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Abstract: Predicting the order of biological homologs is a fundamental task in evolutionary 

biology. For protein evolution, this order is often determined by first arranging sequences into a 

phylogenetic tree, which has limiting assumptions and can suffer from substantial ambiguity. 

Here, we demonstrate how machine learning algorithms called language models can learn 

mutational likelihoods that predict the directionality of evolution, thereby enabling phylogenetic 

analysis that addresses key limitations of existing methods. Our main conceptual advance is to 

construct a “vector field” of protein evolution through local evolutionary predictions that we 

refer to as evolutionary velocity (evo-velocity). We show that evo-velocity can successfully 

predict evolutionary order at vastly different timescales, from viral proteins evolving over years 

to eukaryotic proteins evolving over geologic eons. Evo-velocity also yields new evolutionary 

insights, predicting strategies of viral-host immune escape, resolving conflicting theories on the 

evolution of serpins, and revealing a key role of horizontal gene transfer in the evolution of 

eukaryotic glycolysis. In doing so, our work suggests that language models can learn sufficient 

rules of natural protein evolution to enable evolutionary predictability. 
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Introduction 1 

 Predicting evolutionary order has diverse applications that range from tracing the 2 

progression of viral outbreaks to understanding the history of life on earth [1]–[6]. For protein 3 

evolution, this prediction is often based on reconstructing and rooting phylogenetic trees of 4 

protein sequences [7]. While useful, ordering sequences based on a phylogenetic tree has a 5 

number of limiting assumptions; for example, determining the root of the tree can drastically 6 

alter the predicted order [8], but beyond the strictest assumptions, determining this root requires 7 

manual expertise or external evidence (for example, based on known sampling times or the fossil 8 

record), which may not always be available [8], [9]. 9 

 Here, we propose a novel approach to analyzing and ordering the trajectories of protein 10 

evolution that we refer to as “evolutionary velocity,” or “evo-velocity.” Evo-velocity is 11 

conceptually inspired by work in theoretical biology that understands evolution as a path that 12 

traverses a “fitness landscape” based on locally optimal decisions [2]–[4], [10]–[12]. Our key 13 

conceptual advance is that by learning the rules underlying local evolution, we can construct a 14 

global evolutionary “vector field” that we can then use to: (i) predict the root (or potentially 15 

multiple roots) of observed evolutionary trajectories, (ii) order protein sequences in evolutionary 16 

time, and (iii) identify the mutational strategies that drive these trajectories. 17 

 To make local evolutionary predictions, we leverage recent advances in the ability of 18 

machine learning algorithms called language models to predict the effects of single-residue 19 

mutations on biological fitness when trained on natural sequence variation alone [13]–[16]. Thus 20 

far, however, language models have only been applied to modeling local evolution, such as 21 

single-residue mutations, rather than more complex changes that occur over long evolutionary 22 

trajectories. 23 
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 Evo-velocity is aimed at closing the gap between landscape-based evolutionary theory 24 

[2], [3], [10] and the analysis of evolutionary trajectories observed in nature. Our algorithm is 25 

general (we use a single model for all proteins), does not have many of the assumptions typical 26 

of phylogenetic methods (for example, evo-velocity can produce multiple roots or model 27 

convergent evolution), and requires sequence data alone. We use evo-velocity to analyze protein 28 

evolution across a breadth of organisms and evolutionary timescales—from the evolution of viral 29 

proteins over the course of years to the evolution of enzymes across all three domains of life—30 

suggesting how we might expand our ability to understand and predict evolution. 31 

Results 32 

Overview of language models and evo-velocity 33 

 Our approach is based on the premise that evolution occurs through locally optimal 34 

changes that preserve or enhance evolutionary fitness, which has theoretical precedent in the 35 

concept of a path through a fitness landscape [2], [10]. In theory, predicting local evolution 36 

should therefore provide insight into global evolution as well (Figure 1A). 37 

To predict the local rules of evolution, we leverage protein language models, which learn 38 

the likelihood that a particular amino acid residue appears within a given sequence context 39 

(Figure 1B). When trained on large corpuses of natural sequences, this language model 40 

likelihood is a strong correlate of the effects of mutations on various notions of protein fitness. 41 

For example, the ESM-1b language model [15], trained on ~3 million sequences in the UniRef50 42 

database [17] (Table S1), can predict the effects of single-residue mutations as quantified by 43 

deep mutational scanning (DMS) of diverse proteins [18], [19] (Figure 1C and Data S1; 44 

Methods). Surprisingly, this correlation is comparable to that of a state-of-the-art mutational 45 

effect predictor [20] that was specially trained on sequence variation within individual protein 46 
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families (Figure 1C); in contrast, ESM-1b is trained on a dataset that removes most intra-family 47 

sequence variation [17]. 48 

Our key hypothesis is that the likelihoods learned by these large-scale protein language 49 

models can be used to provide a notion of directionality within evolutionary trajectories. In our 50 

approach, which we call evo-velocity, we first model the “landscape” or the “manifold” [21] of 51 

sequence variation by constructing a sequence similarity network [22] in which each node 52 

represents a protein sequence and edges connect similar sequences (Figure 1D). We quantify 53 

sequence similarity as the Euclidean distance in language model embedding space, which can 54 

encode complex functional relationships [13]–[16], and we construct the network by connecting 55 

a sequence to its k-nearest neighbors (KNN), which has been useful in modeling biological 56 

landscapes in many genomics applications [23]–[25].  57 

Then, language models assign a directionality to each edge in the KNN network based on 58 

the change in language model likelihood between the two sequences in that edge (Figure 1D). 59 

We hypothesize that evolution moves toward higher likelihoods, which are correlated with 60 

higher fitness (Figure 1C). Across the entire network, we can then analyze the “flow” of 61 

evolution, which includes estimating the root sequences in the network (equivalent to finding the 62 

“valleys” of the landscape), ordering sequences in pseudotime (a continuous score that enables 63 

rank-based comparison among sequences) [26], visualizing the trajectory in two dimensions 64 

[24], and identifying mutations that correlate with the direction of evo-velocity (Figure 1D); we 65 

provide detailed methodology in Methods. Intuitively, the local predictions of language models 66 

assign a “velocity” to pairs of sequences that we assemble into an evolutionary “vector field” 67 

[27]. In this paper, we implement evo-velocity with a single masked language model, ESM-1b, 68 

but our framework can readily generalize to other implementations as well. 69 
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Evo-velocity of influenza A nucleoprotein 70 

 As initial validation, we used evo-velocity to reconstruct the evolution of the 71 

nucleoprotein (NP) of influenza A virus. NP is an excellent evolutionary test case since its 72 

sequence evolution is densely sampled through influenza viral surveillance and it undergoes 73 

natural selection in the form of host immune pressure, but is less mutable than other viral 74 

proteins with a mutation rate of about one amino-acid residue per year [28]. We obtained 3,304 75 

complete NP sequences sampled from human hosts, constructed the sequence similarity network, 76 

and computed evo-velocity scores. When we visualized this network in two dimensions [24], we 77 

observed phylogenetic structure corresponding to both the sampling year and influenza subtype 78 

(Figures 2A and S1A). Strikingly, the evo-velocity flow through the network (Methods) 79 

corresponded to the known temporal evolution of NP (Figure 2A). 80 

Since visualizing this flow in two dimensions can be prone to information loss or 81 

distortion through dimensionality reduction [27], we sought to further quantify the relationship 82 

between evo-velocity and NP evolution. We first verified that, on average, the evo-velocity 83 

scores of the individual network edges increase along with greater differences in sampling time 84 

(Figure S1B). We then quantified global evo-velocity patterns using a diffusion analysis to 85 

estimate the network’s roots (Methods). Interestingly, the evo-velocity-inferred root sequences 86 

corresponded to the main species-crossover events in influenza history (Figure 2B), suggesting 87 

that our analysis accurately inferred the evolutionary origins of NP as observed in human hosts. 88 

We then used these roots to order sequences according to evo-velocity pseudotime (Methods) 89 

and observed a significant correlation between pseudotime and known sampling date (Spearman 90 

r = 0.49, two-sided t-distribution P = 4 × 10-197) (Figure 2C). We also observed that a well-91 

characterized phylogenetic path of NP [28] progressed, on average, in the same direction as the 92 
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evo-velocity gradient (Figure 2A,C) and agreed with simulated paths generated by random 93 

walks across our evo-velocity landscape (Figure 2D; Methods). 94 

When comparing our evo-velocity landscape to a standard phylogenetic tree, we observed 95 

that evo-velocity can model more complex evolutionary relationships. For example, a midpoint-96 

rooted phylogenetic tree of all NP sequences (Methods) visually suggests that the H5N1- and 97 

