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1 Abstract

12 Modelling the biophysics underlying the generation and recording of
13 electromyographic (EMG) signals has had a fundamental role in our un-
14 derstanding of muscle electrophysiology as well as in the validation of
15 algorithms for information extraction from the EMG. Current EMG mod-
16 els differ for the complexity of the description of the volume conductor.
17 Analytical solutions are computationally efficient for a small number of
18 fibers but limited to simplified geometries. Numerical solutions are based
19 on accurate anatomical descriptions but require long computational time
20 and are therefore impractical for applications requiring a large number of
21 simulations across a broad variety of conditions. Here, we propose a com-
2 putationally efficient and realistic EMG model. The volume conductor is
23 described from magnetic resonance images (MRI) or tissue surfaces by dis-
2% cretization in a tetrahedral mesh. The numerical solution of the forward
25 model is optimized by reducing the main calculations to the solutions in
2 a minimal number of basis points, from which the general solution can
27 be obtained. This approach allows the lowest computational time than
28 any current EMG models and also provides a scalable solution. New solu-
29 tions for the same volume conductor can indeed be obtained without re-
30 computing the volume conductor transformation. This property provides
31 almost real-time simulations, without any constraints on the complexity
32 of the volume conductor or of the transmembrane current source. Because
33 of the high computational efficiency, the proposed model can be used as
34 a basis for the solution of the inverse model or as a means to simulate a
3 large number of data for artificial intelligence (AI) based EMG processing.
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s 1 Introduction

s Biophysical modelling of the generation and recording of muscle electrical signals
1 (electromyography, EMG) has been extensively described (for review, see [I]).
s The solution of the forward problem in EMG generation is based on Maxwell’s
o equations. However, as for other biosignals, because of the relatively low fre-
a quencies of the sources, a quasi-static assumption can be applied 2] [3]. This as-
» sumption simplifies the problem to the solution of the Poisson equation [2] 4] 5],
s with Neumann boundary conditions. With this simplification, the forward prob-
u lem can be analytically solved for specific geometries of the volume conductor,
s such as for the planar (e.g., [0]) or cylindrical ([7, §]) shapes. Accordingly,
s analytical EMG models based on these geometries have been developed and
w  extensively used (e.g., [9, 10, 111 12| 13]).

s The simple geometries treated with analytical solutions provide simulations
2 which reflect the broad characteristics of EMG signals but cannot be used to
so interpret specific experimental conditions or to reverse the model for source
s1  identification. More realistic models of EMG generation are based on numer-
s2 ical solutions of the Poisson equation with generic volume conductor shapes
53 (e.g., [T4,[15]). Nonetheless, numerical EMG models have had so far limited ap-
s« plicability because of the high computational time they require. Currently, there
55 are no computationally efficient models of EMG generation with highly accurate
ss description of the volume conductor. Therefore, the use of EMG models is not
57 extensive. They are mainly applied to identify the generic associations between
s physiological mechanisms and features of the EMG signal (e.g., [10], 12]).

so  Because of the recent breakthroughs in artificial intelligence in association with
o decoding surface EMG signals into individual motor unit activities [16} 7], the
&1 availability of highly accurate EMG models has become of renewed importance.
e Highly accurate models with computational speed comparable to simplified an-
3 alytical models would allow addressing the decoding problem for EMG by pro-
e viding arbitrarily large sets of data for training deep neural networks. Moreover,
es these models would find potential applications in developing inverse solutions
e for source identification [I8]. The combination of almost real-time precise mod-
e elling and artificial intelligence would open new perspectives in the use of EMG
e for building neuromuscular human-machine interfaces, for diagnostics, and for
e neuroscientific investigations.

7 Here we describe an EMG model based on the numerical solution of the volume
n conductor equations. The forward solutions are computed for selected point
72 current sources (basis sources) and the response of the system to any current
7z source inside the volume conductor is calculated as combination of the solutions
2 of the basis sources. With this approach, we show that it is possible to generate
7 simulated EMG signals from several thousands of muscle fibers within very lim-
7 ited computation time (in the order of seconds). Moreover, each element of the
77 model is independent so that only the model features that are changed in each
7 simulation need to be re-computed. This characteristics allows achieving real-
7o time simulations. The model allows breakthrough approaches in EMG inverse
s modelling and Al-based EMG decoding. Validation of the model by comparison


https://doi.org/10.1101/2021.06.07.447390
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.07.447390; this version posted June 7, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

1
. T
3
\ RN
A [ | ——alli— ———

Movement — Muscles excitation — MU impulse trains

}—‘ SEMG data .| —

Anatomy — Forward model — MUAPs =

. — -

Figure 1: The general pipeline of sSEMG simulation. The main steps include:
1) Motor units (MUs) recruitment model, i.e. decomposing muscle excitation
into MU impulse trains; 2) Forward problem, i.e. using conductor, electrode
and source models to simulate MU action potentials (MUAPs); 3) Combining
MU impulse trains with corresponding MUAPs to obtain the simulated sEMG
signal.

