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Abstract 

The growth of digital pathology over the past decade has opened new research pathways and 
insights in cancer prediction and prognosis. In particular, there has been a surge in deep 
learning and computer vision techniques to analyse digital images.  Common practice in this 
area is to use image pre-processing and augmentation to prevent bias and overfitting, creating 
a more robust deep learning model. Herein we introduce HistoClean; user-friendly, graphical 
user interface that brings together multiple image processing modules into one easy to use 
toolkit. In this study, we utilise HistoClean to pre-process images for a simple convolutional 
neural network used to detect stromal maturity, improving the accuracy of the model at a tile, 
region of interest, and patient level. HistoClean is free and open-source and can be 
downloaded from the Github repository here: https://github.com/HistoCleanQUB/HistoClean. 
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1. Introduction 

The growth of digital image analysis in clinical pathology and its subsequent case for use in 
clinical medicine has been supported by the conception of open-source digital image analysis 
(DIA) software [1–3]. Use of machine learning from predetermined features allows for the 
development of DIA algorithms within these software environments.  This allows bio-image 
analysts and consultant histopathologists to answer difficult, specific research questions in 
human tissue [4]. The subsequent introduction of deep learning has revolutionised the 
development of DIA algorithms [5]. This has enabled potential solutions to tumour and 
biomarker detection, as well as tumour subtyping [6,7]. However, these solutions require 
domain-specific knowledge relating to the deep learning methodology, as well as the 
awareness of hardware acceleration [8].  

Consequently, open-source software to facilitate bio-image analysts without a background in 
computer vision to develop deep learning models have evolved [9,10]. Deep learning 
methodologies learn feature representations from the data without requiring predefined 
feature extraction. The resultant models can therefore be significantly more sensitive to 
dataset specific attributes, such as irregularities in staining, batch effects and the quality of 
the digital slide [11,12]. Use of image pre-processing and augmentation prior to developing 
deep learning models can regularise the input images, thereby, mitigating the potential for 
bias in the training of the CNN, or other deep learning models, and its independent validation 
[13–16]. Among these, the most common techniques include class-balancing [17], image 
normalisation [18], and image augmentation [19].  These techniques often involve the use of 
multiple coding libraries, which in turn requires knowledge of the documentation before 
implementation.  

Herein we present HistoClean; an open-source, high-level, graphical user interface (GUI) for 
image pre-processing. HistoClean aims to complement other open-source software and deep-
learning frameworks in the bio-image analysis ecosystem [18, 19] . HistoClean’s image pre-
processing toolkit is divided into five functional modules based on computational methods 
frequently used in histological image pre-processing; image patching, whitespace 
thresholding, dataset balancing, image normalisation and image augmentation (Figure 1). 
These modules can be used independently or in combination with each other as the user 
requires. HistoClean brings together image pre-processing techniques from across multiple 
Python libraries. This simplifies the image preparation phase of deep-learning analysis in a 
way that is transparent and maintains data integrity.  
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Figure 1. HistoClean, an all-in-one toolkit for the pre-processing of images for use in deep 
learning. Modules include (a) tools for generation of image tiles from larger images, which 
are executed within the image patching module (b), whitespace estimation and filtering, 
implemented in the white space removal module (d) image normalisation, which standardises 
the colour grading of the images and image augmentation techniques, which are implemented 
in the dataset balancing, image normalisation and image augmentation modules as 
demonstrated in the representative images shown (e). Examples of augmentation include but 
are not limited to: (i) Increased red value, (ii) Pixel Dropout (iii) Increased contrast (iv) 
Canny edge detection. (v) Brightness (vi) Embossing (vii) Greyscale (viii) Motion blur. 

 

In this study, a practical example of how HistoClean can optimise input images for training 
CNNs to predict stromal maturity is described (Figure 2). In evaluating these models, we 
demonstrate the benefit of image pre-processing for deep learning, and introduce HistoClean 
as an open-source software solution to quickly implement and review these techniques. 

The main contribution of this paper is the development of a novel, easy to use application for 
the rapid pre-processing and augmentation of image datasets for use in deep learning, image 
analysis pipelines.   
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Figure 2. Use of HistoClean in the development of histology based convolutional neural 
networks. Slides are scanned at high-resolution, normally 200-400x magnification and are 
virtually annotated (as outlined in red) by a pathologist on a digital platform (a). Tiles of 
equal size are extracted from the virtual annotations (b). These tiles are independently sorted 
into training, test and validation datasets at a patient level (c). Image pre-processing and 
augmentation is conducted on the tiles using HistoClean where appropriate in the training, 
test and validation datasets in order to prepare tiles for use in a convolutional neural network 
(d). Within a typical convolutional neural network, each tile is fed through a series of 
convolutional and pooling layers in order to create feature maps to differentiate between the 
two classes (e). These feature maps are then fed through several fully connected layers which 
determine which class the images belong to (f). Each tile is assigned a value used for class 
prediction; the prediction values for each tile are then aggregated in order to provide a overall 
class prediction per patient (g). 

