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Inevitably, almost all cancer patients develop resistance to targeted therapy. Intratu-

mor heterogeneity (ITH), which refers to coexistence of distinct clones within a single

tumor, is a major cause of drug resistance. Mathematical models that explain exper-

iments quantitatively is useful in understanding the origin of ITH, which then could

be used to explore scenarios for efficacious therapy. Here, we develop a mathematical

model to investigate ITH in breast cancer by exploiting the observation that HER2+

and HER2- cells could divide symmetrically (producing two identical daughter cells)

or asymmetrically (HER2+ produces one HER2+ and one HER2- cell, for example).

Our predictions for the evolution of cell fractions of HER2+ and HER2- cells are in

quantitative agreement with single-cell experiments. Remarkably, the colony size of

HER2+ cells emerging from a single HER2- cell (or vice versa), which occurs in about

four cell doublings, agrees perfectly with experimental results, without tweaking any

parameter in the model. The theory also quantitatively explains experimental data

on the responses of breast cancer tumor under different treatment protocols. We then

used the model to predict that, not only the order of two drugs, but also the treat-

ment period for each drug and also the tumor cell plasticity could be manipulated

to improve the treatment efficacy. Mathematical models, when integrated with data

on patients, make possible exploration of a broad range of parameters readily, which

might provide insights in devising effective therapies.
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INTRODUCTION

Nearly 10 million people died of cancer worldwide in 20201, despite innovations in the

development of many novel drugs. In principle, the advent of new technologies ought to make

drugs highly efficacious while minimizing toxicity. The next-generation sequencing allows

us to design personalized therapy, targeting specific genetic variants which drive disease

progression2,3. However, drug resistance ultimately occurs, regardless of targeted therapeutic

protocols, which poses a formidable challenge for oncologists4. A deeper understanding of

the underlying resistance mechanism could be useful in controlling the tumor burden and

its relapse.

Intratumor heterogeneity (ITH), which denotes the coexistence of cancer cell subpop-

ulations with different genetic or phenotypic characteristics in a single tumor5,6, is the

prominent cause of drug resistance and recurrence of cancers7–9. With the development

of deep-sequencing technologies and sequencing at the single cell level10,11, intratumor ge-

netic heterogeneity has been observed in many cancer types12–17. Meanwhile, increasing

evidence shows that phenotypic variations in tumor cells (without clear genetic alterations)

also play a crucial role in cancer development, and is presumed to be one of the major rea-

sons for the development of drug resistance in cancer therapy7,18. However, the underlying

mechanism of ITH induced by the phenotypic variability of cancer cells is still elusive, which

represents an obstacle for the development of efficient treatments for cancer patients19.

The phenotypic heterogeneity of normal cells can emerge from cellular plasticity, which

is the ability of a cell to adopt different identities. Cellular plasticity is widespread in

multicellular organisms, dictating the development of organism, wound repair and tissue

regeneration20–22. One of the best known examples is the differentiation hierarchies in stem

cells, which leads to the production of progenitor cells, followed by the mature differentiated

cells23,24.

It has been proposed that cancer might be derived from cancer stem (or initiating) cells

(CSCs). The CSCs are similar to normal stem cell, but possess the ability to produce

all cell types found in a tumor sample, resulting in ITH25–27. However, the prospects of

a hierarchical organization, and also the unidirectional differentiation of CSCs have been

challenged by recent experimental observations28–31. Some ‘differentiated’ cancer cells are

capable of switching back to the CSCs in breast cancer28,29. Melanoma cells do not show
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any hierarchically organized structure as cells are capable of switching between different

phenotypes reversibly30,31. Several models that assume reversible state transitions have been

proposed to explain the observed stable equilibrium among cancer cell subpopulations with

different phenotypes28,32. However, a detailed understanding of the underlying mechanism

driving the cell state transition is still lacking, as most previous experimental observations

are based on measurements from bulk cell populations28,29,31.

A recent insightful experiment tracked the evolution of a single circulating tumor cell

(CTC) derived from estrogen-receptor (ER)-positive/human epidermal growth factor recep-

tor 2 (HER2)-negative (ER+/HER2-) breast cancer patients in vitro33. Surprisingly, HER2+

cells (with expression of HER2) emerge from a cell colony grown from a single HER2- cell

within four cell doublings and vice versa. The single-cell level experiment demonstrates

that reversible transitions occurred between the two breast cancer cell types, thus provid-

ing a clue to understanding the nature of cancer cell plasticity observed in this and other

experiments28,29,31,33. Because normal stem cell can differentiate into non-stem cells through

asymmetric cell division23, it is possible that cancer cells might also change their identity

by asymmetric division34, which is a potential cause of ITH.

