstrated
that our container can be used to generate scientifically meaningful results.

Subsequently, we applied the Docker container to analyze the complete patient cohort. We
observed 19 BRCA variants that have not yet been interpreted by the ClinGen BRCA1/2 expert
panel. For each VUS, we reported its allele frequency in the controls, and any observations of
the VUS co-occurring with a known pathogenic variant in the same gene (Table 1). We also
annotated variants for single-submitter curations in ClinVar.

Eleven VUS met the standard for stand-alone evidence of benign impact (BA7) on the basis of
the allele frequencies in the BioBank Japan controls; all of these VUS were predicted
bioinformatically to have benign impact (BP4). All eleven VUS will meet the standard of Benign
interpretation on the basis of their frequency evidence from the Japanese cohort. Additionally,
two of these variants (BRCA1 c.4729T>C; BRCAZ2 c.964A>C) were observed to co-occur with
at least two different pathogenic variants in the same gene, evidence sufficient to apply the BS2
criterion. Of these eleven VUS, four have single-submitter classifications in ClinVar as Benign or
Likely Benign, five have conflicting interpretations, and two are designated by ClinVar as VUS.
Based on observations currently in gnomAD (Karczewski et al. 2020), seven of these variants
would have met the BA17 criterion, three would have met the BS17 criterion, and one was absent
(meeting the PM2 criterion). For each of the variants present in gnomAD, East Asian was the
continental population with the greatest allele frequency at the 95% confidence level (popmax)
(Lek et al. 2016), a fact that itself adds confidence to the BioBank Japan observations. So while
seven of the variants could have been interpreted as benign on the basis of data in gnomAD,
the federated analysis supported the interpretation of four additional variants. This greater
sensitivity in the BioBank Japan results reflects the greater cohort size: while gnomAD contains
2,604 East Asian genomes and 9,977 East Asian exomes, the BioBank Japan control group
contains 23,731 Japanese individuals.

Five VUS showed strong evidence of benign impact (BS7) on the basis of their BioBank Japan
allele frequencies, and evidence predictive of benign impact according to BayesDel (BP4).
These five VUS meet the standard of Likely Benign interpretation on the basis of their frequency
and bioinformatic evidence combined. Additionally, two of these VUS had a single
co-occurrence with a pathogenic variant in control individuals; while one should not put too
much weight on any single homozygous observation, together with the BS7 and BP4 evidence,
the data present a consistent picture of benign interpretation supported by multiple lines of
evidence. One of these five variants is classified in ClinVar as Likely Benign, while the other
four are classified as VUS. Four of these VUS would reach the BS7 evidence standard on the
basis of their gnomAD population frequencies while a fifth is absent from gnomAD. So the
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BioBank Japan analysis supports reclassifying five variants, only four of which could be
reclassified on the basis of data in gnomAD.

Finally, three additional variants were each observed in a single heterozygous co-occurrence,
and have BayesDel scores predictive of benign impact (BP4). With one co-occurrence
observation apiece, we cannot predict whether the co-occurrence is in trans or in cis, so these
observations are not themselves sufficient for evidence of benign impact. However, these
co-occurrences could contribute to benign evidence when and if the same VUS are observed in
co-occur with other pathogenic variant(s) in another cohort. These VUS are rare variants
absent from gnomAD, and have either conflicting or VUS interpretations in ClinVar.

Discussion

In summary, with this demonstration of federated analysis, we analyzed a protected cohort that
we would not have been able to access directly, and gathered knowledge on Japanese genetics
to further the interpretation of BRCA1/2 variants. Of 19 variants currently tagged as VUS by the
ClinGen BRCA expert panel, 12 were VUS or conflicting in ClinVar. The suggested
interpretations based on bioinformatic and frequency analysis assign a Benign or Likely Benign
classification for 16 variants, and highlight the value of extending data capture to a
subpopulation not yet well represented in gnomAD. We also show feasibility to capture relevant
information on variant co-occurrence and age at presentation, results which aligned with the
interpretations based on bioinformatics and frequency; these analyses would not be possible in
gnomAD, which conveys neither in trans variant co-occurrences nor patient age. Further, by
developing a tumour pathology report, we provide proof of principle that federated analysis can
be designed to capture other clinical features relevant for variant interpretation. These additional
data types are not available or applicable to the gnomAD resource, and are generally provided
only in summary level data presentations from published cohorts.

In principle, the gnomAD resource could grow with time to comprehensively represent all global
populations. In practice, gnomAD mostly imports data from cohorts that were sequenced at the
Broad, due to the high cost of reprocessing data that was sequenced elsewhere (Rehm 2020).
Even if additional data could be shared directly with the gnomAD project, integrating those data
into gnomAD might not be viable given the reprocessing cost. Consequently, there is currently
valuable information in international sequencing projects that are not likely to be integrated into
gnomAD, but could in principle be leveraged today for variant interpretation. This is illustrated
by the number of Japanese samples analyzed in this study (7,104 cases plus 23,731 controls)
versus the size of gnomAD’s East Asian cohort (2,604 genomes plus 9,977 exomes). For
capturing the genetic diversity of global populations that are currently underrepresented in
genetic knowledgebases, collecting evidence directly from international sources is arguably
more expedient than waiting for those populations to be characterized in sequencing studies at
an American research institution. Where traditional data sharing is blocked by barriers including
laws that prohibit exporting genomic sequences, federated analysis can advance data sharing.
Additionally, federated analysis allows greater control in the data collection; for example the
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ability to filter by participant age and phenotype, used here to infer absence of debilitating early
onset disease.

One might be surprised that an analysis of roughly 30,000 Japanese individuals revealed only
19 VUS. This is explained by the fact that these samples were analyzed by the RIKEN and
ENIGMA teams in previous studies, and most variants observed in those studies were
interpreted (Momozawa et al. 2018, 2020). Previously, these variant interpretations were
informed by case-control odds ratios and a previous, more-stringent frequency-based
classification criteria (ENIGMA Consortium 2017). This federated analysis allowed us to revisit
these data to apply updated frequency-based classification criteria, and to collect additional
forms of variant co-occurrence data as an additional form of evidence.

