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Abstract12

Muscle electrophysiology has emerged as a powerful tool to drive hu-13

man machine interfaces, with many new recent applications outside the14

traditional clinical domains. It is currently a crucial component of con-15

trol systems in robotics and virtual reality. However, more sophisticated,16

functional, and robust decoding algorithms are required to meet the fine17

control requirements of these new applications. Deep learning approaches18

have shown the highest potential in this regard. To be effective, deep19

learning requires a large amount of high-quality annotated data for train-20

ing; the only option today is the use of experimental electromyography21

data. Yet the acquisition and labelling of training data is time-consuming22

and expensive. Moreover, the high-quality annotation of this data is of-23

ten not possible because the ground truth labels are hidden. Data aug-24

mentation using simulations, a strategy applied in other deep learning25

applications, has never been attempted in electromyography due to the26

absence of computationally efficient and realistic models. Here, we present27

a new highly realistic and ultra-fast computational model tailored for the28

training of deep learning algorithms. For the first time, we are able to29

simulate arbitrary large datasets of realistic electromyography signals with30

high internal variability and leverage it to train deep learning algorithms.31

Because the computational model provides access to all the hidden param-32

eters of the simulation, it also allows us to use some annotation strategies33

that are impossible with experimental data. We believe that this con-34

cept of Myoelectric Digital Twin allows new unprecedented approaches to35

muscular signals decoding and will accelerate the development of human-36

machine interfaces.37
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1 Introduction38

Biosignals have been classically used for studying the underlying physiology, for39

clinical diagnostics, and for monitoring. More recently, they have also been used40

for interfacing humans with external devices. For example, signals measured at41

the surface of the skin from skeletal muscle electrical activity, i.e. surface elec-42

tromyography (sEMG), are used for the control of bionic limbs [1]. In this43

application, the recorded electrical signals are converted into motion commands44

using machine learning [2, 3, 4]. In recent years, with the development of deep-45

learning based methods as well as wearable and cost-effective recording devices,46

there has been increased interest in using muscular signals as a basis for human-47

machine interfaces [5, 6]. The potential applications go well beyond the tradi-48

tional clinical domains of prostheses and orthoses and range from robotic control49

to gaming and virtual reality [7]. A core challenge of deep-learning methods ap-50

plied to biosignals is the acquisition of personalized and annotated training data51

in sufficient quantity and quality. Training data needs to be recorded for differ-52

ent subjects, at different times, with high variability in electrode configurations53

and experimental paradigms. In addition, it is challenging and in some cases54

impossible to properly describe the underlying physiological or neural parame-55

ters (e.g. individual muscle forces, fiber physiological parameters, motor neuron56

impulse timings), which are crucial for the correct annotation of data samples.57

As a result, acquiring experimental EMG data in sufficient quantity and quality58

is not only expensive and time-consuming, but in many cases not possible.59

Data augmentation via simulation is an alternative approach to lengthy data60

acquisitions, and indeed augmentation techniques have been recently introduced61

for electrophysiological signals [8, 9, 10, 11]. However, most of these augmenta-62

tion methods use “black-box” models, which aim to capture essential features63

of the signal without relating them to the underlying physiology [12]. Thus, the64

ground truth for most of the crucial parameters is still unknown, greatly limiting65

the potential use cases of such approaches. More sophisticated biophysical mod-66

elling methods are based on solving so-called forward equations (e.g., Poisson67

equation in the electrostatics case). However, this type of biophysical mod-68

elling has not been considered in the context of data augmentation for machine69

learning approaches. Indeed, state-of-the-art models are either not sufficiently70

realistic or not computationally efficient to produce suitable training data. For71

example, in the case of describing the generation of EMG signals, analytical72

models based on simple geometries of the tissues [13, 14, 15, 16, 17] provide73

simulations which reflect the broad characteristics of the signals, but cannot be74

used to reproduce specific experimental conditions due to the overly simplified75

anatomy. The more realistic models of EMG generation based on numerical76

solutions of the Poisson equation with generic volume conductor shapes [18, 19]77

are currently limited by their prohibitive computational time.78

Here, we describe an EMG simulation method, based on the numerical so-79

lution of the forward equations suitable for deep learning data augmentation.80

It produces highly realistic EMG recordings, provides access to all underlying81

physiological parameters, and is extremely computationally efficient. Our re-82
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sults show that it is possible to simulate EMG signals for anatomically accurate83

conductor geometries and multiple muscles with tens of thousands of muscle84

fibers in a few seconds. As an application scenario, we also demonstrate the85

use of this model for data augmentation by pre-training neural networks that86

decompose EMG into the underlying neural activity sent from the spinal cord87

to muscles [20].88

Our model is the only realistic and computationally efficient simulator tar-89

geted to AI training and approaching the concept of a Myoelectric Digital Twin.90