 

 

 

2. Materials and Methods 

2.1 HistoClean Application Development 

HistoClean was developed using Anaconda3 and Python 3.8. Code was written using the 
PyCharm integrated developer environment. The GUI was developed using the Tkinter 
toolbox (v8.6). Initial development and testing of the software was performed on an Octane V 
laptop with an Intel Core i7-9700F 3.0GHz processor and 32GB Corsair 2400MHz SODIMM 
DDR4 RAM, with a Windows 10 operating system. The application was converted to a .exe 
program using the Pyinstaller Python package [21]. All testing was performed in the 
Windows 10 operating system. For ease of use it is recommended that images should be 
organised within directories corresponding to each image class. The application runs all 
processes on the CPU. No GPU is required. The application makes prominent use of 
multithreading, which scales to the number of cores in the CPU. 
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2.1.1 Image Patching Module 
CNN’s require input image tiles to have consistent dimensions [22]. For this reason, 
HistoClean includes an image patching module that utilises the Python library Patchify [23]. 
This module interface allows the user to create image tile subsets from a larger input image to 
their specification and provides real-time feedback of the output to the user, facilitating 
straightforward evaluation and adjustment (Figure 1a). This module can be used for block 
processing of n images organised within a common file directory. The user can select an 
output destination wherein the directory structure and naming conventions of the original 
images will be retained and populated with the requested image patches. The file names of 
these new image tiles are suffixed with their patch co-ordinates from the original image for 
reproducibility. Maintaining transparency in the pre-processing stages ensures that results can 
ultimately be traced back to their source ensuring that HistoClean does not damage original 
source data or impede data integrity and reproducibility. 

 
2.1.2 Tissue Thresholding Module 
Most pathology-orientated CNN’s are developed to address questions within the tissue, 
therefore, an excess of whitespace in the input images may impair model development [24]. 
In order to address this issue and improve the quality of input image tiles, HistoClean 
includes a tissue thresholding module that allows the user to remove image tiles from their 
dataset based on a minimum threshold of approximate tissue coverage. The method outlined 
in this paper uses binary thresholding to determine the percentage of positive pixels, 
representing tissue, and null pixels, representing whitespace (Figure 3). Tissue coverage and 
relative intensity of the staining can vary significantly depending on any number of 
predisposing factors. Therefore, HistoClean’s module interface allows the user, in real time, 
to explore different thresholds for dichotomising these pixels into tissue vs whitespace. In 
addition, adaptive thresholding is available for each image as well as Otsu binarization [25]. 
All of these thresholding options come courtesy of the OpenCV Python library [26].  These 
processes generate a binary mask for each image which the GUI presents alongside the 
original image for review. Users can view five images simultaneously. Upon approval of an 
arbitrary threshold, images are removed or relocated based on user preference. 

 

Figure 3. Four representative images demonstrating use of the positive pixel classifier 
method to estimate tissue coverage. All images were given the same cut-off (0.8). The top 
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row contains the original images, with the bottom row showing the binary mask for tissue 
(black = tissue, white = whitespace). The bottom row shows the estimated tissue coverage 
within the image tile. 

 
 

2.1.3 HistoClean: class balancing module 

Class balancing is essential to prevent class bias of data when developing deep learning 
models [27]. For this reason, HistoClean includes a class balancing module that enables the 
user to equalise the number of images per class prior to training of the CNN (Figure 1c). This 
requires that each class of images be provided in a separate directory by the user. The user 
can then decide to balance using three options: reducing the number of image tiles in each 
class to the smallest class, increasing the number of image tiles in each class based on the 
largest class, or balance the number of images in each class based on the average number of 
images in each class. The pre-requisite for using this functionality is that no class contains 
less than one eighth of the samples of the largest class. This pre-condition is reinforced 
through exception handling. This is to prevent duplicate images arising from repeated 
augmentations. If the user balances the samples through class reduction, the image tiles in the 
larger class-specific dataset are then relocated to a new directory, denoted as ‘Removed 
Images’, or are permanently deleted based on user preference. If class-size is balanced by the 
addition of image tiles, then a random assortment of image tiles equal to the difference 
between the largest class-specific image dataset are selected without replacement from within 
the smaller dataset(s). The random selections of image tiles are then augmented thus 
balancing the number of image tiles in that class by addition of ‘new’ image data. Image 
augmentation techniques are randomly selected from mirroring, clockwise rotation at 90o, 
180o or 270o, or a combination of mirroring and a single rotation. This can create up to 7 
unique images from a single image as required. A random number generator, seeded to the 
date and time of dataset balancing, determines the augmentation applied.  