H7N9-subtype sequences branch off from H1N1 (Figure 2E). Instead, evo-velocity predicts an 98 

independent origin of H5N1/H7N9 (Figure 2C,F), consistent with epidemiological data 99 

indicating recent zoonotic crossover of H5 and H7 avian influenza [29]. Evo-velocity also 100 

predicts that the observed similarity of H5N1/H7N9 and H1N1 NP sequences sampled in human 101 

hosts is due to convergent evolution (Figure 2F), which is challenging to explicitly represent 102 

with a phylogenetic tree. 103 

We next sought to use our evo-velocity landscape to provide new insight into NP 104 

evolution. We therefore identified the mutations that corresponded to the strongest changes in the 105 

evo-velocity scores (Methods). Of the top five such mutations in NP, all are present in 106 

experimentally-validated human T-cell epitopes and one of these mutations, M374I, is located in 107 

the most well-characterized linear NP epitope in the Immune Epitope Research Database (IEDB) 108 

[30] (Figures 2G, S1C, and Table S2). Moreover, all five mutations involve a single-nucleotide 109 

substitution resulting in a methionine changed to a hydrophobic or polar-uncharged amino acid 110 

residue, suggesting a possible T-cell escape strategy that has recurred in multiple NP epitopes 111 

throughout history (Figures 2G and S1C). 112 

All NP sequences in our analysis belong to a single UniRef50 sequence cluster [17] for 113 

which the representative sequence is from a 1934 H1N1 virus (Figure S1D). We found that 114 

similarity to sequences present in UniRef50, the ESM-1b training dataset, does not explain evo-115 
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velocity pseudotime (Table S3; Methods). We also found that computing evo-velocity scores 116 

with a smaller language model, TAPE [14], trained with a different model architecture on the 117 

Pfam database of protein families [31], closely reproduced the ESM-1b evo-velocity results 118 

(Spearman r = 0.93, two-sided t-distribution P < 1 × 10-308) (Table S4 and Figure S1E,F). Using 119 

simpler evolutionary scores to compute velocities or using binary sequence embeddings also 120 

largely reproduced the ESM-1b results, though with weaker temporal correlation (Figure S1G 121 

and Table S5; Methods). Together, these results suggest that our evo-velocity results are not 122 

explained by trivial language model preference to UniRef50. We also found that evo-velocity 123 

pseudotime was not explained by variation in sequence length (Table S6). 124 

Evo-velocity was therefore able to reconstruct the direction of NP evolution without any 125 

explicit knowledge of influenza subtype or when the NP sequences were sampled. Moreover, we 126 

found that the generic rules learned by large language models were sufficient to predict the 127 

evolution of a specific protein.  128 

Evo-velocity of viral proteins 129 

Given the promising results for NP, we were therefore interested in seeing if evo-velocity 130 

could generalize to other viral proteins as well. We next analyzed the evolution of influenza A 131 

hemagglutinin (HA), a more variable protein on the viral surface responsible for viral-host 132 

membrane fusion [32]. As with NP, evo-velocity analysis of 8,115 HA sequences recovered 133 

roots corresponding to the known origins of HA H1 in humans from 1918 and 2009 H1N1 134 

pandemics, and evo-velocity pseudotime was strongly correlated with sampling date (Spearman r 135 

= 0.63, two-sided t-distribution P < 1 × 10-308) (Figure 3A,B). Despite the higher sequence 136 

variability of HA than NP, evo-velocity was still able to reconstruct the trajectory and 137 

directionality of HA evolution.  138 
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As with NP, our HA pseudotime results were not explained by sequence similarity to the 139 

training dataset (Figure S2A and Table S3). We were also able to use TAPE-based velocities to 140 

identify similar root regions in the post-2009 pandemic trajectory, but TAPE had a more difficult 141 

time identifying the 1918 sequences as oldest, most likely due to TAPE’s smaller model size and 142 

less capable mutational effect predictions (Figures 1C, S2B-D, and Table S4).  143 

We next analyzed the evolution of the group specific antigen (Gag) polyprotein of human 144 

immunodeficiency virus type 1 (HIV-1) using 18,018 sequences. Visualizing the sequence 145 

similarity network overlaid with evo-velocity reveals a flow corresponding to the known subtype 146 

branching history of HIV-1, with circulating recombinant forms (for example, subtypes AE and 147 

BC) branching off of the main subtypes and occurring later in pseudotime (Figure 3C,D). HIV-1 148 

Gag sequences also had strong positive velocities compared to phylogenetically-similar Gag 149 

sequences from chimpanzee simian immunodeficiency virus (SIVcpz) (Figure S2E), consistent 150 

with a SIVcpz origin preceding the evolution of pandemic HIV-1 [33]. We observed much 151 

weaker correlation between pseudotime and sampling date (Spearman r = 0.093, two-sided t-152 

distribution P = 5 × 10-32) (Figure S2F) compared to influenza proteins, consistent with the 153 

much weaker population-level immune pressure on Gag evolution. Gag pseudotime was not 154 

explained by sequence similarity to UniRef50 (Table S3) and was also reproducible using 155 

TAPE-based velocities (Figure S2G and Table S4). 156 

We next applied our algorithm to analyze 46,986 sequences of the Spike glycoprotein of 157 

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) across a much shorter historical 158 

timescale of around eighteen months. The sequence similarity network reconstructs the overall 159 

trajectory of Spike evolution, and evo-velocity analysis identifies the sequence clusters 160 

associated with later sequences, including the B.1.1.7, B.1.351, B.1.617.1, B.1.617.2, and P.1 161 
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variants-of-concern [34], as later in pseudotime (Figures 3E-G). Despite a shorter evolutionary 162 

timescale, evo-velocity pseudotime and sampling date still had a Spearman correlation of 0.41 163 

(two-sided t-distribution P < 1 × 10-308). We also note that SARS-CoV-2 Spike evolution 164 

occurred outside of the temporal range associated with both language model training datasets and 165 

we were also able to reproduce the results with TAPE-based evo-velocity (Figure S2H and 166 

Table S4). 167 

Across these four viral proteins, therefore, evo-velocity was able to reconstruct the 168 

directionality of evolution consistent with known trajectories. Importantly, all of our analysis 169 

was based on a single model that was trained without explicit knowledge of viral sampling date, 170 

subtype, or protein-specific sequence variation. 171 

Evo-velocity of eukaryotic proteins 172 

After validating our approach with known viral trajectories, we wanted to see if evo-173 

velocity could generalize to longer trajectories, such as protein evolution that spans multiple 174 

species. Though we have access only to extant sequences, we hypothesized that evo-velocity 175 

might still provide useful orderings if some extant sequences are closer to the ancestral sequence 176 

than others. As an initial test case, we analyzed the globin protein family due to its extensive 177 

phylogenetic characterization [35], including laboratory reconstruction of ancestral 178 

intermediates, that we can use to validate our model (Figure 4A). 179 

The landscape of 6,097 eukaryotic globin sequences forms a branching trajectory with 180 

three major divisions corresponding to myoglobin, alpha hemoglobin, and beta hemoglobin 181 

(Figure 4B). The predicted root region lies in the part of the landscape closest to neuroglobin 182 

and cytoglobin (Figure S3A,B). Of the major classes of globins, neuroglobin is estimated to be 183 

earliest in pseudotime while the alpha (Hbα) and beta (Hbβ) subunits of hemoglobin occur last in 184 
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pseudotime (Figure 4C), consistent with a previous analysis of globin phylogeny by Pillai et al. 185 

[35] (Figure 4A). These results are also reproducible when using TAPE to compute the evo-186 

velocity scores (Figure S3C,D and Table S4) and when controlling for sequence similarity to 187 

the training dataset (Figure S3D and Table S3; Methods). 188 

Previous work [35] has also reconstructed ancestral globins that are confirmed to be 189 

viable oxygen binders and that progress from a monomeric myoglobin/hemoglobin ancestor 190 

(AncMH) to a dimeric alpha/beta hemoglobin ancestor (Ancα/β) to a tetramer formed by 191 

separate alpha and beta hemoglobin ancestors (Ancα and Ancβ, respectively) (Figure 4A). 192 