The main limitation of our approach is that it requires getting data into the particular format that
our software recognizes, namely a TSV file and a VCF file. In other words, the software is not
agnostic of the file format. Moving forward, we will be able to generalize this approach by
leveraging the data standards under development by the GA4GH, which will allow methods to
compute over generalized data representation models rather than restricting their input to
specific file formats. In particular, the standards of the GA4GH Cloud Workstream are already
making it easier to leverage software methods across many different computing platforms.
Further development will further facilitate the streamlined execution of containerized workflows,
the representation of phenotypic data, and the sharing of genetic knowledge.
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Tables

Gene BRCA2 BRCA2 BRCA2 BRCA1 BRCA2 BRCA2 BRCA2
Variant (cDNA HGVS) c¢.6325G>A ¢.7052C>G c.943T>A c.4729T>C  c.4365A>G  ¢.6131G>T  c.964A>C

Variant (Protein HGVS) p.A2351G p.A2351G p.C315S p.S1577P p.A2351G p.G2044V p.K322Q
ClinVar Classification

(May 1, 2021) B/LB B/LB B/LB B/LB LB Conflict Conflict
gnomAD 2.1.1 Exome
Frequency (EAS)  2.55E-03 1.87E-03 5.30E-03 2.65E-04 Absent 4.52E-04 4.31E-04
gnomAD 3.1.1 Genome
Frequency (EAS)  2.39E-03 2.02E-03 5.03E-03 2.02E-04 2.01E-03 4.52E-03 2.41E-03
ACMG/AMP Code from
gnomAD BA1 BA1 BA1 BS1 BS1 BA1 BA1
Biobank Japan
Frequency (Controls)  1.46E-02 3.16E-03 1.56E-03 1.14E-02 4.64E-04 3.29E-02 2.31E-03
ACMG/AMP Freq from
BioBank Japan BA1 BA1 BA1l BA1 BS1 BA1 BA1
BayesDel Score -0.61 -0.24 -0.41 0.03 -0.52 -0.16 -0.08
Bioinformatic Code BP4 BP4 BP4 BP4 BP4 BP4 BP4
ACMG/AMP Class based
on Frequency and
Bioinformatics B B B B LB B B
Gene BRCA1 BRCA1 BRCA2 BRCA2 BRCA2 BRCA2

Variant (¢cDNA HGVS)  ¢.154C>T c.811G>A ¢.5969A>C  ¢.3395A>G  ¢.9733T>G = ¢.5660C>T

Variant (Protein HGVS) p.L52F pV271M p.D1990A p.K1132R p.S3245A  p.T1887M
ClinVar Classification
(May 1,2021)  Conflict Conflict Conflict VUS VUs VUs
gnomAD 2.1.1 Exome
Frequency (EAS)  1.36E-03 1.32E-03 0 Absent Absent 1.13E-04
gnomAD 3.1.1 Genome
Frequency (EAS) 4.03E-04 1.21E-03 4.03E-04 0.000201 Absent Absent
ACMG/AMP Code from
gnomAD BA1 BA1 BS1 BS1 PM2 BS1
Biobank Japan
Frequency (Controls)  6.78E-03 6.28E-03 2.61E-03 3.75E-03 1.01E-03 1.69E-04
ACMG/AMP Freq from
BioBank Japan BA1 BA1 BA1l BA1 BA1 BS1
BayesDel Score 0.14 0.06 -0.08 -0.2 -0.47 -0.29
Bioinformatic Code BP4 BP4 BP4 BP4 BP4 BP4
ACMG/AMP Class based

on Frequency and
Bioinformatics B B B B B LB
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Gene BRCA2 BRCA2 BRCA2 BRCA2 BRCA2 BRCA2
Variant (cDNA HGVS) c.2672T>A c.587G>T ¢.8040C>G c.358G>A  ¢.3983G>A  ¢c.6637T>C

Variant (Protein HGVS)  p.V891D p.S196! p.D2680E  pV120M  p.S1328N  p.S2213P
ClinVar Classification
(May 1, 2021) VUS VUS VUS Absent Conflict Conflict
gnomAD 2.1.1 Exome
Frequency (EAS) Absent 1.78E-04 Absent Absent 0 Absent
gnomAD 3.1.1 Genome
Frequency (EAS) Absent Absent 0.000202 Absent Absent Absent
ACMG/AMP Code from
gnomAD PM2 BS1 BS1 PM2 PM2 PM2
Biobank Japan
Frequency (Controls)  9.69E-04 4.64E-04 9.69E-04 0 0 0
ACMG/AMP Freq from
BioBank Japan BS1 BS1 BS1 PM2 PM2 PM2
BayesDel Score -0.05 -0.22 -0.05 -0.48 -0.57 -0.06
Bioinformatic Code BP4 BP4 BP4 BP4 BP4 BP4

ACMG/AMP Class based
on Frequency and
Bioinformatics LB LB LB VUS VUS VUS

Table 1: Summary of the variant data. The HGVS terms reflect the NM_007294.3 transcript for
BRCA1 and NM_000059.3 for BRCAZ2. Variants are designated as B (Benign), B/LB (Benign or
Likely Benign), LB (Likely Benign), Conflict (Conflicting Interpretations), VUS (Uncertain
Significance) or Absent (Not Found). All variants scored against the BayesDel in silico predictor
with a score of less than 0.3, within the BP4 scoring range. Additionally, two variants were
observed to co-occur with two more more pathogenic variants in the same gene, indicating that
at least one of these co-occurrences must be in trans, which meets the standards of BS2
evidence. In BRCA1, we observed co-occurrences of ¢.4729T>C with ¢.1518del and ¢c.188T>A,
and in BRCAZ2, we observed co-occurrences of c.964A>C with c.6952C>T, ¢.5645C>A and
€.6244G>T. While these VUS had sufficient evidence for classification on allele frequencies
only, these co-occurrences add further support to benign classification. We further observed
co-occurrences of BRCAZ2 ¢.5660C>T with ¢.1261C>T and c.4365A>G with ¢.7480C>T,
evidence which could support a benign classification if these variants are observed in
co-occurrences with different pathogenic variants in other patient cohorts.


https://doi.org/10.1101/2021.06.04.447169

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.04.447169; this version posted June 6, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

References

ACMG Board Of Directors. 2017. “Laboratory and Clinical Genomic Data Sharing Is Crucial to
Improving Genetic Health Care: A Position Statement of the American College of Medical
Genetics and Genomics.” Genetics in Medicine: Official Journal of the American College of
Medical Genetics 19 (7). https://doi.org/10.1038/gim.2016.196.