It allows generating arbitrary large datasets of realistic and personalized EMG91

signals, with high data variability and with a perfect annotation of diverse hid-92

den parameters. As a result, our model may allow breakthrough approaches in93

AI-based EMG signal processing and decoding.94

2 Results95

Biophysics96

To allow the efficient simulation of a large quantity of highly realistic EMG97

recordings, we have developed a novel approach to solve the forward problem98

of the volume conductor in electrostatic conditions. Our approach is based on99

a hierarchical and flexible decomposition of the EMG simulation pipeline which100

allows the reuse and optimization of individual steps.101

First, a realistic anatomy, described by bone, muscle, skin, and electrode102

surfaces, is discretized into a tetrahedral volume mesh. A conductivity tensor,103

anisotropic for muscles and isotropic elsewhere, is associated with each tetra-104

hedral of the volume. Unlike the state-of-the-art approaches, which solve the105

quasi-static Maxwell’s equations for each fiber source and for each time instant,106

we solve them for a set of unit point sources located at each vertex of the mesh107

associated with the muscle tetrahedrals, which are referred to as basis sources.108

This computation does not depend on the time variable nor on the fibers and109

motor unit geometry and their physiological properties. Therefore, changing110

these parameters does not require recomputing the forward solutions.111

Moreover, due to a rewriting of the equations involved using the so-called112

adjoint method, the solution is obtained by solving as many systems of equa-113

tions as there are electrodes, rather than basis sources. Because the number114

of electrodes (≈ 102) is typically much lower than the number of basis sources115

(≈ 105), computational performance is substantially improved.116

Second, using the same muscle surfaces used to describe the volume conduc-117

tor, individual fiber geometries can be automatically generated, if this data is118

not available from other sources (e.g. from diffusion magnetic resonance imag-119

ing). Moreover, the fibers are grouped into motor units (MUs) following the120

state-of-the-art models for MU physiology. This step does not depend on the121

forward computations, and thus altering the related parameters and producing122

new simulation is highly efficient.123

Third, the current source density propagating along the fibers is generated124

3

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 27, 2022. ; https://doi.org/10.1101/2021.06.07.447390doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.07.447390
http://creativecommons.org/licenses/by-nc/4.0/


using a realistic intracellular action potential model. The contribution of indi-125

vidual fibers to the EMG recordings is obtained by discretizing each fiber into126

a set of points, integrating the current source density along its length, and pro-127

jecting onto the sensor locations using the basis points computed in the first128

step. This approach effectively decouples the number of fibers and their dis-129

cretization from the conductor model, allowing the simulator to handle tens of130

thousands of fibers per muscle. Again, changing the fiber parameters (end-plate131

location, action potential propagation velocity, tendons length, etc.) does not132

require recomputing the other blocks of the simulation.133

Fourth, given a muscle activation profile, we use the size principle to recruit134

MUs and their associated fibers. This allows a simple and easily interpretable135

input to the simulation which can be used to simulate EMG recordings associ-136

ated to specific muscle contractions and their movements.137

The architecture described above, and detailed in Methods, has several ad-138

vantages. First, each step of the procedure can be optimized individually, im-139

proving the performance of the system and the quality of the simulated EMG.140

In particular, due to the algebraic properties of the computations and their in-141

dependence, a large part of them can potentially be performed in parallel (on142

CPU and GPU). Second, simulating data over a range of parameters does not143

require a full recomputation of the model. This allows the generation of massive144