Consistent with evo-velocity increasing over evolutionary time, the ESM-1b language model 193 

likelihood, on average, increases from AncMH to extant myoglobin and hemoglobin sequences, 194 

but this improvement diminishes for more proximal ancestors (Figure S3E). Together, our 195 

globin results suggest that evo-velocity pseudotime within a protein family can recover ordering 196 

relationships over longer evolutionary timescales. 197 

To further test this hypothesis, we analyzed 2,128 sequences of cytochrome c, a well-198 

studied protein in evolutionary biology due to its high sequence conservation among most 199 

eukaryotes [36]. When visualized, the sequence similarity network combined with evo-velocity 200 

reflects the taxonomic diversification of the eukaryota (Figure 4D). The ordering of the median 201 

pseudotimes of different taxonomic classes also recapitulates their known ordering in geologic 202 

time based on estimates from the fossil record and molecular clocks [37] (Figures 4E,F and 203 

S4A,B), and the variation in pseudotime enables a notion of uncertainty in the form of 204 

pseudotemporal confidence intervals. We were also able to reproduce pseudotemporal orderings 205 

when using TAPE to compute the evo-velocity scores (Figure S4C,D and Table S4) and when 206 

controlling for sequence similarity to the training dataset (Figure S4D and Table S3). In total, 207 
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therefore, our analysis of well-studied eukaryotic protein families demonstrates that evo-velocity 208 

can generalize to protein evolution at much longer timescales. 209 

Evo-velocity of ancient evolution 210 

 After validating that evo-velocity could reconstruct longer trajectories of protein 211 

evolution, we applied evo-velocity to highly-conserved proteins, which often have substantial 212 

evolutionary uncertainty [6], to yield new insight into ancient evolution. A protein family with 213 

considerable evolutionary uncertainty is that of the serine protease inhibitors, or serpins [38], 214 

[39]. Unlike most highly-conserved families, in which most of the diversity is bacterial, most of 215 

the diversity among serpins is eukaryotic, which we likewise observe in our landscape of 22,737 216 

serpin sequences (Figure 5A,B). This has led to conflicting theories as to whether serpins indeed 217 

have a phylogenetic root in eukaryotes, with prokaryotes acquiring serpins via horizontal gene 218 

transfer (HGT), or if this root is an artifact of greater eukaryotic diversity biasing phylogenetic 219 

root estimation [38]–[40]. Since evo-velocity is not prone to the same bias when estimating 220 

roots, we used evo-velocity to order serpin sequences in pseudotime and found that the main 221 

predicted root region was located among the prokaryotes (Figures 5B,C and S5A). These results, 222 

along with the uncertain mechanism of eukaryotic-to-prokaryotic HGT [40], provide strong 223 

evidence that serpin evolution follows a more canonical trajectory. 224 

We next analyzed two of the most conserved glycolytic enzymes, enolase and 225 

phosphoglycerate kinase (PGK) [41]–[43]. The landscape of 31,901 sequences from the enolase 226 

family shows a clear evo-velocity-predicted root region located in bacterial and archaeal 227 

sequences (Figures 5D and S5B,C). Archaea are also oldest in pseudotime and eukaryota are 228 

newest, with bacteria showing considerable pseudotemporal variation (Figures 5E and S5C). 229 

The landscape of 30,455 PGK sequences has a similar origin in a region with bacterial and 230 
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archaeal sequences (Figures 5F and S5D,E), though with more pseudotemporal variation among 231 

archaeal PGK (Figures 5G and S5E). 232 

The largest difference between the enolase and PGK landscapes lies in the location of 233 

eukaryota: while both estimate eukaryota to be recent in pseudotime, eukaryotic sequences 234 

branch off of archaeal enolase but branch off of bacterial PGK (Figures 5D,F); similar patterns 235 

are also observed when visualizing the unrooted phylogenetic trees of both proteins (Figures 236 

S5F,G). These results suggest an archaeal origin of eukaryotic enolase and a bacterial origin of 237 

eukaryotic PGK (Figure 5H) and are consistent with HGT contributing to a mixture of archaeal 238 

and bacterial genes in the last eukaryotic common ancestor [6]. These results are also consistent 239 

with a component-wise evolution of glycolysis [41], rather than the pathway being inherited in 240 

totality from a single organism. 241 

In all three highly conserved proteins that we tested, we were able to reproduce evo-242 

velocity pseudotime even when explicitly controlling for sequence similarity to the training 243 

dataset (Figure S5A,H and Table S3) and when using TAPE to compute the evo-velocity scores 244 

(Figure S5A,H and Table S4). Variability in sequence length did not explain evo-velocity 245 

pseudotime (Table S6). Moreover, the direction of the evo-velocity gradient is not explained by 246 

trivial training set bias toward eukaryotes, as most of the sequences in UniRef50 are bacterial 247 

(Table S1), and we emphasize that no explicit taxonomic information was provided to our 248 

algorithm. Rather, our results suggest that evo-velocity can provide insight into evolution at the 249 

longest evolutionary timescales. 250 

Discussion 251 

 The degree to which evolution is predictable has been a longstanding debate [3], [4], 252 

[44], [45]. Here we show that large-scale protein language models can learn evolutionary rules 253 
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well enough to predict the ordering of sequences in evolutionary time. While the phylogenetic 254 

tree is the oldest conceptual model of evolution [1] and has had wide application to natural 255 

sequence variation [7], we show that landscape-based theory [3], [10]–[12] combined with 256 

modern algorithms can also provide novel evolutionary insight that is complementary to existing 257 

approaches.  258 

Evo-velocity has a number of distinctives with respect to phylogenetic tree 259 

reconstruction. Evo-velocity is especially suitable for analyzing large (~1000 or more) 260 

collections of sequences. We currently limit our analysis to extant sequences, rather than 261 

artificially reconstructing ancestral sequences, though these could be incorporated into the 262 

analysis as well. In viewing evolution as a landscape, evo-velocity admits multiple “valleys” that 263 

we refer to as roots. Because we predict the directionality of edges in the network, evo-velocity 264 

roots are also better mathematically determined than phylogenetic roots [9], [46] (though users 265 

could manually specify root sequences as well). Evo-velocity landscapes can also better model 266 

phenomena like convergent evolution (Figure 2F). 267 

We also find that evo-velocity provides a helpful notion of uncertainty in its predictions 268 

that is less natural to obtain from standard phylogenetic methods. For example, evo-velocity 269 

reports multiple roots, indicating evolutionary ambiguity regarding the oldest sequences or 270 

reflecting discontinuous trajectories due to missing evolutionary ancestors. Similarly, the most 271 

robust ordering relationships are at the level of groups of sequences, providing pseudotemporal 272 

confidence intervals. 273 

 Computationally, our results are striking in that a single language model trained on 274 

diverse, natural protein sequences seems to learn generic evolutionary rules. This is corroborated 275 

by our finding that two independently-trained language models, ESM-1b and TAPE, can produce 276 
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very similar pseudotemporal ordering results (Table S4), even though TAPE is a much weaker 277 

mutational effect predictor than ESM-1b (Figure 1C). The robustness of evo-velocity 278 

pseudotime to language model implementation may be because, in our framework, language 279 

models only need to consider natural sequence changes [11], rather than the artificial mutations 280 

introduced in deep mutational scanning (DMS) experiments; evo-velocity therefore benefits by 281 

considering both the language model likelihood and semantic similarity [16]. Language models 282 

may provide successful evo-velocity predictions because their conditional likelihoods capture 283 

evolutionary contingency, which is a strong driver of natural sequence variation [47]. Our 284 

findings raise a number of interesting computational questions, including the degree to which the 285 

rules learned by language models are biologically interpretable (for example, in terms of 286 

thermostability or evolvability [28], [48]) and whether better protein language models could 287 

improve the performance and resolution of evo-velocity.  288 

 Promisingly, evo-velocity offers a new approach through which to reevaluate current 289 

evolutionary hypotheses. For example, when evaluating a potential hypothesis of eukaryote-to-290 

prokaryote HGT among serpins [38], [39], evo-velocity instead predicted a more canonical 291 

evolutionary trajectory (Figure 5). While we mostly take a gene-centric approach to evolution 292 

[49], trajectories could also be integrated across multiple genes to provide insight into evolution 293 

at the level of pathways (as done for our analysis of glycolytic enzymes), gene modules, or even 294 

whole genomes. This might enable calibrating evo-velocity pseudotime to historical or geologic 295 

time, providing an additional method for dating evolutionary events. Evo-velocity also suggests a 296 

way to predict future evolution and to design novel protein sequences.  297 
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Figures and figure captions 298 

Figure 1: Constructing an evolutionary vector field by predicting local evolution. 299 