Auerbach, Arleen D. 2009. “Fanconi Anemia and Its Diagnosis.” Mutation Research 668 (1-2):
4-10.

Castro, Elena, Chee Goh, David Olmos, Ed Saunders, Daniel Leongamornlert, Malgorzata
Tymrakiewicz, Nadiya Mahmud, et al. 2013. “Germline BRCA Mutations Are Associated
with Higher Risk of Nodal Involvement, Distant Metastasis, and Poor Survival Outcomes in
Prostate Cancer.” Journal of Clinical Oncology: Official Journal of the American Society of
Clinical Oncology 31 (14): 1748-57.

Cline, Melissa S., Rachel G. Liao, Michael T. Parsons, Benedict Paten, Faisal Alquaddoomi,
Antonis Antoniou, Samantha Baxter, et al. 2018. “BRCA Challenge: BRCA Exchange as a
Global Resource for Variants in BRCA1 and BRCA2.” PLoS Genetics 14 (12): e1007752.

ENIGMA Consortium. 2017. “ENIGMA BRCA1/2 Gene Variant Classification Criteria.” ENIGMA
Consortium. June 29, 2017.
https://enigmaconsortium.org/wp-content/uploads/2020/08/ENIGMA_Rules 2017-06-29-v2
_5 1.pdf.

Feng, Bing-dian. 2017. “PERCH: A Unified Framework for Disease Gene Perioritization.” Human
Mutation 38 (3): 243-51.

Francioli, Laurent, Grace Tiao, Konrad Karczewski, Matthew Solomonson, and Nick Watts.
2018. “gnomAD v2.1.” gnomAD Blog (blog). October 17, 2018.
https://gnomad.broadinstitute.org/blog/2018-10-gnomad-v2-1/.

Harrison, Steven M., Leslie G. Biesecker, and Heidi L. Rehm. 2019. “Overview of Specifications
to the ACMG/AMP Variant Interpretation Guidelines.” Current Protocols in Human Genetics
/ Editorial Board, Jonathan L. Haines ... [et A.] 103 (1): €93.

Harris, T. L., and J. M. Wyndham. 2015. “Data Rights and Responsibilities: A Human Rights
Perspective on Data Sharing.” Journal of Empirical Research on Human Research Ethics:
JERHRE 10 (3). https://doi.org/10.1177/1556264615591558.

Karczewski, Konrad J., Laurent C. Francioli, Grace Tiao, Beryl B. Cummings, Jessica Alf6ldi,
Qingbo Wang, Ryan L. Collins, et al. 2020. “The Mutational Constraint Spectrum Quantified
from Variation in 141,456 Humans.” Nature 581 (7809): 434—43.

Kuchenbaecker, Karoline B., John L. Hopper, Daniel R. Barnes, Kelly-Anne Phillips, Thea M.
Mooij, Marie-José Roos-Blom, Sarah Jervis, et al. 2017. “Risks of Breast, Ovarian, and
Contralateral Breast Cancer for BRCA1 and BRCA2 Mutation Carriers.” JAMA: The Journal
of the American Medical Association 317 (23): 2402—-16.

Kurian, Allison W. 2010. “BRCA1 and BRCA2 Mutations across Race and Ethnicity: Distribution
and Clinical Implications.” Current Opinion in Obstetrics & Gynecology 22 (1): 72—78.

Kurtzer, Gregory M., Vanessa Sochat, and Michael W. Bauer. 2017. “Singularity: Scientific
Containers for Mobility of Compute.” PIoS One 12 (5): e0177459.

Landrum, Melissa J., Jennifer M. Lee, Mark Benson, Garth R. Brown, Chen Chao, Shanmuga
Chitipiralla, Baoshan Gu, et al. 2018. “ClinVar: Improving Access to Variant Interpretations
and Supporting Evidence.” Nucleic Acids Research 46 (D1): D1062—-67.

Landry, Latrice G., Nadya Ali, David R. Williams, Heidi L. Rehm, and Vence L. Bonham. 2018.
“Lack Of Diversity In Genomic Databases Is A Barrier To Translating Precision Medicine
Research Into Practice.” Health Affairs 37 (5): 780-85.

Lek, Monkol, Konrad J. Karczewski, Eric V. Minikel, Kaitlin E. Samocha, Eric Banks, Timothy
Fennell, Anne H. O’Donnell-Luria, et al. 2016. “Analysis of Protein-Coding Genetic Variation
in 60,706 Humans.” Nature 536 (7616): 285-91.