&1 with analytical solutions as well as representative applications of the model are
&2 also described.

» 2 Methods

& In this section we present the methods which allow the implementation of a real-
s istic and near real-time surface EMG (sEMG) simulator (Fig.[I). First, we cover
s in detail an efficient strategy to solve the EMG forward problem and discuss
7 its implementation. Second, we present methods to generate muscle fibers and
s motor units (MUs) from surface meshes, MU action potentials (MUAPs) and
s the MU recruitment model (decomposing muscle excitation into MU impulse
o trains). Together, these tools allow the realistic modeling of muscle physiology
o and associated sSEMG signals from a straightforward model description.

» 2.1 Forward problem

o3 The fiber extracellular potentials that are measured by EMG electrodes are
o generated by transmembrane currents. The properties of bioelectric currents
os and potential fields can be determined from solutions of the Maxwell’s equations,
o taking into account the electrical properties of biological tissues. Because of the
o relatively low frequencies of signal sources of biological origin, the quasi-static
e assumption can be applied [2 B], so that the electric potential and the primary
o current sources are related by the following Poisson equation [2, 4, B] with
10 Neumann boundary conditions:
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V- (cVp)=—-I inQ
99 (1)
c—=0V¢-n=0 on df)

on
01 where Q C R? is a volume conductor domain of interest, 9 its boundary
02 with outward pointing normal unit vector n, ¢(r) [V] is the electric potential,
w3 I(r) [A/m?] is the current source density (CSD), o(r) [S/m] is a conductivity
s tensor. The second line of the equation (boundary condition) reflects the as-
10s sumption that no current flows out of the domain of interest. In the context of
ws  EMG modeling, this implies that there is no current flow between the skin and
w7 air. The current source density I(r) is interpreted as the volume density of cur-
g rent entering or leaving the extracellular medium at position r € Q. A negative
o CSD corresponds to current leaving the extracellular medium (due to the fiber
uo  transmembrane currents) and is thus conventionally called a sink. Likewise,
ur - current entering the extracellular medium is called a source [19] 20].
112 Equation cannot be solved analytically for general volume conductor
u3  geometries, but several numerical methods can be used to approximate its so-
us lution. Here, we use the finite element method (FEM) [21], which discretizes
us  the volume conductor €2 as a tetrahedral mesh ;. Given this mesh, we use the
us  Galerkin method to project the potential ¢ onto the space of piecewise affine
w  functions defined on €. Fig. [2] illustrates an example of a discretized mesh
us representing a realistic forearm model.
119 This discretization process converts the continuous operator problem of
1 Eq. to a finite system of linear equations:

Av=0» (2)

1 where A is a symmetric and sparse n, X n, matrix, n, is the number of mesh
122 vertices, v € R™ is a vector of potential values at mesh nodes, and b € R™ is a
123 vector containing source information. Because the electric potential is defined
124 up to a constant, the matrix A always has a one dimensional null space. To
125 obtain a unique solution to the system of Eq. , we constrain potentials v to
s have a zero sum.

127 In the context of EMG, we are not interested in finding electric potentials
s everywhere in the conductor, but only at the electrode locations. Let S be a
120 selection matrix with a shape n. x n, which only selects the values at EMG
w electrode locations (n. is the number of electrodes). Each row of S can be
m  designed to select a single point location or to integrate over an area (e.g. the
12 electrode-skin interface) depending on the location and number of its non-zero
13 elements. Also, let b(r) correspond to a point source at location r. The resulting
1 EMG signal is thus given by:

Vpoint(T) = SA'b(r). (3)


https://doi.org/10.1101/2021.06.07.447390
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.07.447390; this version posted June 7, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

(b)

Figure 2: (a) Surface geometry of muscles, bones, subcutaneous tissue, skin
and electrodes used for arm modeling (taken from BodyParts3D, The Database
Center for Life Science [22]). (b) Cross section of the volume mesh €); generated
from the arm surfaces.

