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Abstract 21 

At present, drug toxicity has become a critical problem with heavy medical and 22 

economic burdens. acLQTS (acquired Long QT Syndrome) is acquired cardiac ion 23 

channel disease caused by drugs blocking the hERG channel. Therefore, it is 24 

necessary to avoid cardiotoxicity in the drug design and computer models have been 25 

widely used to fix this plight. In this study, we present a molecular fingerprint based 26 

on the molecular dynamic simulation and uses it combined with other molecular 27 

fingerprints (multi-dimensional molecular fingerprints) to predict hERG 28 

cardiotoxicity of compounds. 203 compounds with hERG inhibitory activity (pIC50) 29 

were retrieved from a previous study and predicting models were established using 30 

four machine learning algorithms based on the single and multi-dimensional 31 

molecular fingerprints. Results showed that MDFP has the potential to be an 32 

alternative to traditional molecular fingerprints and the combination of MDFP and 33 

traditional molecular fingerprints can achieve higher prediction accuracy. Meanwhile, 34 

the accuracy of the best model, which was generated by consensus of four algorithms 35 

with multi-dimensional molecular fingerprints, was 0.694 (RMSE) in the test dataset. 36 

Besides, the number of hydrogen bonds from MDFP has been determined as a critical 37 

factor in the predicting models, followed by rgyr and sasa. Our findings provide a new 38 

sight of MDFP and multi-dimensional molecular fingerprints in building models of 39 

hERG cardiotoxicity prediction. 40 

Keywords: Molecular dynamic simulation; Molecular fingerprint; Machine learning; 41 

hERG;  42 
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1. Introduction 43 

Drug-induced toxicity has become a critical reason for the failure of drug 44 

discovery and development in recent years (Wallace, 2015). A previous study showed 45 

that there were more than half of drugs failed (54%) in clinical development among 46 

640 novel therapeutics, while 17% of them failed because of drug-induced toxicity 47 

(Hwang et al., 2016). Besides, it has also been reported that the mean costs required to 48 

bring a new drug to market increased from $374.1 million to $1335.9 million after 49 

counting for costs of failed trials (Wouters et al., 2016). Thus, it has become an urgent 50 

task to find ways to identify the toxicity of compounds on a large scale in drug 51 

development. 52 

Acquired Long QT syndrome (acLQTS), one of the most important diseases 53 

caused by drug-induced toxicity, is a potentially life-threatening cardiac arrhythmia 54 

disease that increases the risk for syncope, sudden cardiac death (SCD), and seizures 55 

(Tester & Ackerman, 2014). The hERG protein is a tetrameric potassium ion channel 56 

and mainly relates to cardiotoxicity and acLQTS (Liu et al., 2020). It has been 57 

reported that the potassium ion channel (hERG channel) may be blocked caused by 58 

antiarrhythmic drug binding, which leads to prolonged repolarization time and 59 

acLQTS (Witchel, 2007). At present, multiple drug candidates have failed due to the 60 

cardiotoxicity of hERG, such as cisapride, terfenadine, sertindole, pimozide, and 61 

astemizole, which have become a significant limiting factor in drug discovery and 62 

development (Bergström & Lindmark, 2019; Villoutreix & Taboureau, 2019).  63 

Computer-aided drug design (CADD) has been thought of as an alternate choice 64 
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to reduce the amount of time and money in the development of drug design, 65 

especially in predicting drug toxicity (Maia et al., 2020). Molecular fingerprints are a 66 

way of CADD and are used to encoding the structure of molecules (O'Boyle et al., 67 

2011). It has been deployed as descriptors for predicting biological activities and 68 

compound properties (Muegge & Mukherjee, 2014). Frequently used molecular 69 

fingerprints are structure-based and property-based (Kelley, 2018; Rogers & Hahn, 70 

2010; Riniker & Landrum, 2013; Riniker, 2017). A previous study of hERG 71 

cardiotoxicity prediction showed that the accuracy of the best model developed by 72 

molecular descriptors reached 0.54 (R2), while RMSE was 0.63 (Johnson et al., 2007). 73 

Another study of the hERG channel also showed that the accuracy of the regression 74 

model by descriptors was 0.60 (Q2) and 0.55 (RMSE) for pIC50 (Radchenko et al., 75 

