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ABSTRACT: 

Biological macromolecules often exhibit correlation in fluctuations involving distinct 

domains. This study decodes their functional implications in RNA-protein recognition and 

target-specific binding. The target search of a peptide along RNA in viral TAR-Tat complex 

is closely monitored using atomistic simulations, steered molecular dynamics simulations, 

free energy calculations, and a machine-learning-based clustering technique. An anti-

correlated domain fluctuation is identified between the tetraloop and the bulge region in the 

apo form of TAR RNA that sets a hierarchy in the domain-specific fluctuations at each 

binding event and that directs succeeding binding footsteps. Thus, at each binding footstep, 

the dynamic partner selects an RNA location for binding where it senses higher fluctuation, 

which is conventionally reduced upon binding. This event stimulates an alternate domain- 

fluctuation which then dictates sequential binding footstep/s and thus, the search progresses. 

Our cross-correlation maps show that the fluctuations relay from one domain to another 

specific domain till the anti-correlation between that inter-domain fluctuations sustains. 

Artificial attenuation of that hierarchical domain fluctuation inhibits specific RNA binding. 

The binding is completed with the arrival of a few long-lived water molecules that mediate 

slightly distant RNA-protein sites and finally stabilizes the overall complex. The study 

underscores the functional importance of naturally designed fluctuating RNA motifs (bulge, 

tetraloop) and their interplay in dictating the directionality of the search in a highly dynamic 

environment. 
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INTRODUCTION 

From microbes to higher organisms, the symbiotic relationship between RNA and protein is 

the key to many cellular functions and regulations 1–6. Unfortunately, due to the unavailability 

of adequate structural information, compared to protein-protein or protein-DNA, studies 

exploring the RNA-protein recognition mechanism are limited. However, the intrinsic 

flexibility of both proteins and nucleic acids, perhaps, presenting one of the critical 

parameters helps to guide proteins to RNA and their binding in a sequence-specific manner7–

10. To be more precise, the overall target recognition is governed by two fundamental 

processes: the efficient search and then the specific binding. Over the years, along with an 

interaction-level description (e.g., electrostatic, base-stacking, H-bonding), the profound role 

of conformational plasticity achieving strong specific binding upkeeps the famous “lock and 

key” binding metaphor11–15. While exploring the binding stability of a RNA-protein complex 

is high-rated as this complex eventually operates the required functions, the target search 

mechanism by which it is destined to form that complex is a priori important but less 

explored.     

 In the case of the DNA-protein complex, it has been well established that the search 

of protein for its binding site is guided by both one dimensional and three-dimensional search 

attributed to sliding and hopping16–18. The target search again involves a conformational 

proofreading mechanism19 where the conformation changes, unless optimal, would affect the 

fidelity of RNA binding by protein. This observation led to the extension of the induced-fit or 

conformational capture model initially developed by Koshland11 for enzyme-substrate 

binding to explain this phenomenon. The induced-fit model states that the first encounter of 

the protein with either RNA or DNA induces conformational changes in either or both of 

protein and RNA(/DNA) to form the biologically functional conformation of RNA-protein or 

DNA-protein complex12,20. This mechanism has been explored in RNA-protein complexes 

like HIV and BIV TAR-Tat 21–24 and Rev-RRE complexes 25,26. However, the induced fit 

model accounted for the specificity of the DNA-protein, or RNA-protein interaction was yet 

to illuminate a detailed mechanistic description of the target search and binding process. 

Meanwhile, a protein-centric mechanism known as the “fly-casting mechanism” was 

proposed by Wolynes and co-workers 27, which accounted for the shortcomings of the 

induced fit model. The “fly-casting mechanism” states that the unfolded protein binds the 

DNA weakly and non-specifically at a relatively large distance, which is subsequently 

followed by the folding of the protein as the protein comes closer and closer to its binding 
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site27,28. This process is accompanied by a reduction in configurational entropy, an increase in 

negative enthalpy by forming stable interactions, and gain of entropy by solvents, thus 

providing an overall negative free energy change to the process27. A funnel-shaped energy 

landscape guides the search process of protein along the DNA similar to that of the free 

energy landscape of protein folding, having a greater global gradient towards the native 

structure as compared to that of local ruggedness 27. The role of conformational plasticity in 

RNA-protein recognition and the abundance of disordered regions in RNA-binding proteins 

(RBPs) have also been well established14. Moreover, it has also been found that these 

disordered regions in RBPs are highly conserved and make direct contact with the RNA for 

recognition9. Thus the flexibility of the binding partners is usually crucial for the RNA-

protein recognition.  

From the nucleic acids point of view, it has been seen that RNA has greater local 

flexibility than that of the DNA as it has a myriad of secondary structural elements such as 

bulges and loops. This flexibility of RNA has been reported to enhance the binding 

propensity of the protein to the RNA10,29. In some experiments, it has been observed that 

increasing the size of the bulge region of RNA leads to an increase in its binding affinity for 

the Tat protein as the flexibility of the RNA increases30,31. Jernigan and co-workers 10 have 

also shown using lattice model calculations that increasing the RNA bulge size leads to an 

increase in conformational entropy of the system and thus leads to an increase in affinity for 

Tat binding. This larger bulge entropies increase the probability of protein to bind to the RNA 

and thus aid in achieving the native bound conformation. Moreover, it has also been reported 

that asymmetric loops create strain in the RNA secondary structure 32 and thus leads to 

widening of major groove, facilitating the cognate protein to bind to the RNA33,34.  