We noticed that the emergence of an altered cell phenotype is to be coupled to cell divi-

sion, as indicated by the experiments that a cell of a specific genotype produces daughter

cells with an altered phenotype33. Based on this observation, we developed a theoretical

model to describe the establishment of ITH from a single type of breast CTCs. In quanti-

tative agreement with experiments, our model captures the tumor growth dynamics under

different initial conditions. It also naturally explains the emergence and evolution of ITH,

initiated from a single cell type, as discovered in a recent experiment33 . Without adjusting

any free parameter in the model, we predict the evolution of cell fractions and also the

colony size for the appearance of HER2+ (HER2-) cell types starting from a single HER2-

(HER2+) cell. Remarkably, the predictions agree perfectly with the experimental observa-

tions. As a consequence of ITH, drug resistance develops rapidly, which we also reproduce

quantitatively. By exploring a range of parameters in the mathematical model, we found

that several factors strongly influence the growth dynamics of the tumor. The insights from

our study may be useful in devising effective therapies33,35.
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RESULTS

Drug response in a heterogeneous breast cancer cell population: To set the

stage for the mathematical model, we first summarize the results of experiments. It is

known that HER2+ cells appear in patients initially diagnosed with ER+/HER2- breast

cancer during treatment36,37. Although each cell subpopulation is sensitive to a specific

drug, the heterogeneous tumor shows varying responses for distinct treatment protocols (see

Fig. 1 as an example). The size of an untreated tumor increases rapidly (see the green

circles), illustrating the ability of mixture of two cell types together for tumor growth. A

clear response is noted when Paclitaxel (targeting HER2+ cells) is utilized, which results

in reduced tumor growth (see the navy down triangles) for two weeks after the treatment

is finished. Surprisingly, the tumor continues to grows rapidly, with no obvious response,

if treated by Notchi inhibitor (see the dark yellow squares). This is totally unexpected

as the growth of HER2- cells (sensitive to Notchi inhibitor) is supposed to be inhibited

by the drug. There seems to be no explanation for this finding. Finally, the combination

therapy with both the drugs, Paclitaxel and Notchi inhibitor, administered to the tumors

simultaneously delayed the tumor recurrence for more than six weeks (see the violet up

triangles). However, as both drugs have adverse toxic side effects on normal tissues38,39.

Thus, the use of the two drugs simultaneously might not be advisable. These observations

suggest that instead of developing new efficacious drugs, more could be done to optimize

the current treatment methods40, which requires an understanding of the drug resistance

mechanism, and evolutionary dynamics of each subpopulations quantitatively. Here, we

develop a theoretical model (see Fig. 2a for the illustration of the model) to explain the

occurrence of phenotypic heterogeneity in breast cancer, and explore diverse responses under

different drug treatments ( Fig. 1).

Phenotypic equilibrium in a heterogeneous cancer cell population: As men-

tioned above, it is found that HER2+ and HER2- breast cancer cells transition from one phe-

notype to another36. To demonstrate the observed cellular plasticity, fluorescence-activated

cell sorting (FACS)-purified HER2+ and HER2- cells were grown in culture for eight weeks

independently in the experiments (see SI for more experimental details)33. Surprisingly,

HER2- (HER2+) cell, naturally emerges from the initial HER2+ (HER2-) cell seeding within

four weeks. The time course of the HER2+ cell fraction, f1(t), is shown in Fig. 2b for differ-
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ent initial conditions. The fraction f1(t) decreases slowly, reaching a plateau with f1 ≈ 78%

after eight weeks of growth (see the green diamonds in Fig. 2b) starting exclusively from

HER2+ cells. On the other hand, f1(t) increases to 63% (without reaching a plateau) from

zero rapidly during the same time period, if the cell colony is seeded only from HER2- cells

(see the violet squares in Fig. 2b). Finally, the HER2+ cell faction, f1(t), almost does not

change with time if the initial population is a mixture of both cell types derived from the

parental cultured CTCs directly (see the navy circles in Fig. 2b). Therefore, a steady state

level (with f1 ≈ 78%, the value in the parental cultured CTCs) is established between the

two different cell phenotypes at long times, irrespective of the initial cell fraction.

To understand the experimental findings summarized in Fig. 2b, we developed a mathe-

matical model in which the cell plasticity is coupled to cell division, as illustrated in Fig. 2a

(see SI for additional details). We first assume an equal rate K12 = K21 ≡ K0 for the

production of HER2- from HER2+ and vice versa. We also neglected the symmetric divi-

sion (K13, K31), one cell producing two identical daughter cells of the other type, because

they rarely occur33. We found that the two rates (K12 and K21) are small (see the follow-

ing discussions), and it is not necessary to give different values in order to explain all the

experimental results. With these assumptions, Eq. (S3) in the SI can be simplified as,

df1(t)

dt
= (Σ− 2K0)f1(t)− Σf1(t)

2 +K0 . (1)

where f1(t) is the fraction of HER2+ cell in the whole population, and Σ ≡ K1 − K2.

