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Abstract 

Functional magnetic resonance imaging (fMRI), a non-invasive and widely used human neuroimaging 

method, is most known for its spatial precision. However, there is a growing interest in its temporal sensitivity. 

This is despite the temporal blurring of neuronal events by the blood oxygen level dependent (BOLD) signal, 

the peak of which lags neuronal firing by 4 to 6 seconds. Given this, the goal of this review is to answer a 

seemingly simple question – “What are the benefits of increased temporal sampling for fMRI?”. To answer 

this, we have combined fMRI data collected at multiple temporal scales, from 323 to 1000 milliseconds, with a 

review of both historical and contemporary temporal literature. After a brief discussion of technological 

developments that have rekindled interest in temporal research, we next consider the potential statistical and 

methodological benefits. Most importantly, we explore how fast fMRI can uncover previously unobserved 

neuro-temporal dynamics – effects that are entirely missed when sampling at conventional 1 to 2 second 

rates. With the intrinsic link between space and time in fMRI, this temporal renaissance also delivers 

improvements in spatial precision. Far from producing only statistical gains, the array of benefits suggest that 

the continued temporal work is worth the effort.  
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Introduction 

Functional MRI is one of the most common non-invasive brain imaging methods used to infer neuronal 

activity. By exploiting the coupling between neural responses and subsequent blood oxygenation changes 

(Logothetis et al., 2001), fMRI infers cortical activity by measuring local magnetic susceptibility changes via the 

Blood Oxygen Level Dependent (BOLD) signal (Ogawa et al., 1990). BOLD fMRI’s popularity is likely owed to its 

ease of use, high contrast to noise ratio, and the relatively high spatial precision of its functional 

measurements, which ranks highest amongst non-invasive in-vivo neuroimaging techniques. In fact, with the 

growing availability of ultra-high field magnets (e.g. >= 7T) and the development of ever more efficient 

acquisition software and hardware (Bollmann and Barth, 2020), it is now routinely possible to acquire 

functional images with submillimeter spatial resolution (e.g. 0.8 mm isotropic; (Koopmans et al., 2010; 

Margalit et al., 2020; Olman et al., 2012; Siero et al., 2011), or even 0.5 mm isotropic; (Vizioli et al., 2020b)), 

allowing the investigation of some of the most fundamental units of neural computation, such as cortical 

layers and columns. 

Despite the second to sub-second temporal resolutions with which we can acquire images with the 

BOLD fMRI technique, the vascular response lags neuronal events (Logothetis et al., 2001), blurring the 

temporal precision relative to neuronal responses. The temporal response of the BOLD signals follows a 

double gamma function, with a large signal increase peaking some 5 to 6 seconds after stimulation, and a less 

prominent undershoot far outlasting the positive peak with an overall duration of approximately 20 seconds 

(Glover, 1999). These numbers differ by many orders of magnitude in comparison to the occurrence of neural 

events, which span the millisecond range. Consequently, fMRI’s temporal dimension has traditionally been 

more neglected, with the vast majority of studies relying primarily on its spatial characteristics.  

This is not to say that fMRI’s temporal information has not been studied or used to interpret neural 

activity. For example, in considering relative temporal differences on how stimuli and task demands drive 
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differential responses, there have been a number of investigations, including how delayed decision making 

affects the BOLD signal (McGuire and Kable, 2015), investigations into the variability in temporal dynamics in 

the non-human primate auditory pathways (Baumann et al., 2010), or into the variability in the context of 

visual and semantic processing (Avossa et al., 2003; Formisano and Goebel, 2003; Vu et al., 2016). 

Substantial research efforts have produced more efficient hardware and software, decreasing fMRI’s 

repetition time (i.e. the time required to record a whole volume; TR). Recently, using these highly accelerated 

acquisition protocols, researchers have been able to acquire BOLD time series with unprecedented whole 

brain temporal resolutions (i.e. ~300-500 ms; Lewis et al., 2016; Vu et al., 2016). However, as most of what we 

know about the temporal characteristics of the BOLD signal have been learned with supra-second temporal 

resolutions, the impact of such high temporal resolution remains to be determined. Further work is required 

to understand the full potential of faster sampling in enabling more precise insights into neuro-temporal 

dynamics, more accurate characterization of the BOLD response function, or potential gains in statistical 

power compared to more conventional temporal resolutions. With faster TRs and improved signal to noise 

ratios (SNR) there is the exciting possibility of uncovering faster vascular dynamics, such as the initial dip 

(Menon et al., 1995).  

In this work we aim to quantify the benefits of acquiring BOLD fMRI data with sub-second temporal 

resolutions. While the bulk of this work will focus on task-based fMRI, we will also touch upon the benefits of 

temporal resolution in the context of resting state fMRI, as resting state analyses are increasingly popular and 

widely used. We will review the literature and complement existing findings with empirical data to 

demonstrate the impact fast acquisitions have with regards to spatial and temporal information in fMRI. We 

will briefly touch upon the technical development that rendered fast (here defined as <1s) and ultra-fast (here 

defined as <0.5s)  fMRI possible. We will also examine the challenges associated with collecting, analyzing and 

interpreting fast data and consider the cost vs. benefit trade-offs of rapid data acquisition. Finally, as the BOLD 

signal in space and time are intrinsically linked and precision in one domain could inform or give rise to 
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precision in the other, we will examine whether the ability to acquire higher temporal resolutions allows us to 

simultaneously and more precisely consider the information content from both dimensions.  

Early temporal work. 

Interest in fMRI began very early, shortly after its inception, and built upon the prior literature of 

mental chronometry, which primarily used reaction time measures to examine the timing of cognitive 

processes (Posner, 1978). Despite temporal lag and blurring, the goal for fMRI in this context is to determine 

the relative order of neuronal events within and across brain regions. While it is likely to remain unattainable 

to precisely identify the absolute ordering or directionality of neuronal events with fMRI, uncovering the 

relative timing of these events is more within reach. Historical examinations of the BOLD signal noted that 

events with an 8 second interstimulus interval (ISI) were visibly separate in signal traces (Bandettini et al., 

1993). Another study (Kim et al., 1997) was able to resolve 2s long blocks of finger tapping tasks separated by 

only 3 seconds. These early proof-of-principle studies showed that the BOLD signal could be used to examine 

temporal dynamics, but such slow experimental designs were not optimized for widespread usage.  

Following developments in statistical analyses and fMRI methods, work in mental chronometry grew 

more advanced. One method, used by Menon and colleagues, involves performing a linear fit to the initial 

rising portion of the hemodynamic response (HDR; (Menon et al., 1998)). The point at which this best fit line 

intercepts the baseline BOLD signal is known as the time-to-onset (TTO). By comparing this onset time 

between regions, they uncovered latency differences between the primary visual cortex and the supplemental 

motor area in a visually cued motor task (Menon et al., 1998). Though the approach put forward by Menon et 

al. became a popular method for determining the relative timing of events, alternative approaches, such as 

fitting a single gamma function and deriving its onset (TTO) or the time-to-peak (TTP) (Miezin et al., 2000) 

have also been used. In general, these methods take advantage of the characteristic shape and relative 

consistency of the HDR in order to deconvolve sub-TR variability in neural timing. Studies like these, however, 
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often implemented very specific task designs, which are not broadly applicable or used substantially less than 

whole brain coverage in order to reduce the TR. 

Later work attempted to provide a more comprehensive view of BOLD temporal effects, using complex 

sequential tasks (combining auditory perception, mental imagery, and motor responses) to measure the order 

of mental operations across larger areas of the cortex (Formisano et al., 2002). Formisano et al. (2002) for 

example were able to detect sub-TR and sub-second delays between multiple regions despite TRs on the order 

of 2 seconds. These studies show that even with longer TRs, it is possible to extract rich temporal information 

from BOLD responses due to the consistent nature of the HDR. Of course, this consistency only emerges under 

specific circumstances, that is, within the same area, in response to the same or very similar stimulus. Another 

method to derive sub-TR timing effects that builds on this consistency combines the canonical HDR with its 

temporal derivative in a general linear model (GLM) framework. By comparing the amplitude of the temporal 

derivative to the canonical response, one can determine the relative timing of events (Henson et al., 2002; 

Liao et al., 2002). Building on temporally shifted HDRs, an alternative approach entails evaluating model fits 

between the fMRI time signal and HDRs with different time lags, simulating different timings of neuronal 

events. This approach has been argued to potentially lead to a temporal precision spanning the 200ms 

(Hernandez et al., 2002) or even 100ms (Bellgowan et al., 2003) range. In an alternative approach, Sigman and 

colleagues manipulated the relative timing and duration of a series of sequential events to jointly consider the 

magnitude and phase of the BOLD response in order to determine timing with 100ms precision (Sigman et al., 

2007). By taking advantage of repetition suppression effects, Ogawa and colleagues showed that fMRI could 

even detect modulations in the 10s of milliseconds differences when considering cross hemispheric inhibition 

or neural refractory processes due to short interstimulus intervals (Ogawa et al., 2000). 

