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Abstract11

Modelling the biophysics underlying the generation and recording of12

electromyographic (EMG) signals has had a fundamental role in our un-13

derstanding of muscle electrophysiology as well as in the validation of14

algorithms for information extraction from the EMG. Current EMG mod-15

els differ for the complexity of the description of the volume conductor.16

Analytical solutions are computationally efficient for a small number of17

fibers but limited to simplified geometries. Numerical solutions are based18

on accurate anatomical descriptions but require long computational time19

and are therefore impractical for applications requiring a large number of20

simulations across a broad variety of conditions. Here, we propose a com-21

putationally efficient and realistic EMG model. The volume conductor is22

described from magnetic resonance images (MRI) or tissue surfaces by dis-23

cretization in a tetrahedral mesh. The numerical solution of the forward24

model is optimized by reducing the main calculations to the solutions in25

a minimal number of basis points, from which the general solution can26

be obtained. This approach allows the lowest computational time than27

any current EMG models and also provides a scalable solution. New solu-28

tions for the same volume conductor can indeed be obtained without re-29

computing the volume conductor transformation. This property provides30

almost real-time simulations, without any constraints on the complexity31

of the volume conductor or of the transmembrane current source. Because32

of the high computational efficiency, the proposed model can be used as33

a basis for the solution of the inverse model or as a means to simulate a34

large number of data for artificial intelligence (AI) based EMG processing.35
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1 Introduction36

Biophysical modelling of the generation and recording of muscle electrical signals37

(electromyography, EMG) has been extensively described (for review, see [1]).38

The solution of the forward problem in EMG generation is based on Maxwell’s39

equations. However, as for other biosignals, because of the relatively low fre-40

quencies of the sources, a quasi-static assumption can be applied [2, 3]. This as-41

sumption simplifies the problem to the solution of the Poisson equation [2, 4, 5],42

with Neumann boundary conditions. With this simplification, the forward prob-43

lem can be analytically solved for specific geometries of the volume conductor,44

such as for the planar (e.g., [6]) or cylindrical ([7, 8]) shapes. Accordingly,45

analytical EMG models based on these geometries have been developed and46

extensively used (e.g., [9, 10, 11, 12, 13]).47

The simple geometries treated with analytical solutions provide simulations48

which reflect the broad characteristics of EMG signals but cannot be used to49

interpret specific experimental conditions or to reverse the model for source50

identification. More realistic models of EMG generation are based on numer-51

ical solutions of the Poisson equation with generic volume conductor shapes52

(e.g., [14, 15]). Nonetheless, numerical EMG models have had so far limited ap-53

plicability because of the high computational time they require. Currently, there54

are no computationally efficient models of EMG generation with highly accurate55

description of the volume conductor. Therefore, the use of EMG models is not56

extensive. They are mainly applied to identify the generic associations between57

physiological mechanisms and features of the EMG signal (e.g., [10, 12]).58

Because of the recent breakthroughs in artificial intelligence in association with59

decoding surface EMG signals into individual motor unit activities [16, 17], the60

availability of highly accurate EMG models has become of renewed importance.61

Highly accurate models with computational speed comparable to simplified an-62

alytical models would allow addressing the decoding problem for EMG by pro-63

viding arbitrarily large sets of data for training deep neural networks. Moreover,64

these models would find potential applications in developing inverse solutions65

for source identification [18]. The combination of almost real-time precise mod-66

elling and artificial intelligence would open new perspectives in the use of EMG67

for building neuromuscular human-machine interfaces, for diagnostics, and for68

neuroscientific investigations.69

Here we describe an EMG model based on the numerical solution of the volume70

conductor equations. The forward solutions are computed for selected point71

current sources (basis sources) and the response of the system to any current72

source inside the volume conductor is calculated as combination of the solutions73

of the basis sources. With this approach, we show that it is possible to generate74

simulated EMG signals from several thousands of muscle fibers within very lim-75

ited computation time (in the order of seconds). Moreover, each element of the76

model is independent so that only the model features that are changed in each77

simulation need to be re-computed. This characteristics allows achieving real-78

time simulations. The model allows breakthrough approaches in EMG inverse79

modelling and AI-based EMG decoding. Validation of the model by comparison80
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Figure 1: The general pipeline of sEMG simulation. The main steps include:
1) Motor units (MUs) recruitment model, i.e. decomposing muscle excitation
into MU impulse trains; 2) Forward problem, i.e. using conductor, electrode
and source models to simulate MU action potentials (MUAPs); 3) Combining
MU impulse trains with corresponding MUAPs to obtain the simulated sEMG
signal.

