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Abstract

Analysis of dose-response data is an important step in many scientific disciplines,
including but not limited to pharmacology, toxicology, and epidemiology. The R package
drda is designed to facilitate the analysis of dose-response data by implementing efficient
and accurate functions with a familiar interface. With drda, it is possible to fit models by
the method of least squares, perform goodness of fit tests, and conduct model selection.
Compared to other similar packages, drda provides, in general, more accurate estimates in
the least-squares sense. This result is achieved by a smart choice of the starting point in the
optimization algorithm and by implementing the Newton method with a trust region with
analytical gradients and Hessian matrices. In this article, drda is presented through the
description of its methodological components and examples of its user-friendly functions.
Performance is finally evaluated using a real, large-scale drug sensitivity screening dataset.

Keywords: curve fitting, dose-response, drug sensitivity, logistic function, nonlinear regression.

1. Introduction
Inferring dose-response relationships is indispensable in many scientific disciplines. In cancer
research, for example, estimating the magnitude of a chemical compound effect on cancer cells
holds substantial promise for clinical applications. The dose-response relationship is often
modeled via a nonlinear parametric function expressed as a dose-response curve. The fitting
of a curve to dose-response measurements is often achieved by choosing the parameter values
that minimize the difference between the curve and the observations. Since conclusions about
efficacy are based on the estimated dose-response curve, it is therefore of great importance to
determine the curve parameters as accurately as possible.
Currently, there are multiple R packages that provide tools for the dose-response fitting,
such as drc (Ritz, Baty, and Gerhard 2015), nplr (Commo and Bot 2016), and DoseFinding
(Bornkamp, Pinheiro, and Bretz 2019). The drc package contains various functions for non-
linear regression analysis of biological assays. It allows the user to choose a nonlinear model
for the dose-response curve fitting from a wide spectrum of sigmoid functions, which are nor-
mally used to capture the dose-response relationship as their S-shape is in line with empirical
observations from experiments. The most common model is the 4-parameter generalized
logistic function.
In the drc package, a user can specify initial model parameters to facilitate the optimization
process or rely on the default starter functions. The package also enables a user to set the
weights for the observations to adjust the possible variance heterogeneity in the response
values. The parameter estimation procedure is achieved by the least squares method, using
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2 drda: dose-response data analysis

a maximum likelihood approach with the default assumption of normality for inferential
purposes.

In contrast to drc, the nplr package focuses only on generalized logistic models and does not
allow to select the data distribution. As a new feature, the package facilitates the choice
of observation weights via implementing three options: residual-based, standard (or within-
replicate variance-based), and general, which utilizes the fitted response values. Additionally,
the package provides confidence intervals on the predicted doses and the trapezoid and the
Simpson’s rule (Abramowitz and Stegun 1965, Chapter 25) to evaluate the area under the
curve.

The DoseFinding package provides more flexibility than drc and nplr. It allows for the fitting
of multiple linear and nonlinear dose-response models and to design dose-finding experiments.
Similarly to drc, it provides several options for the data distribution, but as default it uses
assumption of normality with equal variance. Compared to drc and nplr, the DoseFinding
package utilizes a grid search as a starting point selection method in case the user did not
specify its own. It also applies boundaries to parameters of a nonlinear model either specified
by a user or through internal default settings.

To find the optimal parameter in a high-dimensional space, all packages apply iterative New-
ton methods, which are widely used numerical procedures for finding the minimum of a
differentiable function (Nocedal and Wright 2006). The drc package directly calls the R
optim() function that implements the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method
(Fletcher 2000) for unconstrained optimization, or limited-memory BFGS (L-BFGS-B), which
handles simple box constraints for constrained optimization (Liu and Nocedal 1989). These
two methods represent quasi-Newton methods, which are frequently used in cases when the
function derivatives are not feasible or too complicated to obtain, as they utilize numerical
approximations of the function’s Hessian matrix. In contrast, the nplr package relies on the
nlm() function, which uses the classic Newton approach. By default, both the gradient and
Hessian are approximated numerically, however the user can provide themselves the first and
second analytical derivatives. The DoseFinding package applies different optimization rou-
tines depending on the models of choice. For sigmoid and logistic models, which have two
linear and two nonlinear function parameters, the package performs numerical optimization
just for nonlinear ones, while optimizing the linear parameters in every iteration of the al-
gorithm. At its core, DoseFinding applies the R nlminb() function, using a quasi-Newton
algorithm similar to the BFGS method utilized by drc.
While all packages have been extremely helpful with a wide range of real applications, we
found that they often present inconsistent results when applied to the same data with the
same logistic model. We introduce here the R package drda, which provides a novel and more
accurate dose-response data analysis using logistic curves via: (i) applying a more advanced
Newton method with a trust region; (ii) relying on analytical gradient and Hessian formulas
instead of numerical approximations; (iii) establishing a smart initialization procedure to
increase the chances of converging to the global solution; (iv) providing tools to compare the
fitted curve against a linear model or other logistic models; (v) computing confidence intervals
for the estimated parameters and for the whole dose-response curve; (vi) implementing plot
functionality to compare multiple models in a user-friendly way.