These studies highlight early interest in fMRI temporal dimension. However, in spite of these dramatic 

temporal findings, early reports present a number of limitations. These approaches are in fact limited in scope, 

as they are only applicable to a small subset of possible scientific contexts and questions. This limitation is 
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related to a number of factors, including the necessarily constrained or highly specific experimental designs, 

the typically large voxel sizes, or very limited fields of view. As such, a clear need emerged for methods that 

allowed for faster sampling in conjunction with whole brain acquisition or, alternatively, a limited field of view 

with substantially higher spatial resolution.  

Advancements in MRI  

 To date, most of the fMRI applications looking to exploit temporal information did not have the 

benefits of fast or sub-second temporal sampling combined with relatively high SNR/CNR and large, or even 

whole, brain coverage (e.g. de Zwart et al., 2005; Weilke et al., 2001). In recent years there have been 

substantial improvements in magnet hardware, including an increasing prevalence of ultrahigh field (>= 7 

Tesla) strengths and improvements in transmit (Wu et al., 2019) and receive coil arrays (Uğurbil et al., 2019). 

The use of higher magnetic fields results in improved image SNR as well as increases in the CNR of the BOLD 

fMRI signal (De Martino et al., 2018; T. Vu et al., 2017). These gains can be traded in for increased spatial 

resolution (as has historically been the case), increased temporal resolution, or some combination of both. 

The development in coil array technology has permitted the spatial encoding of signals via the sensitivity 

profile of the individual coils, with higher channel count coils allowing for more precise spatial encoding 

(Uğurbil et al., 2019). Spatial encoding using information from the RF coil arrays means less required spatial 

encoding from MRI gradient coils or ultimately the feasibility of accelerating conventional image acquisitions 

which rely on gradient encoding alone. Multi-channel array coils can be used to spatially encode information 

during the encoding of a single slice, which primarily facilitates the acquisition of higher spatial resolutions, or 

used to encode multiple slices simultaneously, which can significantly improve the temporal resolution of the 

acquisition (Larkman et al., 2001; Moeller et al., 2010).  

Simultaneous multi-slice (SMS) or multiband (MB) imaging (Breuer et al., 2005; Feinberg et al., 2010; 

Larkman et al., 2001; Moeller et al., 2010) was introduced to reduce the total time needed to acquire a 
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volume by collecting multiple slices simultaneously. This led to a revolution in the fMRI field for multiple 

reasons. While introduced to improve the temporal resolution or efficiency, this did not mean that it was only 

relevant to high temporal resolution applications. On the contrary, since higher spatial resolution studies were 

inherently temporally inefficient due to the many more slices required, the introduction of MB/SMS actually 

made higher spatial resolution studies feasible via much more tolerable TRs or allowing for increased coverage 

in field of view limited studies. The method is, of course, equally amenable to improving the temporal 

sampling for a given spatial resolution and coverage. By maintaining a constant resolution and coverage, 

entire volumes can be acquired in a fraction of the time – up to 6 or even 10 times faster, as was 

demonstrated by the Human Connectome Project (Uğurbil et al., 2013). Alternatively, MB has been exploited 

by auditory researchers to allow more “dead time” between TRs, enabling longer stimulus presentation time 

in the absence of hardware related acoustical noise (De Martino et al., 2015). With typical 3T fMRI voxel 

resolutions (i.e. 2-3mm isotropic), it is possible to get whole brain images in less than a second or even under 

500ms. Novel acceleration methods continue to be developed, pushing acquisition times for reasonable brain 

volumes well below 500 or 100 ms (Chang et al., 2013; Lin et al., 2011; Vu et al., 2018). Collectively, the 

increase in receiver coil elements, improved accelerated acquisition and reconstruction methods (Koopmans 

and Pfaffenrot, 2021), and higher field strengths, all provide an encouraging outlook for rapid temporal 

sampling in fMRI. However, as temporal resolution becomes finer, appropriate analytical strategies to deal 

with these super-fast acquisitions are required.  

Statistical and Methodological Considerations  

Hemodynamic response variability 

The conventional HDR has served the fMRI community well and, through parametric manipulations 

and analyses strategies, it is possible to determine sub-TR shifts, even with relatively low temporal resolution. 

However, the shortcomings of the canonical HDR, derived from sensorimotor and auditory cortices at 1.5 
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Tesla with 2.2x2.2x5 mm3 voxels (Glover, 1999), are becoming increasingly clear. It has long been known that 

the HDR can vary depending on the duration of the stimulus (Boynton et al., 1996; Glover, 1999), the precise 

stimulus presented (Boynton et al., 1996; Thompson et al., 2014), and the specific region studied (Gonzalez-

Castillo et al., 2012; Handwerker et al., 2004; Taylor et al., 2018). Statistical approaches, such as adding more 

basis functions to the conventional HRF to account for temporal shifts and dispersion (Friston et al., 1998; 

Henson et al., 2001; Pernet, 2014) have improved, but not eliminated, the impact of hemodynamic variability 

at typical sampling rates. Rapid sampling can also mitigate these effects, allowing the HDR to be better 

characterized (Lewis et al., 2018; Lin et al., 2018, 2013). Unbiased estimates of the HDR can also uncover 

elusive temporal features, such as the initial dip (Buxton, 2001), which is absent from canonical HDR models.  

In modeling the HDR with insufficiently flexible basis functions, or inadequate temporal resolution, 

temporal differences can instead manifest as differences in amplitude, which can lead to incorrect inferences 

(Lindquist et al., 2009). This challenge increases as briefer stimuli (i.e. less than 1 second) are used. When 

stimuli are 1 second or longer, the BOLD response tends to add linearly, such that a response to a 2 second 

stimulus matches the summation of a pair of 1 second stimuli (Boynton et al., 2012, 1996). With rapid 

sampling and brief stimuli, the hemodynamic model requires further consideration and models may need to 

be updated to account for these differences. A discussion of the precise shape of the HDR under all possible 

stimulus types, durations and sampling regimes is beyond the scope of this paper (see Polimeni & Lewis in the 

current issue for further consideration of these points: Polimeni, and Lewis, 2021).  

A potential pitfall for any indirect measure of neural response such as fMRI is the difficulty in 

differentiating between vascular and neuronal temporal dynamics (Bandettini, 2014; Drew, 2019). For 

example, there is the danger of interpreting vascular delays as meaningful temporal differences in neuronal 

responses. Findings that longer time-to-peak is correlated with larger FWHM responses appear to uncover 

venous effects that do not necessarily hold neuronal basis  (de Zwart et al., 2005). That is, hemodynamic 

signaling delays and blood transit time lead to larger and sluggish responses in the superficial venous drainage, 
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a factor that should be considered when averaging within regions of interest for example. As such, extracting 

neuronally relevant temporal information from BOLD fMRI data can be challenging.  

Regional variability, as measured by breath holding induced hypercapnia experiments, suggest that 

vascular delays vary across the human brain  (i.e. up to +-5 seconds; Chang et al., 2008; Moia et al., 2021), 

though this range values can reflect draining veins, such as the superior sagittal sinus (Chang et al., 2008). 

These effects can be measured, and potentially accounted for to reduce their deleterious impact (Erdoğan et 

al., 2016). Moreover, this variability is highly regional and experiments with reversed stimulus orderings 

suggest that fMRI can successfully capture interregional latency differences (Lin et al., 2013). Alternatively, 

one can examine ipsi- and contralateral activation, as the approximate left/right symmetry of the brain yields 

similar responses at zero delay (Yeh et al., 2013) (though there is of course variability at finer scale Lin et al., 

2018; Park et al., 2019). 

Beyond these effects, care must be taken to distinguish between delays due to the processing of 

stimuli within a region and delays in processing between regions. For example, even in a relatively simple 

visually cued button response task, there are a number of latencies to account for: the latency between visual 

input and neural firing in the visual cortex (~30ms), the onset of detectable BOLD signal changes (~2000ms), 

the conduction and processing time between V1 and the SMA and on to motor cortex, as well as the 

conduction time from M1 to the appropriate muscle groups (~120ms) (Menon et al., 1998). Additional latency 

differences can occur as stimuli take longer to process and identify, revealing putative increases in neural 

processing (Bellgowan et al., 2003).  

While optimal experimental design for such techniques is beyond the scope of this manuscript, 

estimation of the HDR, and thus its actual parameters such as onset time and time-to-peak, is improved using 

short stimuli with jittered interstimulus intervals (Birn et al., 2002; Dale, 1999). In addition to improving 

estimations of the underlying HDR, there appear to be other reasons to prefer brief stimuli (<=1s), as these 

may be associated with fewer vascular artifacts and greater temporal precision (Hu et al., 1997; Menon and 
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Kim, 1999). Analyses appear to benefit from a focus on a consistent onset and rise (such as time to half) of the 

fMRI response, as other measures such as time to peak or the post-peak portion of the response may reflect 

contributions from ongoing or prolonged activity, rather than initial response to the stimulus (Bellgowan et al., 

2003; Menon et al., 1998). Alternatively, differentiating the timing of neuronal processing across tasks and or 

stimuli can be performed in the typical GLM framework by using a canonical response in addition to 

derivatives (Henson et al., 2002).  