with analytical solutions as well as representative applications of the model are81

also described.82

2 Methods83

In this section we present the methods which allow the implementation of a real-84

istic and near real-time surface EMG (sEMG) simulator (Fig. 1). First, we cover85

in detail an efficient strategy to solve the EMG forward problem and discuss86

its implementation. Second, we present methods to generate muscle fibers and87

motor units (MUs) from surface meshes, MU action potentials (MUAPs) and88

the MU recruitment model (decomposing muscle excitation into MU impulse89

trains). Together, these tools allow the realistic modeling of muscle physiology90

and associated sEMG signals from a straightforward model description.91

2.1 Forward problem92

The fiber extracellular potentials that are measured by EMG electrodes are93

generated by transmembrane currents. The properties of bioelectric currents94

and potential fields can be determined from solutions of the Maxwell’s equations,95

taking into account the electrical properties of biological tissues. Because of the96

relatively low frequencies of signal sources of biological origin, the quasi-static97

assumption can be applied [2, 3], so that the electric potential and the primary98

current sources are related by the following Poisson equation [2, 4, 5] with99

Neumann boundary conditions:100

3

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 7, 2021. ; https://doi.org/10.1101/2021.06.07.447390doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.07.447390
http://creativecommons.org/licenses/by-nc/4.0/


∇ · (σ∇φ) = −I in Ω

σ
∂φ

∂n
= σ∇φ · n = 0 on ∂Ω

(1)

where Ω ⊂ R3 is a volume conductor domain of interest, ∂Ω its boundary101

with outward pointing normal unit vector n, φ(r) [V ] is the electric potential,102

I(r) [A/m3] is the current source density (CSD), σ(r) [S/m] is a conductivity103

tensor. The second line of the equation (boundary condition) reflects the as-104

sumption that no current flows out of the domain of interest. In the context of105

EMG modeling, this implies that there is no current flow between the skin and106

air. The current source density I(r) is interpreted as the volume density of cur-107

rent entering or leaving the extracellular medium at position r ∈ Ω. A negative108

CSD corresponds to current leaving the extracellular medium (due to the fiber109

transmembrane currents) and is thus conventionally called a sink. Likewise,110

current entering the extracellular medium is called a source [19, 20].111

Equation (1) cannot be solved analytically for general volume conductor112

geometries, but several numerical methods can be used to approximate its so-113

lution. Here, we use the finite element method (FEM) [21], which discretizes114

the volume conductor Ω as a tetrahedral mesh Ωt. Given this mesh, we use the115

Galerkin method to project the potential φ onto the space of piecewise affine116

functions defined on Ωt. Fig. 2 illustrates an example of a discretized mesh117

representing a realistic forearm model.118

This discretization process converts the continuous operator problem of119

Eq. (1) to a finite system of linear equations:120

Av = b (2)

where A is a symmetric and sparse nv × nv matrix, nv is the number of mesh121

vertices, v ∈ Rnv is a vector of potential values at mesh nodes, and b ∈ Rnv is a122

vector containing source information. Because the electric potential is defined123

up to a constant, the matrix A always has a one dimensional null space. To124

obtain a unique solution to the system of Eq. (2), we constrain potentials v to125

have a zero sum.126

In the context of EMG, we are not interested in finding electric potentials127

everywhere in the conductor, but only at the electrode locations. Let S be a128

selection matrix with a shape ne × nv which only selects the values at EMG129

electrode locations (ne is the number of electrodes). Each row of S can be130

designed to select a single point location or to integrate over an area (e.g. the131

electrode-skin interface) depending on the location and number of its non-zero132

elements. Also, let b(r) correspond to a point source at location r. The resulting133

EMG signal is thus given by:134

vpoint(r) = SA−1b(r). (3)
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(a) (b)

Figure 2: (a) Surface geometry of muscles, bones, subcutaneous tissue, skin
and electrodes used for arm modeling (taken from BodyParts3D, The Database
Center for Life Science [22]). (b) Cross section of the volume mesh Ωt generated
from the arm surfaces.