The most important feature of any optimization routine remains the closeness of its solution
to the true least square estimates. In case of biological assays, it depends on the ability of
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the fitted curve to describe the dose-response data correctly. One of the main disadvantages
when it comes to numerical optimization is the possibility of converging to a local optimum
instead of the correct answer we seek. This situation can easily happen when either the
function is not well approximated by a quadratic shape in a neighborhood of the current
candidate solution, or when the starting point is far from the global optimum (either the
algorithm is not able to converge in a reasonable number of steps or it simply converges to a
wrong solution). To cope with such scenarios, we implement here the Newton method with a
trust region (Steihaug 1983), which has been shown to be a robust optimization technique for
mitigating issues usually encountered in unconstrained optimization problems. The method
is more stable than other Newton-based methods, especially for cases when it is problematic
to approximate a function with a quadratic curve (Sorensen 1982). Additionally, drda uses
a two-step initialization algorithm in order to ensure the right direction in the optimization
routine. With our strategy, drda is able to find the true least squares estimate in problematic
cases where the drc, nplr, and DoseFinding packages instead fail.
Once the least squares estimate is found, drda provides the user with routines for assessing
goodness of fit and reliability of the estimates. Assuming a Gaussian distribution with equal
variance for the observed data, it is possible to compare the fitted model against, for example,
a flat horizontal line or a logistic model with a different number of parameters. The drda
package provides the likelihood ratio test (LRT), the Akaike information criterion (AIC)
(Akaike 1974), and the Bayesian information criterion (BIC) (Schwarz 1978) as a way to
compare the goodness of fit of competing models.
The paper is organized as follows: We first describe the methodological components of drda
in Section 2; show how the package is implemented in Section 3; include practical examples in
Section 3.2; and provide a comparison of drda against packages DoseFinding, drc, and nplr
using a high-throughput dose-response dataset in Section 4. We conclude the article with a
summary and discussion in Section 5.

2. Methodological framework

2.1. Generalized logistic function

Package drda implements the generalized logistic function as the core model for fitting dose-
response data. The generalized logistic function, also known as Richards’ curve (Richards
1959), is the 5-parameter function

f(x;ψ) = α+ (β − α) (1 + ν exp{−η(x− φ)})−1/ν (1)

solution to the differential equation

∂

∂x
f(x;ψ) = η

ν

(
1−

(
f(x;ψ)− α
β − α

)ν)
(f(x;ψ)− α)

where ψ = (α, β, η, φ, ν)T .
Throughout this article, and in our package, we will use the convention β > α to avoid
identifiability issues. For example, when β < α, it is always possible to modify the remaining
three parameters to obtain an equivalent function. To have a sigmoidal curve, a common
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4 drda: dose-response data analysis

requirement in dose-response data analysis, we will also assume that ν ≥ 0. When ν < 0, in
fact, the curve is unbounded or even complex.
Our constraints have the benefit of giving the five parameters a clear and easy interpretation:
α is the lower horizontal asymptote of the curve, β is the upper horizontal asymptote of
the curve, η is the steepness of the curve where a positive (negative) value corresponds to a
monotonically increasing (decreasing) function, φ is related to the value of the function at
x = 0, and ν regulates at which asymptote is the curve maximum growth. Refer to Figure 1
for a visual explanation of the five parameters.
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Figure 1: Generalized (5-parameter) logistic function with various choices of parameters.

When ν = 1 we obtain the 4-parameter logistic function. If we also set α = 0 and β = 1 we
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obtain the 2-parameter logistic function. When ν = 1 the parameter φ represents the value
at which the function is equal to its midpoint, that is (α+β)/2. In such a case, as a measure
of drug potency, φ is also known as the half maximal effective log-concentration or log-EC50.
As a a measure of antagonist drug potency, φ is also known as the half maximal inhibitory
log-concentration (log-IC50). When ν → 0 we obtain the Gompertz function, i.e.

lim
ν→0

f(x;ψ) = α+ (β − α) exp {− exp{−η(x− φ)}}

The Emax model (Macdougall 2006), often found in dose-response studies, is formally equiv-
alent to the 4-parameter logistic function. The difference between the two models is simply
the parametrization of the scale used for the variable x. If the Emax model is defined as

y(D;λ) = E0 + Emax
DN

DN + EDN
50

then the equivalent 4-parameter logistic function (ν = 1) is obtained by the transformations
D = ex, E0 = α, Emax = β − α, N = η, ED50 = eφ.

2.2. Normal nonlinear regression

For a particular dose dk (k = 1, . . . ,m) let (yki, wki)T represent respectively the i-th observed
outcome and its associated positive weight. If observations have all the same importance, we
simply set wki = 1 for all k and i. We assume that each unit has expected value and variance

E[Yki|dk,ψ] = µ(dk;ψ)

V[Yki|wki, σ] = σ2

wki

where µ(dk;ψ) is a nonlinear function of the dose dk and a vector of unknown parameters
ψ. Parameter σ > 0 is instead the standard deviation common to all observations. In
our package, µ(dk;ψ) is simply the generalized logistic function (1) with the transformation
x = log(dk).
By assuming the observations to be stochastically independent and Normally distributed, the
joint log-likelihood function is

l(ψ, σ) = −1
2

(
n log(2π) + n log(σ2)−

m∑
k=1

nk∑
i=1

log(wki) + 1
σ2

m∑
k=1

nk∑
i=1

wki(yki − ȳk)2+

+ 1
σ2

m∑
k=1

wk.(ȳk − µ(dk;ψ))2
)

where nk is the sample size at dose k, n =
∑
k nk is the total sample size, ȳk = (

∑
iwkiyki)/wk.

is the weighted average corresponding to dose dk and wk. =
∑
iwki. Maximum likelihood

estimate ψ̂ is obtained by minimizing the residual sum of squares from the means, i.e.