EMG datasets covering a range of parameters and using personalized anatomy.145

In addition, the datasets are perfectly annotated, from overall muscle activation146

down to individual fiber action potential velocity.147

As a result, our model is the first that allows the generation of ultra realistic148

and arbitrarily large (because of its computational performance) datasets of149

simulated EMG signals that can be used for AI training.150

The details and all mathematical equations related to the model development151

are described in the Methods.152

The simulator reproduces analytical solutions153

To produce realistic EMG data, the simulator leverages a flexible representation154

of the underlying anatomy and physiology. This flexibility does not only allow155

the use of realistic and personalized models, but also permits reproducing sim-156

ple conductor geometry used in analytical solutions. A first validation of our157

numerical solution is performed by comparing it with its analytical counterpart158

for a cylindrical volume conductor geometry [21]. The normalized mean square159

error between the two solutions depended on the depth of the fiber and varied160

between 3% (1mm depth from the muscle surface) and 5% (11mm depth). Fig. 1161

illustrates the analytical and numerical solutions for a fiber depth of 1 mm from162

the muscle surface. Because of the low error, the two waveforms are almost in-163

distinguishable. It is important to note that the two volume conductor models164

in this validation are not identical. The theoretical/analytical solution is com-165

puted for an infinitely long cylinder (repeated periodically when discretized),166

while the numerical solution uses a cylinder of a large (sufficiently longer than167

the fiber and the electrode array), yet finite length. Increasing the length of the168
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Figure 1: Comparison of the numerical and analytical [21] solutions (on the
right) for a four layer cylindrical volume conductor model (on the left): analyt-
ical (red) and numerical (black) EMG signals for a differential array electrode
montage. The depth of the source fiber in this example is 1 mm from the muscle
surface.

cylinder did not significantly alter the error.169

The simulator produces realistic EMG data170

To evaluate the performance of the simulator at multiple scales, we started by171

simulating EMG signals associated to a single fiber activation inside the brachio-172

radialis muscle. The signal recorded by an array of 16 rectangular electrodes (15173

differential channels) when a single fiber was active is shown in Fig. 2A. The vol-174

ume conductor model is based on an anatomically accurate forearm geometry,175

which includes all the muscles, bones, fat, and skin tissues.176

Different distinctive features are present in the simulated signal that are also177

observed in experimental EMG signals [22]. In particular, electrodes of channel178

4 are located on different sides of the neuromuscular junction (NMJ) and thus179

the respective signals cancel each other out. Channels 7-11 present propagating180

EMG components resulting from the fiber AP propagating from the NMJ to181

the tendons. Channels 2-6, as well as channels 12-15, contain non-propagating182

sEMG components, which are due to the AP generation at the NMJ and its183

extinction at the tendon (end-of-fiber effect), respectively.184

A further example is a simulation of an excitation of a single muscle, illus-185

trated in Fig. 2B. A simple excitation drive for the Brachioradialis muscle is186

simulated as gradually increasing from 0% to 100% of the maximum voluntary187

contraction and smoothly decreasing back to 0%. As described in Section 4.5,188

50000 muscle fibers were realistically distributed into 200 motor units over the189

muscle volume and recruited according to the size principle [23]. The signal was190

simulated for 8 circular bipolar electrodes located around the forearm. In this191

example, the volume conductor effect becomes particularly visible with elec-192
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trodes nearer to the active muscle having higher signal amplitudes. Notice that193

the electrodes record different signal waveforms as the muscle units are located194

at varying distances from the electrodes, weighting their contribution to the ob-195

served EMG signals. We also observe an increase of the signal amplitude with196

muscle excitation, an important feature of experimental EMG signals, which is197

a consequence of progressive motor unit recruitment and of an increase in the198

discharge rates of the active motor units.199

Finally, we simulated sEMG signals from multiple muscle excitations, corre-200

sponding to the active wrist flexion and extension and passive wrist abduction201

against gravity. We used a simple muscle excitation model for three groups of202

muscles (flexors, extensors and abductors). More details about the experimental203

design are presented in Section Details of realistic simulation examples. Fig. 2C204

and Fig. 2D clearly show the qualitative similarities in signal characteristics205

between experimental and simulated data. Our model was able to reproduce206

the different signal patterns during both flexion and extension. Beside the dif-207

ferent activation across the electrodes during flexion and extension, the effect208

of wrist abduction is also visible in both data sets. Thus, channels 2, 3 and 7,209