Given the initial condition, f1(t = 0) = 0, we find that K0 = df1(t)
dt
|t=0 from Eq. (1) directly.

Therefore, the parameter value K0 ≈ 0.09 is obtained using the first two data points from

the experiments starting with only HER2- cells (see the violet squares in Fig. 2b). Finally,

the value of Σ can be calculated from Eq. (S5) in the SI, which leads to Σ ≈ 0.3 given the

stable equilibrium condition (f s1 = 0.78) found in the two cell populations in experiments

(see Fig. 2b). Hence, the time course of f1(t) can be calculated by solving Eq. (1), given

any initial condition, f1(t = 0), (see the two examples illustrated in Fig. 2b by green and

violet solid lines). Our theoretical predictions agree quantitatively with experiments, which

is interesting considering that we only used two experimental data points. The time course

of f1(t) and f2(t) (the fraction of HER2- cell) in the same plot under two initial conditions

(see Fig. 2c and Fig. 2d) shows that the cell fraction conversion from HER2+ to HER2- is

very slow. In contrast, the reverse process is rapid (see the slopes of the curves in Fig. 2c
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and Fig. 2d). However, it takes shorter time for the system to reach the stationary state in

the former case due to the large value of f s1 in experiments.

Growth dynamics of cancer cell populations: The CTCs of HER2+ have a higher

proliferation rate compared to HER2-, as noted both in in vitro and in vivo experiments

(see the green and blue symbols in Fig. S1 in the SI). It is consistent with the predictions of

our model, which shows that the rate difference, Σ ≡ K1 −K2 ≈ 0.3, between the two cell

types. Combined with the assumption that K12 = K21 ≡ K0, it also explains both the fast

increase in f1(t) for the case when growth is initiated from HER2- cells, and the slowly decay

of f1(t) as initial condition is altered (Fig. 2b). The different dynamics of HER2+ cell is

also associated with it being a more aggressive phenotype, including increased invasiveness,

angiogenesis and reduced survival41,42.

To understand the growth dynamics of the cell populations as a function of initial condi-

tions (Fig. S1) quantitatively, we need to determine either K1 or K2. The other rate constant

can be calculated using, K1−K2 ≈ 0.3. Using K1 or K2, the growth dynamics can be derived

directly from Eqs. (S1) - (S2) in the SI with the condition N(t) = N1(t)+N2(t) where N1(t)

and N2(t) are the population sizes of the two cell types. The model quantitatively describes

the growth behaviors of the tumor using only K2 ≈ 0.7 (see the green and navy solid lines in

Fig. S1 in the SI) as an unknown parameter. Note that K2 ≈ 0.7 implies that K1 ≈ 1.0. We

can also predict the growth dynamics at different initial conditions, which could be tested

in similar experiments. From the values of the rate constants, we would expect that the

frequency for symmetric cell division (the two daughter cells are identical to the parent cell)

is much higher than the asymmetric case for both the cell types (K1 > K2 � K12, K21).

This prediction could be tested using single cell experiments.

Cancer cell plasticity observed in single cell experiments: To further validate

the model, we calculated the percentage of HER2+/HER2- cells as a function of the cell

colony size starting from a single HER2+ or HER2- cell. The sizes of the cell colony have

been measured in experiments (see the histograms in Fig. 3)33. From Eqs. (S1) - (S2) in the

SI, we computed the HER2+ (HER2-) cell fraction, f1(f2), as a function of the cell colony

size N with the initial conditions, N1(t = 0) = 1 and N2(t = 0) = 0 (N1(t = 0) = 0 and

N2(t = 0) = 1) using the same parameter values as given above. Our theoretical results (see

the solid line in Figs. 3a and 3b) are in good agreement with the experimental observations

without adjusting any parameter. We also found that the HER2- cell fraction (f1) decreases
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faster than the HER2+ cell fraction (f2) as a function of the colony size (N), which is due

to the higher symmetric division rate (K1 > K2) of HER2+ cells (Fig. 2c and 2d).

Similarly, based on Eqs. (S1)–(S2) in the SI or derived from the solid lines in Figs. 3a and

3b directly, we calculated the cell colony size N , corresponding to the emergence of HER2+

cell starting from a single HER2- cell, and vice versa. The value of N is around 5 and 8

obtained from our model for HER2+ and HER2- cells, respectively. And the experimental

values are found to be 5 to 9 cells, which agrees well with our theoretical predictions.