ψ̂ = arg min
ψ∈Ψ

1
2

m∑
k=1

wk.(ȳk − µ(dk;ψ))2 = arg min
ψ∈Ψ

g(ψ) (2)
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Maximum likelihood estimate of the variance is

σ̂2 = 1
n

m∑
k=1

nk∑
i=1

wki(yki − µ(dk; ψ̂))2 = D2

n

while its unbiased estimate is
s2 = D2

n− p
where p is the total number of parameters estimated from the data.
For convenience from now on we will use the simplified notation µk to denote the function
µ(dk;ψ). It is important to remember that µk will always be a function of a dose dk and a
particular parameter value ψ. We will also use the notation g(s) and g(st) to denote respec-
tively the first- and second-order partial derivatives of function g(ψ), with respect first to ψs
and then ψt.
Partial derivatives of the sum of squares g(ψ) are

g(s) =
m∑
k=1

wk.(µk − ȳk)µ
(s)
k

g(st) =
m∑
k=1

wk.
(
(µk − ȳk)µ

(st)
k + µ

(s)
k µ

(t)
k

)
The gradient and Hessian of g(ψ) are therefore

∇ψg =
m∑
k=1

wk.(µk − ȳk)∇ψµk

Hψg =
m∑
k=1

wk.
(
(µk − ȳk)Hψµk + (∇ψµk) (∇ψµk)T

)
From the previous expressions we can easily retrieve the observed Fisher information matrix,
which is the negative Hessian matrix of the log-likelihood evaluated at the maximum likelihood
estimate, as

I(ψ, σ) = 1
σ2

(
Hψg −2∇ψg/σ

−2 (∇ψg)T /σ q

)
(3)

where
q = 3

∑
k

∑
iwki(yki − µk)2

σ2 − n

It is also worth noting that the (expected) Fisher information matrix is

I(ψ, σ) = 1
σ2

(∑
k wk. (∇ψµk) (∇ψµk)T 0

0 3
∑
k

∑
iwki − n

)
(4)

2.3. Optimization by Newton method with a trust region

Closed-form formula of the maximum likelihood estimate ψ̂, that is the solution of equation
(2), is in general not available for nonlinear regression models. We can, however, try to
minimize numerically the sum of squares g(ψ).
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Suppose that our algorithm is at iteration t with current solution ψt. We want to find a new
step u such that g(ψt + u) < g(ψt). We start by illustrating the standard Newton method.
We approximate our function by a second-order Taylor expansion, that is

g(ψt + u) ≈ g(ψt) +∇Tψt
u+ 1

2u
THψt

u

The theoretical minimum is obviously attained when the gradient with respect to u is zero,
that is ∇ψt

+ Hψt
u = 0 or u = −H−1

ψt
∇ψt

. The Newton’s candidate solution for iteration
t+ 1 is often presented as

ψt+1 = ψt − γH−1
ψt
∇ψt

where 0 < γ ≤ 1 is a modifier of the step size for ensuring convergence (Armijo 1966).
When the method converges the algorithm is quadratically fast, or at least superlinear (Bon-
nans, Gilbert, Lemarechal, and Sagastizábal 2006): the closer g(ψ) is to a quadratic function
the better its Taylor approximation, the better the algorithm convergence properties.

●

●

●

● ●

●

●

●
●

●
●

●

●

●

●

●

−6 −4 −2 0 2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

log(dose)

P
er

ce
nt

 v
ia

bi
lit

y

True estimate
BFGS

A)

η

φ

 0
.2

 

 0.4 

 0.6  0.8 

 1 

 1 

 1.5 

 3 
 3.4 

−2.0 −1.5 −1.0 −0.5 0.0

−
20

−
10

0
10

20

B)

Figure 2: Problematic real data (cell line: BT-20, compound: BI-2536, dataset: CTRPv2)
(Rees et al. 2016; Seashore-Ludlow et al. 2015; Basu et al. 2013)). A) 4-parameter logistic
function as fitted by the BFGS algorithm. Starting point ψ = (α, β, η, φ)T = (0, 1,−1, 0)T .
B) Contour plot of the residual sum of squares g(ψ) with respect to parameters η and φ.
Fixed parameters α = 0 and β = 1.

When the Hessian matrix is almost singular it is still possible to apply quasi-Newton methods
(Luenberger and Ye 2008) to (try) avoid convergence problems. In our nonlinear regression
setting, however, we might have the extra complication of an objective function far from a
quadratic shape, so that the (quasi-)Newton method might fail to converge. Although this
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8 drda: dose-response data analysis

situations can be thought to be rare, they are often encountered in real applications. For
example, in Figure 2 we show a problematic surface that the quasi-Newton BFGS algorithm,
as implemented by the base R function optim(), is not able to properly explore.
We will try to overcome the issues in the optimization by focusing our search only in a
neighborhood of the current estimate, that is using a trust-region around the current solution
ψt. The problem to solve is now

min
u∈Rp

g(ψt) +∇Tψt
u+ 1

2u
THψt

u s.t. ||u|| ≤ ∆t

where ∆t > 0 is the trust-region radius. Our implementation is based on the exposition of
Nocedal and Wright (2006) and follows closely that of Mogensen and Riseth (2018). Briefly,
at each iteration we compute the standard Newton’s step and accept the new solution if
it is within the trust-region. If the Newton’s step is outside the admissible region we try
an alternative step by a linear combination of the Newton’s step and the steepest descent
step, with the constraint that its length is exactly equal to the radius ∆t (dogleg method).
This new alternative step is then accepted or rejected on the basis of the actual reduction in
the function value. The region radius ∆t+1 for iteration t + 1 is adjusted according to the
length and acceptance of the step just computed. For more details, we refer the reader to the
extensive discussion found in Nocedal and Wright (2006).