2017). These results showed the practicalities and effectiveness based on commonly 76 

used molecular fingerprints. However, there are still no fingerprints that considered 77 

the time factor applied on the cardiotoxicity prediction of hERG. 78 

Molecular dynamics fingerprints (MDFP) are the fingerprints based on 79 

calculating the trajectory of molecular dynamic simulation and have rapidly become a 80 

hotspot. After adding the dimension of time, MDFP can be seen as a choice of the 81 

traditional molecular fingerprint. The study of p-glycoprotein substrates prediction 82 

showed that gradient tree boosting (GTB) methods in combination with MDFP was 83 

the only model which achieved a good accuracy on the in-house dataset (Esposito et 84 

al., 2020). Meanwhile, the research of free-energy prediction showed good 85 

performance with a heterogeneous fusion model by MDFP (Riniker, 2017). Besides, 86 
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studies of self-solvation free energies and application of MDFP in SAMPL6 87 

octanol–water log P blind challenge also revealed a high prediction rate (Gebhardt et 88 

al., 2020; Wang & Riniker, 2019). As a consequence, MDFP can be an alternative 89 

choice of traditional molecular fingerprints and has great application potential on the 90 

cardiotoxicity prediction of hERG. 91 

Multi-dimensional molecular fingerprints are indicated as multiple molecular 92 

fingerprints combining together in order to predict more accurately. Previous studies 93 

showed that multi-dimensional molecular fingerprints were better than the single 94 

molecular fingerprint in drug development (Kyaw et al., 2020). Thus, in this study, we 95 

studied MDFP and multi-dimensional molecular fingerprints (MDFP with other 96 

molecular fingerprints) in predicting hERG cardiotoxicity of compounds. The 97 

extensive open dataset of hERG compounds with IC50 values has been collected from 98 

previous studies. Then, molecular dynamic simulation was conducted to generate 99 

MDFP and traditional molecular fingerprints have also been generated by Baseline2D, 100 

ECFP4, and PropertyFP. Finally, the regression models were built by machine 101 

learning with four algorithms. Our study provides new sights on the combination of 102 

multi-dimensional molecular fingerprints and the research of predicting the hERG 103 

cardiotoxicity of compounds. 104 

2. Methods 105 

2.1. Toxicity Datasets 106 

A high-quality hERG inhibitor dataset has been collected from the previous 107 

study (Munawar et al., 2019). The IC50 value is the biochemical half-maximal 108 
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inhibitory concentration and has been used to represent the inhibiting abilities of 109 

compounds on hERG in this dataset (Kalliokoski et al., 2013). The data of toxicity 110 

have been eliminated if the name and IC50 values were repeated. The repeated 111 

molecules have also been averaged if the difference IC50 values were less than one 112 

order of magnitude (Feng et al., 2021). Finally, 203 compounds have been collected 113 

with specific IC50 values of the hERG. The distribution of training and testing sets 114 

followed by 80% and 20%, respectively. The training sets were used for 5-fold 115 

cross-validation and the testing sets were used to check the prediction performance of 116 

the established model for new compounds. Besides, pIC50 is the negative log unit of 117 

the IC50 values and has been used to represent inhibiting abilities better than IC50 118 

(Cortés-Ciriano et al., 2020). Therefore, IC50 of compounds was converted to pIC50. 119 

2.2. MD Simulations 120 

Molecular dynamics (MD) simulation was performed by GROMACS (2020.4). 121 

For compounds in the dataset, mol2 files were obtained from Zinc15 122 

(http://zinc15.docking.org/) by using SMILES files. The topology of compounds was 123 

generated with AMBER14SB force field by ACPYPE (https://www.bio2byte.be/) 124 

(Sousa da Silva et al., 2012). Afterward, the compounds were placed in a 125 

dodecahedron box with a size of 1.0 nm centrally and solvated with the TIP3P water 126 

model. Then, the descent energy minimization with 100ps was applied to the system. 127 

An additional equilibration of 1ns under NVT and NPT conditions was carried out, 128 

while the constant temperature was 300 K and the constant pressure was 1 bar, 129 

respectively (Sun et al., 2020). Finally, the system was performed with running 5 ns 130 
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MD simulation and coordinates were written every 10ps, energies every 1ps. 131 