Therefore, the model explains the experimental observation that one cell phenotype can

emerge from the other spontaneously after four cell divisions.

Quantitative description for the drug responses of HER2+ and HER2- cell

populations: We next investigated the drug response in a heterogeneous population in

(Fig. 1) using our model. Parameter values that are similar to the ones used to describe the

experimental results in vitro are used but with minimal adjustments in order to capture the

tumor growth observed in in vivo experiments. We rescaled the parameters K1 and K2 by

a factor (2.06), which leads to Kvivo
α = Kα/2.06 with α = 1 or 2 (see Table 1 in the SI).

With these values, we found that the tumor growth dynamics in vivo is recapitulated for

the untreated tumor (see the green circles and dashed line in Fig. 1).

HER2+ cells have a higher proliferation rate (see Fig. S1 in the SI), and is sensitive

to cytotoxic/oxidative stress (such as Paclitaxel treatment) while the HER2- cell shows a

negligible response to Paclitaxel. On the other hand, Notch and DNA damage pathways are

activated in the HER2- cell leading to sensitivity to Notch inhibition. However, the HER2+

cells are resistant to drugs for Notch inhibition33. To assess the influence of drugs on tumor

growth, we set the effective growth rate Kvivo
1 (Kvivo

2 ) of symmetric cell division to −0.5

(the negative sign mimics the higher death rate compared to the birth rate) when the drug,

Paclitaxel (Notchi inhibitor), is utilized during treatment. We did not change the values of

the asymmetric division rate constants, K12 and K21.

Following the experimental protocol, we first let the tumor grow from a parental CTCs

(78% of HER2+ and 22% of HER2- cells) with an initial size taken at week one. We then

mimicked drug treatment from the third week to the sixth week. Surprisingly, our theory

describes the growth dynamics of the heterogeneous tumor for different drug treatments well

(see the different lines in Fig. 1). Our model successfully captured the inhibition of tumor

growth under either Paclitaxel or the combination of Paclitaxel and Notchi inhibitor. Also
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the weak response of tumor under the treatment of Notchi inhibitor also emerges from our

model naturally.

To understand the three distinct responses of the tumors to the drug treatments, shown

in Fig. 1 further, we computed the time dependence of the tumor size in the first six weeks

derived from our model with the treatment of either Notchi inhibitor or Paclitaxel (see

Figs. S2a and S2b in the SI). The tumor continues to grows rapidly without showing any

clear response when treated with Notchi inhibitor (see the symbols in navy in Fig. S2a),

inhibiting the growth of HER2- cells. Although unexpected, the observed response can

be explained from the cellular composition of the tumor. The fraction of HER2+ cells is

high (> 70%) before drug treatment, and it increases monotonically to even higher values

(∼ 90%) during treatment, as shown in Fig. S2c in the SI. Considering the proliferation rate

of HER2+ cells is higher than HER2- cells, it is clear that tumor response under Notchi

inhibitor only targets a minority of the tumor cell population and its reduction can be

quickly replenished by the rapid growth of HER2+ (see the simple illustration in Fig. S2e

under the treatment of Notchi inhibitor).

Such a weak response is explained directly from the mean fitness, the growth rate ω =

(K1 + K12)f1 + (K2 + K21)f2, landscape of the population, shown in Fig. 4. Without

treatment, the mean fitness ω has a large constant value (see the dotted and solid lines in

Figs. 4a and 4b), indicating that the tumor grows at a steady rate aggressively. On the

other hand, a relatively large initial value (ω ∼ 0.3, see the location of yellow parts of the

dotted or solid lines in Figs. 4c and 4d) is still found, which shows a continuous growing

phase of the tumor when subject to Notchi inhibitor treatment. Therefore, no clear response

would be observed if this treatment protocol is used. In addition, the tumor becomes even

more aggressive with time (see the increasing value of ω in Figs. 4c and 4d) until it reaches

to a maximum rate close to the untreated case.

In contrast to the negligible effect of Notchi inhibitor to the progression of the heteroge-

neous tumor, Paclitaxel treatment that targets the HER2+ cell leads to a clear reduction

in the tumor size, and delays cancer recurrence (see Fig. S2b in the SI). Such a response

is due to the high fraction of the HER2+ cell in the tumor. It leads to the slowly growing

of HER2- cells, which cannot compensate for the quick loss of HER2+ cells at the start

of the treatment (see the rapid decay of HER2+ cell fraction in Fig. S2d and Fig. S2e for

illustration). However, the tumor recovers the fast growing phase in the fourth week (see
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Fig. S2b) after the drug is used, corresponding to the time when the fraction of HER2+

cell reaches around 0.5 (derived from our model with (0.5−K12)f1(t) = (Kvivo
2 +K21)f2(t),

and see also Fig. S2d). Once the fraction of HER2+ cells decreases to small values, the

proliferation of resistant HER2- cells can compensate for the loss of HER2+ cells. Just as

discussed above, such a response can also be seen directly from the fitness landscape of the

population under treatment of Paclitaxel (see Figs. 4e and 4f). The initial ω (∼ −0.2) is

negative during treatment (see the location of yellow parts of the dotted or solid lines in