While all of these observations provide a general insight into the importance of 

conformational fluctuation of the binding partners, the more intriguing questions are: How 

the conformational changes/fluctuations can facilitate the molecular search? Whether these 

conformational changes hold secret signals that are sensed by the cognate partner in motion?  

Can this conformational fluctuation control the directionality of the search? This work 

investigates a detailed target search mechanism which not only involves site hopping and 

conformational proofreading it also shows how the conformational fluctuations direct the 

search path. Along with the search progress, the study also finds an intriguing role of some 

long-lived water mediators connecting the long-range specific RNA-protein sites. As a case 
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study, we have investigated the RNA-protein complex formation process between TAR RNA 

and Tat peptide of Bovine Immunodeficiency Virus (BIV). TAR-Tat represents a structurally 

well-characterized RNA-protein model for understanding protein/peptide-mediated RNA 

target recognition mechanism. Tat is one of the crucial proteins encoded by 

immunodeficiency viruses, which binds to the trans-activation responsive(TAR) region of the 

RNA for transactivating the viral RNA, an essential step for viral replication 35,36. We have 

used atomistic simulation, steered MD, free energy calculations, and clustering techniques to 

explore the search pathway of the peptide by which it locates its thermodynamically stable 

RNA binding sites.  

METHODS 

System Preparation 

The initial configuration of BIV TAR RNA bound to Tat peptide was obtained from 

the protein data bank(PDB ID: 1BIV) from a solution NMR structure reported by Patel and 

co-workers 22. The PDB was subsequently modified by removing the phosphate capping at 

the 5’-end of the TAR RNA to generate the initial structure of the BIV TAR-Tat complex for 

simulations. The initial structure of free BIV TAR RNA was obtained by removing the 

coordinates of the Tat peptide from the BIV TAR-Tat initial structure. All of the simulations 

were performed using the GROMACS 2018.3 package37,38. Topologies of all atoms were 

generated using the Amber 99 force field39 with parmbsc040 and chiOL341 modifications. The 

RNA-protein system and free RNA system were centered in a cubic box of length,12 nm, and 

were solvated with the TIP3P water model42. Subsequently, water molecules and sodium and 

chloride ions were added to both the systems to maintain the charge neutrality and mimic the 

system's aqueous physiological environment. Details about the number of species of solvent 

and co-solvent are provided in Table S1.  

Simulation Protocol 

After the complete system have been prepared, the potential energy of both the system 

was minimized using the steepest descent algorithm for the removal of steric clashes. 

Subsequently, for the complex system, both RNA and protein, and for the free system, only 

RNA was position restrained with force constant of 1000 kcal/mol/nm, and ions were frozen. 

After that, the system was equilibrated for 1 ns in an NVT ensemble to ensure proper 

hydration of the ions. The ions were then released at constant volume and were allowed to 
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equilibrate for 3 ns. The RNA and protein were then slowly released by decreasing the force 

constant gradually from 1000 to 10 kcal/mol/nm2 at constant volume for 3 ns, followed by 

complete removal of position restraint on RNA and protein at constant pressure for 500ps. 

Hereafter, unrestrained explicit solvent simulations were carried out for 200 ns in the NVT 

ensemble. Throughout all our simulations, we used a leapfrog integrator with a time step of 2 

fs and maintained an average temperature of 300 K using a Nose-Hoover thermostat43,44 with 

a relaxation time of 0.5 ps. For all the NPT equilibration along with the above-mentioned 

temperature conditions, we used Parrinello-Rahman barostat45 to maintain an average 

pressure of 1 bar with a coupling time constant of 0.5 ps. Periodic boundary conditions were 

used in all the simulations in all directions. The neighbor list was updated after every 10 steps 

using a grid system with a short-range neighbor list cutoff of 1 nm. Particle Mesh 

Ewald(PME)46 was used to calculate the electrostatic interactions with a Fourier spacing of 

0.12 nm and an interpolation order of 4. All bonds were constrained using the LINCS 

algorithm47.  

 Constant Velocity Steered Molecular Dynamics Simulations 

The unbinding event associated with the dissociation of a protein from the RNA 

requires energy greater than that of the thermal energy at room temperature. Therefore we 

cannot access all the states associated with the unbinding event using standard molecular 

dynamics simulations. So, we used a constant velocity steered molecular dynamics(cv-SMD) 

approach in which a time-dependent external force is applied to the protein along the reaction 

coordinate to facilitate the unbinding. Specifically, this unbinding event is captured by adding 

an extra harmonic bias potential along the reaction coordinate to the hamiltonian. 

Subsequently, the protein is pulled away from the RNA with a constant velocity48,49. 

The cv-SMD simulations were also performed using GROMACS 2018.337 package. 

The distance between the center of mass of TAR RNA and the center of mass of Tat peptide 

was chosen as the reaction coordinate for pulling the Tat peptide out of its binding site in the 

TAR RNA. A force constant of 500 kJ/mol/nm2 and a pulling speed of 0.001 nm/ps was used 

for the simulation. 