2.4. Algorithm initialization
One of the major challenges in fitting nonlinear regression models is choosing a good starting
point for initializing the optimization algorithm. Looking at the example in Figure 2, the
choice of ψ0 = (0, 1,−1, 0)T made the BFGS algorithm converge to a local optimum while a
global optimum might have been found if a better starting point was chosen.
First of all, we present the closed-form maximum likelihood estimates α̂ and β̂ when all other
parameters have been fixed. Define hk = (1 + ν exp(−η(xk − φ)))−1/ν , where xk = log(dk),
and assume it to be known. Our mean function is now

µk(α, β) = α+ (β − α)hk = (1− hk)α+ hkβ

while the residual sum of squares becomes

g(α, β) = 1
2

m∑
k=1

wk.(ȳk − (1− hk)α− hkβ)2

with gradient

g(α) = −
m∑
k=1

(1− hk)wk.ȳk + α
m∑
k=1

(1− hk)2wk. + β
m∑
k=1

hk(1− hk)wk.

g(β) = −
m∑
k=1

hkwk.ȳk + α
m∑
k=1

hk(1− hk)wk. + β
m∑
k=1

h2
kwk.

It is easy to prove that the gradient is equal to zero for

α̂ =
(∑

k h
2
kwk.

)
(
∑
k(1− hk)wk.ȳk)− (

∑
k hk(1− hk)wk.) (

∑
k hkwk.ȳk)

(
∑
k hk(1− hk)wk.)

2 − (
∑
k(1− hk)2wk.)

(∑
k h

2
kwk.

)
β̂ =

(∑
k(1− hk)2wk.

)
(
∑
k hkwk.ȳk)− (

∑
k hk(1− hk)wk.) (

∑
k(1− hk)wk.ȳk)

(
∑
k hk(1− hk)wk.)

2 − (
∑
k(1− hk)2wk.)

(∑
k h

2
kwk.

) (5)

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 7, 2021. ; https://doi.org/10.1101/2021.06.07.447323doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.07.447323
http://creativecommons.org/licenses/by/4.0/


Alina Malyutina, Jing Tang, Alberto Pessia 9

Our initialization strategy is made of two steps. The first step is done by setting ν0 = 1
and obtaining an initial guess for η0 and φ0, for example by choosing them at random or by
evaluating the objective function on a small grid of values. We then evaluate the maximum
likelihood estimates (5) and set α0 = α̂ and β0 = β̂. The second step is running the standard
Newton method starting from ψ0. The solution just found is then passed to our trust region
implementation for further refining.
When the likelihood function is well-behaved, the standard Newton method in the second
step is very fast and efficient, and most of the times will converge to the global optimum.
However, when the function is problematic, we sacrifice speed for accuracy by supplying our
trust region method with the local optimum found so far.

2.5. Statistical inference
When closed-form solutions of maximum likelihood estimates are missing, also closed-form
expressions of other inferential quantities are not available. Fortunately, we can still rely on
asymptotic, large sample size considerations, to obtain approximate values of quantities of
interest. Obviously, the larger the sample size the better the approximation.
Using either versions (3) or (4) of the Fisher information matrix we can calculate approximate
confidence intervals. In fact, we can think of the Fisher information matrix as an approximate
precision matrix, so that we only have to invert the matrix and take diagonal elements as
approximate variance estimates. In our package we use the observed Fisher information
matrix (3) because it is shown to perform better with finite sample sizes (Efron and Hinkley
1978). As an example, an approximate confidence interval for generic parameter ψj is

ψ̂j ± tn−p,α
√(

I(ψ̂, σ̂)−1
)
jj

where tn−p,α is the appropriate quantile of level α of a Student’s t-distribution with n −
p degrees of freedom and

(
I(ψ̂, σ̂)−1

)
jj

is the j-th element in the diagonal of the inverse
observed Fisher information matrix. Using the Delta method we can compute approximate
point-wise confidence intervals for the mean function

µ(dk; ψ̂)± tn−p,α
√
s2
(
∇ψ̂µk

)T (
Hψ̂f

)−1 (
∇ψ̂µk

)
or for a new, yet to be observed, value y(d)

µ(d; ψ̂)± tn−p,α

√
s2
(

1 +
(
∇ψ̂µ

)T (
Hψ̂f

)−1 (
∇ψ̂µ

))
We can also construct a (conservative and approximate) confidence band over the whole mean
function µ(·;ψ) with the correction proposed by Gsteiger, Bretz, and Liu (2011)

µ(d; ψ̂)±
√
qp,αs2

(
∇ψ̂µ

)T (
Hψ̂f

)−1 (
∇ψ̂µ

)
where qp,α is the appropriate quantile of level α of a χ2-distribution with p degrees of freedom.