 

Statistical implications of faster TRs in fMRI 

Shorter TRs can extract timing information of cognitive processes (such as face processing (Gentile et 

al., 2017) and can lead to more precise parameter estimates, higher tSNR, and larger t-statistics (G. Chen et al., 

2015; McDowell and Carmichael, 2019; Posse et al., 2012), which can be loosely defined as the estimated 

amplitude of the BOLD response (or contrast) divided by the model’s standard error. Other works find more 

modest effects, with limited benefits due to faster sampling (Bhandari et al., 2020; Demetriou et al., 2018). 

These mixed results may suggest that faster sampling combined with typical analysis methods are unlikely to 

give large benefits, however this should not be a cause for concern. The primary issue at hand is that most 

comparisons between conventional BOLD fMRI and faster sampling MB based BOLD fMRI have not considered 

an exhaustive comparison of how the removal of structured noise (discussed below), could improve results. In 

addition, these papers use the canonical HDR rather than customizing the response for each participant, task 

or voxel. Finally, these papers consider, by and large, typical analyses strategies examining groups of subjects. 

While these analysis strategies are valid and widely used, they may miss or average out the effects that are 

most interest to rapid fMRI researchers. Unsurprisingly, the benefits of faster sampling may require additional 

processing steps or special considerations to fully gain the benefits or appropriately handle the corresponding 

tradeoffs.  
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The increase in temporal samples is the most obvious benefit of faster sampling, which is typically 

equated with a one-to-one increase in degrees of freedom. However, individual volumes of fMRI data are not 

statistically independent, and instead exhibit a strong temporal autocorrelation, which must be accounted for 

in order to produce valid inferences (Bullmore et al., 1996) when using the typical t-statistic/p-value approach. 

Failure to do so will result in an artificial inflation of statistical power, especially for GLM related contrasts and 

associated p-values. In conventional fMRI, this problem is often addressed using relatively simple 

autoregressive models (i.e. AR(1)) (Friston et al., 2002), which attempt to estimate the amount of 

autocorrelation in the timeseries using only one preceding timepoint. While this appears to be valid for 2 to 3 

second sampling rates, it is inadequate for second to sub-second TRs, leading to inflated t-statistics (see Figure 

1D) and concerns about false positives (Bollmann et al., 2018; Chen et al., 2019; Lenoski et al., 2008; Olszowy 

et al., 2019; Purdon and Weisskoff, 1998). On the other hand, beta values, reflecting BOLD response 

amplitude, are minimally changed by accounting for temporal autocorrelations (see Figure 1C). As sampling 

rates increase, the relative contribution of thermal noise increases (due to lower SNR from shorter TRs) and 

autocorrelation effects span more volumes (Chen et al., 2019). Modeling physiological noise using methods 

such as RETROICOR (Glover et al., 2000; Olszowy et al., 2019), can lead to whiter residuals, however it does 

not fully solve the autocorrelation issue (Bollmann et al., 2018), so these more advanced methods are still 

required. 

In dealing with autocorrelation correction, estimating parameters on a voxel by voxel or tissue by 

tissue basis is preferred for accuracy (Eklund, Anders et al., 2012; Lenoski et al., 2008) This is due to variability 

in the amount of temporal autocorrelation across the brain (Kaneoke et al., 2012), particularly between grey 

and white matter (Worsley et al., 2002). While the basic AR(1) is insufficient, there is not a clear answer as to 

what model order is required. AFNI uses a voxel-wise autoregressive moving average (ARMA(1,1)) (Chen et al., 

2012), which combines the AR(1) model with a moving average (MA(1)) component to account for the 

presence of thermal noise in the fMRI timeseries. This relatively simple addition appears to perform well, even 
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at sampling rates as low as 645 milliseconds (Olszowy et al., 2019), though there is potential for improvement. 

In contrast to the default AR(1) model, SPM has recently implemented a method called FAST, which uses a 

collection of exponentially decaying functions and their derivatives to fit the timeseries autocorrelation, which 

also successfully reduces false positives (Corbin et al., 2018; Olszowy et al., 2019). Fitting complex AR models 

for each voxel does raise statistical as well as computational concerns. While higher AR models (i.e. 

considering more time lags) can be used to effectively account for autocorrelation, estimating higher and 

higher model orders is computationally inefficient and may result in overfitting, leading to spurious estimates 

(Bollmann et al., 2018). A recently developed approach nicely handles both the voxel-by-voxel fitting and 

excessive model order concerns by using methods based in information theory to select the autoregressive 

model order, rather than using a modification of the AR(1) approach (Luo et al., 2020). Tested against resting 

state data with 300 and 500ms TRs as well as simulated data they show that this method successfully controls 

false positives, though model orders as high as AR(10) may be required.  

Collectively these findings show that, as sampling rates increase, the field should consider 

autocorrelation approaches that estimate use higher model orders and perform estimates on a voxel-by-voxel 

basis. These concerns, which primarily relate to conventional GLM-based approaches for statistical inference, 

apply not only to fast TR data, but to fMRI in general, and become more apparent in extreme cases, such as 

that of ultra-fast fMRI.  

One frequent approach, equally applicable to standard and fast fMRI, that effectively circumvents the 

above considerations related to the inflation of statistical power, is the implementation of independent 2nd 

order inferential statistical tests. When carried out across sufficiently large samples, straightforward group 

inferences may be minimally affected by inflated single subject statistics (Bhandari et al., 2020; Kirilina et al., 

2016). For other cases, more advanced analyses can be performed at the within-subjects level, across, for 

example, single runs estimates of BOLD responses, which may benefit from denser time course sampling. 

Univariate (e.g.  Dowdle et al., 2021) and multivariate (e.g. Kriegeskorte and Bandettini, 2007; Vizioli et al., 
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2020a) parametric tests using subjects or runs as independent observations are in fact routinely used. 

Nonparametric statistical approaches, such as bootstrap confidence interval that make fewer assumptions 

about the data distribution, thus avoiding many of these concerns, are also a valid alternative. In other words, 

the concerns about inflation of statistical power with ultra-fast fMRI are primarily rooted in GLM-based 

statistical inferences. These concerns can be mitigated by assigning statistical significance on the basis of 

empirical p-values that are derived from independent estimates of BOLD activation, such as different subjects 

or experimental runs, rather than using GLM contrast-based p-values. When considering statistics derived 

from separate runs for example, it is also more straightforward to examine individual differences in space and 

time, which are necessarily blurred when many subjects are combined. 

In summary, fMRI’s increased temporal resolution, which allows a better characterization of BOLD 

responses, also leads to a significant increase in the number of temporal samples, introducing an additional 

degree of complexity in analyzing and interpreting ultra-fast data. However, there are a number of more or 

less refined strategies to deal with these additional complexities, that can also be circumvented using non 

GLM-based inferential statistic, allowing exploitation of fast-TR data. 

 

Empirical effects of faster sampling rates.  

Though a number of questions remain about the best methods to use and how acquisition strategies 

will alter metrics such as tSNR, some of these effects can be readily demonstrated. Here we show evidence of 

these statistical considerations with a dataset collected at 7T, using visual stimuli consisting of faces at varying 

phase coherence levels.  

Four (2 female) healthy right-handed subjects (age range: 18-31) participated in the study. All subjects 

had normal, or corrected vision and provided written informed consent. The local IRB at the University of 

Minnesota approved the experiments. In the scanner, participants were instructed to perform 2 tasks: face 

detection and fixation. In the former, we varied the phase coherence of the face stimulus from 0% to 40% 
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coherence (10% step size) and participants were instructed to respond as quickly as possible by pressing one 

of 2 buttons on a button box to indicate whether they perceived a face. In the latter, participants were 

instructed to press one of the 2 buttons on the button box when the fixation color changed to red. Every 500 

ms, the fixation changed to one of five colors (red, blue, green, yellow or cyan) in a pseudorandom fashion, 

avoiding consecutive presentations of the same color. The frequency of button presses was kept constant 

across tasks. Visual stimuli were identical across tasks in order to examine differences based only on 

attentional effects. Tasks were blocked by run and counterbalanced across participants.  

We acquired 3 runs per task. Each run lasted approximately 3 mins and 22 secs and began and ended 

with a 12-second fixation period. Within each run, we showed 40 images (5 phase coherence levels x 4 

identities x 2 genders) presented for 2000 ms, with a 2000 ms interstimulus interval (ISI). Importantly, we 

introduced 10% blank trials (i.e., 4000 ms of fixation period) randomly interspersed amongst the 40 images, 

effectively jittering the ISI.  

All functional MRI data were collected with a 7T Siemens Magnetom System using a 1 by 32-channel 

NOVA head coil. BOLD fMRI data were collected using 4 unique sequences varying in TR from 1000 to 323ms 

(Table 1). For each sequence, parameters were adjusted, including spatial resolution, in order to produce 

images with comparable signal to noise ratios (SNR) despite changes in TR. The flip angle was chosen to match 

the Ernst angle independently for participant and sequence. The dataset with a 1s TR dataset was used to 

create the visual cortex regions of interest used in the following sections, using the contrast to non-zero faces, 

and adjusting the threshold until voxels that were in early visual cortex were isolated. These maps were then 

resampled for the more rapid acquisitions. While it would be preferable to use a separate localizer, as this 

circular selection does lead to a bias in favor of the slowest sampled dataset (1000ms), this bias cannot explain 

our primary finding of benefits in faster sampling (see below).  
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TR (ms) Multiband In-Plane 

Acceleration 

(GRAPPA) 

Partial 

Fourier 

Spatial 

Resolution 

(mm) 

TE (ms) Bandwidth 

(Hz) 

Number of 

Slices 

1000 5 2 7/8ths 1.6x1.6x1.6 22.0 1923 85 

590 5 2 7/8ths 2.0x2.0x2.0 15.6 2170 70 

414 5 2 7/8ths 2.5x2.5x2.5 16.4 2193 55 

323 5 2 7/8ths 3.0x3.0x3.0 14.2 2231 45 

Table 1. Sequence parameters used for the empirical demonstration data. TR: Repetition Time; TE: Echo Time.  