(A) A global evolutionary landscape can be approximated by a composition of local evolutionary 300 

predictions. (B) To make these predictions, we can leverage language models that learn the 301 

likelihood of an amino acid occurring within some sequence context. (C) The pseudolikelihoods 302 

learned by language models correlate with DMS-based measurements of various notions of 303 

protein fitness without the language models being explicitly trained on this data (Methods). 304 

While DeepSequence trains a separate model for each protein family, ESM-1b and TAPE are 305 

general language models each trained on a single, non-redundant dataset. Circles indicate 306 

correlations of different DMS profiles within the same study (Data S1); bar height indicates the 307 

mean across these profiles. (D) Evo-velocity uses language model likelihoods to assign a 308 

directionality to edges in a sequence similarity network, enabling downstream analysis like 309 

predicting root nodes, ordering nodes in pseudotime, and identifying mutations associated with 310 

the largest changes in evo-velocity (Methods).   311 
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Figure 2: Evo-velocity of influenza A nucleoprotein. 312 

(A) The landscape of NP sequences, represented as a KNN sequence similarity network, shows 313 

structure corresponding to temporal evolution of various subtypes of influenza (Figure S1A); 314 

gray lines indicate network edges. Overlaying evo-velocity on the visualization as a streamplot 315 

shows a visual correlation between the flow of evo-velocity and known sampling time. A known 316 

phylogenetic path (orange circles) from Gong et al. [28] starting with Aichi/1968 and ending 317 

with Brisbane/2007 moves in the direction of evo-velocity. (B) Using the evo-velocity 318 

directionality to predict roots reveals four main root regions corresponding to the beginnings of 319 

different influenza pandemic events throughout history. (C) Ordering sequences in pseudotime 320 
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and visualizing pseudotime values in a two-dimensional contour plot shows pseudotime increase 321 

in the direction of evo-velocity, which here is visualized as a two-dimensional field of evo-322 

velocity vectors. (D) On average, the Gong et al. path visualized in (A) and (C) has positive 323 

changes in evo-velocity scores over time and largely resembles simulated paths generated by 324 

performing random walks across our evo-velocity landscape (Methods). A portion of the Gong 325 

et al. path with negative evo-velocity scores may be due to ordering ambiguities that are better 326 

resolved by considering evo-velocity. (E) A maximum-likelihood, midpoint-rooted phylogenetic 327 

tree of all NP sequences conveys that H5N1 and H7N9 subtype sequences branch off from H1N1 328 

sequences. (F) In contrast, evo-velocity predicts an independent origin of H5N1/H7N9 influenza 329 

[29] (see B) and sequence similarity with H1N1 due to convergent evolution. (G) The M374I 330 

mutation to NP has the second strongest magnitude change in evo-velocity (Methods) and is 331 

located in the most well-studied human T-cell epitope on NP (Table S2).  332 
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Figure 3: Evo-velocity of viral proteins. 333 

(A, B) Temporal evolution of HA H1 evolution is captured in the UMAP landscape and is also 334 

predicted by evo-velocity pseudotime. Two main clusters correspond to the two main pandemic 335 

trajectories of H1N1, the first beginning in the early twentieth century and the second beginning 336 

in the early twenty-first century. (C, D) An evo-velocity streamplot of Gag evolution illustrates 337 

the branching trajectories of HIV-1 subtypes, including major subtypes like A, B, and C 338 

preceding circulating recombinant forms like AE and BC. Box extends from first to third quartile 339 

with line at the median, whiskers extend to 1.5 times the interquartile range, and diamonds 340 

indicate outlier points. (E-G) Variants of Spike (identified using characteristic mutations like 341 

D614G and N501Y) that emerge in later portions of the COVID-19 pandemic are also predicted 342 

to be later in evo-velocity pseudotime.  343 
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Figure 4: Evo-velocity of eukaryotic proteins. 344 

(A) The maximum likelihood phylogenetic tree determined by Pillai et al. [35] is rooted in globin 345 

X and neuroglobin with the longest branches extending to Hbα and Hbβ. (B) The landscape of 346 

globin sequences shows a branching trajectory with the predicted root also closest to neuroglobin 347 

(Figure S3A). (C) Computing pseudotime from this predicted root places Hbα and Hbβ as most 348 

recent in evolution, consistent with the tree of Pillai et al. (D) The landscape of cytochrome c 349 

sequences shows clustering structure corresponding to known taxonomic labels, with the evo-350 

velocity gradient beginning among single-celled eukaryotes and plants (Figure S4A). (E, F) The 351 

ordering of the median evo-velocity pseudotimes of various taxonomic labels corresponds to the 352 

evolutionary orderings in geologic time determined by molecular clocks and the fossil record 353 

[37]. For all boxplots: box extends from first to third quartile with line at the median, whiskers 354 

extend to 1.5 times the interquartile range, and diamonds indicate outlier points.   355 
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Figure 5: Evo-velocity of ancient evolution. 356 

(A) The unrooted maximum likelihood phylogenetic tree of serpins shows substantially more 357 

eukaryotic than prokaryotic diversity, leading some to hypothesize a eukaryotic root [38], [39]. 358 

(B, C) Despite lower prokaryotic diversity, evo-velocity still identifies the root of serpins within 359 

the prokaryotes, and eukaryotes are the last domain in evo-velocity pseudotime (Figure S5A), 360 

suggesting that prokaryotic serpins were not acquired from eukaryotes via HGT [38], [39]. (D, 361 

E) The evo-velocity-predicted root of the enolase landscape begins in a region of archaea and 362 

some bacteria, with eukaryotic enolase as the most recent in pseudotime and directly proximal to 363 

archaeal enolase on the sequence landscape (Figure S5B,C,F). (F, G) The evo-velocity-364 

predicted root of the PGK landscape begins in a mostly bacterial region with some archaea, with 365 

eukaryotic PGK also very recent in pseudotime and directly proximal to bacterial PGK (Figure 366 

S5D,E,G). (H) The sequence landscapes and evo-velocity-predicted roots suggest that the 367 
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component enzymes of eukaryotic glycolysis were acquired through different evolutionary paths 368 

via HGT; figure adapted from Figure 1 of Weiss et al. [6]. For all boxplots: box extends from 369 

first to third quartile with line at the median, whiskers extend to 1.5 times the interquartile range, 370 

and diamonds indicate outlier points.   371 
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Methods 372 

Language models 373 

 In this paper, we implement evo-velocity with masked language models, which are 374 

trained by masking certain residues in the input and predicting these residues in the output. For a 375 

sequence 𝐱 ∈ 𝒳𝑁, where 𝒳 is the set of amino acids and 𝑁 is the sequence length, the masked 376 

language modeling objective implicitly models a distribution over sequences through conditional 377 

likelihoods 𝑝(𝑥𝑖|𝐱[𝑁]\{𝑖}) where 𝐱[𝑁]\{𝑖} denotes the sequence without the residue at position 𝑖, 378 

sometimes referred to as the sequence context. Typically, these language models also learn a 379 

latent variable 𝐳𝑖 ∈ ℝ𝐷 by learning a function 𝑓: 𝒳𝑁−1 → ℝ𝐷 where 𝐳𝑖 ≝ 𝑓(𝐱[𝑁]\{𝑖}) such that 380 

𝑝(𝑥𝑖|𝐱[𝑁]\{𝑖}, 𝐳𝑖) = 𝑝(𝑥𝑖|𝐳𝑖). 381 

We use two large-scale language models trained with a masked objective. We used the 382 

ESM-1b model [15] (obtained from https://github.com/facebookresearch/esm) trained on the 383 

March 2018 release of UniRef50 [17]. We also used the TAPE transformer model [14] (obtained 384 

from https://github.com/songlab-cal/tape) trained on the Pfam database release 32.0 [31]. Unless 385 

otherwise stated, we used ESM-1b as the default model for our experiments. 386 

Evo-velocity score computation 387 

 We compute an evo-velocity score that compares two sequences 𝐱(𝑎) and 𝐱(𝑏) as  388 

𝑣𝑎𝑏 ≝
1

|ℳ|
∑ [log 𝑝(𝑥𝑖

(𝑏)
|𝐳𝑖

(𝑎)
) − log 𝑝(𝑥𝑖

(𝑎)
|𝐳𝑖

(𝑏)
)]

𝑖∈ℳ

, 389 

where ℳ ≝ {𝑖 ∶ 𝑥𝑖
(𝑎)

≠ 𝑥𝑖
(𝑏)