http://paperpile.com/b/E4rV6b/Y7mc
http://paperpile.com/b/E4rV6b/Y7mc
http://paperpile.com/b/E4rV6b/Y7mc
http://paperpile.com/b/E4rV6b/Y7mc
http://dx.doi.org/10.1038/gim.2016.196
http://paperpile.com/b/E4rV6b/Y7mc
http://paperpile.com/b/E4rV6b/bXVR
http://paperpile.com/b/E4rV6b/bXVR
http://paperpile.com/b/E4rV6b/giNc
http://paperpile.com/b/E4rV6b/giNc
http://paperpile.com/b/E4rV6b/giNc
http://paperpile.com/b/E4rV6b/giNc
http://paperpile.com/b/E4rV6b/giNc
http://paperpile.com/b/E4rV6b/Iv4V
http://paperpile.com/b/E4rV6b/Iv4V
http://paperpile.com/b/E4rV6b/Iv4V
http://paperpile.com/b/E4rV6b/EPht
http://paperpile.com/b/E4rV6b/EPht
https://enigmaconsortium.org/wp-content/uploads/2020/08/ENIGMA_Rules_2017-06-29-v2_5_1.pdf
https://enigmaconsortium.org/wp-content/uploads/2020/08/ENIGMA_Rules_2017-06-29-v2_5_1.pdf
http://paperpile.com/b/E4rV6b/EPht
http://paperpile.com/b/E4rV6b/KNXl
http://paperpile.com/b/E4rV6b/KNXl
http://paperpile.com/b/E4rV6b/ohjU
http://paperpile.com/b/E4rV6b/ohjU
https://gnomad.broadinstitute.org/blog/2018-10-gnomad-v2-1/
http://paperpile.com/b/E4rV6b/ohjU
http://paperpile.com/b/E4rV6b/BlhZ
http://paperpile.com/b/E4rV6b/BlhZ
http://paperpile.com/b/E4rV6b/BlhZ
http://paperpile.com/b/E4rV6b/oCrN
http://paperpile.com/b/E4rV6b/oCrN
http://paperpile.com/b/E4rV6b/oCrN
http://dx.doi.org/10.1177/1556264615591558
http://paperpile.com/b/E4rV6b/oCrN
http://paperpile.com/b/E4rV6b/K8Ka
http://paperpile.com/b/E4rV6b/K8Ka
http://paperpile.com/b/E4rV6b/K8Ka
http://paperpile.com/b/E4rV6b/tCn1
http://paperpile.com/b/E4rV6b/tCn1
http://paperpile.com/b/E4rV6b/tCn1
http://paperpile.com/b/E4rV6b/tCn1
http://paperpile.com/b/E4rV6b/iibv
http://paperpile.com/b/E4rV6b/iibv
http://paperpile.com/b/E4rV6b/rWN4
http://paperpile.com/b/E4rV6b/rWN4
http://paperpile.com/b/E4rV6b/8jJn
http://paperpile.com/b/E4rV6b/8jJn
http://paperpile.com/b/E4rV6b/8jJn
http://paperpile.com/b/E4rV6b/7Jm6
http://paperpile.com/b/E4rV6b/7Jm6
http://paperpile.com/b/E4rV6b/7Jm6
http://paperpile.com/b/E4rV6b/38X6
http://paperpile.com/b/E4rV6b/38X6
http://paperpile.com/b/E4rV6b/38X6
https://doi.org/10.1101/2021.06.04.447169

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.04.447169; this version posted June 6, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Mersch, Jacqueline, Michelle A. Jackson, Minjeong Park, Denise Nebgen, Susan K. Peterson,
Claire Singletary, Banu K. Arun, and Jennifer K. Litton. 2015. “Cancers Associated with
BRCA1 and BRCA2 Mutations Other than Breast and Ovarian.” Cancer 121 (2): 269-75.

Momozawa, Yukihide, Yusuke lwasaki, Makoto Hirata, Xiaoxi Liu, Yoichiro Kamatani, Atsushi
Takahashi, Kokichi Sugano, et al. 2020. “Germline Pathogenic Variants in 7636 Japanese
Patients With Prostate Cancer and 12 366 Controls.” JNCI: Journal of the National Cancer
Institute. https://doi.org/10.1093/jnci/djz124.

Momozawa, Yukihide, Yusuke lwasaki, Michael T. Parsons, Yoichiro Kamatani, Atsushi
Takahashi, Chieko Tamura, Toyomasa Katagiri, et al. 2018. “Germline Pathogenic Variants
of 11 Breast Cancer Genes in 7,051 Japanese Patients and 11,241 Controls.” Nature
Communications 9 (1): 4083.

O’Connor, Brian D., Denis Yuen, Vincent Chung, Andrew G. Duncan, Xiang Kun Liu, Janice
Patricia, Benedict Paten, Lincoln Stein, and Vincent Ferretti. 2017. “The Dockstore:
Enabling Modular, Community-Focused Sharing of Docker-Based Genomics Tools and
Workflows.” F1000Research 6. https://doi.org/10.12688/f1000research.10137.1.

Parsons, Michael, and Amanda Spurdle. 2021. “Summary of the Draft Rules of the ENIGMA
BRCA1 and BRCA2 VCEP,” March 12, 2021.

Parsons, Michael, Emma Tudini, and Amanda Spurdle. 2020. “ENIGMA BRCA1 and BRCA2
Variant Curation Expert Panel.” December 1, 2020.
https://clinicalgenome.org/affiliation/50087/.

Pilié, Patrick G., Chad Tang, Gordon B. Mills, and Timothy A. Yap. 2019. “State-of-the-Art
Strategies for Targeting the DNA Damage Response in Cancer.” Nature Reviews. Clinical
Oncology 16 (2): 81-104.

Rehm, Heidi. 2020. “Personal Communication on gnomAD Data Integration,” 2020.

Richards, Sue, Nazneen Aziz, Sherri Bale, David Bick, Soma Das, Julie Gastier-Foster, Wayne
W. Grody, et al. 2015. “Standards and Guidelines for the Interpretation of Sequence
Variants: A Joint Consensus Recommendation of the American College of Medical
Genetics and Genomics and the Association for Molecular Pathology.” Genetics in
Medicine: Official Journal of the American College of Medical Genetics 17 (5): 405-24.

Ruddy, K. J., and E. P. Winer. 2013. “Male Breast Cancer: Risk Factors, Biology, Diagnosis,
Treatment, and Survivorship.” Annals of Oncology: Official Journal of the European Society
for Medical Oncology / ESMO 24 (6): 1434—43.

Schulz, Wade L., Thomas J. S. Durant, Alexa J. Siddon, and Richard Torres. 2016. “Use of
Application Containers and Workflows for Genomic Data Analysis.” Journal of Pathology
Informatics 7. https://doi.org/10.4103/2153-3539.197197.

Sirugo, Giorgio, Scott M. Williams, and Sarah A. Tishkoff. 2019. “The Missing Diversity in
Human Genetic Studies.” Cell 177 (4): 1080.