135 2.1.1 Efficient implementation

s Let us analyze in more detail the structure of A and b from Eq. . Let
1w {wi(r),i = 1..n,} be a set of n, P! (piecewise linear) basis functions over the
s tetrahedral mesh Q. Note, that w? is 1 at the i-th vertex of the mesh, is 0 at
130 all other vertices and is linear at all tetrahedra adjacent to the i-th vertex. In
1o this case A and b have the following structure:

Aij :/Q o(r)Vw' (r)Vuw! (r)dr
b; = /Qt I(r)w'(r)dr.

14 First, let us notice that A is symmetric and, in general, a very large matrix
w2 which can be stored only because it is sparse. Indeed, the functions w’ have a
w3 compact support and their pairwise scalar product is non-zero only for “neigh-
s bor” functions. Since the pseudo-inverse (or the inverse) of a sparse matrix
us is usually not a sparse matrix, it is impractical to compute it because of the
us amount of memory needed to store it. Thus, iterative methods are typically
17 used to solve the system of Eq. for every given b.
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18 Consider the case of I(r) = §(r — ¥) which corresponds to a unit point
uo current source at location #. Without loss of generality, we assume that this
150 source is inside a tetrahedron formed by the vertices i1, ...,74 of the mesh. In
151 this case, we obtain:

- {Aj, if i € {i1,..,ia},

0, otherwise

2 where {);, j = 1,...,4} are the barycentric coordinates of the point 7 inside the
153 tetrahedron {i1,...,74}. Applying this expression to Eq. , we obtain:

’Upoimg(’F) == SA_lb(’F) = SA_lg)\

s« where B is a n, x 4 matrix with Ei]. 4 =1forj=1,..,4, and 0 otherwise. This
155 implies that the solution of the system of Eq. for any unit point source can be
155 computed as a barycentric sum of solutions on the vertices of the corresponding
157 tetrahedron. Therefore, it is sufficient to compute solutions of Eq. for “basis”
158 sources located on mesh vertices, to be able to evaluate a solution for any point
10 inside this mesh in an efficient way. Let ng be the number of such basis sources.
10 For the most general case, when the source can be located anywhere inside the
e mesh and ngs = n,, let B be a n, X ns identity matrix. The objective is to
12 compute ”basis” solutions:

%asis = SA_lB (4)

163 where Vpasis IS @ ne X ng matrix, whose columns contain the solutions of Eq.
1« for a unit point source located at the corresponding mesh vertex. Hence, the
165 potentials for any source location r is given by:

Upoint () = ViasisA(T) (5)

s where A(r) € R" is a vector, whose four non-zero elements contain the barycen-
w7 tric coordinates of point r inside a corresponding tetrahedron. Note, that one
s may restrict potential sources to be located inside specific subdomains of the
o whole mesh (which is the case for EMG). In this case, ng corresponds to the
o number of vertices of these subdomains, and the matrix B is a submatrix of the
wm identity matrix.

172 The most straightforward way to compute Vp,s;s from Eq. is to solve a
173 problem of the form Ax = b; for each column of the matrix B. It would thus
s require solving ng systems of linear equations. For realistic conductor geome-
75 tries, which have a large number of vertices, solving a single system may take up
e to a few minutes and solving ng systems quickly becomes impractical. There-
v fore, we propose the use of the adjoint method [23], which requires solving n.
s systems only. In the context of EMG, the number of electrodes is usually signifi-
o cantly smaller than the number of vertices in the muscle subdomain meshes, i.e.
1 Me << ng. Let us define K = SA~!, which is a matrix of size n. x n,. Because
w1 A is symmetric, and the inverse of a symmetric matrix is also symmetric, we
w2 can write KT = A71ST. Then, K can be found by solving the system:
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AKT =87, (6)

s The matrix ST has n, columns and, thus, only n. linear systems need to be
1w+ solved to find K. The basis solutions can then be found as:

‘/Emsis = KB. (7)

s 2.1.2 EMG signal of a single fiber activation

s The action potential generated by the flow of ionic currents across the muscle
17 fiber membrane is the source of excitation. For a given intracellular action
s potential (IAP) model V,,,(z), the transmembrane current source per unit length
1o is proportional to the second derivative of V;,,(z). A general description of the
1o current density source traveling at velocity v along the fiber with the origin at
1 the neuromuscular junction at location zq is [24] [0 [25]:

P(z — zo — vt)wr, (2 — 20 — &) -

1 t) = oin 2.
(2,t) = oipmr 5

dz

W(—z+ 20 — vt)wp,(z — 20 + %) (8)

d
w2 where z € [0,1] is a location along the fiber, ¥(z) = d—Vm(—z), L, and Lo
z
13 are the semi-lengths of the fiber from the end-plate to the right and to the
104 left tendon, respectively, o;, is the intracellular conductivity, and r is the fiber
s radius. We have chosen wy, to be a Tukey window, as proposed in [26]. The

ws IAP V,, [ZL‘—XL] can be mathematically described in the space domain as proposed
17 In [27]:

Vin(2) = 962372 — 90.

s Let 7(z) be a parametrized fiber geometry. Combining the transfer function of
199 a point source in Eq. with the fiber’s current density in Eq. , we obtain
200 the equation for the EMG signal resulting from a single fiber activation:

Vfiver(t) = /vpomt(r(z))f(z,t)dz. (9)

20 This integral can be efficiently approximated by discretizing the fiber geometry
22 into sufficiently dense spatial samples {r(z;)}; and assuming that vpein:(7(2))
203 1S piecewise constant around these points. If we also rewrite Eq. in a shorter

0
s form as I(z,t) = oy, mr? - a—F(z,t), Eq. becomes:
2
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Cross section
Fiber distribution MU distribution morphing

Figure 3: Fiber and motor unit distributions. (a) Uniformly distributed fibers
inside a unit circle are grouped into motor units of different sizes, locations and
territories. (b) Example of mapping of 10 small motor units from the circle into
an arbitrary muscle by morphing the unit circle into the muscle cross section.

z2i+A;

Vfiver(t) & Z vpoint("'(zi))/ I(z,t)dz =

i— A
zi+A; )
vaomt(r(zi))/ Oinmr? a—F(zyt)dz =
i zi— <

i

i vaomt(r(zi))<F(zi F AL ) — Fz— A t)). (10)

Note, that vpeint(7(2;)) can be efficiently computed from Eq. . Moreover,
once Vpoint(7(2;)) are computed for all given fibers, we can change the parame-
ters of the current source density (action potential waveform shape, propagation
velocity, location of neuromuscular junction), and compute the corresponding
EMG signal with Eq. by only matrix multiplication complexity.

2.2 Geometrical and physiological modeling of motor units

The motor unit action potential (MUAP) is the summation of the single fiber
action potentials (APs) of the muscle fibers in the MU. Different types of MUs
can be modeled [28] [29]. Our approach consists in generating fiber and motor
unit distributions inside a unit circle, and then projecting it into arbitrary 3D
muscle geometry (Fig. , using methods similar to those described in [30].
This provides a high level of control for the fiber and MU distribution parame-
ters independently of a particular muscle geometry. A common way to simulate
fibers and MUs is to start by defining MU positions, sizes and territories, and
then simulate fibers inside these MUs according to their parameters [31],[32]. We,


https://doi.org/10.1101/2021.06.07.447390
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.07.447390; this version posted June 7, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

20 however, propose another approach. First, we simulate uniformly distributed
21 fibers inside a unit circle. Then, MU centers and their circular territories are
22 generated and, finally, we associate each fiber to an MU. A fiber is associated
223 to one of the MUs that contains it inside its territory with a probability propor-
2¢ tional to the MU density (Fig. . This approach has two main advantages.
»s  First, it guaranties (by construction) the uniform fiber distribution inside a cir-
26 cular muscle cross-section. Second, once fibers are generated and projected into
27 a muscle geometry, different MU distributions can be generated very quickly,
2 without regenerating fibers and recomputing transfer functions vpeint(7(2;)) for
29 their nodes.

20 MU recruitment model

2 During muscle contraction, the MUs are recruited according to the size princi-
22 ple [33]. This can be simulated by associating a threshold of excitation to each
23 MU, as described for example by Fuglevand et al. [34]. Linear or non-linear
21 rate coding models can be used [34] 35 [36].