 

2.1.4 Image Normalisation Module 

Histological images possess unique image colour, contrasts, and brightness profiles. Batch 
effects in staining (Figure 4a)  can significantly influence model performance [13].  Image 
normalisation can be used to bring uniformity to the images in the dataset by adjusting the 
range of pixel values of an input image, according to that of a target image [18].  For this 
reason, HistoClean includes an image normalisation module based on histogram matching 
from the Python library scikit-image [28]. Histogram matching works by comparing the 
cumulative histogram of pixel intensities from a target and an input image, before adjusting 
the pixel values of the input image according to the target image [29] (Figure 4b). 
HistoClean’s module interface allows the user to select a target image to normalise to and to 
review examples of the histogram-matched images before committing to image normalisation 
to n images organised within a folder. These are saved to a separate user-defined folder, or 
can replace the original images at the user’s discretion. 
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Figure 4. Image normalisation in histological images. Batch effects in haematoxylin and 
eosin staining and different staining protocols often leads to an inconsistent colour range in 
histological images as demonstrated by images taken from the TCGA head and neck 
diagnostic dataset (a).  Demonstration of histogram normalisation to correct for the 
inconsistent colour range between samples while preserving histological architecture (b).  
The top row shows a selection of original un-normalised tiles, the middle row shows the 
target image and preferred colour range being normalised to and the bottom row shows the 
result of that normalisation. 

 

2.1.5 Image Augmentation and Pre-processing Module 

It is not always possible to source large collections of histological images in the pursuit of 
developing deep learning models [30]. Image augmentation is a technique which that can be 
used for the artificial expansion of image datasets to provide more training examples. In 
addition, image pre-processing can be used to enhance features already present in an image 
dataset in order to provide more specific features for the CNN training [31]. By providing 
deep learning models with augmented data, the user can reduce the risk of overfitting and 
improve the generalisation ability of the CNN [30]. For this reason, HistoClean includes an 
image augmentation/pre-processing module based on the Python library Imgaug [32]. This 
allows the user to select, review and apply the most popular image augmentation techniques 
used in the development of CNNs to their image dataset in real-time (Figure 1e). These 
include adjusting the colour range, contrast, blur and sharpness, noise, pixel and channel 
dropout and more. Generated images files from augmentation are identifiable by their name, 
which incorporates the name of the root file from which the image derived so as to maintain 
data integrity. 

 

2.2 Patient samples 

Ethical approval and access to diagnostic H&E stained slides from a retrospective cohort of 
oropharyngeal squamous cell carcinomas (OPSCC) for stromal maturity prediction by 
artificial intelligence was granted via the Northern Ireland Biobank (OREC 16/NI/0030; 
NIB19/0312) [33]. Briefly, patients with a primary oropharyngeal cancer diagnosed between 
2000-2011 were identified and their diagnostic H&E retrieved from the Belfast Health and 
Social Care Trust courtesy of the Northern Ireland Biobank. All slides were digitised using a 
Leica Aperio AT2 at 40x magnification (0.25μm / pixel). Virtual slides were saved in a .svs 
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file format and imported into the open-source image analysis tool QuPath (v0.1.2) [1] to 
enable image annotation by a qualified histopathologist.   

 

2.3 Classification of stromal maturity 

Using DIA software QuPath (v0.1.2), a trained pathologist reviewed all the diagnostic H&E 
slides from each case before identifying and annotating ROIs for classification of stromal 
maturity on the slide that most represented malignant OPSCC. Stroma maturity was 
determined as being either mature or immature for each ROI by visual review. This was 
conducted by the pathologist, along with two other blinded independent assessors based on 
previously published criteria [34,35]. Classification of mature stroma was defined by the 
presence of fine, regular, elongated collagen fibres organised with approximately parallel 
orientation. Conversely, immature stroma was defined by disorganised, random orientation of 
collagen fibres with and without the presence of edema and myxoid-like degeneration. 
Representative images of mature and immature stroma were created and used as reference 
criteria for all assessors prior to classification (Figure 5).  

 

Figure 5.  Reference images for mature (top row) and immature (bottom row) stroma 
randomly selected from the dataset. Images taken at 40x magnification and used as reference 
criteria during the manual classification of stromal maturity by the independent assessors in 
the study.  