2.1.1 Efficient implementation135

Let us analyze in more detail the structure of A and b from Eq. (2). Let136

{wi(r), i = 1...nv} be a set of nv P
1 (piecewise linear) basis functions over the137

tetrahedral mesh Ωt. Note, that wi is 1 at the i-th vertex of the mesh, is 0 at138

all other vertices and is linear at all tetrahedra adjacent to the i-th vertex. In139

this case A and b have the following structure:140

Aij =

∫
Ωt

σ(r)∇wi(r)∇wj(r)dr

bi =

∫
Ωt

I(r)wi(r)dr.

First, let us notice that A is symmetric and, in general, a very large matrix141

which can be stored only because it is sparse. Indeed, the functions wi have a142

compact support and their pairwise scalar product is non-zero only for “neigh-143

bor” functions. Since the pseudo-inverse (or the inverse) of a sparse matrix144

is usually not a sparse matrix, it is impractical to compute it because of the145

amount of memory needed to store it. Thus, iterative methods are typically146

used to solve the system of Eq. (2) for every given b.147

5

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 7, 2021. ; https://doi.org/10.1101/2021.06.07.447390doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.07.447390
http://creativecommons.org/licenses/by-nc/4.0/


Consider the case of I(r) = δ(r − r̄) which corresponds to a unit point148

current source at location r̄. Without loss of generality, we assume that this149

source is inside a tetrahedron formed by the vertices i1, ..., i4 of the mesh. In150

this case, we obtain:151

bi =

{
λj , if i ∈ {i1, ..., i4},
0, otherwise

where {λj , j = 1, ..., 4} are the barycentric coordinates of the point r̄ inside the152

tetrahedron {i1, ..., i4}. Applying this expression to Eq. (3), we obtain:153

vpoint(r̄) = SA−1b(r̄) = SA−1Bλ.

where B̄ is a nv× 4 matrix with Bij ,j = 1 for j = 1, ..., 4, and 0 otherwise. This154

implies that the solution of the system of Eq. (2) for any unit point source can be155

computed as a barycentric sum of solutions on the vertices of the corresponding156

tetrahedron. Therefore, it is sufficient to compute solutions of Eq. (2) for “basis”157

sources located on mesh vertices, to be able to evaluate a solution for any point158

inside this mesh in an efficient way. Let ns be the number of such basis sources.159

For the most general case, when the source can be located anywhere inside the160

mesh and ns = nv, let B be a nv × ns identity matrix. The objective is to161

compute ”basis” solutions:162

Vbasis = SA−1B (4)

where Vbasis is a ne×ns matrix, whose columns contain the solutions of Eq. (2)163

for a unit point source located at the corresponding mesh vertex. Hence, the164

potentials for any source location r is given by:165

vpoint(r) = Vbasisλ(r) (5)

where λ(r) ∈ Rns is a vector, whose four non-zero elements contain the barycen-166

tric coordinates of point r inside a corresponding tetrahedron. Note, that one167

may restrict potential sources to be located inside specific subdomains of the168

whole mesh (which is the case for EMG). In this case, ns corresponds to the169

number of vertices of these subdomains, and the matrix B is a submatrix of the170

identity matrix.171

The most straightforward way to compute Vbasis from Eq. (4) is to solve a172

problem of the form Ax = bi for each column of the matrix B. It would thus173

require solving ns systems of linear equations. For realistic conductor geome-174

tries, which have a large number of vertices, solving a single system may take up175

to a few minutes and solving ns systems quickly becomes impractical. There-176

fore, we propose the use of the adjoint method [23], which requires solving ne177

systems only. In the context of EMG, the number of electrodes is usually signifi-178

cantly smaller than the number of vertices in the muscle subdomain meshes, i.e.179

ne << ns. Let us define K = SA−1, which is a matrix of size ne × nv. Because180

A is symmetric, and the inverse of a symmetric matrix is also symmetric, we181

can write KT = A−1ST . Then, K can be found by solving the system:182
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AKT = ST . (6)

The matrix ST has ne columns and, thus, only ne linear systems need to be183

solved to find K. The basis solutions can then be found as:184

Vbasis = KB. (7)