2.3. 2D Molecular Fingerprints 132 

Three types of molecular fingerprints have been used in this study. Baseline2D 133 

was obtained using RDKit and its elements mainly consisted of 10 counts: number of 134 

heavy atoms, number of rotatable bonds, number of N, O, F, P, S, Cl, Br, and I atoms 135 

(Riniker, 2017; Wang & Riniker, 2019). The PropertyFP fingerprint was also obtained 136 

using the Descriptastorus package from RDKit (Kelley, 2018). It contained nearly 200 137 

atoms features and properties. Besides, ECFP4 was generated using the RDKit 138 

implementation of the Morgan algorithm with a vector length of 2048 and a radius of 139 

2 ( Rogers & Hahn, 2010). 140 

2.4. MD Fingerprints 141 

The MD trajectories were analyzed by the GROMACS toolkit (Ogunwa, 2019). 142 

Following features has been generated: radius of gyration (rgyr), solvent-accessible 143 

surface area (sasa), root mean squared error (rmsd), total energy (tenergy), hydrogen 144 

bonds (hbond), kinetic energy (kinetic), Lennard-Jones short-range energies (LJ-SR) 145 

and Lennard-Jones 1-4 energies (LJ-14). The average (avr), median (mid), and 146 

standard deviation (std) of features were calculated using the R version 3.6.1 (Team, 147 

2013). Fig. 1 showed the MDFP with all properties. 148 

2.5. Feature Selection 149 

Feature selection is critically important for predictive models, especially in 150 

machine learning (Johnson et al., 2018). It provides an effective way to reduce the 151 

dimensionality of data sets, identify informative features, and remove irrelevant 152 
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features, improving the learning accuracy of machine learning models (Holder et al., 153 

2017). In this study, zero variation and near-zero variation features were deleted 154 

firstly using the nearZeroVar function in the R package caret (version 6.0–84) (Kuhn, 155 

2008). Then, recursive feature elimination (RFE) was performed to select the optimal 156 

feature subset using the rfe function in the caret package in a 10 times 5-fold 157 

cross-validation setting (Darst et al., 2018). In the RFE process, all features are first 158 

ranked according to the feature importance values obtained by the random forest (RF) 159 

algorithm, and then RF models are trained iteratively on the features that are gradually 160 

reduced according to the ranking to evaluate the performance of the feature subsets 161 

(Tang et al., 2020).  162 

2.6. Model Construction 163 

In this study, RF, SVM, gradient boosting machine (GBM), and partial least 164 

square regression (PLS) was used for machine learning model construction. All 165 

models were executed beyond R (version 3.6.1) with using the randomForest (version 166 

4.6–12) (Liaw & Wiener, 2002), the kernlab (version 0.9-25) (Karatzoglou et al., 167 

2004), the gbm (version 2.1.5) (Brandon et al., 2019), and the pls (version 2.7-1) 168 

packages (Bjørn-Helge et al., 2019), respectively.  169 

2.6.1 Random forest 170 

RF is the machine learning ensemble classifier and has been applied in many 171 

fields (Breiman, 2001). By constructing multiple decision trees, the RF classifier has 172 

been considered as better performance than the single decision tree (Gandhi et al., 173 

2018). In the current study, the randomforest function has been used to build RF 174 
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classifiers. The number of classification trees and variables randomly selected for 175 

each node spilt have been set as ntree = 500, while mtry was optimized from one-third 176 

of the number of features minus 10 to plus 15. The relative importance of molecular 177 

fingerprints has also been calculated by the important function of the package. 178 

2.6.2 Support vector machine 179 

SVM is a generalized linear classifier based on the principle of structural risk 180 

reduction for pattern recognition (Huang et al., 2018). It is well known as a supervised 181 

learning algorithm that analyzes data and recognizes patterns (Nedaie et al., 2018). In 182 

this study, the radial basis function (RBF) kernel was used for building the SVM 183 

classifier. Meanwhile, the random search method (Bergstra & Bengio, 2012) was also 184 

applied to optimize specific SVM parameters with the regularization parameter C and 185 