8 present a small signal activity during the whole duration of the simulation,210

and not only during flexion/extension peaks. Similar activity can also be seen211

in experimental data, with channels 2 and 7 being the most active.212

In addition to the analysis in the time domain, simulated data were com-213

pared against the experimental data in the frequency domain. Fig. 3 illustrates214

an example of the measured and simulated single channel sEMG. It has to be215

noted that the spectral characteristics of a signal strongly depends on multiple216

simulation parameters. In this example, we ran several hundreds simulations217

by varying the simulation parameters in a realistic range and selected the set of218

parameters leading to the minimal spectral difference. This approach, which is219

a simple version of inverse modelling, was possible because of the high compu-220

tational speed of the simulations.221

The simulator is ultra fast222

The computational performance of an EMG signal simulation depends on the223

model properties and the particular experimental setup. Consequently, there is224

no benchmark to evaluate and compare the performance of different simulation225

methods. The computational time magnitude of the state-of-the-art methods226

is, in the best cases, in the order of hours for a single simulation (with a fixed227

set of model parameter values, ≈ 50000 fibers, 5 electrodes) [24, 19].228

By exploiting the mathematical properties of the forward equations and229

source model, we were able to achieve a computational performance of the or-230

der of minutes per simulation. Moreover, in our model, changing most of231

the simulation parameters does not require recomputing the whole model and232

reduces the computational time of new simulations to the order of seconds,233

if the volume conductor remains constant. As a result, it becomes practically234

possible to simulate arbitrary large datasets of highly realistic EMG signals with235

high variability in the simulation parameters. Details on the computational time236
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Figure 2: Simulation examples at multiple activation scales. (A) Single fiber
activation in the Brachioradialis muscle measured by an electrode array with 15
differential channels. (B) 2-seconds long activation of the Brachioradialis muscle,
reaching 100% of maximum voluntary contraction (MVC). 8 bipolar electrodes
located around the forearm are simulated. (C) Simulation of wrist flexion and
extension by activating the corresponding flexor and extensor muscles. (D) The
experimental EMG signals of wrist flexion/extension.
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Figure 3: Comparison of experimental (red) and simulated (blue) single channel
normalized sEMG signals in the time and frequency domains. The simulator
parameters have been optimized to match the experimental signals.

in several conditions are provided in Methods (section Computational perfor-237

mance).238

The proposed model is also highly scalable for multiprocessing, and the cur-239

rent computational time can be further reduced by several orders of magnitude240

by implementing parallel computation on CPU and GPU.241

Realistic and fast EMG simulations open unique perspec-242

tives for deep learning243

Here, we show a potential use of high volumes of simulated surface EMG data244

for deep learning, utilising the proposed model to generate MUAP templates245

which can be used to pre-train neural networks. This methodology is used in246

other deep learning domains, such as the use of the ImageNet image database247

to pre-train object classifiers prior to adaptation to specific applications [25].248

The myoelectric digital twin simulations (Fig. 4B) were used to pre-train249

a neural network that could extract motor unit activations from unprocessed250

HD-sEMG signal [26]. This pre-trained network was then trained to decom-251

pose experimentally measured HD-sEMG signals collected at the dominant wrist252

from nine participants (Fig. 4A). This procedure was then repeated, but with a253

randomly initialised version of the network instead of the pre-trained weights.254

See section 4.8 for details.255

The simulation pre-trained network outperformed random initialisation in256

decomposition accuracy when compared to the original decomposition as mea-257

sured by the rate of agreement (RoA) metric [27] (Fig. 4C). The median (IQR)258

RoA of the pre-trained network was 93.8% (84.8 to 100.0), compared to 82.4%259

(71.6 to 100.0) in the random initialisation network, a significant difference ac-260

cording to the Wilcoxon signed-rank test (p <0.001). Of the 39 decoded motor261

units, 22 had improved RoAs with pre-training and one had a worse RoA, with262

the remaining 16 showing no change, generally because the initial RoA was al-263

ready 100% without pre-training. The pre-trained network had a much lower264

variance in the accuracy of predictions on the test sets than random initialisa-265

tion, quickly optimising to a model effective for generalisation to new signals.266
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Figure 4: (A) Decomposition of experimental high density EMG recordings into
underlying spinal motor neuron activities. The results obtained with the neural
network (NN) were tested against the decomposition by a reference blind source
separation method and manual editing by an expert operator. (B) Myoelectric
digital twins were used to generate MUAP templates for different muscles and
different model parameters (tissue conductivities, fiber properties, tendon sizes,
etc). 64 sets, each containing 5 simulated MUAPs for 130 electrodes, were used
for pre-training. (C) Rate of agreement (%) between the neural network MU
activity predictions and the decomposition algorithm on one second of wrist
flexor HD-sEMG signal. Median and interquartile range plotted over 39 motor
units from nine participants. Both outputs were converted to timestamps using
a two class K-means clustering. The neural network using a gated recurrent unit
(GRU) network that was pre-trained using simulated EMG signal significantly
outperformed a GRU with random initialisation (p <0.001).
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3 Discussion267