 

2.4 Image Set Preparation 

Image tiles of size 250X250 pixels were extracted from the stromal regions of the annotated 
ROIs utilising QuPath’s scripting functions. Tiles were organised in separate directories for 
mature and immature stroma as determined by manual assessment. These were further 
grouped into directories representing each patient.  Images were divided at a patient level into 
three sets. First, the training set, which consisted of 70% of the patients was used to train the 
CNNs. Second, the test set, which consisted of 15% of the patients was used to evaluate 
model performance during training. Lastly, the independent validation set consisting of the 
remaining 15% of patients. This did not influence the training of the model and was instead 
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used to evaluate model performance. This produced the baseline “Unbalanced” image set. 
Images were organised in this way to account for intra-patient heterogeneity of stromal 
maturity. An entire heterogenous patient existed within the training, test or independent 
validation set and was not split among the three.  This is to prevent the CNN from 
“recognising” patients between the three sets. 

 

2.5 Image pre-processing using HistoClean 
In order to demonstrate the benefit of image pre-processing for the development of robust 
CNN’s, seven independent image datasets were produced from the baseline image set. These 
utilised a combination of class balancing, image normalisation and pre-processing (Table 1).   
Class balancing augmented the smaller image class to provide the same number of images as 
the larger class. This option was chosen as reducing the larger class down, would have 
resulted in a lesser volume of images for training, harming model accuracy. Image pre-
processing was limited to embossing of the images (Intensity = 2, Alpha = 1) (Figure 6). The 
same target image was used in all normalised sets. All image manipulation was conducted 
prior to input in the CNN.  The processes for creating all these image sets were timed. 
Augmentations were applied across the training, test and independent validation sets, with the 
exception of balancing, which was done across training and test sets only. 
 

 

Table 1. Summary table of Histoclean modules used in each dataset.  Columns denoted with 
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an “X” show which modules were used. 

 
 
 

Figure 6.  Demonstration of embossing on mature and immature tiles. The top row consists 
of the original images and the bottom row shows the effects of embossing. Embossing 
accentuates the difference between the two stroma maturities. 

 
 
2.6 CNN Design 

The CNNs used in these experiments were designed using PyTorch [36]. A core CNN 
architecture was established and trained independently on each of the 8 datasets from scratch. 
This network consists of five convolutional layers interlinked with five pooling layers (Figure 
7).   The output of the final pooling layer is then flattened and fed into two fully connected 
layers wherein stromal maturity is predicted using the softmax function in the final layer. 
Training was carried out for 200 epochs, with a batch size of 150.  Adam Optimisation was 
used with a learning rate of 1e-6. Test batch size was set to 150 images. The outcome of the 
softmax function in the CNN produced a probability for each input image ranging from 0 
(predicted mature) to 1 (predicted immature). Stromal maturity of the input images was 
classified as immature if the stromal maturity probability was greater or equal to 0.5, 
otherwise it was considered mature. After training on every fifth batch, the neural network 
calculated the accuracy and loss on a randomly selected test batch. If the test accuracy was 
greater than or equal to 65%, the weights and biases of the model were saved for further 
model evaluation. The weights and biases of the top 10 test batch accuracies were applied to 
the entire test set to get an improved evaluation of in-model performance. Only the model 
weights and biases that provided the top test accuracy were carried forward. These were then 
loaded to the CNN and applied to the independent validation image set. Stromal maturity 
probabilities at a ROI level were produced by majority voting of individual tile 
classifications. In patients with heterogeneous ROI classification of stromal maturity, 
majority voting of the ROIs was used to determine classification at a patient level. This was 
done to remain comparable with manual assessment. If the number of predicted stromal 
immature and mature ROI’s was equal the patient was considered to have mature stroma 
overall. To enable comparison of how different input images affected training of the CNN, 
batch size, learning rate, loss function and optimiser were all kept constant through all 
experiments. Full code for the CNN can be found at: 
(https://github.com/HistoCleanQUB/HistoClean) 
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Figure 7. Workflow and architecture for the in-house convolutional neural network (CNN) 
used in the study. Regions of interest (ROI) are annotated and extracted from the tumour 
body (a). Image tiles of size 250x250 pixels were extracted from within stroma annotations 
within each ROI (b). Tiles were converted to greyscale to conserve memory, and fed into a 
CNN consisting of five convolutional layers interlinked with five pooling layers (c). A 
graphical representation of how these tiles are then processed within the five convolutional 
layers interlinked with five pooling layers of the CNN used in this study (d);the output of 
which is flattened before being fed into two fully connected layers wherein stromal maturity 
is predicted using the softmax function in the final layer (e). (Avg = Average, Max = 
Maximum) Equations in grey show how feature map dimensions were calculated. 