σ parameter by using the caret package, while C was from e-2 to e6, σ was from e-7 186 

to e with the step of e0.5. 187 

2.6.3 Gradient boosting machine 188 

GBM is also a tree-based machine learning model. It has been considered as a 189 

step-wise, additive type model which sequentially fits new-tree-based models (Golden 190 

et al., 2019). Meanwhile, it also has many advantages, especially worked well in 191 

practice (Cho et al., 2019). In this study, the total number of trees (n.trees) and the 192 

maximum depth of each tree (interaction. depth) have been optimized by using the 193 

caret package and have been set from 1 to 3000 and 1 to 10, respectively. Besides, 194 

shrinkage and n.minobsinnode were set as 0.005 and 10. 195 

2.6.4 Partial least square regression 196 
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PLS calculates a group of latent variables in connection with the output 197 

maximally and determines the relationship between the input and output data (Foodeh 198 

et al., 2020). It is a stretch of the multiple linear regression models and is widely used 199 

in many domains (Wu et al., 2020). Unlike multiple linear regression (MLR), it can 200 

handle the data with noisy, strongly collinear, and X-variables (Dong et al., 2018). In 201 

this study, n_components for PLS were optimized from 1 to the greatest features or 202 

sample sizes. 203 

2.7. Model Evaluation 204 

In order to test the predictive performance of the models, 5-fold cross-validation 205 

with 10 repeats has been used to evaluate the models. After randomly divided the 206 

original dataset into five equal subsets, four of them were used for training and the 207 

other was used for testing. Then the 5-fold cross-validation was repeated ten times to 208 

reduce the randomness. This cross-validation progress was performed 10 times with 209 

different random seeds of 2, 4, 8, 16, 32, 64, 128, 256, 512, and 1024. Then, average 210 

values were calculated to evaluate the prediction performance of the models.  211 

Root-mean-squared error (RMSE), mean unsigned error (MUE), and R2 has been 212 

used to evaluate the predictive performance of the models. These indicators were 213 

calculated by the following formulas: 214 
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Where P, E�, E, n represent predictive value, the average of experimental value, 215 

experimental value, and compound numbers, respectively. 216 

3. Results and discussion 217 

3.1. Feature selection 218 

In this study, 203 compounds were collected from the previous study and divided 219 

into training and testing datasets with 80% to 20%, respectively. In order to build 220 

models to predict hERG cardiotoxicity, MDFP, Baseline2D, ECFP4, and PropertyFP 221 

have been calculated for the compounds in the dataset. Table 1 illustrated the number 222 

of features calculated from each type of molecular fingerprint and the detailed 223 

description of these features is shown in the supplementary files (Table S1 and Table 224 

S2). After the feature selection by RF-RFE, 11 and 6 features have been selected from 225 

MDFP and Baseline2D, respectively. Meanwhile, there were also 99 features selected 226 

from ECFP4 and 71 from PropertyFP. Percentage increase in MSE (%lncMSE) 227 

obtained by RF was used to evaluate the importance of features. Fig. 2 showed the top 228 

ten features (Baseline2D for six) which important to the prediction models. The 229 

results of MDFP showed that the number of hydrogen bonds between compounds and 230 

water has a significant effect on predicting hERG cardiotoxicity, followed by kinetic 231 

energy and surface area. Besides, the results of 2D molecular fingerprints indicated 232 

that the number of heavy atoms, number of O atoms (oxygens), and number of F 233 

atoms (fluorines) were the most important features in Baseline2D, while MolLog P in 234 

PropertyFP and 3218693969 in ECFP4. Above all, after calculating features in all 235 
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molecular fingerprints, the following features have been selected as the most critical 236 

with heavyatoms, oxygens, fluorines, the median of hydrogen bonds, and 3218693969. 237 

These features may be played important roles in predicting the hERG cardiotoxicity 238 

and should be paid extra attention in the development of drug candidates. 239 

3.2. Prediction performance of the models 240 

After performing feature selection, the GBM, PLS, RF, and SVM algorithms 241 

were used for generating ML models based on the resulting fingerprints. The 242 

performance of these machine learning models was evaluated by 10 times 5-fold 243 

cross-validation and their performances were presented in Table 2. The results showed 244 

that the RMSE of each machine learning model based on PropertyFP is the lowest, 245 

with a range of 0.860-0.960, followed by MDFP, with a range of 0.967-1.039, while 246 