We have proposed an efficient computational approach to highly realistic surface268

EMG modeling. The method provides the solution to the generation of EMG269

signals from anatomically accurate volume conductor properties and number of270

muscle fibers, within limited computational time compatible with real-time sig-271

nal generation. The proposed model is the only available EMG simulator with272

realistic description of the volume conductor and optimized for such computa-273

tional efficiency. The main value of the model is that it eliminates bottlenecks274

of the state-of-the-art methods and opens unprecedented perspectives for using275

simulated sEMG for data augmentation in the deep learning framework and276

therefore for building a myoelectric digital twin.277

The computational efficiency in the volume conductor solution has been rec-278

ognized as an important component of EMG modeling, and some attempts to279

decrease the computational time in EMG simulations have been described. For280

example, the approaches developed by Dimitrov & Dimitrova [28] and Farina et281

al. [29, 21] substantially decreased the computational time in analytical EMG282

modeling for simple volume conductor geometries. These models provide simu-283

lations which reflect the broad characteristics of EMG signals, but can not be284

anatomically accurate because of the restrictions on the volume conductor and285

fiber source geometry. Realistic models using numerical solutions have also been286

recently proposed. The previous most complete and efficient model has been287

proposed by Pereira Botelho et al. [19]. These authors have used an anatom-288

ically accurate model to simulate EMG signals generated during index finger289

flexion and abduction. They gained computational speed by using the principle290

of reciprocity. In fact, one part of our calculations also includes the adjoint291

method, which is an algebraic representation of this principle. By using reci-292

procity, Pereira Botelho et al. [19] reported a computational time of 1 hour for293

simulating the activation of nearly 15500 fibers for 5 electrodes. This time, how-294

ever, remains impractical for simulating arbitrary large data sets for a variety of295

parameter values. The model we proposed in this paper substantially surpasses296

the computational efficiency reported in [19]. We achieved it by efficiently297

exploiting mathematical properties of the forward equations, in particular by298

introducing the concept of basis points and by separating model parameters299

and variables into independent computational blocks. The approach does not300

only reduce the computational time for a full simulation, but also allows us to301

scale the solution, so that new solutions for the same volume conductor can be302

obtained without re-computing the volume conductor transformation. In this303

way, the generation of EMG signals within the same volume conductor, but304

varying all other simulation parameters, can be performed in extremely short305

time. Complex EMG signals from tens of thousands of muscle fibers located306

in multiple muscles, can be generated (and regenerated with different param-307

eter values) in a computational time of the order of seconds. In contrast to308

previous models, our proposed simulator does not compromise accuracy and309

computational speed.310

Some limitations remain in the current state of the presented model. It does311
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not include some sources of variability that are present in experimental EMG312

signals and strongly impact their processing and analysis. For example, the313

model does not include advanced noise and artifacts descriptions, biomechanical314

modeling of the musculoskeletal system, and non-stationary volume conductor315

properties and fiber geometry. While these aspects are beyond the scope of this316

paper, they are relevant features to include in future developments.317

The advances presented in this work, together with the proposed future de-318

velopments, naturally lead to the concept of a myoelectric digital twin - a hyper-319

realistic, personalized, computationally-efficient model which generates EMG320

data in a quality and quantity sufficient not only to augment but to replace real321

data, with utility for AI training in the various real world applications. Here we322

have illustrated the potential of this approach by augmenting training data for323

deep neural networks, with the aim of identifying the discharge times of spinal324

motor neurons from surface EMG signal. By using the simulator to augment325

training (through a pre-training procedure), we showed a substantial increase326

in the performance of the decomposition network when applied to experimental327

data, demonstrating a highly relevant use of the proposed approach for de-328

creasing the need for experimental training data in human-machine interfacing329

applications.330

4 Methods331

4.1 Forward problem332

The fiber extracellular potentials that are measured by EMG electrodes are333

generated by transmembrane currents. The properties of bioelectric currents334

and potential fields can be determined from solutions of the Maxwell’s equations,335

taking into account the electrical properties of biological tissues. Because of the336

relatively low frequencies of signal sources of biological origin, the quasi-static337

assumption can be applied [30, 31], so that the electric potential and the primary338

current sources are related by the following Poisson equation [30, 32, 33] with339