Figs. 4e and 4f), which indicates a shrinkage of the tumor. Such a state remained for some

time until ω becomes positive. Although the value of ω increases with time, the tumor

grows at a much lower rate at the end of Paclitaxel treatment compared to the situation

when Notchi inhibitor is used (see Figs. 4c-4f).

The fraction of HER2+ cells quickly recovers to the value in the stationary state after

drug removal (see Figs. S2c and S2d), and the tumor grows aggressively again (see Fig. 1

and Fig. S2e for illustration). Therefore, the progression of the heterogeneous tumor can-

not be controlled by a single drug, as demonstrated in the experiments, explained here

quantitatively.

Sequential treatment strategy: Our theory, and more importantly experiments, show

that the utilization of two drugs simultaneously could significantly delay the recurrence of

tumors compared to the treatments using only a single drug of either type (see Fig. 1).

However, the quantity of drugs used in the former protocol is much higher than in the latter

case. Also, both drugs (Paclitaxel and Notchi inhibitor) have strong toxic side effects on

normal tissues38,39. In the following, we consider a sequential treatment strategy with one

drug followed by the treatment with the other, which would reduce the quantity of drugs

used, and possibly reduce the toxic side effects.

In the sequential treatment, there are two alternative methods depending on the order

in which the drugs are administered. We first let the tumor grows till the third week, and

then apply the first drug (Notchi inhibitor or Paclitaxel) from the third to the sixth week

followed by the utilization of the second drug from the sixth to the ninth week. We used

the same parameter values as taken in Fig. 1. Interestingly, we predict a dramatic difference

between the responses of the tumors to the two treatment methods (see Fig 5a). The tumor

size shows no clear response to the treatment by Notchi inhibitor, increasing rapidly until

Paclitaxel is used (see the circles in navy in Fig. 5a and a schematic illustration in the
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upper panel of Fig. 5c). From the phase trajectory (see the circles in Fig. 5b), a rapid

increase of HER2+ cell population (N1) is found while HER2- cell population (N2) decays

slowly. In contrast, just as shown in Fig. 1, a clear delay is observed for the tumor growth

when treated with Paclitaxel first followed by Notchi inhibitor (see the diamonds in pink

and navy in Fig. 5a and the lower panel of Fig. 5c for illustration). Meanwhile, HER2+

and HER2- cell populations shrink rapidly during each drug treatment, as illustrated by the

phase trajectory in Fig. 5b (see the diamonds). It indicates the effectiveness of these two

drugs. In addition, the tumor size is always much smaller in the second protocol compared

to the first, reaching three fold difference in size (see the tumor size at the sixth week in

Fig. 5a). It follows that the order of drug administration greatly influences the treatment

effects in the sequential treatment method, which is consistent with recent studies43,44. We

also illustrate the tumor response when treated with the two drugs simultaneously (see the

pentagons in Fig. 5a). A much better response is predicted compared to the first treatment

method (see the circles in Fig. 5a). However, the second approach shows a similar good

response with a close tumor burden at the end of treatment (see the diamond and pentagon

in Fig. 5a). Hence, it is possible to find an optimal strategy to obtain a similar treatment

effect with attenuated side effect.

Effect of duration of treatment: In the previous sections, a futile treatment with rapid

tumor growth is frequently found (see Fig. 1 or the data in Figs. 5a-5b). We surmise that

one drug should be removed at an appropriate time once it produces no benefits. We studied

the influence of treatment period length (τd) on tumor responses. First, we investigated the

sequential treatment by Notchi inhibitor followed by Paclitaxel for different τd values (see

Fig. 6a). The phase trajectories show that the variations in N1, and N2 and their maximum

values become smaller as τd is shortened. In addition, the response for each drug treatment

is strengthened and the total tumor size (see the inset in Fig. 6a) is always smaller for a

smaller τd. Therefore, a small τd should be used when such a treatment method is applied.