2.1.2 EMG signal of a single fiber activation185

The action potential generated by the flow of ionic currents across the muscle186

fiber membrane is the source of excitation. For a given intracellular action187

potential (IAP) model Vm(z), the transmembrane current source per unit length188

is proportional to the second derivative of Vm(z). A general description of the189

current density source traveling at velocity v along the fiber with the origin at190

the neuromuscular junction at location z0 is [24, 6, 25]:191

I(z, t) = σinπr
2 · ∂
∂z

[
ψ(z − z0 − vt)wL1

(z − z0 −
L1

2
) −

ψ(−z + z0 − vt)wL2(z − z0 +
L2

2
)

]
(8)

where z ∈ [0, 1] is a location along the fiber, ψ(z) =
d

dz
Vm(−z), L1 and L2192

are the semi-lengths of the fiber from the end-plate to the right and to the193

left tendon, respectively, σin is the intracellular conductivity, and r is the fiber194

radius. We have chosen wL to be a Tukey window, as proposed in [26]. The195

IAP Vm [mV
mm ] can be mathematically described in the space domain as proposed196

in [27]:197

Vm(z) = 96z3e−z − 90.

Let r(z) be a parametrized fiber geometry. Combining the transfer function of198

a point source in Eq. (3) with the fiber’s current density in Eq. (8), we obtain199

the equation for the EMG signal resulting from a single fiber activation:200

vfiber(t) =

∫
vpoint(r(z))I(z, t)dz. (9)

This integral can be efficiently approximated by discretizing the fiber geometry201

into sufficiently dense spatial samples {r(zi)}i and assuming that vpoint(r(z))202

is piecewise constant around these points. If we also rewrite Eq. (8) in a shorter203

form as I(z, t) = σinπr
2 · ∂
∂z
F (z, t), Eq. (9) becomes:204
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(a) (b)

Figure 3: Fiber and motor unit distributions. (a) Uniformly distributed fibers
inside a unit circle are grouped into motor units of different sizes, locations and
territories. (b) Example of mapping of 10 small motor units from the circle into
an arbitrary muscle by morphing the unit circle into the muscle cross section.

vfiber(t) ≈
∑
i

vpoint(r(zi))

∫ zi+∆i

zi−∆i

I(z, t)dz =

∑
i

vpoint(r(zi))

∫ zi+∆i

zi−∆i

σinπr
2 · ∂
∂z
F (z, t)dz =

σinπr
2
∑
i

vpoint(r(zi))
(
F (zi + ∆i, t)− F (zi −∆i, t)

)
. (10)

Note, that vpoint(r(zi)) can be efficiently computed from Eq. (5). Moreover,205

once vpoint(r(zi)) are computed for all given fibers, we can change the parame-206

ters of the current source density (action potential waveform shape, propagation207

velocity, location of neuromuscular junction), and compute the corresponding208

EMG signal with Eq. (10) by only matrix multiplication complexity.209

2.2 Geometrical and physiological modeling of motor units210

The motor unit action potential (MUAP) is the summation of the single fiber211

action potentials (APs) of the muscle fibers in the MU. Different types of MUs212

can be modeled [28, 29]. Our approach consists in generating fiber and motor213

unit distributions inside a unit circle, and then projecting it into arbitrary 3D214

muscle geometry (Fig. 3b), using methods similar to those described in [30].215

This provides a high level of control for the fiber and MU distribution parame-216

ters independently of a particular muscle geometry. A common way to simulate217

fibers and MUs is to start by defining MU positions, sizes and territories, and218

then simulate fibers inside these MUs according to their parameters [31, 32]. We,219
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however, propose another approach. First, we simulate uniformly distributed220

fibers inside a unit circle. Then, MU centers and their circular territories are221

generated and, finally, we associate each fiber to an MU. A fiber is associated222

to one of the MUs that contains it inside its territory with a probability propor-223

tional to the MU density (Fig. 3a). This approach has two main advantages.224

First, it guaranties (by construction) the uniform fiber distribution inside a cir-225

cular muscle cross-section. Second, once fibers are generated and projected into226

a muscle geometry, different MU distributions can be generated very quickly,227

without regenerating fibers and recomputing transfer functions vpoint(r(zi)) for228

their nodes.229

MU recruitment model230

During muscle contraction, the MUs are recruited according to the size princi-231

ple [33]. This can be simulated by associating a threshold of excitation to each232