 

2.7 Statistical analysis 

The pathologist stromal maturity scores were used as the ground truth for development of the 
CNN. Model evaluation was conducted against the ground truth (pathologist scores) for the 
best-saved weights and bias in each of the image data sets at an individual tile, ROI and 
patient level. Confusion matrices were calculated to help determine the model’s precision, 
recall and F1-scores. Receiver-Operator Characteristic (ROC) curves were generated for 
assessment of the area under the curve (AUC) using the Scikit-learn library [28] in Python 
3.8 at a tile and ROI level.  Due to the heterogenous nature of some of the patients and 
methods of aggregation to predict outcome, ROC curves were not generated at this level.  

Comparability between the best CNN model and the manual evaluation method was also 
assessed. Sensitivity, specificity, accuracy and their 95% confidence intervals were also 
calculated in the two additional independent manual stromal maturity classifications. For the 
purpose of this analysis, the model was considered a fourth evaluator. Inter-evaluator 
concordance was conducted using Fleiss’ Kappa. All bio-statistical analyses were performed 
using R v3.6.1[37].  

 

3. Results 
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3.1 Patient Images 

Classification of stromal maturity in digitally annotated ROI’s was conducted on H&E 
stained slides for 197 patients with OPSCC. From these patients, 636 ROIs were annotated 
and evaluated manually. In total, 9.91% (63/636) ROIs had insufficient stroma to produce 
tiles, resulting in 4.06% (8/197) patients being excluded from further analysis in the study. Of 
the remaining patients, 33.86% (64/189) were found to have immature stroma in all ROIs 
assessed and 45.50% (86/189) patients were found to have mature stroma present in all ROIs 
assessed. Classification of stromal maturity across ROIs was heterogeneous in 20.64% 
(39/189) of patients assessed. There were 29 heterogenous patients in the training group, 4 in 
the test group and 6 in the independent validation group (Figure 8).   

 

Figure 8. Histograms Showing breakdown of the image dataset for image tiles (A), ROIs (B) 
and at patient level (C) before and after dataset balancing. Datasets were only balanced at a 
tile level. NB The patient counts treat stromal heterogenous cases as both a mature an 
immature patient in these figures.  The number of heterogenous patients are denoted in the 
parenthesis in (c) 

 

3.2 Image Set Times 

The time taken to perform each of the adjustments outlined in Table 1 were recorded for each 
image set.  HistoClean balanced the baseline training data in 5.79 seconds with a difference 
of 2601 images translating to a rate of 452.35 images per second. Normalisation of all 15148 
images in unbalanced training data took 66.85 seconds equating to a rate of 226.60 images 
per second. Embossing the unbalanced data took 30.45 seconds, a rate of 497.47 images per 
second. 

The use of multithreading allowed for the processing of the images in a rapid timeframe. As 
mentioned previously, the number of threads used scales with the CPU cores, allowing the 
user to carry out other tasks while HistoClean produces the new images. 
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3.3 Evaluation of image data sets in robust CNN development 

The CNN was trained eight separate times from scratch using the eight separate image sets 
summarised in Table 1. Use of image pre-processing techniques were found to consistently 
improve upon model performance when compared to the baseline “unbalanced” dataset 
across all levels of prediction assessed; from probability of individual image tiles to 
aggregation of probability at the patient level (Table 2). Image pre-processing conducted in 
the Balanced Embossed set provided the best overall accuracy at a tile, ROI and Patient level 
(0.774, 0.835 and 0.857 respectively) as well as a superior f1-score (0.820, 0.844 and 0.846 
respectively).  From these results, the balanced embossed set was determined to be the best 
preforming image set overall. In addition, the Balanced Embossed image set provided the 
best area under curve (AUC) scores (0.839 and 0.963 at a tile and patch level; Figure 9). 

 

Figure 9. ROC Curve comparison of the different image datasets evaluated for CNN model 
accuracy within the image tiles (a) and ROIs (b). A combination of embossing and balancing 
the image sets provided the best overall area under curve (AUC) at a tile and ROI level. 
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Table 2. Breakdown of model evaluation for each image set. Highlighted in bold are the best 
results for each category. 

 

 