3. Using drda
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10 drda: dose-response data analysis

3.1. General overview

The main function of drda is drda() with signature

drda(
formula, data, subset, weights, na.action, mean_function = "logistic4",
is_log = TRUE, lower_bound = NULL, upper_bound = NULL, start = NULL,
max_iter = 500

)

The first argument, formula, is a symbolic representation in the form y ~ x of the model to
be fitted, where y is the vector of responses and x is the vector of log-doses.
data is an optional argument, typically a data.frame object, containing the variables in the
model. When data is not specified, the variables are taken from the environment where the
function is being called.
subset is a logical vector, or a vector of indices, specifying the portion of data to be used for
model fitting.
weights is an optional argument that specifies the weights to be used for fitting. Usually
weights are used in situations where observations are not equally informative, i.e. when it is
known that some of the observations should have a smaller or larger impact on the fitting
process. If the weights argument is not provided then the ordinary least squares method is
applied.
na.action defines a function for handling NAs found in data. The default option is to use
na.omit(), i.e. to remove all data points associated with the missing values.
mean_function argument specifies the model that should be estimated. In the current ver-
sion of the package the argument can be any of ‘logistic5’, ‘logistic4’, ‘logistic2’, or
‘gompertz’. Each model is explained in detail in Section 2.1. By default, the 4-parameter
logistic function is chosen.
is_log is a logical indicator specifying if the x variable in the formula argument is already
on the log scale. The default value is TRUE, thus, if x is given on a natural scale, is_log
argument should be set to FALSE.
Arguments lower_bound and upper_bound are used for performing constrained optimiza-
tion. They serve as the minimum and maximum values allowed for the model parameters.
They are vectors of length equal to the number of parameters of the model specified by
the mean_function argument. Values -Inf and Inf are allowed. The parameters for the
5-parameter generalized logistic function are listed in the following order: α, β, η, φ, ν. For
the other models the order is preserved but some of the parameters are excluded. Obvi-
ously, values in upper_bound must be greater than or equal to the corresponding values in
lower_bound.
start represents a vector of starting values for the parameters.
Finally, the max_iter argument sets the value for the maximum number of iterations in the
optimization algorithm.
After the call to drda(), all the common functions expected for a model fit are available:
coef(), deviance(), logLik(), plot(), predict(), residuals(), sigma(), summary(),
weights().
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To evaluate the efficacy of the treatment it is also possible to compute the normalized area
under or above the curve. The functions are respectively

nauc(drda_object, xlim = c(-10, 10), ylim = c(0, 1))
naac(drda_object, xlim = c(-10, 10), ylim = c(0, 1))

The two-element vector xlim defines the interval of integration, on the log-scale, with respect
to x. The two-element vector ylim defines the theoretical minimum and maximum values
for the response variable y. Therefore, xlim and ylim together define a rectangle that is
partitioned into two regions by the dose-response curve. The normalized area under the
curve (NAUC) is defined as the area of the “lower” rectangle region divided by the total area
of the rectangle. The normalized area above the curve (NAAC) is simply its complement, i.e.
1 - NAUC.
When xlim and ylim are not explicitly chosen, the default values are set respectively to
c(-10, 10) and c(0, 1). The xlim default value was chosen on the basis of dose ranges
that are commonly found in the literature, and made symmetric around zero so that NAUC
and NAAC values are equal to 0.5 in the standard logistic model. In the majority of real
applications the response variable y is usually a relative measure against a control treatment,
therefore the default value for ylim is chosen to be c(0, 1).

3.2. Usage examples

First of all, we load the package.

R> library(drda)

We then define an example dataset to demonstrate how to use drda.

R> dose <- rep(c(0.0001, 0.001, 0.01, 0.1, 1, 10, 100), each = 3)
R> relative_viability <- c(
+ 0.877362, 0.812841, 0.883113, 0.873494, 0.845769, 0.999422, 0.888961,
+ 0.735539, 0.842040, 0.518041, 0.519261, 0.501252, 0.253209, 0.083937,
+ 0.000719, 0.049249, 0.070804, 0.091425, 0.041096, 0.000012, 0.092564
+ )

This example imitates an experiment where seven drug doses have been tested three times
each. Relative viability measures have been obtained for each dose-replicate pair and, in this
case, comprise 21 values in the (0, 1) interval. Note that any finite real number is accepted
as a possible valid outcome.

Default fitting
The drda() function can be applied directly to the two variables via setting is_log to FALSE.

R> fit <- drda(relative_viability ~ dose, is_log = FALSE)

We can obtain exactly the same fitting using the log-doses and ignoring the is_log argument
and storing the variables into a data frame.
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12 drda: dose-response data analysis

R> log_dose <- log(dose)
R> test_data <- data.frame(d = dose, x = log_dose, y = relative_viability)
R> # the following calls are equivalent
R> fit <- drda(relative_viability ~ log_dose)
R> fit <- drda(y ~ d, data = test_data, is_log = FALSE)
R> fit <- drda(y ~ x, data = test_data)

To obtain summaries the user can apply the summary() function to the fit object.

R> summary(fit)

Call: drda(formula = y ~ x, data = test_data)

Pearson Residuals:
Min 1Q Median 3Q Max

-1.81632 -0.45751 -0.02341 0.20617 2.04357

Parameters:
Estimate Lower .95 Upper .95

Minimum 0.05207 -0.001967 0.106
Maximum 0.87914 0.828166 0.930
Growth rate -1.14335 -1.683129 -0.604
Midpoint at -2.11770 -2.476042 -1.759
Residual std err. 0.06541 0.042006 0.089

Residual standard error on 17 degrees of freedom

Log-likelihood: 29.688
AIC: -51.377
BIC: -47.199

Optimization algorithm converged in 20 iterations

The summary() function provides information about the Pearson residuals, parameters’ and
residual standard error estimates, and their 95% confidence intervals. Together with the actual
point estimate, the widths of confidence intervals are a good starting point for assessing the
reliability of the model fit. The values of the log-likelihood function, AIC, and BIC are also
provided. Finally, the summary() function warns the user if the algorithm converges and if
so, in how many iterations.
Parameter estimates can be accessed using the coef() and sigma() functions, or by accessing
them directly.