Siu, L. L., M. Lawler, D. Haussler, B. M. Knoppers, J. Lewin, D. J. Vis, R. G. Liao, et al. 2016.
“Facilitating a Culture of Responsible and Effective Sharing of Cancer Genome Data.”
Nature Medicine 22 (5). https://doi.org/10.1038/nm.4089.

Suver, C., A. Thorogood, M. Doerr, J. Wilbanks, and B. Knoppers. 2020. “Bringing Code to
Data: Do Not Forget Governance.” Journal of Medical Internet Research 22 (7).
https://doi.org/10.2196/18087.

Tavtigian, S. V., A. M. Deffenbaugh, L. Yin, T. Judkins, T. Scholl, P. B. Samollow, D. de Silva, A.
Zharkikh, and A. Thomas. 2006. “Comprehensive Statistical Study of 452 BRCA1 Missense
Substitutions with Classification of Eight Recurrent Substitutions as Neutral.” Journal of
Medical Genetics 43 (4): 295-305.

Tian, Yuan, Tina Pesaran, Adam Chamberlin, R. Bryn Fenwick, Shuwei Li, Chia-Ling Gau,
Elizabeth C. Chao, Hsiao-Mei Lu, Mary Helen Black, and Dajun Qian. 2019. “REVEL and
BayesDel Outperform Other in Silico Meta-Predictors for Clinical Variant Classification.”
Scientific Reports 9 (1): 12752.


http://paperpile.com/b/E4rV6b/TQmf
http://paperpile.com/b/E4rV6b/TQmf
http://paperpile.com/b/E4rV6b/TQmf
http://paperpile.com/b/E4rV6b/Xcfq
http://paperpile.com/b/E4rV6b/Xcfq
http://paperpile.com/b/E4rV6b/Xcfq
http://paperpile.com/b/E4rV6b/Xcfq
http://dx.doi.org/10.1093/jnci/djz124
http://paperpile.com/b/E4rV6b/Xcfq
http://paperpile.com/b/E4rV6b/D2Oz
http://paperpile.com/b/E4rV6b/D2Oz
http://paperpile.com/b/E4rV6b/D2Oz
http://paperpile.com/b/E4rV6b/D2Oz
http://paperpile.com/b/E4rV6b/00bx
http://paperpile.com/b/E4rV6b/00bx
http://paperpile.com/b/E4rV6b/00bx
http://paperpile.com/b/E4rV6b/00bx
http://dx.doi.org/10.12688/f1000research.10137.1
http://paperpile.com/b/E4rV6b/00bx
http://paperpile.com/b/E4rV6b/fW5l
http://paperpile.com/b/E4rV6b/fW5l
http://paperpile.com/b/E4rV6b/5lO1
http://paperpile.com/b/E4rV6b/5lO1
https://clinicalgenome.org/affiliation/50087/
http://paperpile.com/b/E4rV6b/5lO1
http://paperpile.com/b/E4rV6b/0hpv
http://paperpile.com/b/E4rV6b/0hpv
http://paperpile.com/b/E4rV6b/0hpv
http://paperpile.com/b/E4rV6b/76Uo
http://paperpile.com/b/E4rV6b/rTCk
http://paperpile.com/b/E4rV6b/rTCk
http://paperpile.com/b/E4rV6b/rTCk
http://paperpile.com/b/E4rV6b/rTCk
http://paperpile.com/b/E4rV6b/rTCk
http://paperpile.com/b/E4rV6b/4vRQ
http://paperpile.com/b/E4rV6b/4vRQ
http://paperpile.com/b/E4rV6b/4vRQ
http://paperpile.com/b/E4rV6b/AqAV
http://paperpile.com/b/E4rV6b/AqAV
http://paperpile.com/b/E4rV6b/AqAV
http://dx.doi.org/10.4103/2153-3539.197197
http://paperpile.com/b/E4rV6b/AqAV
http://paperpile.com/b/E4rV6b/rRtR
http://paperpile.com/b/E4rV6b/rRtR
http://paperpile.com/b/E4rV6b/AT1g
http://paperpile.com/b/E4rV6b/AT1g
http://paperpile.com/b/E4rV6b/AT1g
http://dx.doi.org/10.1038/nm.4089
http://paperpile.com/b/E4rV6b/AT1g
http://paperpile.com/b/E4rV6b/ElQx
http://paperpile.com/b/E4rV6b/ElQx
http://paperpile.com/b/E4rV6b/ElQx
http://dx.doi.org/10.2196/18087
http://paperpile.com/b/E4rV6b/ElQx
http://paperpile.com/b/E4rV6b/RrIS
http://paperpile.com/b/E4rV6b/RrIS
http://paperpile.com/b/E4rV6b/RrIS
http://paperpile.com/b/E4rV6b/RrIS
http://paperpile.com/b/E4rV6b/dDmz
http://paperpile.com/b/E4rV6b/dDmz
http://paperpile.com/b/E4rV6b/dDmz
http://paperpile.com/b/E4rV6b/dDmz
https://doi.org/10.1101/2021.06.04.447169

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.04.447169; this version posted June 6, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Tiao, Grace, and Julia and Goodrich. 2020. “gnomAD v3.1 New Content, Methods, Annotations,
and Data Availability.” gnomAD Blog (blog). October 29, 2020.
https://gnomad.broadinstitute.org/blog/2020-10-gnomad-v3-1-new-content-methods-annotat
ions-and-data-availability/.

Toomey, Dan. 2017. Jupyter for Data Science: Exploratory Analysis, Statistical Modeling,
Machine Learning, and Data Visualization with Jupyter. Packt Publishing Ltd.

Tuffaha, Haitham W., Andrew Mitchell, Robyn L. Ward, Luke Connelly, James R. G. Butler,
Sarah Norris, and Paul A. Scuffham. 2018. “Cost-Effectiveness Analysis of Germ-Line
BRCA Testing in Women with Breast Cancer and Cascade Testing in Family Members of
Mutation Carriers.” Genetics in Medicine: Official Journal of the American College of
Medical Genetics 20 (9): 985-94.