} is the set of positions at which the amino acid residues disagree. 390 

We designed the evo-velocity score based on masked-language-model pseudolikelihoods [19] to 391 

efficiently approximate the change in likelihood of mutating sequence 𝐱(𝑎) to 𝐱(𝑏) and vice 392 
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versa. The evo-velocity score is positive if moving from 𝐱(𝑎) to 𝐱(𝑏) is more favorable and 393 

negative if moving from 𝐱(𝑏) to 𝐱(𝑎) is more favorable, so that 𝑣𝑎𝑏 = −𝑣𝑏𝑎. 394 

 In practice, 𝐱(𝑎) and 𝐱(𝑏) can disagree in length, so we first perform a global pairwise 395 

sequence alignment using the pairwise2 module in the Biopython Python package version 1.76 396 

with a uniform substitution matrix and alignment parameters meant to discourage the 397 

introduction of sequence gaps (following the Biopython recommendations, we use a match score 398 

of 5, a mismatch penalty of -4, a gap-open penalty of -4, and a gap-extension penalty of -0.1). 399 

We ignore positions involving alignment gaps when computing the evo-velocity score, i.e., the 400 

evo-velocity score is only based on substitutions, since modeling the effect of an insertion or a 401 

deletion is less well defined when using a masked language model to predict mutations. We do 402 

not include gap characters when computing language model likelihoods. 403 

Constructing the sequence similarity network and evo-velocity transition matrix 404 

 To construct the sequence similarity network, we first use the language model to obtain a 405 

sequence embedding 𝐳(𝑎) ≝
1

𝑁
∑ 𝐳𝑖

(𝑎)𝑁
𝑖=1  for each sequence 𝐱(𝑎) in the set of sequences-of-406 

interest (for example, proteins within the same family) of size 𝑀. We use ESM-1b to compute 407 

the embeddings for each sequence as the 1,280-dimensional output of the last (i.e., the 33rd) 408 

hidden layer of the language model. 409 

We then construct a directed graph where each node corresponds to a sequence and we 410 

connect a node to its 𝑘-nearest neighbors based on the Euclidean distance in the language model 411 

embedding space in ℝ𝐷. We can then use the evo-velocity scores and the KNN graph to 412 

construct a transition matrix 𝐐 ∈ ℝ𝑀×𝑀, where  413 

𝑞𝑎𝑏 ≝
exp(𝑣𝑎𝑏)

∑ exp(𝑣𝑎𝑏′)𝑏′∈𝒩(𝐱𝑎)
 414 
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is the entry in the 𝑎th row and 𝑏th column of 𝐐 and 𝒩(∙) denotes the set of the neighbors in the 415 

KNN graph. Note that ∑ 𝑞𝑎𝑏𝑏∈[𝑀] = 1. 416 

 In all our experiments, we use the embedding function learned by the ESM-1b language 417 

model. To construct the KNN graph, we use the functionality provided by the Scanpy Python 418 

package version 1.6.1 [23]. In practice, higher values of k result in smoother, less noisy 419 

landscapes at the cost of higher computational effort. We find that values of k around 30 to 50 420 

(our package defaults to 50) provide a good balance between robustness to noise and 421 

computational efficiency (though analyses involving less sequences overall or more 422 

homogeneous sequences can also tolerate lower values of k to speed up analysis); the 30-50 423 

range has also shown good empirical performance in other KNN-based analyses that require 424 

robust estimation of the biological landscape [50]. In this paper, we use the values k = 30 for our 425 

cytochrome c and Spike experiments, k = 40 for our NP and Gag experiments, and k = 50 for our 426 

HA, globin, enolase, PGK, and serpin experiments. 427 

Network diffusion analysis and predicting roots 428 

 To find the root nodes, we can use the fixed points of a diffusion process based on the 429 

transition matrix 𝐐 [46], [51]. Given a diffusion probability vector 𝛍(𝑡), we can find roots by 430 

running a diffusion process until a fixed point, i.e., 𝛍(∞) = 𝐐T𝛍(∞) (note that we take the 431 

transpose of the transition matrix to “reverse” the diffusion process, since our goal is to find the 432 

root nodes). We take the highest values of 𝛍(∞) to identify the root nodes, where we obtain 𝛍(∞) 433 

as the eigenvector of 𝐐T corresponding to an eigenvalue of 1. By default, we use a cutoff at the 434 

98th percentile of values in 𝛍(∞) to define the set of root nodes, as has been done previously [51]. 435 

We assume 𝐐 corresponds to a strongly connected directed graph, which is true if the KNN 436 

network consists of a single connected component (and which was true for all of our analyses); if 437 
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the graph is strongly connected, then there is a unique value of 𝛍(∞) [46]. We scale the final 438 

values of the diffusion vector 𝛍(∞) to take values between 0 and 1, inclusive, and use the 439 

diffusion-based root estimation procedure implemented by the scVelo Python package version 440 

0.2.2 [51]. 441 

Diffusion pseudotime computation 442 

 We use diffusion pseudotime (DPT) to order sequences in evolutionary time. DPT is 443 

described in detail by Haghverdi et al. [26] and is closely related to the geodesic distance 444 

between two nodes in a graph. As done by Haghverdi et al., we denote the DPT score between a 445 

root node 𝐱(root) and a node 𝐱 as dpt(𝐱(root), 𝐱), which takes scaled values between 0 and 1, 446 

inclusive. We use the graph encoded by the transition matrix 𝐐. Since the root-prediction 447 

analysis described above can yield potentially multiple roots, we define evo-velocity pseudotime 448 

as the average of DPT scores across the set of all root nodes ℛ, i.e., 449 

pseudotime(𝐱) ≝
1

|ℛ|
∑ dpt(𝐱(root), 𝐱)

𝐱(root)∈ℛ

. 450 

We use the DPT implementation provided by the Scanpy Python package. 451 

Plotting, data visualization, and statistical analysis 452 

 We used the UMAP algorithm [24] to visualize the KNN graph in two dimensions. All 453 

UMAP visualizations were obtained using the umap-learn Python package version 0.4.6 as 454 

wrapped by Scanpy. We generated boxplots using the seaborn Python package version 0.11.1; in 455 

all of our boxplots, the box extends from the first to third quartile, a horizontal line is drawn at 456 

the median, and whiskers extend to 1.5 times the interquartile range. We used the scipy version 457 

1.4.1 Python package to compute correlations and statistical tests. A P value of less than 1 × 10-
458 

308 indicates a value that was below the floating-point precision of our computer. 459 
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Embedding transfer 460 

 We can project evo-velocity, as encoded by the transition matrix 𝐐, into an arbitrary 461 

embedding space (assuming that embeddings are available for all sequences) as done previously 462 

[51]. For a sequence 𝐱(𝑎) and 𝐱(𝑏), we denote the respective embeddings as 𝐳(𝑎) and 𝐳(𝑏). We 463 

then first compute the cosine-normalized translation vector separating sequences connected in 464 

the KNN graph, i.e., 465 

𝛅𝑎𝑏 ≝
𝐳𝑏 − 𝐳𝑎

‖𝐳𝑏 − 𝐳𝑎‖2
 466 

and we obtain the velocity projections as the expected displacement with respect to 𝐐, i.e., 467 

�̃�𝑎 ≝ ∑ (𝑞𝑎𝑏 −
1

𝑀
) 𝛅𝑎𝑏

𝑏≠𝑎

. 468 

We use two main interpretable embedding spaces in our downstream analysis. The first is 469 

two-dimensional UMAP space, in which evo-velocity can be visualized as two-dimensional 470 

vectors. Once these vectors are computed, we use the streamplot and quiver plot functionality of 471 

the matplotlib Python package version 3.3.3 to visualize evo-velocity. The second interpretable 472 

embedding space we consider is one-hot-encoded sequence space, which we use to identify 473 

mutations that are associated with large changes in evo-velocity. To project evo-velocity into 474 

sequence space, we first construct a multiple sequence alignment of all 𝑀 sequences using 475 

MAFFT version 7.475. A sequence 𝐱 is then embedded into a one-hot-encoded vector �̃� ∈476 

{0,1}�̃�|𝒳|, where �̃� is the length of the alignment. The velocity projections take values in ℝ�̃�|𝒳|, 477 

where we interpret each dimension as corresponding to a given residue in 𝒳 at a given site in 478 

[�̃�]. 479 

Deep mutational scan benchmarking 480 
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 We obtained DMS values, all involving single-residue substitutions, and the 481 

corresponding DeepSequence [20] mutational effect predictions from Livesey and Marsh [18]. 482 

To compute mutational effect predictions for ESM-1b and TAPE, we used the evo-velocity score 483 

between the wildtype and mutant sequence as described above. As done by Livesey and March, 484 

we evaluated the performance of the mutational effect prediction as the absolute value of the 485 