 

We processed the data in AFNI, performing slice time, motion and distortion correction and automated 

alignment to each participant’s anatomical image. Example images from each TR are shown in Figure 1, panel 

A. The images are similar, with the primary visible difference due to the voxel size. In order to confirm that the 

chosen sequence parameters successfully produced images with comparable SNR despite the changes in 

spatial and temporal resolutions, following (Dietrich et al., 2007), we calculated an image SNR metric by 

dividing the mean signal intensity in the gray matter by the standard deviation of the background (i.e. “noise”) 

signal. 

Gray matter was defined using a mask of the cortical ribbon derived from FreeSurfer (Fischl and Dale, 

2000) and resampled for the varying spatial dimensions of each of the acquisitions. Background signal was 

taken as the standard deviation within a sphere of 9mm radius, positioned outside of the head and regions of 

ghosting. Image SNR values were comparable across sequences, with a slight bias towards the 1000 ms TR, 1.6 

mm isotropic voxel protocols (i.e. the HCP protocol). This is not surprising in light of the extensive effort 

(Glasser et al., 2016) devoted to optimizing the HCP acquisition pipeline (however note the largely overlapping 

error bars in Figure 1A). 
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Figure 1. Effects of faster sampling on statistical and signal characteristics. A) Image SNR 

characteristics, with images from a single subject. Image SNR values were comparable across sequences (with 

largely overlapping error bars representing the standard errors across subjects), with a slight bias towards the 1000 

ms protocol. B) tSNR measures, average over subjects. Faster sampling leads to substantial gains in tSNR 

throughout the brain, with the largest effects visible with a sampling rate of 323ms. C) Activation amplitudes (betas) 

for the nonzero phase face stimuli compared to baseline. Betas are little changed due to accounting for 

autocorrelation in the timeseries. D) T-statistics for the same contrast. Unlike betas, both the extent and the 

magnitude of the t-statistics is reduced when we attempt to account for temporal autocorrelation. These effects are 

most pronounced for the 323ms data. For visualization purposes, the beta and t-statistic maps use a t threshold of 

p<0.01 from the average t-statistics.  

 

Next, we computed the voxel-wise acquisition specific TSNR, defined as the mean of the signal in each 

run, after detrending with polynomials up to order 3, divided by the standard deviation. tSNR maps were 
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warped into standard space independently for each sampling rate and averaged (Figure 1B). In contrast to 

image SNR, the tSNR shows increases as faster sampling is used. The highest tSNR is found for the most rapid 

acquisition and particularly in cortical areas. This is likely due to a number of factors, including reduced 

aliasing of physiological noise, better estimates of motion, better sampling of the HDR in addition to larger 

voxels (see below). Note that in the present dataset we chose to maintain identical acceleration factors across 

acquisition types in order to reduce the confound of SNR changes that can arise due to increased rates of 

acceleration (L. Chen et al., 2015). Furthermore, increases in tSNR are expected to saturate even as SNR 

continues to increase (Triantafyllou et al., 2011), implying that it is necessary to look beyond the tSNR metric 

in order to evaluate the benefits of increased temporal sampling.  

In order to examine the statistical properties of the data, each run was scaled to have a mean of 100 

and we then performed a GLM using the canonical HDR as implemented in AFNI (‘SPMG1’). The resulting beta 

and t-statistic maps were then warped into standard space and averaged for visualization purposes. Figure 1 

panel C shows the mean beta values (only voxels with average t-statistic corresponding to p>0.01 are shown) 

from the contrast of all nonzero phase face stimuli versus baseline, conducted without (top) and with 

autocorrelation correction (bottom). Consistent with expectations, beta values show minimal differences 

between these two approaches, however, large differences are seen between different repetition times. In 

the 1000ms acquisition, the activation patterns show fine scale detail and larger amplitudes relative to the 

faster TRs, which also used larger voxel sizes, leading to partial volume effects. Though there is a loss of spatial 

precision due to the design of this experiment, there are benefits of rapid temporal sampling which will be 

discussed in further detail in a subsequent section.  

In contrast to the lack of differences between betas, Figure 1, panel D shows the t-statistics maps from 

the two respective models. While a TR of 1000ms has very similar t-statistics between the two different 

approaches, larger differences are seen for the faster TRs. Two directly related effects are observed. First, the 

activation extent is reduced, as fewer voxels survive the arbitrary p<0.01 threshold. Second, the magnitude of 
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the t-statistic is reduced, particularly in the case of the 323ms dataset, when autocorrelation correction is 

used. The peak magnitude of the t-statistics are reduced as the autocorrelation correction reduces the inflated 

t-statistics.  

It should be noted though that, in light of the concomitant changes in temporal sampling rates and 

spatial resolutions across sequences, the observed tSNR gains are due, in part, to the larger voxel sizes, which 

increase as TRs get faster. In order to examine this possibility, the 1000ms data were smoothed, in Fourier 

space, to produce 3mm-equivilent data and resampled. These simulated 1000ms, 3mm data were then 

subjected to identical processing and analysis steps. tSNR was calculated as before showing that much, but not 

all, of the tSNR gains seemed to be related to voxels volumes (Figure 2A). Importantly, the activation extent 

(Figure 2B,C) and the peak of the t-statistic values remained significantly larger for the rapidly sampled data 

(Figure 2C), even when accounting for temporal autocorrelation. These findings suggest that the larger voxels 

do contribute to the higher tSNR measures, however the improvements above and beyond the smoothing 

effects support the conclusion that at least part of the observed improvements are related to faster sampling. 

As mentioned previously, these improvements could be related, amongst other things, to better sampling of 

the HDR (thus capturing more information) or reducing the relative impact of sudden subject movements. 
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Figure 2. Characteristics of simulated 3 millimeter, 1000ms data. A) tSNR measures, average 

over subjects. The simulated 3mm data show gains in tSNR, but remain below the peak obtained with a sampling 

rate of 323ms. B) Activation amplitudes (betas) for the nonzero phase face stimuli compared to baseline. The impact 

of autocorrelation on betas is minimal, with the simulated data showing a larger, but still relatively smaller extent of 

activation. D) T-statistics for the same contrast. The 1000ms data is again little changed by simulating 3mm data 

acquisition and the peak t-statistics remain larger in the data sampled at 323ms. For visualization purposes, the beta 

and t-statistic maps use a t threshold of p<0.01 from the average t-statistics of original 1000 and 323ms data are 

reproduced from Figure 1. 

 

 

Collectively these results highlight how, in an acquisition strategy where image SNR is matched across 

different protocols, temporal SNR can still increase with faster sampling rates and, additionally, reasonable 

patterns of activation can be generated for each acquisition. These findings also show the wide range of 

spatial-temporal scales available to investigators. One could also imagine reducing the coverage in order to 

achieve comparable temporal resolutions for a given spatial resolution, thereby gaining benefits of both 

increased spatial and temporal sampling.  
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Denoising approaches can benefit from faster sampling 

High frequency physiological noise arises primarily from the oscillatory nature of cardiac pulsations, 

which are typically around 1 Hz (Chen et al., 2019). In addition, there are slower physiological noise sources 

which include variation in the heart rate (Chang et al., 2009), respiration (Birn et al., 2008) and linked factors 

such as arousal (Chang et al., 2016). While traditional fMRI sometimes samples fast enough to capture 

variance driven by processes such as respiration (TR of ~1.5s), cardiac signals require substantially faster (<500 

msec) acquisitions. Under the slow TR fMRI framework these signals do not disappear, but are instead aliased 

into lower frequencies, corrupting the portion of the spectrum in which task responses or resting state 

fluctuations appear. With sufficiently fast sampling rates, it is often believed that it is possible to remove the 

unaliased physiological signals via filtering, however, this ignores higher order harmonics (Chen et al., 2019). 

Encouragingly, modeling methods that use cardiac and respiratory recordings can be used (Glover et al., 2000; 

Kasper et al., 2017) to generate regressors that capture and remove physiological noise. A limitation of this 

approach is that researchers often do not collect physiological recordings or are unable to acquire sufficiently 

clean recordings. Of course, if the physiological signals are corrupting the data, perhaps it is possible to derive 

the waveforms in a data driven manner. This idea was present in the early days of fMRI, with work using the 

phase information present at the center of k-space (‘frequency’ space, i.e. the Fourier transform of the image) 

to estimate respiratory and cardiac signals (Le and Hu, 1996). Recent work has conceptually built on this 

approach, reconstructing these physiological signals in a data driven manner when TRs are sufficiently short. 