The ability to predict stromal maturity using the CNN trained on the balanced embossed 
images was developed using the ground truth for stromal maturity in that ROI as provided by 
a single pathologist. Therefore, the sensitivity and specificity of manual classification of 
stromal maturity by two independent assessors to predict the pathologist scores was 
conducted and compared to results from balanced embossed image trained CNN in order to 
determine how reproducible the original pathologist scores were. Both independent manual 
assessors and the balanced embossed image set trained CNN demonstrated comparable 
sensitivity (100%; 95% CI, 77%–100%, for Assessor 1; 93%; 95% CI, 68%–100%, for 
Assessor 2 and 80%; 95% CI, 52%–96%, for the CNN) and specificity (86%; 95% CI, 57%–
98%, for Assessor 1; 100%; 95% CI, 75%–100%, for Assessor 2 and 85%; 95% CI, 55%–
98%, for the CNN) when classifying patients with having immature stroma based on the 
original pathologist scores. Moreover, the Fleiss’ Kappa score demonstrated good 
concordance between all three manual assessors and the CNN(κ = 0.785, p<0.0001). A 
review of misclassification by the balanced embossed image set trained CNN found 
misclassification occurred most often when a small number of tiles were available for stromal 
classification in that patient (Figure 10a). Misclassification by this model was found at a tile 
level whenever the image augmentation enhanced the presence of whitespace in immature 
stroma tiles resulting in misclassification of mature stroma in the embossed image (Figure 
10b). In one patient, no tiles were able to be extracted from 3 of the 5 ROIs, resulting in an 
inversion of stromal maturity prediction that was subsequently incorrect. 
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Figure 10. Representative examples of misclassified DS6 CNN stromal maturity prediction. 
Some patients in the cohort had limited stroma present, meaning very few tiles representative 
of overall patient’s stromal maturity could be extracted resulting in misclassification at a 
stromal independent patient level (a). Whilst at the tile level, image augmentation using the 
emboss technique was found to enhance linear structures surrounding oedema resulting in the 
embossed image possessing features associated with mature stroma resulting in 
misclassification of the tile (b). 

 

4. Discussion 

As technology advances, so too does the demand for computational, high-throughput, cost-
effective diagnostic tools for use in clinical medicine. This is particularly true in the field of 
clinical pathology that traditionally has utilised fewer technological aids in spite of a 
depleting workforce (36, 37). Digital pathology, involves the acquisition and review of ultra-
high-resolution whole slide images using a computer monitor in place of a microscope [40]. 
Digitisation of histological slides benefits from remote access for diagnostic reporting, 
providing a quick and easy means of recourse for diagnoses of complex pathology though 
ease of sharing virtual slides to consultant histopathologists with sub-specialist interest (38, 
39). In addition, slide digitisation permits the use of digital image analysis tools to quantify 
histological features objectively using AI, as seen in radiomics [42]. At present, use of digital 
image analysis algorithms by consultant histopathologists is limited due to lack of 
modernisation in clinical pathology within the National Health Service, UK [41]. However, 
many consultant histopathologists recognise the benefit digital image analysis methodology 
could provide in streamlining the decision making process [43]. 

In contrast to other medical and non-medical disciplines that have implemented AI-assisted 
DIA, there is a scarcity of appropriate pathological images for developing deep learning 
models in clinical pathology [44]. This is in part due to the relatively recent move towards 
digitisation of pathology services, but more often due to lack of pathological material 
regarding the question of interest.  Histological images are data rich and demonstrate 
significant heterogeneity across and within disease pathologies [45]. Therefore, the number 
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of images required for effective deep learning is that of many orders of magnitude greater 
than that those required when developing models using more classical machine learning 
methods. Depending on the model being developed, this may require image datasets to be 
sourced at a global scale. Consequently, this introduces image variability and potential bias 
into CNN learning through differences in laboratory practice, scanning procedures or age of 
the sample being scanned [46]. This can have a pronounced effect on model learning and 
validation, particularly in small cohort studies, as each histological image possess unique 
image colour, contrasts and brightness profiles. The inter-laboratory variation limits the 
efficacy of developed models from small cohort students to be used in practice. CNNs have 
already shown promise in several cancer types and in several different use cases.  One study 
by Khosravi et al. evaluated both in-house and the current top pretrained models’ efficacy 
across numerous cancer types and in several different tasks [47]. Many of these models 
achieved >90% accuracy in the categories of tumour detection, biomarker detection and 
tumour subtyping in bladder, breast and lung cancers. Another study demonstrated the use of 
several pretrained neural networks to identify different growth patterns in lung 
adenocarcinoma, achieving accuracies up to 85% [6]. 

In this study, we demonstrate the power of image pre-processing and augmentation and 
present a novel open-source GUI called HistoClean. Using a relatively simple CNN 
architecture, we clearly establish how use of image pre-processing techniques improves upon 
model generalisability for prediction of stromal maturity in an independent validation dataset. 
Further, we show that the best developed model, the balanced embossed model, had similar 
concordance, sensitivity and specificity to two further independent assessors of stromal 
maturity by manual review. However, we also show that poor choice of image pre-processing 
and augmentation techniques can introduce bias and noise. The use of image augmentation 
for dataset balancing helped to increase the small number of immature samples present for 
model development whilst image pre-processing through embossing helped to accentuate the 
features of interest we wanted the model to train with. Therefore, to ensure successful model 
development, consideration of which techniques to implement should reflect the specific 
research question being asked.  