Spearman correlation between the algorithm’s predicted mutational effect and the value reported 486 

by the original DMS study, restricting only to mutants considered by the original DMS studies. 487 

We used all DMS studies from Livesey and Marsh for which there were DeepSequence results 488 

available. 489 

UniRef50 sequence similarity computational control 490 

 We wanted to quantify if our evo-velocity results, including evo-velocity pseudotime, 491 

could be explained by sequence similarity to the training set. We obtained this training set from 492 

ftp://ftp.uniprot.org/pub/databases/uniprot/previous_releases/release-2018_03/uniref/. We 493 

identified representative sequences in UniRef50 by searching for the literal presence of the 494 

sequence within UniRef50 or by mapping the protein accession information to UniProt IDs, if 495 

available, and then mapping the UniProt IDs to the corresponding UniRef50 cluster 496 

representative. Then, for each sequence in our evo-velocity analysis, we computed the sequence 497 

similarity score to each representative sequence in UniRef50 and took the maximum of these 498 

scores. To compute the sequence similarity score, we used the similarity ratio implemented by 499 

the fuzzywuzzy Python package version 0.18.0, which is based on the Levenshtein distance 500 

between two sequences and is normalized to take values between 0% and 100%, inclusive. 501 

 To perform the control experiment, we filtered out sequences with 80% or less sequence 502 

similarity to the training set, thereby excluding sequences that are far from the sequences 503 
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considered by ESM-1b. We then evaluated the Spearman correlation between the similarity 504 

scores and pseudotime, both in terms of the directionality of the correlation (e.g., a positive 505 

correlation indicates that similarity to UniRef50 could be explaining pseudotime) and also in 506 

terms of the change in this correlation compared to the correlation obtained on the full set of 507 

sequences (Table S3). We also evaluated the ability for the overall pseudotemporal patterns (for 508 

example, correlation with sampling time or ordering of taxonomic classes) to reproduce those 509 

found when analyzing the full set of sequences. 510 

TAPE reproducibility computational control 511 

 We also wanted to see how robust our evo-velocity results were to the language model 512 

used to estimate the mutational likelihoods. We therefore obtained the TAPE transformer model 513 

as described above. We performed the evo-velocity analysis by keeping the KNN graph structure 514 

the same as in the ESM-1b analysis but using the evo-velocity scores obtained by the TAPE 515 

likelihoods. All other downstream analyses, including root prediction and pseudotime 516 

computation, were also kept the same. We then evaluated the ability for the final pseudotime 517 

output to reproduce the output obtained by performing the same analysis except with ESM-1b 518 

velocities. 519 

Influenza A NP evo-velocity analysis 520 

 We obtained 3,304 unique NP sequences from the NIAID Influenza Research Database 521 

(https://www.fludb.org) [52]. We restricted our analysis to sequences that were sampled from 522 

human hosts. Metadata included the year the sequences were sampled and the influenza subtype 523 

of the original virus. We performed KNN graph construction, evo-velocity computation, root 524 

prediction, diffusion pseudotime estimation, and UMAP velocity projection as described 525 

previously. 526 
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 We obtained an ordered phylogenetic path from Gong et al. [28] of H3N2-subtype NP 527 

evolution from 1968 to 2007. We computed the ESM-1b evo-velocity score comparing adjacent 528 

sequences along this path and plotted the cumulative sum of these scores versus the order in the 529 

path (Figure 2D). We also compared the improvement in evo-velocity of this path to that of 530 

simulated paths. To simulate paths across our evo-velocity landscape, we began at the same 531 

starting sequence, used the same number of steps as the path of Gong et al., and only considered 532 

paths that ended in the same cluster of sequences as the end sequence of Gong et al.’s path. We 533 

used the transition matrix 𝐐 to define the probability of moving from node to node and we 534 

performed 30,000 random walks.  535 

 We obtained a phylogenetic tree of all NP sequences considered in the evo-velocity 536 

analysis by first aligning sequences with MAFFT followed by approximate maximum-likelihood 537 

tree construction using FastTree version 2.1 using a JTT+CAT model. The midpoint-rooted tree 538 

was visualized using the iTOL web tool (https://itol.embl.de/) [53]. 539 

We also projected evo-velocity into one-hot-encoding space to compute a 𝑁|𝒳|-540 

dimensional vector �̃�𝑎 for each sequence as described previously; we then averaged these vectors 541 

across all sequences and inspected the top five mutations with the greatest magnitude change in 542 

the resulting average. We then located these mutations onto a reference sequence from 1934 543 

H1N1 NP (UniProt ID: P03466), for which linear T-cell epitope data is available through the 544 

Immune Epitope Database (https://www.iedb.org/) [30]. We restricted our consideration to linear 545 

epitopes of influenza NP with positive validation in a T-cell assay. 546 

We also conducted an ablation study to test the robustness of evo-velocity results when 547 

using simpler methods for computing sequence embeddings or evo-velocity scores. We 548 

recomputed the KNN graph based on 𝑁|𝒳|-dimensional one-hot embeddings followed by 549 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 7, 2021. ; https://doi.org/10.1101/2021.06.07.447389doi: bioRxiv preprint 

https://itol.embl.de/
https://www.iedb.org/
https://doi.org/10.1101/2021.06.07.447389
http://creativecommons.org/licenses/by/4.0/


30 

 

dimensionality reduction based on the top-100 principal components to enable more efficient 550 

estimation of nearest-neighbor relationships. We recomputed evo-velocity scores based on the 551 

BLOSUM62 amino-acid substitution scores averaged across the set of differing positions, i.e., 552 

ℳ, for each edge (obtained via global pairwise alignment with a uniform substitution matrix). 553 

We reran analysis using binary embeddings or BLOSUM62 velocities or both, while holding all 554 

other parts of the pipeline constant. As a negative control, we also computed velocities by 555 

sampling from a Gaussian distribution with zero mean and unit variance and reran analysis with 556 

all other parts of the pipeline constant. 557 

Influenza A HA evo-velocity analysis 558 

 We obtained 8,115 unique HA H1 sequences from the NIAID Influenza Research 559 

Database (https://www.fludb.org) [52]. We restricted our analysis to sequences that were 560 

sampled from human hosts. Metadata included the year the sequences were sampled and the 561 

influenza subtype of the original virus. We performed KNN graph construction, evo-velocity 562 

computation, root prediction, diffusion pseudotime estimation, and UMAP velocity projection as 563 

described previously. 564 

HIV-1 Gag evo-velocity analysis 565 

 We obtained 18,018 unique Gag sequences from the Los Alamos National Laboratory 566 

HIV sequence database (https://www.hiv.lanl.gov). Metadata included the year the sequences 567 

were sampled and the HIV subtype of the original virus. We performed KNN graph construction, 568 

evo-velocity computation, root prediction, diffusion pseudotime estimation, and UMAP velocity 569 

projection as described previously. We obtained four SIVcpz Gag sequences with high-quality, 570 

manual annotation from UniProt (https://www.uniprot.org/) [54]. These sequences were obtained 571 
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from SIVcpz isolates MB66 (UniProt ID: Q1A268), EK505 (UniProt ID: Q1A250), TAN1 572 

(UniProt ID: Q8AII2), and GAB1 (UniProt ID: P17282). 573 

SARS-CoV-2 Spike evo-velocity analysis 574 

 We obtained 46,986 unique, full-length Spike sequences from the May 27, 2021 GISAID 575 

release (https://www.gisaid.org/) [55]. Metadata included the date the sequences were sampled. 576 

We performed KNN graph construction, evo-velocity computation, root prediction, diffusion 577 

pseudotime estimation, and UMAP velocity projection as described previously. We determined 578 

the location of clusters corresponding to known variants-of-concern based on known marker 579 

mutations including D614G, N501Y (for B.1.1.7, B.1.351, and P.1), K417N (for B.1.351), 580 

P681H (for B.1.1.7), E154K (for B.1.617.1), and T478K (for B.1.617.2) [34]. 581 

Globins evo-velocity analysis 582 

 We obtained 6,097 globin sequences from UniProt. We restricted our analysis to 583 

eukaryotic sequences within the “globin” family and to sequences between 135 and 155 residues 584 

in length, inclusive, which was done based on a clear mode in the distribution of sequence 585 

lengths and was meant to preserve mostly homologous sequences in our analysis. Metadata 586 

included the taxonomic lineage of each sequence and, for some of the sequences, annotations 587 

indicating the type of globin. We performed KNN graph construction, evo-velocity computation, 588 

root prediction, diffusion pseudotime estimation, and UMAP velocity projection as described 589 

previously. We obtained the rooted phylogenetic tree of globins and the inferred ancestral 590 

sequences from Pillai et al. [35]. 591 

Cytochrome c evo-velocity analysis 592 
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 We obtained 2,128 cytochrome c sequences from UniProt. We restricted our analysis to 593 

eukaryotic sequences within the “cytochrome c” family and to sequences between 100 and 115 594 

residues in length, inclusive, which was done based on a clear mode in the distribution of 595 

sequence lengths and was meant to preserve mostly homologous sequences in our analysis. 596 