Free Energy Calculation: Umbrella Sampling 

The free energy difference between two states A and B can be evaluated using the 

following expression: 
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𝐹(𝑑𝐴) − 𝐹(𝑑𝐵) = −𝑘𝐵𝑇 ln (
〈𝑃(𝑑𝐵)〉

〈𝑃(𝑑𝐴)〉
) 

where ( )AP d is the probability of obtaining the system in state A at reaction coordinate
Ad , 

and ( )BP d  is the probability of obtaining the system in state B at reaction coordinate
Bd . 

But this expression cannot be used for calculating the free energy if a high energy barrier 

separates the two states due to poor sampling of one of the states. So, to tackle this problem, 

umbrella sampling50 is widely used.  

        For the calculation of the free energy profile also, the distance between the center of 

mass of the RNA and the protein is taken as our reaction coordinate. And we used the 

trajectories generated by cv-SMD simulations to generate initial configurations for each 

umbrella sampling windows. The starting configuration for 29 umbrella windows was chosen 

based on the center of the mass distance of the RNA and the protein from this trajectory. We 

used an asymmetric way to choose our sampling windows to get overlapping umbrella 

windows. The overlap of the windows is shown in Figure S1. Each of the extracted 

configurations for the umbrella sampling windows was simulated for 10 ns in the NVT 

ensemble at 300K with a force constant of 500 kJ/mol/nm2 and 0 nm/ps pull speed. The 

average temperature was maintained using a Nose-Hoover thermostat43,44. After this, we used 

the weighted histogram analysis method(WHAM)51 to combine all the individual potential of 

mean force(PMF) to generate the unbiased, free energy profile.  

Simulation for the association of TAR-Tat complex 

This work aims to investigate the binding mechanism of the TAR RNA to that of the 

Tat peptide. Thus to look at the binding mechanism, different configurations were extracted 

from different time frames from the SMD trajectories. Multiple unbiased molecular dynamics 

simulations were performed using the same parameters as used in unrestrained explicit 

solvent simulations, as mentioned previously. A set of unrestrained explicit solvent 

simulations were necessary for designating landmark states along the binding pathway.  

Analysis of Simulation Trajectories 

To have a more in-depth insight into the binding pathway of Tat peptide with the TAR RNA, 

we have calculated the root mean square deviation(RMSD), root mean square 

fluctuation(RMSF), the evolution of native contacts and native contact maps, dynamic cross-
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correlation maps, residence time distribution. We have also done a principal component 

analysis(PCA) to understand the anti-correlated motion of the bulge and the tetraloop. A 

detailed description of these analyses is provided in the Supporting Methods.  

 

RESULTS AND DISCUSSION 
 
 
 

Free energy profile and preferential binding pathway of TAR-Tat interaction  

 

Figure 1. Binding pathway of the formation of BIV TAR-Tat complex. (A) Primary 

structure of BIV TAR RNA and BIV Tat peptide. The bulge and the tetraloop region of the 

BIV TAR RNA are highlighted in yellow and blue color, respectively. (B) All-atomistic 

conformation of BIV TAR-Tat complex as taken from a solution NMR structure (PDB id: 
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1BIV).  (C) Average free energy profile associated with the binding of BIV TAR RNA and 

BIV Tat peptide for the formation of BIV TAR-Tat complex. The states associated with the 

binding progress are labeled as E, D, C, B, and A The position marked as A corresponds to 

the native conformation of the BIV TAR-Tat complex. The free energy loss(11kcal/mol) 

involved in the final, binding phase is shown in the inset figure. (D) Scatter plot depicting the 

dominant binding pathway and the presence of four clusters (defined based on Ward's 

agglomerative clustering method) in the binding pathway of TAR-Tat complex based on 

fraction of native contact(ηnative) and distcom .  

Tat is well recognized for its Arginine-Rich Motifs (ARMs) 22,35. These ARMs are quite 

potent. Being doubly positive charged, they efficiently interact with the negatively charged 

phosphate backbone of RNA and also forms non-canonical stacking interactions with RNA 

bases, which helps Tat to specifically bind TAR with a high binding affinity52–54.  

Understanding the interactive forces that drive Tat to attain the high binding affinity and 

specificities over other non-specific interaction-based noises requires the integrated 

knowledge of binding and conformational breathing of both the binding partners.    

The binding is monitored from the free energy profile as a function of the distance 

between the center of mass of the TAR RNA and the Tat peptide describing BIV TAR-Tat 

complex formation from the apo-form of BIV TAR RNA and Tat peptide (Figure 1C). The 

profile shows that the Tat peptide binding to the TAR RNA is entirely a downhill process 

only with a few humps where the slope of the barrier is observed to change noticeably. Based 

on these positions where there is partial binding and change in the barrier slope, four different 

binding states, E, D, C and B are defined to characterize the binding progress from their free 

form to the bound form, respectively as shown in Figure S2. The global minimum is defined 

as state A, (representative structures of all the binding states are shown in Figure S3-S8).   