 

When trying to improve the accuracy of a CNN, often developmental time is spent refining 
the neural network and the network’s hyperparameters.  However, it is arguably just as, if not 
more important to focus on the quality of the images used in training the network; a sentiment 
captured by the expression “rubbish in = rubbish out”.  This study illustrates how crucial it is 
to balance the number of input images across the classes to prevent model overfitting.  This 
initial step significantly improved both overall accuracy and AUC at the tile, patch and ROI 
level.  The strength of this action is also clearly demonstrated by the change in false mature 
and false immature rates when comparing the balanced dataset to the unbalanced dataset. 
This is evidenced in the increases in f1-value at tile ROI and patient level (0.187, 0.340 and 
0.443 respectively, Table 2). In parallel to this, embossing alone also demonstrated increases 
in accuracy and AUC across all levels, as well as lessening the effect of a mature dominant 
training set (Table 2).  A synergistic improvement occurred when the dataset was both 
balanced and embossed, achieving an accuracy of 0.774 at a tile level.  These improvements 
are in line with several other studies that use different augmentation techniques [48–50]. 
Importantly, HistoClean allowed the bio-image analyst to review the output of the image 
processing steps being applied within the software before proceeding to model development, 
providing opportunity for discussion of how particular image augmentations may enhance 
qualitative features the pathologist used to define stromal maturity in the image. 
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In this study, we also demonstrate that inappropriate augmentations can harm deep learning 
model development. This is evidenced by the reduction in accuracy between the Balanced 
Embossed and Balanced Normalised Embossed image sets, with a particular shift towards 
immature prediction as reflected in the increase in recall and decrease in precision at all 
levels. Upon examination of the patients in which this phenomenon had the greatest effect, it 
was clear that image normalisation, while correcting any colour imbalance, often created 
artefactual whitespace (Figure 11c). This was further highlighted by the embossing, (Figure 
11d) causing the mature tiles to lose the dense parallel stromal fibres and adopt a more 
immature phenotype. This also raises the question of whether the improvements between the 
unbalanced and unbalanced normalised image sets are genuine or an artificial correction in 
the majority mature training data. It could be hypothesised that an immature skewed training 
set could suffer from further negative bias using this technique. Situations like this reinforce 
HistoClean as a useful tool for image pre-processing. A trained pathologist would be able to 
preview these changes and identify flaws in the pre-processing steps to avoid them. 
Furthermore, the traceability and data integrity provided by the application allows for easy 
comparison of the images. 

 

Figure 11. Example ground truth mature ROI. The original image (a) was embossed (b) and 
in the balanced embossed image set was predicted mature. Normalisation of the image 
created artefactual whitespace (c) which was then exacerbated by the embossing (d), flipping 
the prediction to an immature phenotype. 

 

While the findings of this work give reason to be optimistic, there are still barriers to 
overcome before these tools are utilised in a clinical setting. With the common complaints of 
job losses and disconnect from the patient [51] aside, there can also be a lack of 
explainability and interpretability of the outcomes of neural networks; known as “Black Box” 
Deep learning [52]. This has led to a debate on how important it is to explain diagnostic 
outcome even if the accuracy is high [53]. However, this is comparable to the many 
commonly used drugs where we still lack a complete understanding of their mechanism of 
action [54]. There have been great efforts made to help uncover the logic behind image 
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classification in deep learning models. These include the generation of saliency maps based 
on the generated gradients and loss [55], gradient-weighted class activation mapping [56], 
and minimal explainability maps ([57]).  These techniques highlight areas of interest on the 
original images, providing some insight into which features are contributing to the 
classification.  As techniques like this continue to improve, the concerns around the blind 
nature of deep learning should be alleviated. 

 

5. Conclusions 

This study confirms that use of image pre-processing and augmentation techniques available 
in HistoClean can advance the field of deep learning by facilitating arguably the most 
important step CNN-centric experiments; image set preparation. However, there is a lack of 
easy to use open-source software to facilitate this process. This study demonstrates the 
usefulness of HistoClean as an open-source software to implement image pre-processing 
techniques in image research, saving time and improving transparency and data integrity. 
HistoClean provides a rapid, robust and reproducible means of implementing these 
techniques in a way that can be used by experts, such as pathologists, to help identify which 
techniques could potentially be of use in their study. 
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Figure Captions 

Figure 1. HistoClean, an all-in-one toolkit for the pre-processing of images for use in deep 
learning. Modules include (a) tools for generation of image tiles from larger images, which 
are executed within the image patching module (b), whitespace estimation and filtering, 
implemented in the white space removal module (d) image normalisation, which standardises 
the colour grading of the images and image augmentation techniques, which are implemented 
in the dataset balancing, image normalisation and image augmentation modules as 
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demonstrated in the representative images shown (e). Examples of augmentation include but 
are not limited to: (i) Increased red value, (ii) Pixel Dropout (iii) Increased contrast (iv) 
Canny edge detection. (v) Brightness (vi) Embossing (vii) Greyscale (viii) Motion blur. 