Metadata included the taxonomic lineage of each sequence. We performed KNN graph 597 

construction, evo-velocity computation, root prediction, diffusion pseudotime estimation, and 598 

UMAP velocity projection as described previously. We obtained the approximate dates and 599 

geologic eons of the emergences of different organisms from Hedges et al. [37]. 600 

Enolase evo-velocity analysis 601 

 We obtained 31,901 enolase sequences from UniProt. We restricted our analysis to 602 

sequences within the “enolase” family and to sequences between 412 and 448 residues in length, 603 

inclusive, which was done based on a clear mode in the distribution of sequence lengths and was 604 

meant to preserve mostly homologous sequences in our analysis. Metadata included the 605 

taxonomic lineage of each sequence. We performed KNN graph construction, evo-velocity 606 

computation, root prediction, diffusion pseudotime estimation, and UMAP velocity projection as 607 

described previously. 608 

 We obtained unrooted phylogenetic trees of enolase based on the subset of our UniProt 609 

sequences with high-quality, manual annotation. We then performed a multiple sequence 610 

alignment with MAFFT and performed phylogenetic reconstruction on the alignment with 611 

PhyML version 3.3.20200621 using a JTT model with gamma-distributed among-site rate 612 

variation and empirical state frequencies [56]. The unrooted tree was visualized using the iTOL 613 

web tool. 614 

PGK evo-velocity analysis 615 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 7, 2021. ; https://doi.org/10.1101/2021.06.07.447389doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.07.447389
http://creativecommons.org/licenses/by/4.0/


33 

 

We obtained 30,455 PGK sequences from UniProt. We restricted our analysis to 616 

sequences within the “phosphoglycerate kinase” family and to sequences between 385 and 420 617 

residues in length, inclusive, which was done based on a clear mode in the distribution of 618 

sequence lengths and was meant to preserve mostly homologous sequences in our analysis. 619 

Metadata included the taxonomic lineage of each sequence. We performed KNN graph 620 

construction, evo-velocity computation, root prediction, diffusion pseudotime estimation, and 621 

UMAP velocity projection as described previously. 622 

 We obtained unrooted phylogenetic trees of enolase based on the subset of our UniProt 623 

sequences with high-quality, manual annotation. We then performed a multiple sequence 624 

alignment with MAFFT and performed phylogenetic reconstruction on the alignment with 625 

PhyML using a JTT model with gamma-distributed among-site rate variation and empirical state 626 

frequencies. The unrooted tree was visualized using the iTOL web tool. 627 

Serpins evo-velocity analysis 628 

We obtained 22,737 serpin sequences from UniProt. We restricted our analysis to 629 

sequences within the “serpin” family and to sequences between 300 and 525 residues in length, 630 

inclusive, which was done based on a clear mode in the distribution of sequence lengths and was 631 

meant to preserve mostly homologous sequences in our analysis. Metadata included the 632 

taxonomic lineage of each sequence. We performed KNN graph construction, evo-velocity 633 

computation, root prediction, diffusion pseudotime estimation, and UMAP velocity projection as 634 

described previously. 635 

 We obtained unrooted phylogenetic trees of enolase based on the subset of our UniProt 636 

sequences with high-quality, manual annotation. We then performed a multiple sequence 637 

alignment with MAFFT and performed phylogenetic reconstruction on the alignment with 638 
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PhyML using a JTT model with gamma-distributed among-site rate variation and empirical state 639 

frequencies. The unrooted tree was visualized using the iTOL web tool.  640 
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Data and code availability 

Data used in our analysis has been deposited to Zenodo at doi:10.5281/zenodo.4891758. 

Code used in our analysis has been deposited to Zenodo at doi:10.5281/zenodo.4891819. Our 

code and links to data are also available on GitHub at https://github.com/brianhie/evolocity. 
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Supplementary figures and figure captions 

 

Figure S1: Additional figures for nucleoprotein evo-velocity analysis. 
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(A) The NP sequence landscape shows structure corresponding to influenza subtype. (B) By 

stratifying edges based on the sampling time difference between their two corresponding 

sequences and quantifying bias toward positive or negative evo-velocity scores using a binomial 

test, we found that the bias toward positive evo-velocity scores increases as time increases. (C) 

Mutations with strong magnitude changes in evo-velocity are also located in experimentally-

validated T-cell epitopes (Table S2). (D) All NP sequences belong to a single UniRef50 cluster, 

which has as its representative a sequence from 1934 H1N1. (E, F) Evo-velocity pseudotime of 

NP based on ESM-1b- or TAPE-based evo-velocity scores have high correlation (Table S4). (G) 

Replacing ESM-1b embeddings with one-hot sequence embeddings removes some of the known 

evolutionary continuity relationships from the visualization, especially in the well-studied 

trajectory of H3N2 NP evolution. Replacing ESM-1b evo-velocity scores with BLOSUM62 

scores results in much weaker and more ambiguous evo-velocity flows when visualized. 
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Figure S2: Additional figures for viral protein evo-velocity analyses. 

(A) Influenza A HA H1 sequences map to a single UniRef50 cluster, where the representative 

sequence is from a 1934 H1N1 strain. (B) Using ESM-1b-based evo-velocity scores, the inferred 

roots correspond to early twentieth-century H1N1 sequences, including 1918 influenza, as well 

as twenty-first-century 2009 H1N1 pandemic influenza. (C, D) In contrast, with TAPE-based 

velocities, the 2009 pandemic roots are identified but not the earlier 1918 pandemic roots, 

leading to evo-velocity pseudotimes that are higher for twentieth-century influenza. (E) Each 
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boxplot visualizes the distribution of velocity scores for all HIV-1 Gag sequences in our analysis 

compared to a SIVcpz Gag sequence from a given isolate. On average, HIV-1 Gag sequences 

have strong positive evo-velocity scores compared to the four SIVcpz Gag sequences. Box 

extends from first to third quartile with line at the median, whiskers extend to 1.5 times the 

interquartile range, and diamonds indicate outlier points. (F) There is less temporal structure in 

the sequence landscape of HIV-1 Gag, reflecting the lack of immune pressure on HIV-1. (G) 

Evo-velocity pseudotime of Gag based on ESM-1b- or TAPE-based evo-velocity scores have 

high correlation (Table S4). (H) Evo-velocity pseudotime of SARS-CoV-2 Spike based on 

ESM-1b- or TAPE-based evo-velocity scores have high correlation (Table S4); compare to 

Figure 3G. 
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Figure S3: Additional figures for globin evo-velocity analysis. 

(A) The main root region predicted for globin evolution is closest to (and includes) neuroglobin 

(Figure 4B). (B) Evo-velocity pseudotime is therefore lowest for neuroglobin and increases 

radiating outward from that portion of the graph, with Hbα and Hbβ predicted to be most recent 

in pseudotime. (C) TAPE-based evo-velocity scores lead to pseudotime values that strongly 

correlate with those based on ESM-1b evo-velocity scores (Table S4). (D) Pseudotemporal 

relationships when controlling for similarity to UniRef50 or when using TAPE-based evo-

velocity computation reproduce those in our main analysis; compare to Figure 4C. (E) Extant 

Hbα, Hbβ, and myoglobin sequences have positive evo-velocity scores, on average, compared to 
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a reconstructed myoglobin/hemoglobin ancestor (AncMH) as the baseline sequence, consistent 

with AncMH preceding extant globins in evolutionary time. Extant Hbβ sequences also have 

positive velocities with respect to a reconstructed Hbα/Hbβ ancestor (Ancα/β), but this is not 

observed for extant Hbα sequences, predicting that extant Hbαs are more similar to Ancα/β than 

extant Hbβs and corroborated by the phylogeny of Pillai et al. [35] (Figure 4A). Evo-velocity 

also predicts extant Hbαs and Hbβs show little improvement in evo-velocity from their 

respective most proximal ancestors. Together, these results are consistent with evo-velocity 

scores increasing over greater stretches of evolutionary time. For all boxplots: box extends from 

first to third quartile with line at the median, whiskers extend to 1.5 times the interquartile range, 

and diamonds indicate outlier points.  
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Figure S4: Additional figures for evo-velocity analysis of cytochrome c. 