R> coef(fit)
alpha beta eta phi

0.0520711 0.8791421 -1.1433476 -2.1177022
R> fit$coefficients
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alpha beta eta phi
0.0520711 0.8791421 -1.1433476 -2.1177022

R> sigma(fit)
[1] 0.06541385
R> fit$sigma
[1] 0.06541385

Since the model being fitted is (1), it is important to note that the the coef() function always
returns the parameter φ, in this case the log-EC50, regardless of the scale in which x was
passed to the function. The summary() function, however, will always print the estimate on
the same scale as the original x variable.
Our fit object can be further explored with all the familiar functions expected for a model
fit:

R> deviance(fit)
[1] 0.07274253

R> residuals(fit)
1 2 3 4 5

-0.001531458 -0.066052458 0.004219542 -0.002202763 -0.029927763
6 7 8 9 10

0.123725237 0.055299691 -0.098122309 0.008378691 0.008888741
11 12 13 14 15

0.010108741 -0.007900259 0.133677782 -0.035594218 -0.118812218
16 17 18 19 20

-0.008068816 0.013486184 0.034107184 -0.011354510 -0.052438510
21

0.040113490

R> logLik(fit)
[1] 29.68848

R> predict(fit)
1 2 3 4 5 6

0.87889346 0.87889346 0.87889346 0.87569676 0.87569676 0.87569676
7 8 9 10 11 12

0.83366131 0.83366131 0.83366131 0.50915226 0.50915226 0.50915226
13 14 15 16 17 18

0.11953122 0.11953122 0.11953122 0.05731782 0.05731782 0.05731782
19 20 21

0.05245051 0.05245051 0.05245051

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 7, 2021. ; https://doi.org/10.1101/2021.06.07.447323doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.07.447323
http://creativecommons.org/licenses/by/4.0/


14 drda: dose-response data analysis

R> predict(fit, x = log(c(0.002, 0.2, 2)))
[1] 0.87156973 0.34872020 0.08403782

Model comparison and selection

The anova() function can be used to compare competing models within the same logistic
family of models. The constant model, i.e. a flat horizontal line, is always included by default
in the comparisons. When the model being fitted is not the 5-parameter logistic function, the
latter is always included as the general reference model in the likelihood-ratio test.

R> fit_logi2 <- drda(y ~ x, data = test_data, mean_function = "logistic2")
R> anova(fit_logi2)
Analysis of Deviance Table

Model: 2-parameter logistic

Resid. Df Resid. Dev Df AIC BIC LRT
Constant model 20 2.87131 1 19.811 20.855 77.242
Estimated model 19 0.14354 2 -41.103 -39.014 14.328
Full model (logistic5) 16 0.07255 5 -49.431 -44.209

p-value
Constant model 0.0000000
Estimated model 0.0024909
Full model (logistic5)

Note that the p-value refers here to the likelihood-ratio test with a χ2-distribution asymptotic
approximation. In this particular case we are testing the null hypothesis that our 2-parameter
logistic function is equivalent, likelihood-wise, to the complete 5-parameter logistic function.
The significant result indicates that the 2-parameter logistic function provides a worse fit for
the observed data compared to a 5-parameter logistic function.

R> fit_logi4 <- drda(y ~ x, data = test_data, mean_function = "logistic4")
R> fit_gompe <- drda(y ~ x, data = test_data, mean_function = "gompertz")
R> anova(fit_logi2, fit_logi4, fit_gompe)
Analysis of Deviance Table

Model 1: Constant
Model 2: logistic2
Model 3: gompertz
Model 4: logistic4
Model 5: logistic5 (Full)

Model 4 is the best model according to the Akaike Information Criterion.

Resid. Df Resid. Dev Df AIC BIC LRT p-value
Model 1 20 2.87131 1 19.811 20.855 77.242 0.00000
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Model 2 19 0.14354 2 -41.103 -39.014 14.328 0.00077
Model 3 17 0.07595 4 -50.472 -46.294 0.959 0.00000
Model 4 17 0.07274 4 -51.377 -47.199 0.054 0.81569
Model 5 16 0.07255 5 -49.431 -44.209

These results indicate the 4-parameter logistic function as the best fit for the data. Not only
the model has the lowest AIC value, but the LRT is also not significant. Indeed, the data was
generated from a 4-parameter logistic function with ψ = (0.02, 0.86,−1,−2) and σ = 0.05.

Weighted fitting

In case when not all of the observations should be utilized equally in the model, the weights
argument can be provided to the drda() function. All the generic functions described above
are also applicable to a weighted fit object.

R> weights <- c(
+ 0.990868, 1.095238, 0.974544, 0.973318, 1.107001, 1.012844, 1.052806,
+ 1.019427, 1.032544, 0.919827, 0.971385, 0.959019, 1.037789, 1.006835,
+ 0.969383, 0.935633, 1.016597, 1.011085, 0.982307, 1.066032, 0.959870
+ )
R> fit_weights <- drda(y ~ x, data = test_data, weights = weights)
R> summary(fit_weights)

Call: drda(formula = y ~ x, data = test_data, weights = weights)

Pearson Residuals:
Min 1Q Median 3Q Max

-1.79403 -0.46630 -0.01527 0.20625 2.03837

Parameters:
Estimate Lower .95 Upper .95

Minimum 0.05176 -0.00314 0.107
Maximum 0.87864 0.82776 0.930
Growth rate -1.13251 -1.66213 -0.603
Midpoint at -2.11178 -2.48430 -1.739
Residual std err. 0.06604 0.04241 0.090