MU, as described for example by Fuglevand et al. [34]. Linear or non-linear233

rate coding models can be used [34, 35, 36].234

The excitation rate as a function of time for each muscle is converted into235

the firing rates of the active MUs. Inter-discharge intervals are then generated236

with variability of the discharges around the mean firing interval [37].237

3 Results238

The implementation of the main steps presented in the previous section can239

be summarized as follows. Once the matrices S, A and B are computed, the240

matrix K is determined using Eq. (6) by solving ne linear systems. Then,241

Eq. (7) is used to find the solutions for ns basis points, which is a fast matrix242

multiplication operation. For any given point source location r, we compute243

its barycentric coordinates in associated tetrahedron and apply Eq. (5) to get244

values of electrical potentials at electrode locations. Finally, for a given fiber245

geometry, the single fiber action potential as recorded by the EMG electrodes246

is computed using Eq. (9).247

The results presented in this study are obtained using a Python implementa-248

tion of the proposed strategy. Assembling the matrix A and solving the system249

(6) is delegated to the FEniCS computing platform [38, 39]. The forearm ge-250

ometry that is here representatively used as a conductor model is taken from251

the website of BodyParts3D, The Database Center for Life Science [22]. The252

volume mesh is generated from the surface meshes of the forearm tissues using253

the CGAL C++ library [40].254

3.1 Comparison with an analytical solution255

First, we validated our numerical solution by comparing it with an analytical256

one (using the model presented in [7]) for a simple volume conductor geometry.257

We used a four layer cylindrical model with layers corresponding to bone (r =258
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Figure 4: Comparison of the numerical and analytical [7] solutions for a four
layer cylindrical volume conductor model: analytical (red) and numerical (black)
sEMG signals for the differential electrode montage. The depth of the source
fiber is 1mm from the muscle surface.

0.7cm), muscle (r = 2cm), fat(r = 2.3cm) and skin (r = 2.4cm) surfaces. 16259

point electrodes were simulated right on top of a fiber. The fiber was located at260

varying depths into the muscle tissue, in the range 1 mm to 11 mm. Differential261

sEMG signal was simulated using analytical and numerical solutions of the262

forward problem. The normalized mean square error between the two solutions263

depended on the depth of the fiber and varied between 3% (1mm depth from264

the muscle surface) and 5% (11mm depth).265

Let us notice that the two volume conductor models in this validation are266

not exactly the same. The theoretical solution is computed for an infinitely long267

cylinder (repeated periodically when discretized), while the numerical solution268

uses a cylinder of a large (sufficiently longer than the fiber and the electrode269

array) yet finite length. Increasing the length of the cylinder did not significantly270

alter the error.271

Fig. 4 shows the analytical (red) and numerical (black) solutions for the fiber272

depth of 1 mm from the muscle surface. Because of the low error value, the two273

waveforms are almost indistinguishable.274
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General Fibers Fibers MUs Raw sEMG
basis points basis points EMG response EMG response assembling

7 min
(13 sec/elec)

2 min 30 sec 0.8 sec 2.6 sec

Table 1: Computational performance of each of the main steps of a raw EMG
simulation. General basis points computation refers to equation (7); fiber basis
points are computed with equation (5); fibers EMG response is computed with
equation (9).

3.2 Computational performance275

In this section we report the computational time of the proposed model for a276

specific simulation case. Note, that no multiprocessing tools were used in these277

computations. Each step, however, is highly scalable and can be efficiently278

distributed between parallel processes, which would significantly increase the279

performance. Computations for each muscle and fiber are independent and can280

be performed in parallel. Parallel computing would also apply to the electrodes281

in the general basis points computation.282

For the purpose of demonstration, we simulated a 1-min long, 100% maxi-283

mum voluntary contraction (MVC) excitation of the Brachioradialis muscle with284

50000 individual fibers and 200 motor units. The mesh of the volume conductor285

contained 2.1M vertices which formed 13M tetrahedra. 16 rectangular and 16286

circular electrodes were included in the model. The sampling frequency of the287

simulated signals was 2000 Hz. Table 1 shows the computational time for each288

of the main steps in this simulation.289

Note that a list of parameters need to be provided for each step of Table 1.290

However, an important property of our model is that each step depends only291

on the data produced by the previous steps. This property can be exploited292

to change some simulation parameters without recomputing every step of the293

simulation. For example, it is not necessary to recompute solutions for the fiber294