ECFP4 and Baseline2D are poor quality. R2 and MUE also showed the same pattern. 247 

Table 3 illustrated the performance of these models which were used to predict the 248 

pIC50 of the molecules in the testing set. In general, the models show better RMSE 249 

values in the test set than in the 5-fold cross-validation, indicating that the model has 250 

not been overfitted. Meanwhile, compared with the models based on different 251 

molecular fingerprints, the performance in the testing set was similar, while 252 

Baseline2D was slightly better (RMSE=0.721 to 0.795) and MDFP also obtained a 253 

good performance (RMSE=0.755 to 0.819). These results indicated that MDFP can 254 

effectively predict the activity of hERG inhibitors, and the predictive performance of 255 

the MDFP was similar to the traditional molecular fingerprints.  256 

The predictive performance of the MDFP model combined with other molecular 257 
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fingerprints was also investigated in this study. Table 4 and Table 5 showed the 258 

performance of models in the 5-fold cross-validation sets and testing sets while 259 

MDFP combined with other molecular fingerprints, respectively. The results showed 260 

that the combination of MDFP and other molecular fingerprints can obtain a model 261 

with better prediction performance. For example, the model established by the single 262 

molecular fingerprint (MDFP or PropertyFP) in the 5-fold cross-validation had the 263 

best performance as PropertyFP-SVM (RMSE=0.860). However, the model 264 

established by multi-dimensional molecular fingerprints (MDFP and PropertyFP) was 265 

MDFP+PropertyFP-SVM (RMSE=0.837), which showed a better performance than 266 

using the single molecular fingerprints. Besides, models combining MDFP with other 267 

molecular fingerprints also showed better predictive performance in the testing set 268 

(Table 5), while the best model was the SVM model trained on MDFP++ (MDFP with 269 

all other fingerprints) (RMSE=0.696±0.015). These results illustrated that the 270 

performance of multi-dimensional molecular fingerprints was better than the single 271 

molecular fingerprints and MDFP may provide additional effective predictors for the 272 

prediction of hERG inhibitor activity.   273 

In order to improve the prediction performance of the model, we further 274 

averaged the prediction results of the four machine learning models to obtain a 275 

consensus value. The prediction performance was shown in Table 3 and Table 5.  Fig. 276 

3 and Fig. 4 showed the predicted values vs experimental values for MDFP and 277 

MDFP++, respectively. The values of other molecular fingerprints have been 278 

demonstrated in the supplementary files (Fig. S1 to S6). It was found that the 279 
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performance of consensus models was significantly better than the other models 280 

(except PropertyFP). Among the models established by a single molecular fingerprint, 281 

the consensus model based on Baseline2D had the highest accuracy (RMSE=0.713), 282 

while the consensus model based on MDFP also obtained a better RMSE of 283 

0.745.  Meanwhile, in the model based on the multi-dimensional molecular 284 

fingerprints, MDFP+ECFP4 and MDFP++ obtained high accuracy with RMSE of 285 

0.694 and 0.695, respectively.  These results indicated that the integrated model can 286 

obtain a better method for predicting the activity of hERG inhibitors.   287 

In summary, these results illustrated that the MDFP was effective compared with 288 

traditional molecular fingerprints and can truly be an alternative to the other 289 

molecular fingerprints. Meanwhile, the prediction accuracies of all ML models on 290 

multi-dimensional molecular fingerprints were better than the single molecular 291 

fingerprints in predicting the hERG cardiotoxicity. Besides, the integrated models 292 

showed the best prediction than the single models among most of the molecular 293 

fingerprints. Thus, the models obtained by multiple machine learning methods could 294 

be more accurate in predicting the hERG cardiotoxicity of compounds.  295 

3.3. MDFP features associated with cardiotoxicity 296 

To further reveal the contributions of fingerprint features associated with 297 

cardiotoxicity, the correlation coefficient has been used to determine the feature 298 

between MDFP and pIC50. Correlation is a measure of a monotonic association 299 

between 2 variables and Pearson’s correlation coefficient has become one of the most 300 

frequently used statistics (Armstrong, 2019). In this study, Pearson, Kendall, and 301 
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Spearman correlations were used to evaluate the important features of MDFP with 302 