Turnbull, James. 2014. The Docker Book: Containerization Is the New Virtualization. James
Turnbull.

Vietri, Maria Teresa, Gemma Caliendo, Giovanna D’Elia, Marianna Resse, Amelia
Casamassimi, Pellegrino Biagio Minucci, Michele Cioffi, and Anna Maria Molinari. 2020.
“BRCA and PALB2 Mutations in a Cohort of Male Breast Cancer with One Bilateral Case.”
European Journal of Medical Genetics 63 (6): 103883.

Wright, C. F., J. S. Ware, A. M. Lucassen, A. Hall, A. Middleton, N. Rahman, S. Ellard, and H. V.
Firth. 2019. “Genomic Variant Sharing: A Position Statement.” Wellcome Open Research 4
(February). https://doi.org/10.12688/wellcomeopenres.15090.2.


http://paperpile.com/b/E4rV6b/ftwP
http://paperpile.com/b/E4rV6b/ftwP
https://gnomad.broadinstitute.org/blog/2020-10-gnomad-v3-1-new-content-methods-annotations-and-data-availability/
https://gnomad.broadinstitute.org/blog/2020-10-gnomad-v3-1-new-content-methods-annotations-and-data-availability/
http://paperpile.com/b/E4rV6b/ftwP
http://paperpile.com/b/E4rV6b/Z8XY
http://paperpile.com/b/E4rV6b/Z8XY
http://paperpile.com/b/E4rV6b/opXE
http://paperpile.com/b/E4rV6b/opXE
http://paperpile.com/b/E4rV6b/opXE
http://paperpile.com/b/E4rV6b/opXE
http://paperpile.com/b/E4rV6b/opXE
http://paperpile.com/b/E4rV6b/sbcV
http://paperpile.com/b/E4rV6b/sbcV
http://paperpile.com/b/E4rV6b/Syz0
http://paperpile.com/b/E4rV6b/Syz0
http://paperpile.com/b/E4rV6b/Syz0
http://paperpile.com/b/E4rV6b/Syz0
http://paperpile.com/b/E4rV6b/ouUv
http://paperpile.com/b/E4rV6b/ouUv
http://paperpile.com/b/E4rV6b/ouUv
http://dx.doi.org/10.12688/wellcomeopenres.15090.2
http://paperpile.com/b/E4rV6b/ouUv
https://doi.org/10.1101/2021.06.04.447169

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.04.447169; this version posted June 6, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Supplemental Material

There are 3 independent reports generated from our software solution: data quality report,
tumor pathology report, and variant co-occurrence and allele frequency report. This section
defines the detailed configuration for and output of each of these reports.

Data quality report
Here is an example of the JSON configuration file for the data quality report:

{
"qualityReport": "data/data-quality-report.txt",
"pathologyReport": "data/tumor-pathology-report.txt",
"fileName": "data/shuffle.tsv", "fileHeader": "True",
"fieldDelimiter": "\t", "printConfigFileInfo": "False",
"printBadValues": "False", "suppressAllOutput": "False",
"RScriptPath": "/usr/bin/Rscript”,
"fieldFilters": [
{"fieldName": "ER", "fieldType": "categorical", "
fieldvValues": ["Positive", "Negative", "NA"], "printFieldCount": "True"},
{"fieldName": "PgR", "fieldType": "categorical",
"fieldValues": ["Positive", "Negative", "NA"], "printFieldCount": "True"},
{"fieldName": "HER2", "fieldType": "categorical",
"fieldvalues": ["O", "1+", "2+", "3+4", "NA"], "printFieldCount": "True"},
{"fieldName": "Age at onset", "fieldType": "numerical",
"fieldvValues": [], "printFieldCount": "True", "printStats": "True"},
{"fieldName": "Ovarian cancer history", "fieldType": "numerical",
"fieldValues": [], "printFieldCount": "True", "printStats": "True"},
{"fieldName": "Family history / breast cancer", "fieldType": "numerical",
"fieldValues": [0, 1], "printFieldCount": "True", "printStats": "True"},
{"fieldName": "Family history / pancreatic cancer", "fieldType": "numerical",
"fieldvalues": [0, 1], "printFieldCount": "True", "printStats": "True"},
{"fieldName": "Family history / ovarian cancer", "fieldType": "numerical",
"fieldvalues": [0, 1], "printFieldCount": "True", "printStats": "True"},
{"fieldName": "Family history / stomach cancer", "fieldType": "numerical",
"fieldvalues": [0, 1], "printFieldCount": "True", "printStats": "True"},
{"fieldName": "Family history / liver cancer", "fieldType": "numerical",
"fieldvValues": [0, 1], "printFieldCount": "True", "printStats": "True"},
{"fieldName": "Family history / bone tumor", "fieldType": "numerical",
"fieldvalues": [0, 1], "printFieldCount": "True", "printStats": "True"},
{"fieldName": "Family history / bladder cancer", "fieldType": "numerical”,
"fieldValues": [], "printFieldCount": "True", "printStats": "True"},
{"fieldName": "TNM classification / N", "fieldType": "categorical",
"fieldvalues": ["O", "1", "2", "3", "NA"], "printFieldCount": "True",
"printStats": "True"},
{"fieldName": "TNM classification / M", "fieldType": "categorical",
"fieldValues": ["0", "1", "NA"], "printFieldCount": "True", "printStats": "True"},
{"fieldName": "Tissue type (3 groups)", "fieldType": "free-form",
"fieldValues": ["ascii", "utf-8"], "printFieldCount": "True"},
{"fieldName": "CarrierGene", "fieldType": "categorical",
"fieldValues": [], "printFieldCount": "True"}]
}

The data quality report supports multiple types of field values, including categorical, numerical,
and “free-form”. The report also validates field values if defined in the fieldvalues list. Any
values found in the pathology data file not in this list are flagged in the report. If this list is left

empty, then the report doesn’t perform this validation step. Here is a sample snippet of output
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from the data quality report that shows counts for fields in the pathology file.