Residual standard error on 17 degrees of freedom

Log-likelihood: 29.522
AIC: -51.045
BIC: -46.867

Optimization algorithm converged in 19 iterations
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16 drda: dose-response data analysis

R> weights(fit_weights)
[1] 0.990868 1.095238 0.974544 0.973318 1.107001 1.012844 1.052806
[8] 1.019427 1.032544 0.919827 0.971385 0.959019 1.037789 1.006835

[15] 0.969383 0.935633 1.016597 1.011085 0.982307 1.066032 0.959870

R> residuals(fit_weights, type = "weighted")
1 2 3 4 5

-0.001008649 -0.068584002 0.004677024 -0.001524068 -0.030795978
6 7 8 9 10

0.125179424 0.058144516 -0.097689734 0.009903896 0.008004185
11 12 13 14 15

0.009427869 -0.008268459 0.134622275 -0.037250106 -0.118484884
16 17 18 19 20

-0.007781909 0.013621515 0.034319514 -0.010972588 -0.053849388
21

0.039578170

Constrained optimization

The drda() function allows the choice of admissible values for the parameters by setting the
lower_bound and upper_bound arguments appropriately. Unconstrained parameters are set
to -Inf and Inf respectively. While setting the constraints manually, one should be careful in
choosing the values as the optimization problem might become very difficult to solve within
a reasonable number of iterations.
In the next example the lower bound and upper bound parameters are fixed to 0 and 1
respectively, the growth rate is allowed to vary in [−5, 5], while the midpoint parameter is
left unconstrained.

R> lb <- c(0, 1, -5, -Inf)
R> ub <- c(0, 1, 5, Inf)
R> fit_cnstr <- drda(
+ y ~ x, data = test_data, lower_bound = lb, upper_bound = ub
+ )
R> summary(fit_cnstr)

Call: drda(formula = y ~ x, data = test_data, lower_bound = lb, upper_bound = ub)

Pearson Residuals:
Min 1Q Median 3Q Max

-2.0063 -1.0462 0.2350 0.4621 1.0019

Parameters:
Estimate Lower .95 Upper .95

Minimum 0.00000 NA NA
Maximum 1.00000 NA NA
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Growth rate -0.64049 -0.84055 -0.440
Midpoint at -2.42237 -2.87730 -1.967
Residual std err. 0.08692 0.05853 0.115

Residual standard error on 19 degrees of freedom

Log-likelihood: 22.552
AIC: -41.103
BIC: -39.014

Optimization algorithm converged in 13 iterations

Finally, it is possible to provide an explicit starting point using the start argument or change
the maximum number of iterations with the max_iter argument.

R> fit_cnstr <- drda(
+ y ~ x, data = test_data, lower_bound = lb, upper_bound = ub,
+ start = c(0, 1, -0.6, -2), max_iter = 10000
+ )
R> summary(fit_cnstr)

Call: drda(formula = y ~ x, data = test_data, lower_bound = lb, upper_bound = ub,
start = c(0, 1, -0.6, -2), max_iter = 10000)

Pearson Residuals:
Min 1Q Median 3Q Max

-2.0063 -1.0462 0.2350 0.4621 1.0019

Parameters:
Estimate Lower .95 Upper .95

Minimum 0.00000 NA NA
Maximum 1.00000 NA NA
Growth rate -0.64049 -0.84055 -0.440
Midpoint at -2.42237 -2.87730 -1.967
Residual std err. 0.08692 0.05853 0.115

Residual standard error on 19 degrees of freedom

Log-likelihood: 22.552
AIC: -41.103
BIC: -39.014

Optimization algorithm converged in 41 iterations

Basic plot functionality
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18 drda: dose-response data analysis

As basic plot functionality, drda allows to plot the data used for fitting, the maximum likeli-
hood curve and the approximate confidence intervals for the curve.

R> fit_logi5 <- drda(y ~ x, data = test_data, mean_function = "logistic5")
R> plot(fit_logi5)
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Alongside the common plot() arguments, it is possible to customize the plot by changing
the scale of the x-axis with the argument base or the level of the confidence intervals with
the level argument (default to 0.95). The available options for base are ‘e’, ‘2’, and ‘10’,
with the default setting depending on the scale used for the x variable in the model formula.
When the 2- or 4-parameter logistic functions are plotted, the φ parameter is also shown in
the plot. It is also possible to plot any number of models within the same figure.

R> plot(
+ fit_logi2, fit_logi4, fit_gompe,
+ base = "10", level = 0.9,
+ xlim = c(-10, 5), ylim = c(-0.1, 1.1),
+ xlab = "Dose", ylab = "Relative viability",
+ legend = c("2-param logistic", "4-param logistic", "Gompertz")
+ )
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Area-based metrics

To obtain a measure of treatment efficacy, functions nauc() and naac() compute respectively
the normalized area under the curve and above the curve. Since our example data refers to
viability data, we use here the NAAC measure: the closer the value to 1 the better the
treatment effect.

R> naac(fit_logi4)
[1] 0.6219635

To allow the values to be comparable between different compounds and/or studies, the func-
tion sets a hard constraint on both the x and y variables (see Section 3.1). However, the
intervals can be easily changed if needed.