Using an approach labeled HRAN, a statistical model of harmonic regression with autoregressive noise, 

Agrawal and colleagues show that with fast enough sampling, estimates of cardiac and respiratory noise can 

be produced from the fMRI data alone (Agrawal et al., 2020). These estimates performed as well as 

physiological noise regressors from RETROICOR and did not require separate physiological noise recordings.  
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Another approach involves examining time lagged correlations of the cardiac trace, as measured from 

pulse oximetry, in order to map its time lag across the brain (Tong et al., 2014). When sampling is sufficiently 

fast, it can be seen that the cardiac signal has effects across the whole brain, though the timing varies – an 

observation that requires rapid sampling to examine. This method can also be used to examine the low 

frequency fluctuations that are present in fMRI data, and again requires rapid sampling to reduce the aliasing 

of cardiac and respiratory signals into the lower frequencies of interest (Hocke et al., 2016). Though some 

harmonics may remain aliased even at fast sampling rates, there is a clear benefit of faster sampling in 

uncovering and potentially removing these confounding effects. At a minimum, fast sampling reduces the 

amount to which high frequency physiological noise components are aliased into the lower frequencies which 

are typically of interest for fMRI.  

In addition, structured noise (which include noise from sources such as bulk motion) removal processes 

do appear to benefit from shorter TRs. With fast sampling, independent component analysis (ICA) methods 

appear to have more success in removing physiological noise and motion (Boubela et al., 2014; Griffanti et al., 

2014), which can be applied in both task and resting state analyses. Multi-echo fMRI, a method that captures 

multiple “exposures” of the BOLD contrast in a single volume acquisition, can be combined with ICA methods 

for denoising (Kundu et al., 2012). With multi-echo fMRI contrast, denoising can be done based on whether 

there is a dependence of the signal on the echo time and then classifying signals as either BOLD or noise-like 

effects (Kundu et al., 2017, 2012). Multi-echo denoising used with ICA can also benefit from faster sampling 

rates (Boyacioğlu et al., 2015; Olafsson et al., 2015). Other denoising methods, such as GLMDenoise (Kay et al., 

2013), which uses cross validation across multiple runs and derives noise regressors using principle component 

analysis (PCA) after determining a subject specific HDR, is also expected to perform better with faster 

sampling. Broadly speaking, any method which attempts to partition out insufficiently sampled temporal 

components of the signal is expected to benefit from faster sampling. 
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In addition to structured noise sources as discussed above, thermal noise is also a concern in fMRI. 

Thermal or system noise is Gaussian in nature and its relative contribution to the image increases with finer 

spatial sampling (Triantafyllou et al., 2011, 2005) or with the use of accelerated techniques (Todd et al., 2017). 

In rapid temporal sampling, lower flip angles are used, reducing the (arbitrary) signal intensity (in a given 

volume of tissue) of the image and its ratio to thermal noise. Unlike physiological noise sources, which are 

more detectable with faster sampling, there is no such benefit for thermal noise. Retrospectively, the thermal 

noise contribution in fMRI has typically been suppressed using spatial smoothing, which necessarily reduces 

spatial precision and can erroneously shift peak activation (Geissler et al., 2005; Jo et al., 2008; White et al., 

2001). In high-speed fMRI, this may be even less desirable, as spatial resolution sacrifices have already been 

made to achieve the desired temporal resolution. Recent developments have led to methods that use low-

rank patch based PCA methods to remove, in part, noise that cannot be distinguished from Gaussian (i.e. 

thermal noise) in the fMRI timeseries (Vizioli et al., 2020b). This method, known as NORDIC, can lead to 

increased t-statistics without the image blurring that is associated with spatial smoothing (Vizioli et al., 2020b).  

Here we show, using the previously introduce 323 millisecond dataset, that the NORDIC method is able 

to suppress thermal noise in rapidly sampled data. The NORDIC method was applied to these data before any 

processing. Subsequently, identical processing methods were applied to the images (see Empirical effects of 

faster sampling). This led to substantially less variance in the timeseries, and additionally, following the 

suppression of thermal noise, the contribution of physiological noise sources is clearer (Figure 3). The top left 

shows this for a single subject single voxel case in which the reduction of noise in the timeseries is clear, while 

the overall structure remains intact. This effect is apparent in the frequency domain after a fast Fourier 

transform (FFT), in which the respiratory (at ~0.3Hz) and cardiac (~1Hz) frequency peaks can be clearly 

distinguished after NORDIC but are buried in the high levels of thermal noise in the original data. These effects 

are also clear in the data after meaning over 419 voxels in the visual cortex ROI. While the mean timeseries 

are nearly identical, the FFT plot shows a clear reduction in power across a broad band of frequencies. As 
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faster sampling become the norm, there is a clear need for methods that are able to suppress the relatively 

larger contribution of thermal noise. This is particularly true for the higher signal frequencies that are of 

interest and often contain physiological information that may be difficult to resolve due to thermal noise.  

 

Figure 3. Timeseries and FFT plots show effects of NORDIC processing for 323ms data. Top Left. The 

timeseries for a single voxel is shown for the original (blue) and NORDIC-processed (Orange) data. The original data 

shows a larger amount of spurious noise, which is suppressed following NORDIC processing. Bottom Left. The 

FFT plots for this single voxel show that the effects of NORDIC are present across the entire power spectrum, though 

the respiratory and cardiac peaks at 0.3Hz and 1Hz remain in the data and are more easily seen. Top Right. Using 

the mean within the 419 voxels of the visual cortex ROI, there is little difference in the timeseries before and after 

NORDIC processing. Bottom Right. The FFT plot again shows a large suppression of noise, with physiological 

noise sources left intact.  
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Collectively, these findings show that there is a synergistic effect of faster sampling and denoising. 

These methods, whether they are tuned to remove physiological noise, other structured noise, or even 

thermal noise, appear to benefit from the increased dimensionality and reduced temporal aliasing achieved 

with fast fMRI acquisitions. This in turn produces better estimates of the hemodynamic response, higher t-

statistics, and/or better parameter estimates (Bhandari et al., 2020). For example, going from a sampling rate 

of 1000ms to 323ms reduced the variance in single trial beta estimates, yielding a 57% (±6.2%) reduction in 

the standard deviation across trials for the 40% phase condition in the visual cortex ROI. The subsequent 

applications of NORDIC in the 323ms dataset, led to a further reduction of 9.5% (±6%) in the standard 

deviation of single trials, consistent with the effects described in prior work (Vizioli et al., 2020b). More work is 

required to sufficiently tease apart the benefits and downsides of faster imaging, as it is plausible that optimal 

analyses strategies will lead to more substantial analytical gains that have yet to be realized using methods 

that were developed for much slower sampling rates. 

 

Sampling rate interactions with common preprocessing steps 

Estimating and correcting for motion is a critical step in the fMRI analysis pipeline. Faster sampling can 

allow for a more precise snapshot of motion, depending on the time scale of the motion relative to the TR. 

Volumes are aligned to one another, typically using a least-squares rigid body approach (i.e., 6 degrees of 

freedom), which reduces but does not entirely remove the effects of movement. Faster imaging could lead to 

more accurate motion estimates since motion might be captured instead of aliased, producing better 

outcomes after motion correction. However, there is a concern in that motion parameters in fast sampling 

regimes suggest that participants are constantly moving, with previously unnoticed motion occurring in the 

phase-encode direction of the EPI scan (Power et al., 2019). These effects have been studied, finding that they 

are due to a number of factors (Fair et al., 2020; Power et al., 2019). Namely, respiration is driving motion 

effects that are both “real”, in that the head is moving due to breathing, as well as apparent motion of the 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 5, 2021. ; https://doi.org/10.1101/2021.06.05.447164doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.05.447164


27 

 

head resulting from magnetic field shifts due to movement of the chest during breathing (Power et al., 2019; 

Raj et al., 2001). In order to appropriately correct for motion, it may be necessary to notch filter the motion 

estimates in the respiratory band (Fair et al., 2020). Alternatively, it may be possible to correct for the effects 

of respiration at the time of acquisition either with dynamic shims (corrections for magnetic field distortion) 

applied during data acquisition (Stockmann and Wald, 2018; van Gelderen et al., 2007) or in a data-driven 

manner (Durand et al., 2001). 

One other consideration is the impact of the slice timing correction. In typical 2D acquisitions, each 

slice (or slice group for multiband) is acquired at a unique point in time, however, the entire volume is 

considered a single timepoint by default. Particularly in event related studies (Sladky et al., 2011) correcting 

for within volume differences in timing improves accuracy and can be critical. The process of doing this does 

incur some penalty due to the necessity of interpolating the unmeasured timepoints and recent work has 

shown that slice-timing prior to motion correction can yield incorrect motion estimates, reducing the 

magnitude of sudden movement in particular (Power et al., 2017). With faster temporal sampling, the need 

for slice timing corrections, and thus interpolation, is reduced (Sahib et al., 2016; Sladky et al., 2011) or even 

eliminated.  