The change in free energy involved in specific binding (inset of Figure 1C) is calculated 

to be ~11kcal/mol. A similar result has also been obtained in the isothermal titration 

calorimetry experiment by Goel et al.55, where they obtained a free energy difference 

between the bound and unbound state of TAR RNA to be ~-9.5kcal/mol. The small 

discrepancy between experimental and computational calculations might arise due to a 

known sampling issue of the unbound form. This quantification error range doesn't harm the 

purpose of exploring the search pathway. However, it is also observed that as the binding of 

the protein on the RNA progresses, there is a gradual increase in the slope associated with the 

successive binding steps (Table S2 and Figure S2). These slopes characterize the stiffness of 

the barrier separating subsequent energy states. Thus, the increase in the slope with binding 
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progress suggests a possible cooperative binding mechanism where each binding step 

facilitates the next binding move, synonymous with the cooperativity present in the protein 

folding pathways 56,57.   

Each state in this binding pathway is stabilized by several non-covalent interactions such 

as hydrogen bonding58,59, electrostatic54,60,61 and base stacking interactions59–62 occurring 

between the nucleotide of the TAR RNA and the amino acid residues of the Tat peptide52–54. 

These electrostatic and base stacking interactions are majorly mediated by the guanidium 

group of several arginine residues of the Tat peptide26,30,63,64. A detailed molecular picture of 

the significant non-covalent interactions involved in each landmark state (E to A) along with 

a newly found ARM is discussed in Supporting Results and Figure S4-S8.  

While the changes in the slope in the 1D free energy profile efficiently identifies the 

landmark states, the information related to their conformational dynamics during the binding 

progress is too limited as the sampling along a single reaction-coordinate covers a restricted 

phase-space. However, the binding and binding induced conformational changes occur in 

higher dimensional phase space. To investigate such induced conformational changes along 

the preferential binding pathway, we have sampled each state (D to A, essentially describing 

peptide's sojourn to its target binding location) of the RNA-protein complex extensively and 

repetitively using unrestricted atomistic MD simulations (see Methods). After the preliminary 

designation of different landmark states and identifying their initial configurations, in the 

next assignment, as the binding pathway is downhill it was straightforward but instrumental 

for us to generate multiple sets of long unbiased association trajectories. From all these 

association trajectories, we have identified our early designated states and their survival time. 

Within this survival time, an ensemble of close configurations was generated for each 

designated state. This ensemble of configurations is projected over an order parameter plane 

of the fraction of native contacts (ɳnative) and the center of the mass distance between the TAR 

RNA and the Tat peptide (distcom) and Agglomerative Ward’s clustering is then employed to 

obtain the cluster of population states connecting the entire binding pathway as shown in 

Figure 1D. The 4 clusters formed have a similar center of the mass distance between the 

TAR RNA and the Tat peptide (distcom) as obtained for the state D, C, B, and A from the 1D 

free energy profile. However, in state E,  both RNA and protein are in their apostate.  

We have also used a steered molecular dynamics (SMD) simulation approach to sample 

the phase space capturing the unbinding event by applying a bias potential and pulling the Tat 
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peptide away from the TAR RNA (See the Methods section for detailed steered MD 

simulation method used). From the ensemble of ten independent SMD simulations, we 

observe the population convergence of association and dissociation pathways from multiple 

trajectories scanning the overall binding phase space (Figure S9). In a few trajectories, a 

backtracking phenomenon has been observed just before the final, binding step during the 

transition from step B to native state A in which there is a sudden loss of native contacts, and 

then the native contacts are again gained as the native state A is approached (Figure S10). A 

similar backtracking event has also been documented in protein folding pathways 65 and 

multidomain protein association 66. 

 

A relay in fluctuation induced binding and binding induced fluctuation 

dictates the binding pathway 

The conformational fluctuation-induced binding progress and binding-induced 

conformational fluctuation are monitored from state-D to state-A, sequentially. The evolution 

of conformational fluctuation over the binding in progress are quantified and connected by 

calculating the root mean square deviation (RMSD) distribution of bulge and tetraloop 

regions of BIV TAR RNA and RNA-protein intermolecular contact map. The connection is 

illustrated in Figure 2. The epicenter for the tetraloop and bulge fluctuation is present in the 

tetraloop and the bulge respectively however these fluctuations exert local effect on their 

neighboring nucleotides also. Thus the RMSD is calculated on TAR RNA residue 8-13 for 

bulge fluctuation and for tetraloop fluctuation residue 15-20 are taken into account. These 

two regions are named as the “near tetraloop region” and “near bulge region” to account for 

both the epicenter and local spread of fluctuation. The native contact map is derived at an 

atomistic level to augment the count. For reading convenience, the atomistic and nucleotide-

residue level sequence is shown in Figure 2A (TAR) and Figure 2B (Tat).  The native 

contact probability greater than 60% is considered to plot the native contact map for each 

binding state. The pattern and magnitude of fluctuation at the RNA residual level are 

observed to influence the peptide's sequential binding footstep. 
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Figure 2.  The cycle of activation of domain fluctuation and its binding induced 

dissipation. (A) Secondary structure of BIV TAR RNA along with the atomic index (shown 

in non-bold numerals) corresponding to the residue index(bold numerals written along with 

the nucleotide symbol). (B) The sequence of BIV Tat peptide along with the atomic index 

(shown in non-bold numerals) corresponding to the residue index(bold numerals written 

along with the amino acid one letter symbol). (C) Boxplot of Root means square deviation 

(RMSD) for near bulge and near tetraloop region of state D showing the activated(higher) 

fluctuation of near teraloop region. (D) RNA-protein atomistic contact map for binding state 