total records read from data file: 7051

column: ER / type: categorical
{
"fieldCount": {
"NA": 2200,
"Negative": 1313,
"Positive™": 3538

}

column: Age at onset / type: numerical
{
"fieldCount": {
"19.0": 1
"22.0": 1
"23.0": 1
"24.0": 3
"25.0": 2
"26.0": 7

"96.0": 1
}

}
min = 19.0, max = 96.0, mean = 55.83 median = 55.0 stdev = 11.98

column: Family history / ovarian cancer / type: numerical
{
"fieldCount": {
"0": 6968,
"1": 83
}
}

min = 0, max = 1, mean = 0.01 median = 0 stdev = 0.10

column: Tissue type (3 groups) / type: free-form
{
"fieldCount": {

"Invasive carcinoma": 3792,

"NA": 2368,

"Noinvasive carcinoma": 416,

"Others": 465,

"Paget's disease™: 10

}

missing values: {}
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In this second snippet from an example data quality report, we show the prevalence of receptor
statuses for each carrier gene.

gene: BRCAIL
{
"counts": {
"('ER', 'Negative')": 23,
"('ER', 'Negative',K 'age<50')": 9,
"('ER', 'Negative',K 'age>=50')": 14,
"('ER', '"Positiwve')": 54,
"('ER', 'Positive', 'age<50')": 17,
"('ER', 'Positive',6 'age>=50')": 37,
"({'HER2', '0")": 11,
"('HER2', '0', 'age<50"')": 3,
"('HER2', '0', 'age>=50'")": 8,
"('HER2', '"1+')": 14,
"('HER2', '"l+',6 'age<50')": 5,
"('HER2', '"1+', 'age>=50')": 9,
"('HER2', '2+')": 9,
"('HER2', '2+', 'age<50'")": 2,
"('HER2', '2+', 'age>=50')": 7,
"('HER2', '3+'")": 2,
"('HER2', '3+', 'age>=50')": 2,
"('PgR', 'Negative')": 23,
"('PgR', 'Negative',6 'age<50'")": 5,
"('PgR', 'Negative',6 'age>=50')": 18,
"('PgR', 'Positive')": 50,
"('PgR', 'Positive', 'age<50')": 13,
"('PgR', 'Positive', 'age>=50')": 37
}
}
gene: BRCA2

{

"counts": {

Tumor pathology report
The tumor pathology report code is implemented as a custom data report and is called by the

data quality report code. Here is a snippet from the Python code that implements the tumor
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pathology report. It shows selecting those samples with and without a family history of breast
cancer using SQL.

results['Triple negative breast cancer'] = {

'with': {
'Yes': psql.sqldf("select * from dfWithPath where (TPgR™ = 'Negative' and "ER’ = 'Negative') and \
("HER2™ = '@' or "HER2® = '1+')", locals()).shape[0],
"No': psql.sqldf("select * from (select * from dfWithPath where °“PgR™ != 'NA' and “ER" != 'NA"' \
and “HER2' != 'NA') T where T. PgR’ != 'Negative' or T. ER' != 'Negative' or (T.'HER2' != '@' and \
T. HER2® != '1+')", locals()).shapel[0]},

'without': {
'Yes': psqgl.sqldf("select * from dfWithoutPath where ("PgR™ = 'Negative' and "ER’™ = 'Negative') and \
("HER2™ = '@' or "HER2® = '1+')", locals()).shape[0],
"No': psql.sqldf("select * from (select * from dfWithoutPath where “PgR™ != 'NA' and “ER™ != 'NA' \
and “HER2' != 'NA') T where T. PgR’ != 'Negative' or T. ER' != 'Negative' or (T.'HER2' != '@' and \
T. HER2® != '1+')", locals()).shape[0]}}

getPercentage(results, 'Triple negative breast cancer', 'Yes', ['Yes', 'No'l])
getFisherExact(results, 'Triple negative breast cancer', ['Yes', 'No'])

The getPercentage () method takes the result set from the SQL query and just calculates a
percentage of how many samples have a history of breast cancer. The getFisherExact ()
method takes the result set and calculates the odds ratio, p-value, and a 95% confidence
interval for the statistics. Here is a sample output of the pathology report.

e e LT e et e il e o o e +
| | with | without | P val | OR | 95% CI |
[ e L e L PR PP PP PP o - o +-—m—== tmmmmmm e |
| No. of subjects | 404.0 | 6647.0 | - | - | - |
| Age at onset | 55.86 | 55.83 | - | - | - |
| History of ovarian cancer | {Yes: 0.99%} | {Yes: 0.65%} | 0.344 | 1.53 | (0.4, 4.26) |
| TNM clinical classification N | {0:8%, 1:1%, 2:3.9%, 3:0%} | {0:74.8%, 1:2%, 2:2.5%, 3:1.7%} | - | - | - |
| TNM clinical classification M | {0: 98.1%, 1: 1.9%} | {0: 97.4%, 1: 2.5%} | 0.817 | 1.30 | (0.48, 4.95) |
| Estrogen-receptor status | {Positive: 73.14%} | {Positive: 72.92%} | 1 | 1.01 | (0.77, 1.34) |
| Progesterone-receptor status | {Positive: 67.04%} | {Positive: 60.64%} | 0.04 | 1.32 | (1.01, 1.73) |
| Triple negative breast cancer | {Yes: 5.95%} | {Yess: 8.7%} | 0.545 | 0.66 | (0.21, 1.66) |
| Family history of breast cancer | {Yes: 10.64%} | {Yes: 11.9%} | 0.476 | 0.88 | (0.62, 1.22) |
| Family history of ovarian cancer | {Yes: 1.73%} | {Yes: 1.14%} | 0.334 | 1.52 | (0.59, 3.33) |
| Family history of pancreas cancer | {Yes: 3.71%} | {Yes: 3.45%} | 0.778 | 1.08 | (0.59, 1.84) |
| Family history of stomach cancer | {Yes: 19.8%} | {Yes: 20.67%} | 0.704 | 0.94 | (0.73, 1.22) |
| Family history of liver cancer | {Yes: 8.17%} | {Yes: 6.36%} | 0.174 | 1.30 | (0.88, 1.9) |
| Family history of bone tumor | {Yes: 0.25%} | {Yes: 0.24%} | 1 | 1.02 | (0.02, 6.65) |
| Family history of bladder cancer | {Yes: 1.49%} | {Yes: 1.62%} | 1 | 0.91 | (0.33, 2.07) |
o o e e o e e e o o e e e o o o e e e e +