Neural Dynamics 

Relationship between sampling and task effects 

Faster sampling can also improve task separation. While amplitude has long been used as the key 

separator for task activation within the general linear modeling (GLM) framework, two slightly shifted HDRs 

can have identical amplitudes, despite very different response profiles (Lindquist et al., 2009).  

Unbiased deconvolution models, such as those using finite impulse response (FIR) approaches, which 

directly estimate the HDR, have allowed for detailed investigations into the temporal dynamics of the BOLD 

signal. Under the FIR framework, a researcher selects a temporal window, or the number of TRs they expect 
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the stimulus response to last, in which to estimate effects (Dale, 1999; Glover, 1999; Ollinger et al., 2001). The 

design matrix for the GLM then consists of a series of delta functions corresponding to the length of the time 

window multiplied by the number of unique stimulus conditions. This flexible and unbiased (i.e., no 

assumption of shape is made) approach produces a series of betas for each stimulus condition after the GLM, 

corresponding to the temporal estimates of the HDR. This approach can be used to deconvolve stimulus 

responses without making assumptions about specific shapes (Glover, 1999; Lewis et al., 2018). While FIR 

computations avoid mismodeling and mistaking temporal differences as amplitude effects, they do have the 

potential to overfit noise (Kay et al., 2008; Lindquist et al., 2009). Thus, their usage requires careful 

consideration of data quality and the chosen temporal window.  

 

Empirical demonstration of the benefit of faster sampling: 1. Identifying task differences over time 

 To demonstrate the benefit of rapid temporal sampling within the FIR framework, which can be used 

to uncover differences between tasks that may be overlooked with slower sampling rates, we examined the 

multiple TR dataset introduced previously. In contrast to the GLM using the canonical HDR, we conducted a 

GLM using the finite impulse response (FIR) approach with a window of approximately 12 seconds in response 

to the 5 stimulus conditions (0 to 40% phase) for the separate face detection and fixation detection runs. We 

then extracted the FIR responses from a ROI that consisted of the primary visual cortex and compared all 

voxels FIR responses across all phases for the face detection against the fixation task (Figure 4).  
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Figure 4. Clearer task differences at faster sampling rates. A) Panel A shows the average FIR (mean across 

subjects and phase coherences) for all resolutions elicited in the primary visual cortex during fixation and face 

detection task. Error bars portrays standard errors across subjects B) Zoomed in version of the dotted boxes in 

panel A. Note: 1. how latency differences across tasks become more prominent as TR decreases, particularly between 

1000 and 323ms TR (arrows); 2. How amplitude difference across tasks also become more pronounced as TR 

decreases. 
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Our data indicate that as sampling rates increase, a more precise characterization of the HDR leads to a 

more precise quantification of temporal differences across tasks. Consider the 1 second TR acquisition (Figure 

4, First column) in which 2 timepoints corresponding to peak of the curves can be seen as differentially 

responding to the 2 tasks (shown in different colors - column 1, lower; non overlapping error bars). For the 1 

second TR, the HDR elicited by the face detection and fixation task are nearly perfectly overlapping, indicating 

no temporal differences across tasks. As we examine time courses with faster sampling, not only do we see 

more timepoints differentially responding to the 2 tasks (culminating in in 12 or more timepoints at a sampling 

rate of 0.323); but also, importantly, we begin to appreciate differences in the temporal structure of the HDRs 

(Column 4). More specifically, the response elicited by the fixation task drops off faster than that elicited by 

the face detection task (clearly seen for the .414 s and the .323 s TRs). Though preliminary, these findings 

highlight one of the benefits of rapid sampling in increasing the discriminability of task effects on the basis of 

HDRs estimate and show how this effect varies over the duration of the response.  

Moreover, as we sample data faster more prominent temporal structure can be appreciated. For 

example, for the fixation task, the amplitude of the initial dip increases as a function or temporal resolution, 

ranging from an average amplitude of approximately -.01±0.036 (mean ± standard error) for the 1 second TR 

to -0.093±0.047 for the 0.323 second TR (Figure 5, Top). Here we are showing an improved ability to detecting 

early temporal structure (i.e., initial dip) as TR decreases, however, these datasets varied across several 

parameters, including in their spatial resolution and tSNR characteristics. This was done to ensure that image 

SNR was maximized and comparable across protocols (see Figure 1). To further compare temporal 

characteristics across temporal resolutions only (that is, keeping all other parameters constant), we simulated 

3 slower TR datasets by downsampling the 323ms data. These were produced by averaging 2, 3 or 4 

neighboring timepoints to produce simulated data with effective TRs of 646, 969 and 1292ms. Identical 

processing method and analyses were conducted to determine how this change in sampling affected the 

observation of the initial dip (Figure 5, middle row). Despite being derived from the 323ms data, which 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 5, 2021. ; https://doi.org/10.1101/2021.06.05.447164doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.05.447164


31 

 

possess a robust initial dip, we observed that downsampling the data dramatically reduced (646ms data) or 

eliminated this effect (969 or 1292 data). These findings suggest that sampling rates are driving these effects, 

and it is not an artifact of the changing voxel size or tSNR characteristics. 

More importantly, also as a function of temporal resolution, our analyses indicated early emergence of 

attentional differences during the period of the initial dip. We found that, for the fastest resolution only, all 

subjects showed task differences emerged as early as 5 TRs (i.e., ~1.62 secs) after stimulus onset (Figure 5, 

Bottom row), with larger responses (i.e., more negative) for the fixation (amplitude: -0.095±0.053 at TR 5) 

than the face detection task (amplitude: 0.01±0.027 at TR 6). These timings are consistent with those reported 

for the initial dip (Hu et al., 1997; Menon et al., 1995) and suggest that sufficient temporal sampling is 

required to detect such rapid and (across all subjects – see Figure 5) small attentional effects.  
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Figure 5. Clearer emergence of initial dip with sampling rate increases. The top two panels illustrate how the in

becomes more pronounced as TR decreases. Specifically, task differences in the initial dip only emerge at the fas

sampling rate (i.e., 323ms TR). Both top panels zoom in the initial dip for the average FIRs across subjects and co

elicited by both tasks in the visual cortex ROI, with error bars representing standard error across subjects. The to

shows the initial responses in the empirical data for all resolutions (as portrayed in Figure 3). The middle panel in

shows downsampled data, simulating different TRs. Note the striking correspondence between empirical and sim

data. The bottom panel instead shows the first 10 volumes (i.e., 0 to 3.23 seconds after stimulus onset) for each 

subject and for both tasks, only for the 323 ms TR data (i.e., the fastest temporal sampling), which the data set sh

the earlies differences across tasks. Note how all subjects show an increased negativity for fixation compared to 

detection. 
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The initial dip, which was noted to begin within the first second of a BOLD response (Hu et al., 1997; 

Menon et al., 1995), has been difficult to confirm (Buxton, 2001), with a number of studies not being able to 

identify this temporal component, despite ample averaging (Fransson et al., 1999, 1998).  A number of 

variables have in fact been attributed to the presence or absence of the initial dip, including field strength, 

task timing, stimulus type, echo time and spatial and temporal dimensions of the sampled data (Hu and 

Yacoub, 2012; Watanabe et al., 2013) and it is reasonable to expect that these causes can interact. It is, of 

course plausible that subtle differences between the task conditions in early visual cortex are giving rise to 

temporal differences in the initial dip and more generally across the HDR. As such, with typical acquisition 

strategies this effect is missed (Figure 4, first column), leading to incorrect assumptions about task demands or 

task effects. Here we report that attentional differences related to task can also be visible in the initial dip, 

which has been suggested to reflect more localized neuronal responses (Hu et al., 1997; Menon et al., 1995; 

Yacoub and Hu, 2001). While this observation further supports the value of temporal information in fMRI, the 

size, transient nature, individual differences and magnitude of these effect further advocate the need to 

continue developing tailored tools to extract this information. 

As the data presented here are meant to provide insights into the temporal dimension of BOLD 

responses, a thorough neuroscientific interpretation of these results is beyond the scope of this work. 

However, the differences in the amplitude of the initial dip across tasks could be related to response inhibition 

during the fixation task, where faces are considered as distractors and must be suppressed.  

Generally, we report both early (i.e. 5 TR after stimulus onset) and late (after the HDR peak) latency 

differences become clearer as temporal resolution increases. Albeit preliminary, due to the small N, these 

promising results suggest that, if fine grained temporal information is available, faster temporal sampling may 

uncover additional temporal structure or stimuli related effects that were previously overlooked. Of course, 
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finding such effects may require specific analysis strategies tailored for voxel wise HDRs and single trial 

estimates of responses.  

 

Temporal dynamics in fMRI  

 Historically, rapid (i.e. sub-second) temporal dynamics in fMRI have been for the most part neglected 

due to the inability of acquiring rapidly sampled data in conjunction with both reasonable spatial resolution 

and/or whole or near whole brain coverage.  More recently, optimizations in both software and hardware 

have allowed the recording of functional images with unprecedented spatial and temporal resolutions, while 

maintaining reasonable SNR and CNR. Consequently, more and more attention has been devoted to statistical 

analyses of TR-to-TR fluctuations in the sub-second regime. 