basis points if only the simulation parameters related to the MU distribution or295

recruitment model are modified. In this example, the total simulation time for296

this new set of parameters will only take approximately 0.8 + 2.6 = 3.4 s.297

A brief description of the main parameters required at each step follows.298

The full arm and electrode geometry as well as the tissue conductivities define299

the computation general basis points. To compute fibers basis points solutions,300

the 3D geometry of the fibers is required. Computing the fiber EMG responses301

requires the shape of the intracellular AP waveforms, AP propagation velocity,302

sizes of tendon and active fiber parts, neuromuscular junction location, fiber di-303

ameter and intracellular conductivity, and sampling frequency. To compute the304

MUs action potentials, the MU distribution in the muscle, i.e. the association of305

fibers to each motor unit, need to be defined. In the proposed model, once the306

number of MUs, their sizes and territory areas are selected, the MU distribu-307
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(a) (b)

Figure 5: Single fiber activation in the Brachioradialis muscle: (a) Fiber and
electrodes geometry. (b) Differential sEMG signal of a single fiber activation.

tion is randomly generated. Finally, to synthesize the sEMG signal, the muscle308

excitation drives and recruitment model parameters (motor unit recruitment309

thresholds and firing rates) are required.310

3.3 Simulation examples311

Single fiber activation312

We begin by simulating the EMG signal associated to a single fiber activation313

inside the Brachioradialis muscle. The signal for an array of 16 rectangular314

electrodes and 8 kHz time resolution was generated. Fig. 5 illustrates the geo-315

metrical location of the fiber and the corresponding sEMG signal in differential316

electrode montage. Different distinctive features are present in the simulated317

signal that are also observed in experimental sEMG signals [41]. In particular,318

electrodes of the channel 4 are located on different sides of the neuromuscular319

junction (NMJ) and thus cancel each other out. Channels 7-11 contain prop-320

agating sEMG components resulted from the fiber AP propagating from the321

NMJ to the tendons. Channels 2-6, as well as channels 12-15, contain non-322

propagating sEMG components, which are due to the AP generation at the323

NMJ and its extinction at the tendon (end-of-fiber effect), respectively.324

Single muscle activation325

The next example is a simulation of an excitation of a single muscle (Fig. 6). A326

simple excitation drive for the Brachioradialis muscle was simulated. It gradu-327

ally goes from 0% to 100% maximum voluntary contraction and back to 0. 50k328

muscle fibers were generated inside the muscle and distributed within 200 motor329
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Figure 6: Activation of the Brachioradialis muscle. Muscle excitation is first
decomposed into motor unit impulse trains (on the left). Then, the sEMG signal
recorded by 8 bipolar electrodes (see Fig. 2a) was simulated (on the right).

units. The size of MUs varied exponentially from 11 to 1150 fibers. The areas330

of MU territories varied from 10% to 50% of the muscle cross-sectional area.331

The muscle excitation drive was decomposed into MU impulse trains according332

to the size principle. In this example, the firing rate for each MU ranged from 8333

Hz to 35 Hz and all MUs were recruited when an excitation level of 75% MVC334

was reached.335

Multiple muscle coordination336

Finally, we simulated sEMG signals from multiple muscle excitations corre-337

sponding to wrist flexion and extension (Fig. 8). Two groups of muscles were338

involved. The flexor group included the Palmaris longus, Flexor carpi ulnaris339

(ulnar head), Flexor carpi ulnaris (humeral head), and Flexor carpi radialis340

muscles. The extensor group included the Extensor digitorum, Extensor carpi341

ulnaris, Extensor carpi radialis brevis, and Extensor carpi radialis longus mus-342

cles. During a wrist flexion, the muscles of the flexor group reached an excitation343

level of 70-90% MVC, while the extensor muscles acted as antagonists with exci-344

tation in the range 10-30% MVC. During extension, the agonist-antagonist roles345

switched. Moreover, a small but constant excitation of the abduction muscle346

group was added to simulate the wrist resistance against gravity. The abduc-347

tion muscle group included the Flexor carpi radialis, Extensor carpi radialis348

brevis, and Extensor carpi radialis longus muscles. For each muscle, a number349

of muscle fibers between 32k and 78k was simulated, depending on the muscle350

cross sectional area. Muscle fibers were distributed within motor units, whose351