C depicting native contact formation around tetraloop region of BIV TAR  RNA. (E) Boxplot 

of Root means square deviation (RMSD) for near bulge and near tetraloop region of step C 

showing the activated and deactivated fluctuations of near bulge and the near tetraloop region 
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respectively. (F) RNA-protein atomistic contact map for binding state B depicting native 

contact formation around the bulge region of BIV TAR RNA. (G) Boxplot of Root means 

square deviation (RMSD) for near bulge and near tetraloop region of step B showing the 

reactivated and deactivated fluctuations of near tetraloop and the near bulge region 

respectively. (H) RNA-protein atomistic contact map for native state A depicting all the 

native contact formation. (I) Boxplot of Root means square deviation (RMSD) for near bulge 

and near tetraloop domain of step A showing the complete deactivation of fluctuation around 

both the tetraloop and the bulge due to complete native contact formation. (J) Flowchart 

depicting the cycle of activation of domain fluctuation followed by binding induced 

deactivation and domain fluctuation transfer. Note that the native contact probability greater 

than 60% is considered to plot the native contact map for each binding state. In the boxplot, 

the box corresponds to the 25-75 percentile of the distribution and the dot and line inside the 

box represents the mean and median of the distribution.  

The binding footsteps progress with the following events: 

(i) In the apo form of RNA, the near tetraloop region (residue 15-20) shows higher 

fluctuation as in state-D than that of state-C (Figure 2C).  

(ii) At an initial approach, the Tat peptide makes a few binding contacts around the near 

tetraloop region and binds partially (Figure 2D).  

(iii) This partial binding causes a significant reduction/deactivation in near tetraloop 

region fluctuation (Figure 2E). The detailed information of the conformational 

changes and intermolecular interaction is illustrated in Figure S6, where the leading 

role of ARMs in this search process is well captured. The ARMs associated binding 

influences such a  conformational change that it leads to the activation of fluctuation 

in the near bulge region (residue 8-13) in state-C, as shown in Figure 2E.  

(iv) Once again, the peptide senses the higher fluctuation reflected in the RMSD 

distribution promoting the binding event occurring at the near bulge region with a 

number of newer native contacts in state-B (Figure 2F).  

(v) The pattern relays with the binding induced deactivation of individual domain 

fluctuation and the activation/reactivation of an alternate domain fluctuation. Thus, in 

state-B, near bulge binding leads to the deactivation of near bulge fluctuation and the 

reactivation of near tetraloop fluctuation (Figure 2G).  

(vi) At this point, the intermolecular RNA-protein contact map shows the formation of a 

few other native contacts in their overall interfacial regime (Figure 2H), and the 

complex acquires nearly 95% of intermolecular native contact generation. 
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(vii) This late-stage formation of native contacts doesn't cause any more fluctuation change 

to the alternate domain. It instead reduces the magnitude of fluctuation of the overall 

complex (Figure 2I). 

 

Correlating all the above observations in Figure 2J, we illustrate the cycle of 

conformational fluctuation induced binding and binding induced fluctuation deactivation and 

transduction. This cycle summarizes that at each binding footstep, the peptide senses the 

hierarchy in fluctuation generated by a set of nucleotides of the RNA. For binding, it selects 

that specific domain/nearby region preferentially, which has the activated/higher fluctuation. 

We observe suppression of fluctuation/dynamics which is quite expected upon binding. 

However, which is hard to intuit from any past binding event is the understanding of binding 

induced conformational changes and, as a result of these changes, which domain fluctuation 

will be enhanced next from its previous value to navigate the binding. Thus, how reactivation 

of an alternate domain fluctuation stimulated is a legit question here.  

Before we explore the origin of reactivated fluctuation, to further substantiate on 

hierarchical fluctuation mechanism in terms of  fluctuation activation and deactivation in the 

TAR-Tat binding pathway, we monitor the difference between the root mean square 

fluctuations (RMSF) of adjacent binding state of each nucleotide of the BIV TAR RNA. The 

RMSF is calculated on the phosphate atom of each nucleotide for clear analysis. Analysing 

the RMSF difference between state D and state C (Figure 3A) it was clear that at state D, the 

near tetraloop region has an activated fluctuation which gets deactivated in state C 

(𝑅𝑀𝑆𝐹𝐷
𝑡𝑒𝑡𝑟𝑎𝑙𝑜𝑜𝑝

 -𝑅𝑀𝑆𝐹𝐶
𝑡𝑒𝑡𝑟𝑎𝑙𝑜𝑜𝑝

>0) and activation of near bulge region fluctuation occurs in 

state C (𝑅𝑀𝑆𝐹𝐷
𝑏𝑢𝑙𝑔𝑒

 -𝑅𝑀𝑆𝐹𝐶
𝑏𝑢𝑙𝑔𝑒

<0). Subsequently in state B, there is deactivation of near 

bulge fluctuation (𝑅𝑀𝑆𝐹𝐶
𝑏𝑢𝑙𝑔𝑒

 -𝑅𝑀𝑆𝐹𝐵
𝑏𝑢𝑙𝑔𝑒

>0) and activation of near tetraloop fluctuation 

(𝑅𝑀𝑆𝐹𝐶
𝑡𝑒𝑡𝑟𝑎𝑙𝑜𝑜𝑝

 -𝑅𝑀𝑆𝐹𝐵
𝑡𝑒𝑡𝑟𝑎𝑙𝑜𝑜𝑝

<0) as shown in Figure 3B. Finally when the TAR-Tat 

complex acquires its native state conformation (state A) there is only decrease in fluctuation 

between domains (𝑅𝑀𝑆𝐹𝐵
𝑎𝑙𝑙 -𝑅𝑀𝑆𝐹𝐴

𝑎𝑙𝑙 > 0) as shown in Figure 3C. The raw RMSF plots for 

each of the binding states is provided in Figure S11. Moreover, the role of fluctuation from 

peptide’s perspective in the binding pathway has been discussed in Supporting Results and 