235 The excitation rate as a function of time for each muscle is converted into
236 the firing rates of the active MUs. Inter-discharge intervals are then generated
2z with variability of the discharges around the mean firing interval [37].

w3 Resu:l.ts

29 The implementation of the main steps presented in the previous section can
20 be summarized as follows. Once the matrices S, A and B are computed, the
2n matrix K is determined using Eq. @ by solving n. linear systems. Then,
a2 Eq. is used to find the solutions for ns basis points, which is a fast matrix
23 multiplication operation. For any given point source location r, we compute
24 its barycentric coordinates in associated tetrahedron and apply Eq. to get
x5 values of electrical potentials at electrode locations. Finally, for a given fiber
26 geometry, the single fiber action potential as recorded by the EMG electrodes
27 is computed using Eq. @

28 The results presented in this study are obtained using a Python implementa-
29 tion of the proposed strategy. Assembling the matrix A and solving the system
250 @ is delegated to the FEniCS computing platform [38, [39]. The forearm ge-
;1 ometry that is here representatively used as a conductor model is taken from
2 the website of BodyParts3D, The Database Center for Life Science [22]. The
3 volume mesh is generated from the surface meshes of the forearm tissues using
4 the CGAL C++ library {40]

» 3.1 Comparison with an analytical solution

6 First, we validated our numerical solution by comparing it with an analytical
27 one (using the model presented in [7]) for a simple volume conductor geometry.
s We used a four layer cylindrical model with layers corresponding to bone (r =
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Figure 4: Comparison of the numerical and analytical [7] solutions for a four
layer cylindrical volume conductor model: analytical (red) and numerical (black)
sEMG signals for the differential electrode montage. The depth of the source
fiber is lmm from the muscle surface.

250 0.7cm), muscle (r = 2cm), fat(r = 2.3cm) and skin (r = 2.4cm) surfaces. 16
x%0 point electrodes were simulated right on top of a fiber. The fiber was located at
1 varying depths into the muscle tissue, in the range 1 mm to 11 mm. Differential
% sEMG signal was simulated using analytical and numerical solutions of the
»3  forward problem. The normalized mean square error between the two solutions
¢ depended on the depth of the fiber and varied between 3% (1lmm depth from
265 the muscle surface) and 5% (11mm depth).

266 Let us notice that the two volume conductor models in this validation are
»7  not exactly the same. The theoretical solution is computed for an infinitely long
s cylinder (repeated periodically when discretized), while the numerical solution
0 uses a cylinder of a large (sufficiently longer than the fiber and the electrode
a0 array) yet finite length. Increasing the length of the cylinder did not significantly
an - alter the error.

272 Fig. [l]shows the analytical (red) and numerical (black) solutions for the fiber
o3 depth of 1 mm from the muscle surface. Because of the low error value, the two
o waveforms are almost indistinguishable.

10
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General Fibers Fibers MUs Raw sEMG
basis points | basis points | EMG response | EMG response | assembling
7 min .
(13 sec/elec) 2 min 30 sec 0.8 sec 2.6 sec

Table 1: Computational performance of each of the main steps of a raw EMG
simulation. General basis points computation refers to equation ; fiber basis
points are computed with equation ; fibers EMG response is computed with

equation @ .

s 3.2 Computational performance

a6 In this section we report the computational time of the proposed model for a
a7 specific simulation case. Note, that no multiprocessing tools were used in these
s computations. Each step, however, is highly scalable and can be efficiently
a9 distributed between parallel processes, which would significantly increase the
20 performance. Computations for each muscle and fiber are independent and can
1 be performed in parallel. Parallel computing would also apply to the electrodes
2 in the general basis points computation.

283 For the purpose of demonstration, we simulated a 1-min long, 100% maxi-
2 mum voluntary contraction (MVC) excitation of the Brachioradialis muscle with
25 50000 individual fibers and 200 motor units. The mesh of the volume conductor
26 contained 2.1M vertices which formed 13M tetrahedra. 16 rectangular and 16
a7 circular electrodes were included in the model. The sampling frequency of the
28 simulated signals was 2000 Hz. Table [1| shows the computational time for each
250 of the main steps in this simulation.

200 Note that a list of parameters need to be provided for each step of Table
20 However, an important property of our model is that each step depends only
22 on the data produced by the previous steps. This property can be exploited
23 to change some simulation parameters without recomputing every step of the
24 simulation. For example, it is not necessary to recompute solutions for the fiber
205 basis points if only the simulation parameters related to the MU distribution or
206 recruitment model are modified. In this example, the total simulation time for
207 this new set of parameters will only take approximately 0.8 + 2.6 = 3.4 s.