Next, we performed a similar analysis for the treatment with Paclitaxel first, followed

by Notchi inhibitor (see Figs. 6b-6c). In contrast to the situation described above, the

variations for N1, N2, and their responses to each drug treatment are similar even as τd

varies. However, the total population size (see the inset in Figs. 6b-6c) is smaller for the

two-week treatment compared to three and one-week treatment. We surmise that instead

of using one-week treatment for each drug, a two-week period would be a better choice in
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this treatment strategy. Fig. 6 shows that the minimum values of Nmin
1 , Nmin

2 (see Figs. 6a

and 6c) and the total minimum tumor size Nmin (see the inset in Fig. 6) at each treatment

cycle increases with time, irrespective of the value of τd. This would result in uncontrolled

tumor growth. In the following sections, we will discuss potential approaches to control the

tumor burden even if it cannot be fully eradicated.

Control of tumor burden: Despite the good response through certain treatment pro-

tocols as discussed above, tumor suppression is only transient, and the tumor recurs sooner

or later due to drug resistance. Nevertheless, we can still seek, at least theoretically, a stable

tumor burden as a compromise, which is similar to the goals adaptive therapy45. For the

breast CTC consisting of HER2+ and HER2- cells, the model suggests that it is possible

to control the tumor maintained at a constant size (with relatively small variations) (see

Fig. 7a). Using a sequential treatment strategy, with Paclitaxel first, followed by Notchi

inhibitor and repeating the procedure periodically, the tumor burden may be kept at bay as

it was before any treatment. The order of drug administration is important, as described

above. During the treatment, it is efficacious to target the larger cell subpopulation with

one specific drug until it becomes the minority, and then treat with the second drug. The

quantity of drugs during each treatment should also be tuned to inhibit the growth of HER2-

cells more efficiently (see the different values of Kdrug
1,2 used in Fig. 7a). The time periods

during the treatment of the two drugs are quite different. According to theory, a longer pe-

riod of treatment is required for HER2+ cells (around two weeks as discussed in the previous

section, see also Figs. 6b-6c) compared to the HER2- cells (around one week as discussed

above, see also Fig. 6a). From the phase trajectory shown in Fig. 7b, a “limit cycle” -like

structure is found in which the two subpopulations are well-controlled, and almost return to

their original values after each round of treatment. Therefore, theoretical models based on

the tumor evolutionary process are likely to be useful in predicting the tumor progression,

the clinical response, and possibly in designing better strategies for cancer therapy46–50.

Cellular plasticity leads to failure of treatments: We have learned from our calcu-

lations that the plasticity of breast cancer cells is one of the leading reasons for ITH, which in

turn leads to drug resistance during therapy. We investigated how such a property influences

the tumor response during treatment further. By varying the values of K0 (≡ K12 = K21),

we found that a strong transition between the two cell states can lead to total failure of

treatments (see Fig. 8a). The two cell subpopulations and the total tumor size show a much
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weaker response during each drug treatment, irrespective of the order of drug administration

(see Figs. 5a and 8a). This suggests that enhanced cellular plasticity could lead to an easy

escape of cancer cells from targeted drugs. On the other hand, we found that it is much

easier to control the tumor burden as the cellular plasticity is inhibited (see Fig. 8b), which

leads to a strong tumor response when treated with the two drugs. Surprisingly, the total tu-

mor size is similar at the end of the two treatments with different order of administration of

the two drugs, although protocol that uses paclitaxel first is still a better choice. It appears

that it may be achieved by controlling the tumor burden (see Fig. 8c) or even eliminating

the tumor eventually if we can inhibit the cellular plasticity by regulating related pathways

such as EZH2, and Notch34. The model shows that if K12 = K21 = 0, ITH, which is a cause

of drug resistance, disappears starting from either type of tumor cells. In this theoretical

scenario, cancer may be eradicated by administering the appropriate drugs, even if it is a

heterogeneous cell population before treatment.

DISCUSSION:

We investigated the emergence of intratumor heterogeneity in breast cancer arising from

cellular plasticity, which is embodied in the conversion between the HER2+ and HER2-

phenotypes. In contrast to the unidirectional differentiation of normal stem cells51,52, many

cancer cells demonstrate a great degree of plasticity that results in reversible transitions be-

tween different phenotypes, leading to ITH without genetic mutations28,31. Such transitions

are frequently observed in rapidly growing tumors, which is often neglected in theoretical

models28. Although other studies have recognized the need for taking a growing population,

the models typically have many unknown parameters32,53, which are hard to interpret.

By introducing a direct coupling between cell division and transition between phenotypes

into a theoretical model, we provide a quantitative explanation for the emergence of a stable

ITH, a hallmark in HER-negative breast cancer patients. Our model accurately describes the

evolution of different cancer cell fractions, and also the total tumor size observed in a recent

single-cell experiment successfully. We predicted that the symmetric cell division appears

more frequently compared to the asymmetric case for both types of cells found in breast

CTCs. Without adjusting any parameter, our theoretical predictions for the cell fraction as

a function of the cell colony size agrees extremely well with experimental results. The cell
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colony size (5∼8 cells) calculated from our theory for the emergence of one cell phenotype

from the other is in good agreement with the experimental observations (5∼9 cells).