 For example, in the realm of spatial analyses, considerable attention has been given to spatial 

clustering (Cox et al., 2017; Eklund et al., 2016; Hayasaka and Nichols, 2003; Nichols, 2012), including using 

Monte Carlo methods (Cox et al., 2017). Advanced multivariate methods have also been developed to account 

for spatial patterns of activity (Haxby et al., 2014, 2001), including using search light approaches (Kriegeskorte 

et al., 2006). Notably, these spatially oriented methods can also benefit from temporal detail. For example, Vu 

and colleagues demonstrated that accurate word timing, made possible by fast TR fMRI data, improved the 

performance of multivoxel pattern analyses (MVPA) (Vu et al., 2016). 

Recently, however, there has been some development in methods which directly consider temporal 

dynamics. For example, when considering deconvolution approaches, it is necessary to correctly deal with the 

multiple levels of statistical interdependence. A voxel-wise, linear mixed modeling approach was developed to 

examine both where and when statistical differences occur in complete HDRs (G. Chen et al., 2015). The 

benefit of this method is that it allows the statistical examination of a full curve, rather than summarizing the 

multiple parameter estimates via averaging or area-under-the-curve calculations. This becomes increasingly 

important as sampling rates and thus the number of timepoints estimated in the deconvolution increase.  
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Analogous to multivariate pattern analysis for spatial maps, a recently developed method considers 

the temporal corollary of this, termed temporal MVPA (tMVPA) (Vizioli et al., 2018). tMVPA uses single trial 

response time courses or single run FIR estimates to compute single trial Representation Dissimilarity Matrices 

(RDM) independently per condition within a given ROI. To infer statistically significant differences across time 

courses, tMVPA builds on a sliding window approach (extensively tested on real and synthetic data elsewhere 

– Vizioli et al., 2018) that allows for the precise identification of the temporal window of an effect and 

whether this encompasses only a few time points or is sustained over a larger time window. Multivariate 

analyses methods have been shown to have increased sensitivity for the analyses of spatial maps 

(Kriegeskorte and Bandettini, 2007; Vizioli et al., 2020a) in fMRI. There is evidence that this is also the case for 

the temporal domain, with prior work finding earlier identification of statistically significant task differences 

on both real (Ramon et al., 2015) and synthetically simulated data (Vizioli et al., 2018).  

 

Partial windowing of temporal effects 

Partial volume effects (i.e. when the prescribed voxel size is not small enough to capture only a single 

tissue) are often discussed in the fMRI literature. This describes a phenomenon in which a single voxel can 

have contributions from multiple tissue types, or from two nominally independent cortical layers (Siero et al., 

2013). In the temporal domain, a parallel manifestation of this is aliasing of oscillatory signals due to sampling 

slower than the Nyquist frequency. This is typically considered in the context of physiological noise regressors, 

such as cardiac pulsation (Chen et al., 2019). For example, cardiac signals, which tend to range between 0.8 to 

1.5Hz require rapid sampling rates in order to avoid aliasing, even faster than what is used for increasingly 

common sub-second TRs. While rapid sampling does improve the fidelity of these signals and aid in their 

removal (Chen et al., 2019; Tong et al., 2014) we wish to highlight additional considerations beyond 

undesirable physiological noise.  
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Unlike periodic physiological signals, there is often little consideration of any loss of task relevant BOLD 

signal information due to insufficient temporal sampling. However, given the rich dynamics of the BOLD signal 

and the short delay between a stimulus and a potential initial dip or initial rise in signal intensity, there is a risk 

that insufficient sampling rates can lead to “partial windowing” of temporal signals of interest. This effect can 

manifest due to their short duration and magnitude, as is the case for the initial dip. To some extent, this can 

be mitigated by jittering the stimulus onset with respect to TR (Amaro and Barker, 2006; Dale, 1999; Miezin et 

al., 2000; Watanabe et al., 2013), but this requires jittering with sufficient time steps in order to capture all 

temporal aspects of interest, i.e. on the order of 500 ms or shorter. Considering the duration of a conventional 

HDR (on the order of 20s), this would require multiple stimulus presentations to capture a single “full” HDR, 

producing overly long scan times or reduce repeats of the stimulus. This is also not to say that faster 

acquisition times cannot take advantage of jitter, however, they would require substantially fewer variants of 

the stimulus timing to sample all of the temporal characteristics of interest, thereby reducing “partial 

windowing” effects. If sampling is sufficiently fast, then the effect of partial windowing is reduced even 

further, producing estimates of the HDR that capture fast temporal dynamics (Figure 5, above).  

 

High frequency and dynamic correlations in resting state 

If the effects of interest are oscillatory in nature, then jittering is no longer a reasonable option and 

instead rapid acquisitions may be more suited for observing high frequency effects. For example, in resting 

state fMRI, the primary frequencies of interest appear in low frequency bands, between 0.1 and 0.01Hz. For 

these frequencies, faster sampling primarily serves to reduce the impact of physiological noise, as discussed 

previously. Such low frequency bands are easily sampled with classic 2 to 3 second TRs and would, by 

necessity, contain substantially higher relative power when compared to high frequency fluctuations. 

Recently, however, with the advent of faster sampling, there have been observations of resting state 

correlations at frequencies greater than 1Hz (Gohel and Biswal, 2014; Smith-Collins et al., 2015). Though this 
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work is still ongoing, there are methodological concerns as denoising procedures make it possible to 

reintroduce noise under the linear regression framework (Lindquist et al., 2019) and even produce spurious or 

enhanced high frequency correlations (Chen et al., 2016).  

One argument against high frequency correlations concerns the plausibility of their origin. Based on 

conventional models of the BOLD response, it should be incredibly difficult to detect neuronally driven 

oscillations at such high frequencies (Chen et al., 2016), however it has been suggested that through suitable 

task designs it is possible to derive information from effects in the 10s of millisecond range (Ogawa et al., 

2000). This is ultimately an empirical question that can be evaluated using oscillating stimulus designs with 

sufficiently high frequencies. Unlike relative timing within regions or between separate tasks and stimuli, 

oscillatory or incredibly rapid stimulus presentation is much more difficult to detect. This is due to the 

plateauing nature of the BOLD response, converting these rapid oscillations into small fluctuations. Recent 

work has uncovered that with sufficiently fast sampling, fMRI can capture rapid oscillations in visual stimuli up 

to 0.75 or potentially 1Hz (Lewis et al., 2016) and other have found that neurovascular coupling appears to 

occur on shorter timescales than were typically thought (Siero et al., 2011; Silva and Koretsky, 2002). How 

these findings have led to a reconsideration of the dynamics of the HDR and its underlying biological principles 

are considered in a separate manuscript in the current issue (Polimeni, and Lewis, 2021). 

An alternative extension to resting state analyses, known as dynamic functional connectivity (dFC), 

consider the change in the correlation pattern over time, often within sliding windows containing 30 to 60s 

worth of samples (Hutchison et al., 2013; Preti et al., 2017). These studies seek to explore how brain states 

change, in contrast to static functional connectivity which captures a single measure of correlations across the 

brain. This approach has been used, for example, to link behavioral measures of executive performance with 

the changes in network state (Braun et al., 2015) or link changes in the default mode network while listening 

to narratives with memory retrieval (Simony et al., 2016). One recurring question for a windowed approach 

concerns the window length. With a TR of 2 seconds, there is often a difficulty in selecting an adequate 
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window length that balances statistical power concerns against capturing each dynamic state (Hutchison et al., 

2013). Here the statistical gains of rapid sampling can be directly linked to the benefit of uncovering neural 

dynamics, as there is evidence that faster sampling provides for gains in measuring significant functional 

connectivity changes within shorter and shorter windows (Sahib et al., 2018) or capturing network effects that 

are missed in static analyses of clinical populations (Zhang et al., 2018). Though resting state emerged as a 

methodology focused on slow (0.1 to 0.01Hz) oscillations for which typical 2s TRs are more than adequate, 

these findings suggest that there are substantial benefits and novel neuroscientific findings waiting to be 

uncovered with fast fMRI.  

 

Combining fMRI and EEG/MEG 

Tools such as electroencephalography (EEG) and magnetoencephalography (MEG) offer high temporal 

resolution for human imaging but suffer from limited spatial precision. By combining these techniques with 

fMRI, concurrently in the case of EEG, or consecutively for MEG, it is possible to combine the precise spatial 

information with the rich temporal signals from electrophysiology.  

In line with the goal of clinical utility for fMRI, there is ongoing research in epilepsy, as concomitant 

spatial and temporal precision could prove extraordinarily useful for presurgical planning, for example. Even 

with TRs of 3000ms early work showed that these methods were not only feasible but could potentially 

augment the limited spatial precision of EEG, though effectiveness varied over the sample (Salek-Haddadi et 

al., 2006). However, there is evidence that faster fMRI methods may have superior performance (Jacobs et al., 

2014) and clinical promise. Using a rapid functional imaging technique termed magnetic resonance 

encephalography (MREG) (Assländer et al., 2013; Zahneisen et al., 2012), Jäger and colleagues were able to 

obtain whole brain data with 100ms temporal sampling and reasonable (4 to 5mm) voxel resolutions. In 

patients with epilepsy, they found increased support for positive BOLD responses co-occurring with epileptic 
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spikes , though further work is required to better understand the link between the highly variable spikes and 

the resulting HDR (Jäger et al., 2015). 