We use the variant co-occurrence and allele frequency report for BRCA1 and BRCAZ2, but it has
been generalized to find co-occurrences on other genes. Users can specify which version of
the human genome (37 or 38), the chromosome and the gene on which to find VUS
co-occurring in trans with themselves or with known pathogenic variants. The software runs on
both phased and un-phased data, though inferring the genotype phase from un-phased data
requires VCEP expertise. In order to identify pathogenic variants, users must provide a
delimited file with the following fields: C1inical significance ENIGMA and

Genomic Coordinate hg37 (or Genomic Coordinate hg38). The possible strings for
the Clinical significance ENIGMA field include “Pathogenic”, “Likely pathogenic”,
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“Benign”, “Likely benign”, “Uncertain significance”, and “-”, following the conventions defined by
the BRCA Exchange. Variants that are not defined in the tab-delimited file are considered VUS.
Genomic coordinates must have the form of this example variant: “chr13:9.32314514:C>T",
where this represents the variant on chromosome 13, position 32314514 which changes a C
nucleotide to a T nucleotide. Here is a snippet of the output showing data for a co-occurring
VUS and a homozygous VUS.

{

"ecooccurring vus": {
"(13, 32317399, 'T', 'G")": {

b
by

"likelihood data": {

"pl": 0.5,
"p2": 0.001,
n": 2,
"k": 2,
"likelihood": 4e-06
}o
"allele frequencies": {
"maxPop": "Allele frequency genome AMR GnomAD",
"maxPopFreq”: 0.001179,
"minPop": "Allele frequency genome AFR GnomAD",
"minPopFreq": 0.0,
"cohortFreq": 1.0
b
"pathogenic variants”: [
[
13,
32338277,
"G",
HTTI
1

"homozygous wvus": {
"(13, 32399624, 'T', 'C")": {

b

"count": 1,

"maxPop": "Allele frequency genome AMR GnomAD",
"maxPopFreq": 0.001179,

"minPop": "Allele frequency genome AFR GnomAD",
"minPopFreq": 0.0,

"cohortFreq”: 0.5
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Example
The following is a basic example which we will use to generate our 3 reports.

1. Create a VCF file with 4 samples and 6 variants and put it in the /tmp/data directory.

f#fileformat=VCFv4.2

#CHROM POS iDp REF ALT QUAL FILTER INFO FORMAT 01 02 03 04

chrl3 32355250 . T c GT 1|0 0|0 0|0 o]0
chrl3 32316508 . GAC G GT 0|1 0|0 0|0 o]0
chrl3 32353470 . A Cc . . . GT 0|0 1|0 o|o 0|0
chrl3 32340836 . GACARA G . . . GT 0|0 0|1 o|o 0|0
chrl3 32353519 . A G GT 0|0 0|0 1|0 o]0
chrl3 32338749 . AATTAC A GT 0|0 0|0 01 o]0
chrl3 32355250 . T c GT 0|0 0|0 o]0 1|1

2. Create a tumor pathology file for those 4 samples and putitin the /tmp/data

directory.

1D Family history / breast cancer Age at onset ER PgR HER2 CarrierGene
01 1 57 Positive Positive 3+ BRCAZ2

02 0 51 Negative Positive 1+ BRCA2

03 0 66 Negative Negative Negative BRCA2

04 0 0 NA NA NA NonCarrier

3. Create a variant pathogenicity file for those 6 variants and putitinthe /tmp/data

directory.

Clinical_significance ENIGMA Genomic_Coordinate_hg37 Genomic_Coordinate_ hg38
- - chrl13:32355250:T>C

Pathogenic - chrl13:32316508 : GAC>G

- - chrl13:32353470:A>C

Pathogenic - chrl13:32340836:GACAA>G

- - chrl13:32353519:A>G

Pathogenic - chrl13:32338749:AATTAC>A

- - chrl3:32355250:T>C

4. Configure the report workflow.
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- . a .

"qualityReport": "data/data-quality-report.txt",
"pathologyReport": "data/tumor-pathology-report.txt",
"fileName": "data/mypf.tsv",

"fileHeader": "True",
"fieldDelimiter”: "\t",
"printConfigFileInfo": "False",
"printBadValues": "False",
"suppressAllOutput": "False",
"RSecriptPath": "/usr/bin/Rscript",
"fieldFilters": [
{"fieldName": "ER", "fieldType": "categorical",
"fieldValues": ["Positive", "Negatiwve", "NA"], "printFieldCount": "True"},
{"fieldName": "PgR", "fieldType": "categorical",
"fieldValues": ["Positive", "Negative", "NA"], "printFieldCount": "True"},
{"fieldName": "HER2", "fieldType": "categorical",
"fieldValues™: ["0", "1+", "24", "3+4", "NA"], "printFieldCount": "True"},
{"fieldName": "Age at onset", "fieldType": "numerical",
"fieldValues": [], "printFieldCount": "True", "printStats": "True"},
{"fieldName": "Family history / breast cancer", "fieldType": "numerical",
"fieldvValues": [0, 1], "printFieldCount": "True", "printStats": "True"},
{"fieldName": "CarrierGene", "fieldType": "categorical”,

"fieldValues": [], "printFieldCount": "True"}]
}

5. Run the report workflow.

$§ ./runMe.sh -rc config}report-conrlg.json -vf my.vct -hg 38 -er 99 \
-c 13 -p True --p2 0.001 -g BRCA2 -pf mybrca.tsv -dd /tmp/data \
-st True -sp mypf.tsv

6. All the reports will be located inthe /tmp/data directory.
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