The asymmetric cell division has not been observed in the breast CTC experiment di-

rectly, although the experiment implies that cells of one phenotype produce daughters of

the other phenotype33. However, in a more recent experiment this was detected in breast

cancer34. It was found that the newly formed cell doublet, after one cell division, can be

the same cell type (symmetric division) or different (asymmetric division, producing two

daughter cells with one expressing the cytokeratin K14 while the other does not). It is also

possible that the state transition is not only coupled to cell division but can also appear

through tumor microenvironment remodeling54. However, inclusion of these processes will

add two more free parameters to our model, which is not needed to give the excellent agree-

ment between theory and experiments. In addition, such a state transition is not observed

after cytokinesis was inhibited in breast cancer experiment34. Nevertheless, our mathemat-

ical model could be extended to incorporate these possibilities should this be warranted in

the future.

Although the asymmetric cell division explains the bidirectional state transition, the un-

derlying mechanism for such an asymmetric division is still unclear. In the experiments28,33,34,

the different states of cancer cells are mainly determined by the expression level of one or

several proteins. It is possible that these proteins (HER2, K14, etc.) are redistributed in the

daughter cells unequally during cell division, which could be realized through a stochastic

process or regulation of other proteins34,55,56.

The reversible phenotype transitions in cells have been found in many different types

of cancers57–59, which not only lead to the development of drug resistance but also induce

very complex drug responses, as discussed here. Although each cell type is sensitive to one

specific drug, the heterogeneous tumor derived from breast CTC shows an obvious response

to Paclitaxel but not to Notchi inhibitor. Our model provides a quantitative explanation for

the different time courses of the tumor under distinct treatments. The failure of the Notchi

inhibitor, even at the initial treatment is due to its target, HER2- cell which is a minority

in the heterogeneous cell population, and has a slower proliferation rate compared to the

HER2+ cell. Both experiments and our theory show a significant delay of tumor recurrence

under the combination treatment with two drugs applied to the tumor simultaneously. We

also predict that a sequential treatment strategy with Paclitaxel first, followed by Notchi
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inhibitor (not in a reverse order of drugs) can show similar treatment effect as the one with

two drugs used at the same time. In addition, the sequential treatment reduces the quantity

of drugs administered each time, which can reduce the adverse effects in principle.

One advantage of the mathematical model is that we can steer the evolutionary dynamics

of each subpopulation by applying the right drug at the appropriate time to control the tumor

burden. This allows for a fuller exploration of the parameter space, which cannot be easily

done in experiments. Finally, we propose that patients could benefit from drugs which

inhibit the plasticity of the cancer cells34. Taken together, our model could be applied

to explore ITH found in other type of cancers34,57–59. From the examples presented here

and similar successful studies, we expect that the physical and mathematical models may

provide a quantitative understanding for the cancer progression and also stimulate new ideas

in oncology research19,46,60–62. We should emphasize that mathematical models sharpen the

questions surrounding the mechanisms of ITH, but real data from patients are needed to

understand the origins of ITH.
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Figure 1: The dynamics of tumor growth under different conditions. The

symbols represent results extracted from a recent experiment under four conditions33: The

green circle shows the growth of mammary xenografts generated from parental CTCs (a

mixture of HER2+ and HER2- cells) of breast cancer patients without any drugs. The

dark yellow square and blue down triangle illustrate the tumor growth under treatment of

Notchi inhibitor and Paclitaxel from the 3rd to the 6th week, respectively. The violet up

triangle corresponds to the tumor growth under treatment of both drugs simultaneously in

the same period of time. The theoretical predictions for tumor growth under the four

different cases are shown by the lines. The tumor is imaged using IVIS Lumina II. Its size

is in the unit of the photon flux, which is proportional to the number of tumor cells.
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Figure 2: The dynamics of HER2+/HER2- cells. (a) Illustration of the ITH model

for breast cancer. Both HER2+ and HER2- breast circulating tumor cells (CTCs) may

divide symmetrically, producing two identical HER2+ and HER2- cells with rates K1 and

K2, respectively. They can also divide in an asymmetric manner by producing one HER2+

and one HER2- cell with rates K12 and K21. The two cell types could divide symmetrically

but produce the other cell type (see the processes with rates of K13 and K31). A

heterogeneous cell colony composed of both HER2+ and HER2- cells is established,

irrespective of the initial cell states. (b) Experimental data for the fraction (f1(t)) of