208 A brief description of the main parameters required at each step follows.
20 The full arm and electrode geometry as well as the tissue conductivities define
w0 the computation general basis points. To compute fibers basis points solutions,
sn  the 3D geometry of the fibers is required. Computing the fiber EMG responses
;2 requires the shape of the intracellular AP waveforms, AP propagation velocity,
s03  sizes of tendon and active fiber parts, neuromuscular junction location, fiber di-
s ameter and intracellular conductivity, and sampling frequency. To compute the
s MUSs action potentials, the MU distribution in the muscle, i.e. the association of
w6 fibers to each motor unit, need to be defined. In the proposed model, once the
sv - number of MUs, their sizes and territory areas are selected, the MU distribu-

11
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(a) (b)

Figure 5: Single fiber activation in the Brachioradialis muscle: (a) Fiber and
electrodes geometry. (b) Differential SEMG signal of a single fiber activation.

w8 tion is randomly generated. Finally, to synthesize the sEMG signal, the muscle
20 excitation drives and recruitment model parameters (motor unit recruitment
a0 thresholds and firing rates) are required.

a1 3.3 Simulation examples
sz Single fiber activation

a3 We begin by simulating the EMG signal associated to a single fiber activation
s inside the Brachioradialis muscle. The signal for an array of 16 rectangular
ais  electrodes and 8 kHz time resolution was generated. Fig. |p|illustrates the geo-
as  metrical location of the fiber and the corresponding sEMG signal in differential
air  electrode montage. Different distinctive features are present in the simulated
us  signal that are also observed in experimental SEMG signals [4I]. In particular,
s electrodes of the channel 4 are located on different sides of the neuromuscular
20 junction (NMJ) and thus cancel each other out. Channels 7-11 contain prop-
= agating SEMG components resulted from the fiber AP propagating from the
22 NMJ to the tendons. Channels 2-6, as well as channels 12-15, contain non-
a3 propagating SEMG components, which are due to the AP generation at the
2« NMJ and its extinction at the tendon (end-of-fiber effect), respectively.

»s  Single muscle activation

26  The next example is a simulation of an excitation of a single muscle (Fig. @ A
w27 simple excitation drive for the Brachioradialis muscle was simulated. It gradu-
28 ally goes from 0% to 100% maximum voluntary contraction and back to 0. 50k
»9  muscle fibers were generated inside the muscle and distributed within 200 motor
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Figure 6: Activation of the Brachioradialis muscle. Muscle excitation is first

decomposed into motor unit impulse trains (on the left). Then, the sSEMG signal

recorded by 8 bipolar electrodes (see Fig. was simulated (on the right).

a0 units. The size of MUs varied exponentially from 11 to 1150 fibers. The areas
s of MU territories varied from 10% to 50% of the muscle cross-sectional area.
sz The muscle excitation drive was decomposed into MU impulse trains according
33 to the size principle. In this example, the firing rate for each MU ranged from 8
s« Hz to 35 Hz and all MUs were recruited when an excitation level of 75% MVC
355 was reached.

s Multiple muscle coordination

sww - Finally, we simulated sEMG signals from multiple muscle excitations corre-
1s  sponding to wrist flexion and extension (Fig. . Two groups of muscles were
19 involved. The flexor group included the Palmaris longus, Flexor carpi ulnaris
30 (ulnar head), Flexor carpi ulnaris (humeral head), and Flexor carpi radialis
sn muscles. The extensor group included the Extensor digitorum, Extensor carpi
sz ulnaris, Extensor carpi radialis brevis, and Extensor carpi radialis longus mus-
a3 cles. During a wrist flexion, the muscles of the flexor group reached an excitation
s level of 70-90% MVC, while the extensor muscles acted as antagonists with exci-
us  tation in the range 10-30% MVC. During extension, the agonist-antagonist roles
aus  switched. Moreover, a small but constant excitation of the abduction muscle
sz group was added to simulate the wrist resistance against gravity. The abduc-
s tion muscle group included the Flexor carpi radialis, Extensor carpi radialis
a9 brevis, and Extensor carpi radialis longus muscles. For each muscle, a number
0 of muscle fibers between 32k and 78k was simulated, depending on the muscle
1 cross sectional area. Muscle fibers were distributed within motor units, whose
2 number varied from 150 to 300 per muscle.