Furthermore, in the case of simultaneous EEG/fMRI, the temporal information available from EEG can 

be used to supplement and better understand the co-occurring fMRI signal (Chang and Chen, 2021; Murta et 

al., 2015) or potentially confirm novel hemodynamic findings (Lewis et al., 2016). Studies combining EEG and 

fMRI have spanned the full range experimental paradigms routinely used in fMRI , from naturalistic stimuli 

(Whittingstall et al., 2010), to resting state (Deligianni et al., 2014; Goldman et al., 2002; Mayhew and 

Bagshaw, 2017; Meyer et al., 2013; Wirsich et al., 2020) and typical task based approaches (Hill et al., 2021; 

Mayhew and Bagshaw, 2017). 

Using flickering gratings within task setting, for example, Lewis and colleagues found that HDRs in 

response to 0.5Hz and 0.2Hz oscillating stimuli were larger and more visible than expected by conventional 

HDR models. By recording simultaneous EEG, they were able to argue against these linear canonical models of 

the HDR, as the underlying neural activity (driving the EEG responses) did not differ strongly in magnitude 

(Lewis et al., 2016).  

Though MEG cannot be acquired simultaneously with fMRI, it still offers promise for integration. 

Difficult fMRI latency investigations (See Hemodynamic Response Variability section) can be augmented with 

event timings derived from MEG to investigate and validate latency estimates derived from fMRI (Lin et al., 

2013). Even in complex, putatively hierarchical stimulus processing, such as visual object recognition, 

combining MEG and fMRI experimental results (Cichy et al., 2016), yields millisecond resolution in the ventral 

visual stream processing cascade. 

While there are several exciting research avenues associated with combining these methods, there are 

a number of limitations to consider. For example, in light of their different physiological origins, reconciling 

neuronal responses from  hemodynamically driven BOLD effects and electrophysiological cortical signals can 

be a challenge (Rosa et al., 2010). In addition, EEG data acquired simultaneously with fMRI is corrupted with a 
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number of artifacts, including those from the MR hardware, such as gradient effects (Allen et al., 2000; Yan et 

al., 2009) and those associated with the subject, such as the head motion or the ballistocardiograph artifact 

from the heartbeat (Allen et al., 1998; Debener et al., 2008; Masterton et al., 2007). Pushing simultaneous 

EEG/fMRI to higher field strengths (>=7 Tesla) increases the prominence of these artifacts and further 

degrades the BOLD signal (Jorge et al., 2015; Neuner et al., 2014). 

Despite these challenges, these findings highlight the diverse benefits of combining the temporal 

resolution available with EEG or MEG with the spatial precision of fMRI – and show that despite the lagging 

BOLD response, there are benefits in accelerated fMRI when combined with these temporally precise 

methods.  

Relationship between spatial specificity and the temporal signal.  

While much of fMRI has pushed for higher and higher spatial resolutions, there is also a need to 

consider how temporal dynamics interact with spatial precision as a specific point in time gives rise to a non-

stationary spatial activation map. For example, we know that the HDR changes across regions, but also within 

regions across cortical depths. It would be logical to assume that when temporal sampling is too low, accurate 

characterization of the model HDR (or of the empirical time courses themselves) would be unachievable. 

Consequently, model fit may be suboptimal, leading to misestimation of response amplitude parameters, thus 

producing inaccurate spatial maps. Here, we consider further implications for spatial resolution and specificity 

in the context of temporal information.  

 

Depth-dependent fMRI and spatiotemporal information 

There is evidence that early and late phases of the HDR have greater spatial specificity relative to the 

central peak (Goodyear and Menon, 2001; Puckett et al., 2016; Shmuel et al., 2007). In line with this, it was 

proposed that fitting or analyzing just the early parts, such as the initial dip, could provide a method to gain 
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spatial specificity (Hu et al., 1997; Menon et al., 1995; Yacoub and Hu, 2001). A similar possibility manifests in 

depth-dependent fMRI data. As venous blood drains through the cortical column, there is a slight delay 

between the peak of deep layers and the large veins on the pial surface (Petridou and Siero, 2019; Siero et al., 

2011, 2015; Silva and Koretsky, 2002). This effect appears as differences in the HDR between layers, which 

must be accounted for in analyses. Using an identical model for the HDR across all layers will lead to 

mismodelling (Lindquist et al., 2009) and could produce spurious layer dependent effects if the temporal 

differences appear as amplitude changes. Alternatively, as a consequence of the same mismodelling, the true 

effects, which are often very small in magnitude, could be missed. HDR estimates must be carefully tailored 

for each layer in order to make depth dependent inferences about neural connections or activity. 

Building on this idea, it is has been recently demonstrated that we can use this temporal information 

to separate out the earlier responses, which may be nominally more spatially precise, from the later responses 

(Kay et al., 2020). This method, termed temporal decomposition through manifold fitting (TDM), uses 

unbiased FIR estimates of voxel time courses to produce two regressors for each event, one early and one 

late. This method separates out these responses rather than accounting for timing differences, as is done with 

methods that use multiple basis functions. While this method works with data sampled at sampling rates of up 

to 2.2 seconds, the time courses of early and late responses are highly correlated, and higher temporal 

sampling would aid in separation and provide more data dimensionality for estimating early and late 

responses. More work is needed to consider how spatial effects interact with the temporal domain and what 

resolutions are required for an optimal experimental paradigm. It is likely that reduced field of view imaging 

will remain common, as whole brain imaging at both high spatial and temporal resolutions remains difficult.  

 

Line scanning as a preview of the future of fMRI 

Accelerated fMRI can offer increases in precision and spatial specificity across larger sections of the 

cortex but remains relatively course on the scale of local neural activity. One technique, which takes the 
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temporal and spatial focus to its extreme is termed line scanning (Albers et al., 2018; Yu et al., 2014). Typically 

performed in animal fMRI, line scanning offers unprecedented spatial <(.5 mm) and temporal (100 to 50ms) 

resolution with the limitation of collecting an extremely limited, one-dimensional portion of the cortex.  

In rodents this has been used to interrogate the precise temporal differences between optogenetic 

stimulation relative to direct sensory stimulation (Albers et al., 2018), as well as confirming the layer specificity 

of fMRI responses (Yu et al., 2014). While these results were obtained under very specific acquisition 

paradigms, they support the quest for higher temporal and spatial precision, showing that this, under the right 

circumstances, can provide for neurobiological precision as well.  

In humans, line-scanning presents new challenges, however, development has made initial 

explorations of this technique possible. Recent preliminary results in humans show that 0.2mm resolution 

with 100ms temporal precision is achievable, albeit over a single and selective portion of the human visual 

cortex (Morgan et al., 2020). By using a multi-echo sequence, this group was able to estimate the T2* 

parameter and its variability across cortical layers (Koopmans et al., 2011), obtaining increased functional 

precision. In addition, they find that this precise mapping technique recapitulates findings from 

electrophysiology, namely visual tuning properties (Morgan et al., 2020). 

These results build upon the ideas of the previous sections, showing that even at the extremes of 

currently feasible temporal and spatial sampling there is rich information to be gained. Of course, the current 

field of view requirements prevent examining the interaction of local and long-range networks, limiting the 

type of research questions that can be asked for now. In addition, data collected at such high resolutions 

inherently has very low SNR, being dominated by thermal noise. These issues highlight the important of 

methods to reduce thermal noise, such as NORDIC (Vizioli et al., 2020b, see Denoising approaches section). In 

time, it is likely that the difficulties associated with these types of acquisitions and analyses will be further 

reduced, providing for a new frontier of spatiotemporal fMRI discoveries.  .   
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Conclusion 

Technical developments and the increasing availability of advanced pulse sequences and methods have 

made ultra-fast fMRI routinely possible. Here, we have tried to address a seemingly straightforward question – 

What are the benefits of increased temporal sampling for fMRI? In combining information from existing work 

and our own empirical demonstrations we have shown that the answer is complex, but ultimately 

encouraging. We have argued that the benefits are not just limited to statistical gains, but encompass a wide 

range of potential neuroscientific questions, including BOLD dynamics at rapid timescales. While we find 

consistent effects across subjects and convergence with emerging data, additional work, with larger sample 

sizes, will be required to confirm the specific timing of the effects reported. Nonetheless, the idea that faster 

temporal sampling can help extract fine grained temporal information, if it is available, is demonstrated by 

these data. Of course, additional considerations are needed regarding the challenges and difficulties 

associated with collecting, analyzing and interpreting rapidly sampled data. Nevertheless, the potential 

benefits are many: statistical power, better denoising, better spatial resolution and, importantly additional 

and more precise insights into neuronal temporal dynamics. Though space and time are intrinsically linked in 

fMRI, the relationship between accurate measures of temporal dynamics and spatial precision is often 

overlooked. More precise timing estimates can produce better models, which in turn will produce more 

accurate spatial maps. Collectively this diverse array of benefits suggests the continued work is worth the 

effort. With the combined efforts across hardware, pulse sequence developments, statistical understanding 

and methodological approaches the functional neuroimaging field is ready for a resurgence or perhaps a 

return, to the days of in depth, temporal investigations.  
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