HER2+ cells as a function of time for three initial conditions: starting with HER2+ cells

only (symbols in green), HER2- cells only (symbols in violet), and the parental cultured

CTCs (symbols in navy). Theoretical predictions are shown by the solid lines. The dash

dotted line for the case of parental cultured CTCs is to guide the eye. The time course of

HER2+ (green) and HER2- (navy) cell fractions (f1(t), and (f2(t)) ) under the initial

condition, (c) f1(t = 0) = 1, and (d) f1(t = 0) = 0.
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Figure 3: The interconversion between HER2+ and HER2- cell types. (a) The

HER2+ cell fraction, f1 (percentage), as a function of the total population size N in a

colony grown from a single HER2+ cell. (b) The HER2- cell fraction, f2 (percentage), as a

function of N as the system develops from a single HER2- cell. The error bar in y-axis

gives the standard variation, while the error bar in x-axis indicates the cell number range

in which the cell fraction is calculated.
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Figure 4: Fitness landscapes of cancer cell populations with and without drug

administration. The mean fitness (ω) of the population as a function of the sizes (N1,

N2) of the two subclones without any drugs (a) for the first three weeks, treated by Notchi

inhibitor (c) or Paclitaxel (e) from the 3rd to the 6th week, as shown in Fig. 1. The dotted

lines show the phase trajectories for two cell populations along the fitness landscapes

during treatment (all end with a larger total population size). The corresponding contour

plots for (a), (c) , (e) are shown in (b), (d), (f), respectively with the phase trajectories

indicated by the solid lines. The fitness ω is also colored by its value as indicated by the

color bar on the right of each figure. The arrow indicates the direction of increasing time.
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Figure 5: Tumor response using a sequential protocol for two drugs. (a)

Comparison of drug responses for tumors under different treatments. The green squares

show tumor growth before treatment. The tumor under the treatment of Notchi inhibitor

first (navy), then Paclitaxel (pink) is indicated by the circles. The diamonds show the

tumor growth under the reverse order of drug treatment, Paclitaxel first (pink), followed

by Notchi inhibitor (navy). The pentagons demonstrate the treatment with both drugs

administered simultaneously (violet color). The pentagons in yellow show the tumor

growth after the removal of all drugs. The parameter values are the same as in Fig. 1. (b)

The phase trajectories for the two subpopulations, HER2+ (N1), HER2- (N2), under two

sequential treatments considered in Fig. 5a, respectively. The same symbols (circle and

diamond) are used in (a) and (b). The initiation of the drug treatment is indicated by the

red star and the trajectory color indicating the time is shown by the color bar. The drug

name during each treatment period is also listed in the figure. (c) Illustration of the tumor

responses under a sequential treatment of two drugs in different orders.
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Figure 6: Phase trajectories for the two subpopulations as a function of

duration treatment duration. (a) Same as Fig. 5b, treated by Paclitaxel first, followed

by Notchi inhibitor, except for the treatment period (τd) for each drug being one (solid

line), two (dashed line) and three week (dotted line), respectively. (b) Same as Fig. 6a but

treated by Paclitaxel first, then Notchi inhibitor with a three (solid line), and two-week

(dashed line) treatment period for each drug, respectively. (c) Same as Fig. 6b except for

the treatment period for each drug being two (dashed line), and one week (solid line),

respectively. The inset shows the total number (N = N1 +N2) of tumor cells as a function

of time for different treatment periods.
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Figure 7: Tumor size control through a sequential treatment. (a) The Paclitaxel

(violet regions) and Notchi inhibitor (green regions) are used alternatively during the

treatment. The parameter Kdrug
2 = −0.8. Other parameters are same as in Fig. 1. (b)

Instead of the total population size, the phase trajectory for the two subpopulations is

shown and a “limit cycle” -like structure is found under the treatment in Fig. 7a. The

limit cycle is vividly illustrated in the inset, which shows a zoom-in of the dashed

rectangle. The time increases from red, green, cyan to violet color as indicated by the

arrows and the color bar on the left of the figure.
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Figure 8: Targeting cellular plasticity (a) Tumor response for a sequential treatment.

Same as Fig. 5a except for a larger asymmetric division rate (K12 = K21 = 5K0 = 0.45) for

the two cell types. The inset shows the phase trajectory for the two subpopulations under

the different treatment accordingly. (b) Same as Fig. 8a except for a smaller asymmetric

division rate (K12 = K21 = 0.1K0 = 0.009) for the two cell types. The total cell division

rate for each cell (K1 +K12, K2 +K21) and also other parameters are kept the same as in

Fig. 1. (c) Comparison of the tumor responses subject to two treatment methods with

different values of asymmetric division rates shown in Figs. 8a - 8b.
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