353 Fig. [§ clearly shows the similarities in signal characteristics between experi-
s« mental and simulated data. Beside the different activation across the electrodes
s during flexion and extension, the effect of wrist abduction is also visible in both

13
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Figure 7: Muscle excitation model for wrist flexion/extension. During a wrist
flexion, the muscles of the flexor group reached an excitation level of 70-90%
MVC, while the extensor muscles acted as antagonists with excitation in the
range 10-30% MVC. During extension the roles were switched. A constant
wrist abduction was also added to simulate wrist resistance against gravity to
keep it in the horizontal position.
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Figure 8: Comparison of experimental (top) and simulated (bottom) sEMG
signals for the left wrist flexion and extension. The experimental signals were
measured with 8 bipolar electrodes located around the forearm. For simulation,
the flexor (green) and extensor (blue) muscle groups were activated in turn with
activation peaks aligned with the experimental signal peaks.

6 data sets. Thus, channel 7 presents signal activity during the whole duration of
7 the simulation, with peak of the signal during extension.

358 However, as the model used for this simulation is not personalized, simulated
10 signals do not perfectly replicate all the details of the experimental signals. For
w0 example, channel 8 for the experimental measurements has remarkably higher
s amplitude during extension than in the simulated conditions.
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Figure 9: Comparison of experimental (red) and simulated (blue) single channel
normalized SEMG signals in the time and frequency domains.

362 In addition to the analysis in time domain, simulated data were compared
%3 against the experimental data in the frequency domain. Fig.[0]shows an example
w4 Of the measured and simulated single channel SEMG. The two signals have
s similar power spectra. It has to be noted that the spectral characteristics of
w6 a signal strongly depends on multiple simulation parameters. In this example,
7 we run several hundreds simulations by varying the simulation parameters in a
s realistic range and selected the set of parameters leading to the minimal spectral
o difference. This approach, which is a simple version of inverse modelling, was
s possible because of the extremely high computational speed of the simulations.

«+ 4 Discussion

sz We have proposed an efficient computational approach to solve the volume con-
sz ductor problem in the generation of surface EMG signals. The method provides
s the solution to the generation of EMG signals from realistic volume conduc-
a5 tor properties and number of muscle fibers, within limited computational time.
s Moreover, once the model is solved for a specific volume conductor, the pro-
s7 - posed approach provides solutions for an arbitrary number and properties of
ss fibers and motor units, activations of the motor units as well as signal du-
s ration and sampling frequency, without re-computing the volume conductor
s solution. This property allows us to generate EMG signals within a computa-
s tional time compatible with real-time signal generation (see example videos on
32 https://www.youtube.com/channel/UCulDYbGBvSkJzaP1FgzKQ2Q). The pro-
;3 posed model is the only available EMG simulator with realistic description of
s the volume conductor and optimized for such computational efficiency. The
s modelling of EMG signals is based on the description of the electrical activity
;s of the fiber membrane, in terms of intracellular and transmembrane electrical
ser  potentials. The electric field generated by the fiber electrical activity is recorded
s in a volume conductor, which is often described under the electrostatic assump-
s tion. Various mathematical descriptions of the intracellular action potential
30 and volume conductor have been previously provided [27] 25 [42]. The compu-
s tational efficiency in the volume conductor solution has been recognized as an
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s important component of EMG modelling and some attempts to decrease the
;3 computational time in EMG simulations have been described. For example,
3¢ Dimitrov & Dimitrova [43] substantially decreased the computational time in
s EMG modeling by computing the impulse response of the volume conductor, so
s that the surface action potentials generated by muscle fibers were determined
s7  as a convolution between the first derivative of the intracellular action potential
s and the impulse response. This approach, based on the classic description of
w0 & single fiber electrical activity by Lorente de N¢ [44], allowed to compute one
w0 single convolution to generate extracellular potentials generated by an arbitrary
a1 analytical description of the intracellular action potential, with generation at the
w2 end plate, propagation along the fiber, and extinction at the tendons. However,
w3 the volume conductor in the model proposed by Dimitrov & Dimitrova [43] was
w04 an infinite homogeneous medium, which limited the accuracy of the simulations
w05 with respect to realistic conditions.