pIC50. Table 6 showed the correlation coefficient between the feature of MDFP and 303 

pIC50. The median of rgyr has been determined as the most relevant feature with 304 

pIC50 (Kendall = 0.35, Pearson = 0.51, and Spearman = 0.49), followed by the 305 

median of sasa and kinetic with the high correlation coefficient. These results showed 306 

the features which extracted from MDFP had strong correlations with pIC50 and can 307 

be used to predict cardiotoxicity in the future study. 308 

3.4. Compared with other models 309 

Recently, a couple of computational models have been developed for toxicity 310 

prediction. Among them, cardiotoxicity prediction has become a hotspot with multiple 311 

studies. Table 7 showed the comparisons between our model and other models for 312 

cardiotoxicity prediction. Compared with other models, the consensus model with 313 

MDFP and ECFP4 showed the lowest RMSE and MUE, with higher R2. Meanwhile, 314 

the molecular fingerprints of previous studies were used by only one dimension, 315 

which may prove that multi-dimensional fingerprints performed well in predicting the 316 

cardiotoxicity of hERG. Besides, although it was lower than QSAR-SVM, the 317 

consensus with MDFP still better than the other models as 0.745±0.005 (RMSE), 318 

which illustrated the advantages of MDFP. These findings showed that MDFP and 319 

multi-dimensional molecular fingerprints with machine learning methods can be an 320 

outstanding model in predicting cardiotoxicity. 321 

4. Conclusion 322 

In this study, MDFP and multi-dimensional molecular fingerprints were used for 323 
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building machine learning models to predict the hERG cardiotoxicity of compounds. 324 

203 compounds were firstly identified to establish the 5-fold cross-validation and 325 

testing datasets. Then molecular dynamic simulation has been used to generate 326 

molecular dynamic molecular fingerprints. Baseline2D, ECFP4, and PropertyFP were 327 

used to generate traditional molecular fingerprints. After that, critical features have 328 

been selected by RF-RFE and 4 machine learning algorithms, namely RF, SVM, 329 

GBM, and PLS were used for building predicting models based on the single 330 

fingerprints and multi-dimensional molecular fingerprints. Besides, the correlation 331 

between MDFP and pIC50 has also been surveyed. Results showed that MDFP has 332 

the potential to be an alternative choice of molecular fingerprints and 333 

multi-dimensional molecular fingerprints are better than single fingerprints in 334 

predicting cardiotoxicity. It also illustrated that the consensus model with MDFP and 335 

ECFP4 has the optimum prediction effect and hydrogen bonds are critically important 336 

in the models with MDFP. Our finding provides a new sight into the application of 337 

MDFP and multi-dimensional molecular fingerprints in predicting the hERG 338 

cardiotoxicity of compounds. Cell and animal experiments will be carried out to 339 

validate further. 340 
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Fig.1. Schematic representation of the MDFP variant with all properties: kinetic, 
LJ-14, LJ-SR, tenergy, rgyr, hbond, sasa, rmsd. Each property is represented by the 
avr (average), std (standard deviation), and mid (median).  
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Fig. 2. The most important features selected by RF-RFE from MDFP, Baseline2D, 
ECFP4, and PropertyFP fingerprints.  
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Fig. 3. pIC50: The experimental values of the 10th operation for the data set. 
Predictions were generated using consensus, GBM, PLS, RF, SVM trained on MDFP. 
The linear regression lines are shown in blue.  
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Fig. 4. pIC50: The experimental values of the 10th operation for the data set. 
Predictions were generated using consensus, GBM, PLS, RF, SVM trained on 
MDFP++. The linear regression lines are shown in blue. MDFP++ including MDFP, 
Baseline2D, ECFP4, and PropertyFP. 
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Table 1 The number of features for the different molecular fingerprints.  

fingerprints 
number of 
features 

number 
of 
selected 
feature  

MDFP 24 11 
Baseline2D 10 6 
ECFP4 2298 99 
PropertyFP 200 71 
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Table 2 Cross-validation performance for models trained using different ML 
algorithms on the molecular fingerprints (MDFP, Baseline2D, ECFP4, PropertyFP). 
Performance metrics are represented as average and standard deviation of 10 times 
5-fold cross-validation runs of different random seeds. 
 