Figure S12. 
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Figure 3. Hierarchical fluctuation between the near tetraloop and the near bulge region 

of TAR RNA is followed by measuring the difference between the RMSF (Root Mean 

Square Fluctuation) of successive binding states. (A) RMSF difference between state D 

and state C of binding showing an activated fluctuation in near tetraloop region which gets 

deactivated in state C (𝑅𝑀𝑆𝐹𝐷
𝑡𝑒𝑡𝑟𝑎𝑙𝑜𝑜𝑝

 -𝑅𝑀𝑆𝐹𝐶
𝑡𝑒𝑡𝑟𝑎𝑙𝑜𝑜𝑝

>0)  and subsequently fluctuation 

activation occurs at near bulge region in state C (𝑅𝑀𝑆𝐹𝐷
𝑏𝑢𝑙𝑔𝑒

 -𝑅𝑀𝑆𝐹𝐶
𝑏𝑢𝑙𝑔𝑒

<0). (B) RMSF 

difference between state C and state B of binding showing deactivation of bulge fluctuation 

(𝑅𝑀𝑆𝐹𝐶
𝑏𝑢𝑙𝑔𝑒

 -𝑅𝑀𝑆𝐹𝐵
𝑏𝑢𝑙𝑔𝑒

>0) and activation of tetraloop fluctuation (𝑅𝑀𝑆𝐹𝐶
𝑡𝑒𝑡𝑟𝑎𝑙𝑜𝑜𝑝

 -

𝑅𝑀𝑆𝐹𝐵
𝑡𝑒𝑡𝑟𝑎𝑙𝑜𝑜𝑝

<0) in state B. (C) RMSF difference between state B and state A showing only 

decrease in fluctuation from state B to state A (𝑅𝑀𝑆𝐹𝐵
𝑎𝑙𝑙 -𝑅𝑀𝑆𝐹𝐴

𝑎𝑙𝑙 > 0). 

Anti-correlation in alternate domain fluctuations regulates hierarchical 

fluctuation 

We urge to understand an interesting observation that we followed in Figure 2 and Figure 3 

which is the following: We realize that suppression of fluctuation of a certain domain is quite 

expected upon its association with its binding partner. However, while fluctuation of one 

domain/region becomes suppressed/deactivated, we interestingly observe an alternate specific 

domain to enhance/reactivate its fluctuation than the fluctuation in its previous state (Figure 

3). Does that alternate domain complement the fluctuation-deprived-domain to maintain the 
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hierarchical fluctuation and thus to direct the pathway? If it does so, we anticipate that these 

two complementary domains may show certain correlation in terms of their fluctuation. To 

find the connection between near bulge and near tetraloop region the correlation between 

domain-domain fluctuations is quantified at each binding step using dynamic cross-

correlation analysis. Details about the calculation of dynamic cross-correlation have been 

provided in the Supporting Methods section. The cross-correlation map for apo TAR RNA 

and four TAR-Tat binding states: D, C, B, and native state A is presented in Figure 4. The 

cross-correlation map for state D shows that the tetraloop of the TAR RNA is highly anti-

correlated to that of its bulge region. The same anti-correlation was also observed in state C; 

however, the correlation coefficient is slightly lowered than that of state D. Subsequently, 

with the progress in binding, the anti-correlation between the tetraloop and bulge region is 

gradually faded. Moreover, in the apo state, also there is the presence of a feeble 

anticorrelation between the bulge and the tetraloop region which then gets amplified in state 

D on initial approach of Tat peptide to the TAR RNA. This anticorrelation present between 

the bulge and tetraloop has been observed to initiate the hierarchical search by keeping the 

fluctuation of tetraloop higher and fluctuation of bulge lower in the initial association event 

which leads to initial binding at the tetraloop region and subsequently upon binding-induced 

suppression of tetraloop fluctuation, bulge fluctuation increases due to this prevalent anti-

correlation and protein then binds at the bulge region. Furthermore the other anticorrelation 

present in the dynamic cross correlation map corresponds to highly flexible terminal RNA 

residues which have the inherent characteristic of flexibility. 