406 The mathematical description of the full generation and extinction process
w7 of the intracellular action potential by the first temporal derivative, as pro-
ws  posed by Dimitrov & Dimitrova [43], provided an analytical method to describe
w0 the source of EMG signal with one single spatio-temporal function. In princi-
a0 ple, this description can be used with complex volume conductors as long as a
a1 transfer function can be computed. Farina et al. proposed a spatial frequency
a2 domain description of non-homogeneous planar [6] and cylindrical [7] volume
s conductors, so that the effect of the volume conductor could be described by
as  a temporal convolution with the first derivative of the intracellular action po-
a5 tential, as previously done with simpler geometries by Dimitrov & Dimitrova
as  [43]. The same approach could be applied to numerical descriptions of the vol-
a7 ume conductor when the property of spatial invariance along the direction of
as  propagation of the muscle fibers was satisfied [5]. These solutions therefore
a0 were restricted to cylindrical volume conductors, i.e. volume conductor with
w20 invariant cross-section along the fiber direction.

a1 Realistic models using numerical solutions have also been recently proposed.
a2 The previous most complete and efficient model has been proposed by Pereira
w23 Botelho et al. [I5]. These authors have used an anatomically accurate model
a2 to simulate EMG signals generated during index finger flexion and abduction.
s They gained computational speed by using the principle of reciprocity. In fact,
a6 one part of our calculations also includes the adjoint method which is an alge-
w27 braic representation of this principle. By reciprocity, Pereira Botelho et al. [I5]
28 reported a computational time of 1 hour for simulating the activation of nearly
w20 15500 fibers for 5 electrodes. This time remains impractical for simulating arbi-
a0 trary large data sets for a variety of parameter values. The model we proposed
a1 in this paper substantially surpasses the computational efficiency reported in
w2 [I5] (see our Table 1, as an example). To achieve this extreme reduction in
43 computational time without any constraints on the volume conductor, we have
4« optimized the numerical computation by reducing the main calculations to the
45 solutions corresponding to basis points, from which a general solution can be
a6 obtained. The approach does not only reduce the computational time for a full
47 simulation but also allows us to scale the solution, so that new solutions for
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43 the same volume conductor can be obtained without re-computing the volume
10 conductor transformation. In this way, the generation of EMG signals within
w0 the same volume conductor, but varying all other simulation parameters, can
a1 be performed extremely fast. Complex EMG signals from tens of thousands
w2 of muscle fibers located in multiple muscles, can therefore be generated (and
w3 regenerated with different parameter values) in a computational time of the
wsorder of seconds. The described model is the first that allows an extremely
s accurate signal generation within a limited computational time. Contrary to
wus  previous models, the proposed simulator does not compromise accuracy and
w7 computational speed.

448 In perspective, to make simulated SEMG signals even more realistic, the cur-
o rent model can be extended by including advanced noise and artifacts modeling,
a0 biomechanical modeling of the musculoskeletal system and dynamic volume con-
1 ductor and fiber geometry. While these aspects are beyond the scope of this
w2 paper, they are relevant features to include in future developments.

453 One of the reasons for developing a model with high accuracy and speed, is
sa its potential for addressing the inverse problem, i.e. to identify the location of
55 active motor units or muscle compartments within the volume conductor given
a6 the recorded EMG signals at the skin surface. The identification of model pa-
7 rameters in inverse modelling requires the fast computation of a large number
s of solutions for the identification of a globally optimal solution. Current at-
w0 tempts to EMG inverse modelling are based on simplified volume conductors,
w0 as well as simplified assumptions in terms of motor unit activation, in order to
w1 identify the inverse solution in a realistic time [45]. The model proposed in this
w2 work removes all the simplifications to realistic simulations, maintaining high
w3 computational speed. Another application of precise and fast EMG simulations
ws is data augmentation in Al-based signal classification and/or decomposition.
ws The proposed model can indeed be used for generating a large variability of
w6 data from multiple volume conductor and fiber properties in order to generalize
w7 processing methods across experimental sessions and individuals.

468 In conclusion, we have proposed a fast and highly accurate approach to sim-
w0 ulate surface EMG signals. The computational efficiency of our model greatly
a0 surpasses any other currently available solution. The modelling approach is
an based on an efficient determination of the EMG solution by a modular approach
an for which processing steps do not need to be repeated if some of the simulation
a3 conditions remain constant. The model has the potential of substantially ex-
a2 panding the applications of EMG modelling, especially in relation to modern
a5 Al-based approaches of inverse modelling and signal decomposition.
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