fingerprint 
ML 
models 

RMSE R2 MUE 

MDFP GBM 0.985±0.005 0.523±0.004 0.774±0.005 

 
PLS 1.039±0.005 0.482±0.006 0.797±0.003 

 
RF 0.977±0.005 0.534±0.006 0.768±0.004 

 
SVM 0.967±0.007 0.541±0.006 0.745±0.007 

Baseline2D GBM 1.112±0.009 0.394±0.009 0.884±0.006 

 
PLS 1.189±0.004 0.321±0.007 0.956±0.003 

 
RF 1.036±0.011 0.465±0.011 0.813±0.008 

 
SVM 1.014±0.006 0.492±0.006 0.791±0.006 

ECFP4 GBM 1.072±0.006 0.433±0.007 0.837±0.007 

 
PLS 1.084±0.004 0.433±0.004 0.850±0.006 

 
RF 1.043±0.004 0.464±0.004 0.827±0.004 

 
SVM 1.009±0.004 0.497±0.004 0.800±0.004 

PropertyFP GBM 0.941±0.008 0.562±0.006 0.747±0.007 

 
PLS 0.959±0.008 0.551±0.006 0.776±0.008 

 
RF 0.960±0.004 0.559±0.004 0.763±0.005 

  SVM 0.860±0.006 0.634±0.006 0.676±0.009 
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Table 3 Cross-validation performance for models tested using different ML 
algorithms on the molecular fingerprints (MDFP, Baseline2D, ECFP4, PropertyFP). 
Performance metrics are represented as average and standard deviation of 10 times 
5-fold cross-validation runs of different random seeds. 

fingerprint 
ML 
models 

RMSE R2 MUE 

MDFP GBM 0.772±0.008 0.479±0.008 0.582±0.009 

 
PLS 0.755±0 0.494±0 0.564±0 

 
RF 0.819±0.011 0.398±0.012 0.570±0.006 

 
SVM 0.802±0.010 0.458±0.007 0.586±0.005 

 
consensus 0.745±0.005 0.495±0.005 0.524±0.003 

Baseline2D GBM 0.794±0.005 0.472±0.004 0.568±0.004 

 
PLS 0.772±0.000 0.441±0.000 0.548±0.000 

 
RF 0.795±0.015 0.423±0.015 0.545±0.011 

 
SVM 0.721±0.005 0.525±0.005 0.520±0.011 

 
consensus 0.713±0.003 0.520±0.004 0.507±0.002 

ECFP4 GBM 0.858±0.008 0.348±0.010 0.664±0.009 

 
PLS 0.752±0.001 0.495±0.010 0.578±0.006 

 
RF 0.865±0.009 0.315±0.011 0.635±0.011 

 
SVM 0.737±0 0.491±0 0.553±0 

 
consensus 0.761±0.001 0.457±0.003 0.571±0.003 

PropertyFP GBM 0.813±0.005 0.432±0.006 0.632±0.008 

 
PLS 0.764±0.002 0.492±0.003 0.596±0.001 

 
RF 0.709±0.006 0.529±0.009 0.540±0.006 

 
SVM 0.761±0.035 0.488±0.040 0.605±0.033 

  consensus 0.730±0.008 0.508±0.010 0.560±0.008 
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Table 4 Cross-validation performance for models trained using different ML 
algorithms on the molecular fingerprints (MDFP + Baseline2D, MDFP + ECFP4, 
MDFP + PropertyFP, MDFP++). Performance metrics are represented as average and 
standard deviation of 10 times 5-fold cross-validation runs of different random seeds. 