To further substantiate the anti-correlated motion of the tetraloop and the bulge, we 

have used elastic network modeling to generate the slow modes of the correlated motion 

associated with each of the binding states 67. The principal component analysis beautifully 

captures the directionality of this anti-correlated domain motion highlighted in state-D 

(Figure 4C). Directionality of anti-correlated motion for the other states (C to A) is shown in 

Figure S13. 
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Figure 4.  Non-linear progression of anti-correlation in the fluctuation of dynamic 

tetraloop and bulge region with the binding-progress. (A) Cross-correlation between the 

fluctuation of the phosphate atom of each of the residues of the TAR RNA calculated on apo 

state. A feeble anticorrelation between tetraloop and bulge is present in this state shown with 

red circle. (B) Cross-correlation between the fluctuation of the phosphate atom of each of the 

residues of the TAR RNA calculated on state D showing amplified anticorrelation between 

tetraloop and bulge depicted with a red circle. (C) Second PC mode of state D conformation 

of the TAR RNA calculated on phosphate atom of each nucleotide, capturing the tertraloop-

bulge anti-correlated motion (D) Fading of anticorrelation of bulge and tetraloop in state 

C(shown in red circle) (E) Cross correlation between the TAR RNA residue in state B 

showing nearly further fading of bulge-tetraloop anticorrelation (F) Cross correlation between 

the TAR RNA residue in state A showing low anticorrelation between the bulge and 

tetraloop. 

Artificial attenuation of tetraloop fluctuations inhibits binding   

We have observed that the correlation that exists between tetraloop (TL) and bulge 

region sets a hierarchy in the corresponding region-specific fluctuation at each binding step 

and that may bias the binding pathway. However, correlation between alternate domains may 

not imply causality. One need to check that if fluctuation of one of those correlated domains 
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is artificially attenuated, would binding be inhibited? To investigate such possibility we 

employed unbiased molecular dynamics simulation method to simulate two 

situations/conditions starting from same configuration extracted from SMD trajectory. They 

are the following: (i) Restrained TL simulation: here position of referred tetraloop domain is 

weakly restrained and (ii) Unrestrained TL simulation: here no restraining force is applied on 

the position of TL domain. For the above two conditions, the time evolution of the fraction of 

native contact was calculated from their respective trajectories. On attenuation of TL 

fluctuation, we find that the binding is certainly inhibited there while TL was the initial 

binding target (Figure 5). We have characterized both the prevalence of fraction of native 

contact and also all-level contacts (accounting for native and non-native contact) in the TL 

(Figure S14) which substantially decreased from its earlier situation when it was guided by its 

natural fluctuation. Instead, as the relative fluctuation of the bulge is now higher than that of 

the tetraloop, the protein targets bulge as its initial binding target as shown in Figure S14.   

 

Figure 5. Binding of Tat peptide to TAR RNA facilitated by the specific nucleotide 

fluctuations investigated from time evolution of fraction of native contact. Time 

evolution of fraction of native contact has been calculated on two simulation trajectories one 

with position restraints on the near tetraloop region and another without any position 

restraints. 

    

Summarizing all the above observations, we can conclude that at each binding step 

there is an activated domain fluctuation which is sensed by the peptide and it binds to that 

domain. As the binding occurs that domain gets deactivated and another specific domain's 

fluctuation arises and this cycle continues till the protein finds a compatible and stable 
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binding site. This finding is indeed consistent with early experimental observations by Weeks 

et al. 31and Chen et al.30 and theoretical assessment by Lustig et al. 10, where they found the 

larger bulge entropy to promote competent binding in the case of TAR-Tat complex. 

However, the overall recognition and binding is not a single step process involving only one 

domain. The dynamic partner (here peptide) moves between sites and scan for favorable 

interactions spanning the entire RNA to minimize the overall binding free energy. During this 

scanning process, whether fluctuation-deactivation of a particular domain correlates with 

another domain's fluctuation-activation is an intriguing question here as this stands an 

opportunity to understand fluctuation induced signal transduction in molecular recognition.    

Water: The molecular glue finally firms the formation of TAR-Tat complex  

The fluctuation pattern of BIV TAR RNA nucleotides for both state B and native state A are 

very similar, and only the magnitude of fluctuation of native state A is lower. The question 

arises, what drives this stabilization in the native state, A? We have investigated the dynamic 

coupling between water molecules and RNA sites during the binding progress by calculating 

the residence time distribution of water molecules in binding state (B, A and apo-form). Due 

to the transient nature of state D and C they are not considered for the residence time 

calculation.  
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Figure 6.  Water, the molecular glue for the formation of the native TAR-Tat complex. 
(A) The table categorizes the longer staying water molecules into three categories: water 

molecules staying for (i) >6ns (ii) 4-6ns (iii) 2-4ns. Based on these three categories, the 

number of water molecules found in each category at three different states of the BIV TAR-

Tat system (free TAR RNA, Step B, and native state A) is recorded in the table. It was found 

that as we move from free BIV TAR RNA to step B and subsequently to native state A, the 

number of water molecules having high residing time increases. (B) Two water molecules 

having high residence time acting as a bridge between the TAR RNA and Tat peptide. One of 

the water molecules is mediating the interaction between the guanine and glycine residue, and 

another water molecule is mediating the interaction between the adenine and proline residue. 

(C) Arginine and cytosine backbone are interacting with the help of a highly residing water 

molecule. 