R> naac(fit_logi4, xlim = c(-2, 2), ylim = c(0.1, 0.9))
[1] 0.9062705

4. Benchmarking
We will now assess the performance and estimation accuracy of drda using a real large-scale
drug sensitivity dataset downloaded from the Cancer Therapeutics Response Portal (CTRP)
(Rees et al. 2016; Seashore-Ludlow et al. 2015; Basu et al. 2013). The data contains cell
viability measures for 387130 cell line/drug pairs (887 unique cell lines, 545 unique drugs).
The majority of experiments (79.3%) were performed for sixteen drug doses and no replicates,
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20 drda: dose-response data analysis

Relative error

Statistic drda DoseFinding drc nplr
Minimum 0.0000 0.000 0.00000 0.000
First quartile 0.0000 0.000 0.00003 0.000
Median 0.0000 0.000 0.00352 0.109
Mean 1.39 10−5 0.778 0.06400 4.556
Third quartile 0.0000 0.020 0.04290 2.329
Maximum 0.2493 12157.546 218.32983 8338.883

Table 1: Summary statistics of benchmarking results for package drda.

which is only one observation per dose. The relative viability measures span the (0.0019, 2.881)
interval.
To choose reference values to compare our package to, we fitted the same model with the three
packages - DoseFinding, drc, and nplr. As a control variable for the comparison, we chose the
4-parameter logistic model in all packages, and the arguments of each package core function
were set to produce results that are as similar as possible. For drm() from package drc, we
selected the 4-parameter logistic model with fct = L.4() and fixed the maximum number of
iterations to 10000, similarly to drda(). For nplr() from package nplr, we changed useLog to
FALSE and set LPweight to 0 in order to perform the ordinary least squares method. We fixed
npars to four for the 4-parameter logistic model. For fitMod() from package DoseFinding we
chose the 4-parameter logistic model by setting model = "sigEmax" (see Section 2.1). Since
the fitMod() function requires the user to set constraints on the nonlinear parameters, we
used the default value bnds = defBnds(max(dose))$sigEmax.
For each cell line-drug-package triple we fitted the 4-parameter logistic function one hun-
dred times with function benchmark() from R package rbenchmark (Kusnierczyk 2012) and
recorded the parameter estimates, the residual standard error, the residual sum of squares
(RSS), convergence status, and the elapsed time of the function.
Since all packages are solving the same optimization problem (2), i.e. minimization of the
residual sum of squares, we considered for each cell line-drug pair the global optimum to be
the fit with the lowest RSS value among the four packages. We define the absolute relative
error of package k as

ρk =
∣∣∣∣∣1− RSSk

min{RSSDoseF inding,RSSdrda,RSSdrc,RSSnplr}

∣∣∣∣∣
For real applications, small absolute relative errors (here we set the threshold to 0.01) can be
considered equivalent to zero. Results are shown in Table 1.
Overall, drda is flagged as the absolute best fit in 90.81% of cases. When we only consider
the cases for which |ρk| ≤ 0.01, the percentage raises to 99.96% (70.21% for DoseFinding,
59.98% for drc, and 43.65% for nplr). When compared directly against the other packages,
drda outperforms DoseFinding in 29.78% of the cases (worse for 0.033%), drc in 39.99% of
cases (worse for 0.004%), and nplr in 56.34% of the cases (worse for 0.016%).
The results show that drda provides more accurate, and thus more reliable, estimates of the
dose-response relationship. The higher accuracy comes obviously at a computational cost, as
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more steps are usually needed for exploring the parameter space. Our data analysis reveals
that fitMOD() and nplr() are the fastest functions to complete the fit. It took them less
than a second to converge 95% of the times (mean of 0.62s and median of 0.61s for fitMOD();
mean of 0.91s and median of 0.95s for nplr()). On average drda found the global optimum
(or a very close solution) in 14.45 seconds (median of 9.6s). For completeness, drm() had an
average of 9.87 seconds and a median of 3.27 seconds.

5. Summary and discussion

In this paper, we have introduced the drda package, aimed at evaluating dose-response rela-
tionship to advance our understanding of biological processes or pharmacological safety. These
types of experiments are of high importance in drug discovery, as they establish an essential
step for subsequent therapeutic advances. An appropriate interpretation of the experimental
data is grounded on a reliable estimation of the dose-response relationship. Therefore, it is
imperative to provide advanced optimization methods that allow more accurate estimation
of dose-response parameters, and the assessment of their statistical significance.

One of the main limitations of most optimization procedures is their convergence to local
solutions. The basic quasi-Newton methods applied to logistic curve fitting are sensitive to
the selection of a starting point and to cases when data is non-informative. Our package
effectively overcomes the convergence problem as we implement a Newton method with a
trust region to achieve global convergence and improve it further with a double-step starting
point initialization. The drda optimization routine also relies on analytical gradient and
Hessian to avoid numerical approximations. The package allows a user to further evaluate
the model fitness further via the assessment of confidence intervals of the estimates, model
comparisons, and advanced plot options.

We have compared our package with the three state-of-the-art packages - DoseFinding, drc,
and nplr. Using a large-scale drug screening dataset, we have shown that drda has clearly
outperformed the other three packages in terms of accuracy. Despite the fact that our pack-
age is on average slower than the other three packages, its gain in accuracy is a favorable
compromise. For most, if not all, experimental applications, accuracy has a higher priority.
The package is currently completely implemented in base R, therefore there are still many op-
portunities for improving its performance, by, for example, refactoring core critical functions
in C or improving further the algorithm initialization. If a researcher is looking for a pack-
age providing improved accuracy at a relatively low speed-cost, drda might provide a viable
option. The package can be downloaded from https://github.com/albertopessia/drda.
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