(A) Evo-velocity predicts root regions in the extant sequence landscape among single-celled 

eukaryotes and green algae. (B, C) Evo-velocity pseudotime of cytochrome c based on ESM-1b 

or TAPE velocities have high correlation (Table S4). (D) Pseudotemporal relationships when 

controlling for similarity to UniRef50 or when using TAPE-based evo-velocity computation 

largely reproduce those in our main analysis (compare to Figure 4E) especially when comparing 

the “lower-order” and “higher-order” taxonomic labels, although TAPE places viridiplantae after 

fungi in pseudotime and filtering based on sequence similarity to UniRef50 removes many of the 

earliest eukaryotes in pseudotime when analyzing the full dataset. Box extends from first to third 

quartile with line at the median, whiskers extend to 1.5 times the interquartile range, and 

diamonds indicate outlier points. 
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Figure S5: Additional figures for highly conserved protein evo-velocity analyses. 

(A) For the family of serpins, pseudotemporal orderings of the three domains of life were 

reproducible when using TAPE-based evo-velocity computation and when filtering based on 
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similarity to UniRef50. In all cases, prokaryotes precede eukaryotes in evo-velocity pseudotime. 

(B, C) Enolase is predicted to be rooted in a region with archaeal and some bacterial sequences, 

with eukaryota occurring last in evo-velocity pseudotime. (D, E) PGK is predicted to be rooted 

in a region with archaeal and bacterial sequences, with eukaryota occurring last in evo-velocity 

pseudotime. (F) The unrooted phylogenetic tree of manually curated enolase sequences shows 

archaeal sequences as more proximal to the eukaryota than bacterial sequences. (G) In contrast, 

the unrooted phylogenetic tree of manually curated PGK sequences shows bacterial sequences as 

more proximal to the eukaryota than archaeal sequences. (H) For both enolase and PGK, 

pseudotemporal orderings of the three domains of life were reproducible when using TAPE-

based evo-velocity computation and when filtering based on similarity to UniRef50 (compare to 

C and E). For all boxplots: box extends from first to third quartile with line at the median, 

whiskers extend to 1.5 times the interquartile range, and diamonds indicate outlier points.   

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 7, 2021. ; https://doi.org/10.1101/2021.06.07.447389doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.07.447389
http://creativecommons.org/licenses/by/4.0/


51 

 

Supplementary Tables 

Taxonomy # Sequences % 

Archaea 776,374 2.57% 

Bacteria 18,032,582 59.79% 

Eukaryota 

Primate 160,932 0.53% 

Other mammalia 341,837 1.13% 

Other chordata 950,939 3.15% 

Arthropoda 1,521,727 5.05% 

Viridiplantae 2,037,089 6.75% 

Fungi 2,880,452 9.55% 

Other eukaryotes 2,783,754 9.23% 

Metagenome 637,280 2.11% 

Other/unclassified 39,121 0.13% 

Total 30,162,087 100% 

 

Table S1: Taxonomic composition of UniRef50. 

The number of sequences in UniRef50 that belong to different taxonomic categories. Most 

sequences in UniRef50 are bacterial, though we note that ESM-1b had no access to these 

taxonomic labels at training time. 
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Rank Mutations Epitope 
# publications 

in IEDB 

1 M105V YRRVNGKWM 5 

2 M374I ASNENMETM 105 

3 M481I, M481V SPIVPSFDM 5 

4 M239V TAAQRAMMD 3 

5 M456V, V456L ESARPEDVSF 6 

 

Table S2: Top five mutations by evo-velocity rank and corresponding IEDB epitopes. 

Mutations were ranked by the magnitude of the average evo-velocity vector obtained by 

projecting the velocities into sequence space (Methods) and the top five were further 

investigated for location in T-cell epitopes. All involve single-nucleotide mutations from a 

methionine to a hydrophobic or a polar-uncharged amino acid residue. Also see Figures 2G and 

S1C.  
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Protein 

Pseudotime and UniRef50 similarity correlation 

(Spearman r, two-sided t-distribution P) 

Full dataset Similarity-controlled (>80%) 

Influenza A NP r = -0.676, P < 1 × 10-308 r = -0.676, P < 1 × 10-308 

Influenza A HA r = -0.526, P < 1 × 10-308 r = -0.528, P < 1 × 10-308 

HIV-1 Gag r = -0.392, P < 1 × 10-308 r = -0.247, P = 1 × 10-247 

Globins r = 0.031, P = 0.01 r = -0.281, P = 2 × 10-40 

Cytochrome c r = 0.467, P = 1 × 10-115 r = 0.282, P = 3 × 10-28 

Enolase r = 0.597, P < 1 × 10-308 r = -0.044, P = 3 × 10-4 

PGK r = 0.304, P < 1 × 10-308 r = -0.267, P = 1 × 10-120 

Serpins r = 0.017, P = 0.01 r = -0.357, P < 1 × 10-308 

 

Table S3: Correlation between evo-velocity pseudotime and sequence similarity to 

UniRef50. 

There is no consistent pattern in the directionality of the correlation between evo-velocity 

pseudotime and sequence similarity to UniRef50, indicating that sequence similarity does not 

trivially explain pseudotime. “Full dataset” indicates the results from analyzing all sequences 

while “similarity-controlled” indicates the results from restricting analysis to the sequences with 

greater than 80% sequence similarity to UniRef50 (Methods). In this latter setting, for all 

proteins, we were able to reproduce the results obtained from running evo-velocity on the full 

dataset.  
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Protein 
ESM-1b and TAPE pseudotime correlation 

(Spearman r, two-sided t-distribution P) 

Influenza A NP r = 0.926, P < 1 × 10-308 

Influenza A HA r = -0.028, P = 0.01 

HIV-1 Gag r = 0.814, P < 1 × 10-308 

SARS-CoV-2 Spike r = 0.902, P < 1 × 10-308 

Globins r = 0.893, P < 1 × 10-308 

Cytochrome c r = 0.811, P < 1 × 10-308 

Enolase r = 0.932, P < 1 × 10-308 

PGK r = 0.948, P < 1 × 10-308 

Serpins r = 0.955, P < 1 × 10-308 

 

Table S4: Pseudotime reproducibility with TAPE velocities. 

The correlation between computed pseudotime using ESM-1b or TAPE to determine the evo-

velocity scores. Cells shaded in light blue indicate correlations greater than 0.8. HA pseudotimes 

were not correlated between ESM-1b and TAPE due to the inability of TAPE to identify roots 

among the twentieth-century trajectory of HA evolution (Figure S2B-D). All other proteins had 

strong pseudotime reproducibility between the two language models.  
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Embedding Velocity 

Correlation with 

ESM-1b 

embeddings and 

velocities 

Correlation with 

sampling year 

ESM-1b ESM-1b N/A 0.49 

One-hot + PCA ESM-1b 0.89 0.47 

ESM-1b BLOSUM62 0.80 0.40 

One-hot + PCA BLOSUM62 0.51 0.31 

ESM-1b Random -0.09 -0.01 

 

Table S5: Evo-velocity ablation results for influenza A NP. 

We obtained comparable, if slightly weaker, pseudotime correlation when either using binary 

sequence embeddings to construct the KNN graph or using BLOSUM62 scores to compute 

velocities (or both). Replacing velocity scores with random, Gaussian noise resulted in loss of 

correlation between pseudotime and sampling year. PCA: Principal component analysis. 

  

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 7, 2021. ; https://doi.org/10.1101/2021.06.07.447389doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.07.447389
http://creativecommons.org/licenses/by/4.0/


56 

 

Protein 
Pseudotime and sequence length correlation 

(Spearman r, two-sided t-distribution P) 

Influenza A NP r = 0.030, P = 0.08 

Influenza A HA r = 0.534, P < 1 × 10-308 

HIV-1 Gag r = -0.352, P < 1 × 10-308 

SARS-CoV-2 Spike r = -0.681, P < 1 × 10-308 

Globins r = -0.166, P = 4 × 10-39 

Cytochrome c r = -0.414 P = 6 × 10-89 

Enolase r = 0.273, P < 1 × 10-308 

PGK r = 0.099, P = 2 × 10-67 

Serpins r = -0.087, P = 4 × 10-39 

 

Table S6: Correlation between pseudotime and sequence length. 

We observed no consistent pattern in the correlation between pseudotime and the length of 

sequences, suggesting that differing sequences lengths across a landscape does not explain evo-

velocity patterns. 
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