Early time-resolved fluorescence measurement study performed by Maiti and co-

workers on the same BIV TAR-TAT system showed that a magnitude of 1.8 ns in the solvent 

correlation time arises due to the hydration layer composed of water molecules hydrogen-

bonded to the RNA bases or due to the diffusion of interfacial water molecules between the 

bound hydration layer and bulk water55. Based on this experimental finding, we have 

considered water molecules staying beyond 2 ns can be classified as long-lived bound water 

molecules. Thus, calculating residence time distribution we have classified bound-water 

molecules into three categories: water molecules having residence time (i) 2-4ns (ii) 4-6ns 

(iii)>6ns. 68–71 State B and A are found to be associated with a few quasi-bound water 

molecules that are motionally restricted with a long residence time of 2-6ns or more (Figure 
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6). The residence time distribution was calculated by taking a cutoff of 4.5Å, which 

corresponds to the water molecule's second hydration shell around the BIV TAR RNA from 

the radial distribution of the water molecule around the TAR RNA (Figure S15). Details 

about the calculation of residence time distribution have been provided in the Supporting 

Methods section. The residence time distribution profile for the apo state of TAR RNA shows 

a peak of around 0.25 ns as shown in Figure S16. As the apo form associates with the 

peptide, the peak shifts towards higher residence time (Figure S16). This implies that TAR-

Tat binding leads to a tighter solvent cage around the TAR RNA, due to which some water 

molecules have more restricted motions. Similar result have also been found by Maiti and co-

workers55 experimentally where they obtained a longer timescale solvent relaxation of 5.3ns 

for BIV TAR-Tat complex.  

The long-lived water molecules are grouped together as they belong to a specific 

residence time zone (Figure 6A), both for state B and state A.  It is evident from this table 

that the water molecules indeed are acting as a mediator for stabilizing the TAR-Tat complex 

in the native state. An increase in the number of longer staying water molecules renders a 

decrease in the fluctuation of native state A compared to state B. Subsequently, the frequently 

visited most probable water-wetted sites are also detected. Interestingly, in state A, the longer 

staying water molecules are mostly found to mediate the interactions between those sites 

(e.g., G19-GLY35, A18-PRO33) where direct electrostatic interactions are not feasible. A 

snapshot of these water-mediated interactions is presented in Figure 6B for State A. For state 

B, it is shown in Figure S17.  

CONCLUSIONS 

Our investigation was stimulated by a review article by Draper summarizing the consensus 

on RNA-protein specific recognition 72. The fact is touched upon that the structural details of 

RNA-protein complexes are being resolved by NMR and X-ray crystallography, but thorough 

thermodynamic analyses of recognition mechanisms have yet to be performed. Toward this 

prevailing direction, ours is certainly not the first investigation 10,52,73,74, but this effort brings 

upon a thorough thermodynamic analysis comprehending each step of the recognition and 

binding and their processing. The quest is to explore and understand the physical principle 

behind specific target recognition phenomenon if exists. The investigation is mainly driven 

by the long-standing questions in this field: How does the protein navigate its specific target 
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location? What drives the specific binding of a protein to that of the RNA? In colloquial 

words, this first question still plea for understanding the recognition mechanism at an 

atomistic level, and the second one can be explained by the thermodynamics of binding. 

Nonetheless, both recognition and binding involve many degrees of structural changes. What 

is essential is to understand whether such structural changes imply a code/principle 

illuminating an efficient search mechanism. However, in this study, the efficiency of the 

search mechanism yet not implies a faster target search mechanism; it only indicates a 

possible guiding principle facilitating the search.  

During the investigation of the specific RNA-protein recognition mechanism, we find 

the following connected aspects: (i) Higher conformational freedom and fluctuation provide a 

higher competence for binding (Figure 2). This phenomenon has also been observed in 

various experiments 30,31 and fairly explained in early theories10. Attenuating such specific 

conformational fluctuation may inhibit binding and alter its pathway (Figure 5). (ii) While 

binding deactivates the fluctuation of a specific domain, in turn, an alternate domain 

fluctuation turns activated (Figure 2 and 3). (iii) The activation of alternate domain 

fluctuation appears as a response to a prevailing anti-correlation between specific domain-

domain fluctuations (Figure 4). This anti-correlation was already present in the apo-form of 

RNA but the response becomes amplified when protein approaches RNA vicinity (Figure 4). 

This study bolsters the fact that how domain-domain fluctuation correlation/anti-correlation 

induced hierarchical fluctuation pattern may be exploited by the system purposefully for 

signal transduction and binding site selection. The anti-correlated fluctuation-induced signal 

transduction eventually guides the dynamic partner, preferably towards the direction of 

minimum energy, and thus, the target search may become rather efficient. It is noteworthy 

that the proceedings of recognition are highly dependent on its hydration and ion 

environment. Water and ions stay highly dynamic during the process of recognition until a 

few long-lived water molecules mediate the final locking of the RNA-protein association in a 

form of the thermodynamically stabilized complex (Figure 6).      

In conclusion, plenty of experimental and computational studies observe such 

dynamic, allosteric coupling between domains in a single biomolecule. With the growing 

pieces of evidence of highly dynamic biomolecules like RNA, disordered proteins, and the 

myriad of their diverse structural motifs, though highly challenging, it's time to identify 

whether the coupling between these structural motifs indicates a meaningful functional signal 
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veiled within complexity. In the present case of the TAR-Tat complex, it is evident that the 

dynamic coupling between two irregular and flexible RNA motifs, bulge, and tetraloop, 

performs the signal transduction for binding. The follow-up research will focus on the natural 

existence of these irregular motifs, whether deliberately designed to promote such recognition 

signals, in general. The investigation is underway in this direction. 
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