Figure 2. Use of HistoClean in the development of histology based convolutional neural 
networks.  Slides are scanned at high-resolution, normally 200-400x magnification and are 
virtually annotated (as outlined in red) by a pathologist on a digital platform (a). Tiles of 
equal size are extracted from the virtual annotations (b). These tiles are independently sorted 
into training, test and validation datasets at a patient level (c). Image pre-processing and 
augmentation is conducted on the tiles using HistoClean where appropriate in the training, 
test and validation datasets in order to prepare tiles for use in a convolutional neural network 
(d). Within a typical convolutional neural network, each tile is fed through a series of 
convolutional and pooling layers in order to create feature maps to differentiate between the 
two classes (e). These feature maps are then fed through several fully connected layers which 
determine which class the images belong to (f). Each tile is assigned a value used for class 
prediction; the prediction values for each tile are then aggregated in order to provide a overall 
class prediction per patient (g). 

Figure 3. Four representative images demonstrating use of the positive pixel classifier 
method to estimate tissue coverage.  All images were given the same cut-off (0.8). The top 
row contains the original images, with the bottom row showing the binary mask for tissue 
(black = tissue, white = whitespace). The bottom row shows the estimated tissue coverage 
within the image tile. 

Figure 4. Image normalisation in histological images. Batch effects in haematoxylin and 
eosin staining and different staining protocols often leads to an inconsistent colour range in 
histological images as demonstrated by images taken from the TCGA head and neck 
diagnostic dataset (a).  Demonstration of histogram normalisation to correct for the 
inconsistent colour range between samples while preserving histological architecture (b).  
The top row shows a selection of original un-normalised tiles, the middle row shows the 
target image and preferred colour range being normalised to and the bottom row shows the 
result of that normalisation. 

Figure 5.  Reference images for mature (top row) and immature (bottom row) stroma 
randomly selected from the dataset. Images taken at 40x magnification and used as reference 
criteria during the manual classification of stromal maturity by the independent assessors in 
the study. Figure 6.  Demonstration of embossing on mature and immature tiles. The top row 
consists of the original images and the bottom row shows the effects of embossing. 
Embossing accentuates the difference between the two stroma maturities. 

Figure 7. Workflow and architecture for the in-house convolutional neural network (CNN) 
used in the study. Regions of interest (ROI) are annotated and extracted from the tumour 
body (a). Image tiles of size 250x250 pixels were extracted from within stroma annotations 
within each ROI (b). Tiles were converted to greyscale to conserve memory, and fed into a 
CNN consisting of five convolutional layers interlinked with five pooling layers (c). A 
graphical representation of how these tiles are then processed within the five convolutional 
layers interlinked with five pooling layers of the CNN used in this study (d);the output of 
which is flattened before being fed into two fully connected layers wherein stromal maturity 
is predicted using the softmax function in the final layer (e).  

(Avg = Average, Max = Maximum) Equations in grey show how feature map dimensions 
were calculated. 
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Figure 8. Histograms Showing breakdown of the image dataset for image tiles (A), ROIs (B) 
and at patient level (C) before and after dataset balancing. Datasets were only balanced at a 
tile level. NB The patient counts treat stromal heterogenous cases as both a mature an 
immature patient in these figures.  The number of heterogenous patients are denoted in the 
parenthesis in (c) 

Figure 9. ROC Curve comparison of the different image datasets evaluated for CNN model 
accuracy within the image tiles (a) and ROIs (b). A combination of embossing and balancing 
the image sets provided the best overall area under curve (AUC) at a tile and ROI level. 

Figure 10. Representative examples of misclassified DS6 CNN stromal maturity prediction.  

Some patients in the cohort had limited stroma present, meaning very few tiles representative 
of overall patient’s stromal maturity could be extracted resulting in misclassification at a 
stromal independent patient level (a). Whilst at the tile level, image augmentation using the 
emboss technique was found to enhance linear structures surrounding oedema resulting in the 
embossed image possessing features associated with mature stroma resulting in 
misclassification of the tile (b). 

 

Figure 11. Example ground truth mature ROI. The original image (a) was embossed (b) and 
in the balanced embossed image set was predicted mature. Normalisation of the image 
created artefactual whitespace (c) which was then exacerbated by the embossing (d), flipping 
the prediction to an immature phenotype. 

Table 1. Summary table of Histoclean modules used in each dataset.  Columns denoted with 
an “X” show which modules were used. 

Table 2. Breakdown of model evaluation for each image set. Highlighted in bold are the best 
results for each category. 
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