number varied from 150 to 300 per muscle.352

Fig. 8 clearly shows the similarities in signal characteristics between experi-353

mental and simulated data. Beside the different activation across the electrodes354

during flexion and extension, the effect of wrist abduction is also visible in both355
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Figure 7: Muscle excitation model for wrist flexion/extension. During a wrist
flexion, the muscles of the flexor group reached an excitation level of 70-90%
MVC, while the extensor muscles acted as antagonists with excitation in the
range 10-30% MVC. During extension the roles were switched. A constant
wrist abduction was also added to simulate wrist resistance against gravity to
keep it in the horizontal position.

Figure 8: Comparison of experimental (top) and simulated (bottom) sEMG
signals for the left wrist flexion and extension. The experimental signals were
measured with 8 bipolar electrodes located around the forearm. For simulation,
the flexor (green) and extensor (blue) muscle groups were activated in turn with
activation peaks aligned with the experimental signal peaks.

data sets. Thus, channel 7 presents signal activity during the whole duration of356

the simulation, with peak of the signal during extension.357

However, as the model used for this simulation is not personalized, simulated358

signals do not perfectly replicate all the details of the experimental signals. For359

example, channel 8 for the experimental measurements has remarkably higher360

amplitude during extension than in the simulated conditions.361
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Figure 9: Comparison of experimental (red) and simulated (blue) single channel
normalized sEMG signals in the time and frequency domains.

In addition to the analysis in time domain, simulated data were compared362

against the experimental data in the frequency domain. Fig. 9 shows an example363

of the measured and simulated single channel sEMG. The two signals have364

similar power spectra. It has to be noted that the spectral characteristics of365

a signal strongly depends on multiple simulation parameters. In this example,366

we run several hundreds simulations by varying the simulation parameters in a367

realistic range and selected the set of parameters leading to the minimal spectral368

difference. This approach, which is a simple version of inverse modelling, was369

possible because of the extremely high computational speed of the simulations.370

4 Discussion371

We have proposed an efficient computational approach to solve the volume con-372

ductor problem in the generation of surface EMG signals. The method provides373

the solution to the generation of EMG signals from realistic volume conduc-374

tor properties and number of muscle fibers, within limited computational time.375

Moreover, once the model is solved for a specific volume conductor, the pro-376

posed approach provides solutions for an arbitrary number and properties of377

fibers and motor units, activations of the motor units as well as signal du-378

ration and sampling frequency, without re-computing the volume conductor379

solution. This property allows us to generate EMG signals within a computa-380

tional time compatible with real-time signal generation (see example videos on381

https://www.youtube.com/channel/UCulDYbGBvSkJzaPlFgzKQ2Q). The pro-382

posed model is the only available EMG simulator with realistic description of383

the volume conductor and optimized for such computational efficiency. The384

modelling of EMG signals is based on the description of the electrical activity385

of the fiber membrane, in terms of intracellular and transmembrane electrical386

potentials. The electric field generated by the fiber electrical activity is recorded387

in a volume conductor, which is often described under the electrostatic assump-388

tion. Various mathematical descriptions of the intracellular action potential389

and volume conductor have been previously provided [27, 25, 42]. The compu-390

tational efficiency in the volume conductor solution has been recognized as an391
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important component of EMG modelling and some attempts to decrease the392

computational time in EMG simulations have been described. For example,393

Dimitrov & Dimitrova [43] substantially decreased the computational time in394

EMG modeling by computing the impulse response of the volume conductor, so395

that the surface action potentials generated by muscle fibers were determined396

as a convolution between the first derivative of the intracellular action potential397

and the impulse response. This approach, based on the classic description of398

a single fiber electrical activity by Lorente de Nó [44], allowed to compute one399

single convolution to generate extracellular potentials generated by an arbitrary400

analytical description of the intracellular action potential, with generation at the401

end plate, propagation along the fiber, and extinction at the tendons. However,402

the volume conductor in the model proposed by Dimitrov & Dimitrova [43] was403

an infinite homogeneous medium, which limited the accuracy of the simulations404

with respect to realistic conditions.405

The mathematical description of the full generation and extinction process406

of the intracellular action potential by the first temporal derivative, as pro-407