fingerprint 
ML 
models 

RMSE R2 MUE 

MDFP + Baseline2D GBM 0.991±0.005 0.516±0.005 0.767±0.005 

 
PLS 1.068±0.007 0.458±0.004 0.820±0.004 

 
RF 0.950±0.006 0.560±0.006 0.738±0.005 

 
SVM 0.938±0.008 0.568±0.007 0.717±0.008 

MDFP + ECFP4 GBM 0.975±0.005 0.529±0.006 0.745±0.006 

 
PLS 1.021±0.010 0.509±0.005 0.797±0.009 

 
RF 0.945±0.005 0.566±0.004 0.740±0.005 

 
SVM 0.935±0.005 0.569±0.004 0.740±0.005 

MDFP + PropertyFP GBM 0.915±0.008 0.585±0.006 0.722±0.009 

 
PLS 0.948±0.011 0.568±0.009 0.754±0.011 

 
RF 0.944±0.005 0.578±0.004 0.742±0.004 

 
SVM 0.837±0.006 0.654±0.006 0.659±0.007 

MDFP++ GBM 0.920±0.008 0.580±0.006 0.723±0.008 

 
PLS 0.958±0.007 0.556±0.005 0.754±0.007 

 
RF 0.940±0.005 0.578±0.004 0.742±0.005 

  SVM 0.873±0.007 0.623±0.005 0.686±0.007 
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Table 5 Predictions were generated using different ML models trained on MDFP 
combined with multi-dimensional molecular fingerprints (MDFP + Baseline2D, 
MDFP + ECFP4, MDFP + PropertyFP, MDFP++) in test. MDFP++ including MDFP, 
Baseline2D, ECFP4, and PropertyFP. 

fingerprint 
ML 
models 

RMSE R2 MUE 

MDFP + Baseline2D GBM 0.728±0.008 0.525±0.008 0.544±0.008 

 
PLS 0.751±0.007 0.502±0.011 0.559±0.006 

 
RF 0.789±0.009 0.427±0.011 0.560±0.008 

 
SVM 0.781±0.003 0.494±0.002 0.551±0.001 

 
consensus 0.721±0.003 0.524±0.003 0.518±0.003 

MDFP + ECFP4 GBM 0.758±0.007 0.491±0.007 0.569±0.004 

 
PLS 0.702±0 0.555±0 0.535±0 

 
RF 0.750±0.012 0.472±0.016 0.553±0.007 

 
SVM 0.698±0.003 0.550±0.004 0.522±0.008 

 
consensus 0.694±0.002 0.548±0.003 0.515±0.004 

MDFP + PropertyFP GBM 0.799±0.009 0.456±0.010 0.615±0.008 

 
PLS 0.794±0.000 0.481±0.004 0.610±0.003 

 
RF 0.709±0.008 0.527±0.011 0.549±0.009 

 
SVM 0.723±0.011 0.518±0.012 0.578±0.012 

 
consensus 0.719±0.003 0.523±0.003 0.554±0.003 

MDFP++ GBM 0.811±0.008 0.448±0.009 0.619±0.009 

 
PLS 0.702±0 0.587±0 0.526±0 

 
RF 0.718±0.010 0.513±0.014 0.554±0.006 

 
SVM 0.696±0.015 0.564±0.011 0.516±0.017 

 
consensus 0.695±0.004 0.557±0.004 0.518±0.003 
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Table 6 Correlation coefficient between the features of MDFP and pIC50. 
feature kendall pearson spearman 
rgyr mid 0.35 0.51 0.49 
sasa mid 0.30 0.41 0.43 
kinetic mid 0.28 0.32 0.42 
LJ-SR mid 0.28 0.25 0.41 
rgyr avr 0.23 0.20 0.33 
sasa avr 0.20 0.16 0.29 
sasa std 0.17 0.01 0.25 
hbond avr -0.08 -0.14 -0.12 
hbond std -0.09 -0.09 -0.13 
hbond mid -0.12 -0.19 -0.17 
tenergy mid -0.28 -0.42 -0.41 
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Table. 7 Performance indicators of several cardiotoxicity prediction models reported 
in the literature.  

models RMSE R2 MUE Reference 
QSAR-SVM 0.79 ± 0.05 0.58 ± 0.05 - (Simeon & Jongkon, 2019) 
QSAR-DNN 0.90 ± 0.06 0.49 ± 0.04 - 

 
MLR-Canvas  1.186 0.191 0.941 (Subramanian et al., 2016) 
DNN-DeepChem  1.03 0.351 0.763 

 
PLS-FFD 1.07 0.48 - (Munawar et al., 2019) 
consensus-MDFP 0.745±0.045 0.495±0.005 0.524±0.003 

 
consensus-MDFP+ECFP4 0.694±0.002 0.548±0.003 0.515±0.004 

 
 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 8, 2021. ; https://doi.org/10.1101/2021.06.06.447291doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.06.447291