posed by Dimitrov & Dimitrova [43], provided an analytical method to describe408

the source of EMG signal with one single spatio-temporal function. In princi-409

ple, this description can be used with complex volume conductors as long as a410

transfer function can be computed. Farina et al. proposed a spatial frequency411

domain description of non-homogeneous planar [6] and cylindrical [7] volume412

conductors, so that the effect of the volume conductor could be described by413

a temporal convolution with the first derivative of the intracellular action po-414

tential, as previously done with simpler geometries by Dimitrov & Dimitrova415

[43]. The same approach could be applied to numerical descriptions of the vol-416

ume conductor when the property of spatial invariance along the direction of417

propagation of the muscle fibers was satisfied [5]. These solutions therefore418

were restricted to cylindrical volume conductors, i.e. volume conductor with419

invariant cross-section along the fiber direction.420

Realistic models using numerical solutions have also been recently proposed.421

The previous most complete and efficient model has been proposed by Pereira422

Botelho et al. [15]. These authors have used an anatomically accurate model423

to simulate EMG signals generated during index finger flexion and abduction.424

They gained computational speed by using the principle of reciprocity. In fact,425

one part of our calculations also includes the adjoint method which is an alge-426

braic representation of this principle. By reciprocity, Pereira Botelho et al. [15]427

reported a computational time of 1 hour for simulating the activation of nearly428

15500 fibers for 5 electrodes. This time remains impractical for simulating arbi-429

trary large data sets for a variety of parameter values. The model we proposed430

in this paper substantially surpasses the computational efficiency reported in431

[15] (see our Table 1, as an example). To achieve this extreme reduction in432

computational time without any constraints on the volume conductor, we have433

optimized the numerical computation by reducing the main calculations to the434

solutions corresponding to basis points, from which a general solution can be435

obtained. The approach does not only reduce the computational time for a full436

simulation but also allows us to scale the solution, so that new solutions for437
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the same volume conductor can be obtained without re-computing the volume438

conductor transformation. In this way, the generation of EMG signals within439

the same volume conductor, but varying all other simulation parameters, can440

be performed extremely fast. Complex EMG signals from tens of thousands441

of muscle fibers located in multiple muscles, can therefore be generated (and442

regenerated with different parameter values) in a computational time of the443

order of seconds. The described model is the first that allows an extremely444

accurate signal generation within a limited computational time. Contrary to445

previous models, the proposed simulator does not compromise accuracy and446

computational speed.447

In perspective, to make simulated sEMG signals even more realistic, the cur-448

rent model can be extended by including advanced noise and artifacts modeling,449

biomechanical modeling of the musculoskeletal system and dynamic volume con-450

ductor and fiber geometry. While these aspects are beyond the scope of this451

paper, they are relevant features to include in future developments.452

One of the reasons for developing a model with high accuracy and speed, is453

its potential for addressing the inverse problem, i.e. to identify the location of454

active motor units or muscle compartments within the volume conductor given455

the recorded EMG signals at the skin surface. The identification of model pa-456

rameters in inverse modelling requires the fast computation of a large number457

of solutions for the identification of a globally optimal solution. Current at-458

tempts to EMG inverse modelling are based on simplified volume conductors,459

as well as simplified assumptions in terms of motor unit activation, in order to460

identify the inverse solution in a realistic time [45]. The model proposed in this461

work removes all the simplifications to realistic simulations, maintaining high462

computational speed. Another application of precise and fast EMG simulations463

is data augmentation in AI-based signal classification and/or decomposition.464

The proposed model can indeed be used for generating a large variability of465

data from multiple volume conductor and fiber properties in order to generalize466

processing methods across experimental sessions and individuals.467

In conclusion, we have proposed a fast and highly accurate approach to sim-468

ulate surface EMG signals. The computational efficiency of our model greatly469

surpasses any other currently available solution. The modelling approach is470

based on an efficient determination of the EMG solution by a modular approach471

for which processing steps do not need to be repeated if some of the simulation472

conditions remain constant. The model has the potential of substantially ex-473

panding the applications of EMG modelling, especially in relation to modern474

AI-based approaches of inverse modelling and signal decomposition.475
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