Neumann boundary conditions:340 ∇ · (σ∇φ) = −I in Ω

σ
∂φ

∂n
= σ∇φ · n = 0 on ∂Ω

(1)

where Ω ⊂ R3 is a volume conductor domain of interest, ∂Ω its boundary341

with outward pointing normal unit vector n, φ(r) [V ] is the electric potential,342

I(r) [A/m3] is the current source density (CSD), σ(r) [S/m] is a conductivity343

tensor. The second line of the equation (boundary condition) reflects the as-344

sumption that no current flows out of the domain of interest. In the context of345

EMG modeling, this implies that there is no current flow between the skin and346

air. The current source density I(r) is interpreted as the volume density of cur-347

rent entering or leaving the extracellular medium at position r ∈ Ω. A negative348

CSD corresponds to current leaving the extracellular medium (due to the fiber349
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Figure 5: (A) Surface geometry of muscles, bones, subcutaneous tissue, skin
and electrodes used for arm modeling (taken from BodyParts3D, The Database
Center for Life Science (http://lifesciencedb.jp/bp3d/)). (B) Cross-section
of the volume mesh generated from the arm surfaces. (C) Uniformly distributed
fibers inside a unit circle are grouped into motor units of different sizes, locations
and territories. (D) Example of mapping of 10 small motor units from the
circle into an arbitrary muscle by morphing the unit circle into the muscle cross
section.

transmembrane currents) and is thus conventionally called a sink. Likewise,350

current entering the extracellular medium is called a source [34, 35].351

Equation (1) cannot be solved analytically for general volume conductor352

geometries, but several numerical methods can be used to approximate its so-353

lution. Here, we use the finite element method (FEM) [36], which discretizes354

the volume conductor Ω as a tetrahedral mesh Ωt. Given this mesh, we use the355

Galerkin method to project the potential φ onto the space of piecewise affine356

functions defined on Ωt. Fig. 5A and Fig. 5B illustrate an example of a realistic357

forearm model and corresponding discretized volume mesh respectively.358

This discretization process converts the continuous operator problem of359

Eq. (1) to a finite system of linear equations:360

Av = b (2)

where A is a symmetric and sparse nv × nv matrix, nv is the number of mesh361

vertices, v ∈ Rnv is a vector of potential values at mesh nodes, and b ∈ Rnv is a362

vector containing source information. Because the electric potential is defined363
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up to a constant, the matrix A always has a one dimensional null space. To364

obtain a unique solution to the system of Eq. (2), we constrain potentials v to365

have a zero sum.366

In the context of EMG, we are not interested in finding electric potentials367

everywhere in the conductor, but only at the electrode locations. Let S be a368

selection matrix with a shape ne × nv which only selects the values at EMG369

electrode locations (ne is the number of electrodes). Each row of S can be370

designed to select a single point location or to integrate over an area (e.g. the371

electrode-skin interface) depending on the location and number of its non-zero372

elements. Also, let b(r) correspond to a point source at location r. The resulting373

EMG signal is thus given by:374

vpoint(r) = SA−1b(r). (3)

Let us analyze in more detail the structure of A and b from Eq. (2). Let375

{wi(r), i = 1...nv} be a set of nv P
1 (piecewise linear) basis functions over the376

tetrahedral mesh Ωt. Note, that wi is 1 at the i-th vertex of the mesh, is 0 at377

all other vertices and is linear at all tetrahedra adjacent to the i-th vertex. In378

this case, A and b have the following structure:379

Aij =

∫
Ωt

σ(r)∇wi(r)∇wj(r)dr

bi =

∫
Ωt

I(r)wi(r)dr.

First, let us notice that A is symmetric and, in general, a very large matrix380

which can be stored only because it is sparse. Indeed, the functions wi have a381

compact support and their pairwise scalar product is non-zero only for “neigh-382

bor” functions. Since the pseudo-inverse (or the inverse) of a sparse matrix383

is usually not a sparse matrix, it is impractical to compute it because of the384

amount of memory needed to store it. Thus, iterative methods are typically385

used to solve the system of Eq. (2) for every given b.386

Consider the case of I(r) = δ(r − r̄) which corresponds to a unit point387

current source at location r̄. Without loss of generality, we assume that this388

source is inside a tetrahedron formed by the vertices i1, ..., i4 of the mesh. In389

this case, we obtain:390

bi =

{
λj , if i ∈ {i1, ..., i4},
0, otherwise

where {λj , j = 1, ..., 4} are the barycentric coordinates of the point r̄ inside the391

tetrahedron {i1, ..., i4}. Applying this expression to Eq. (3), we obtain:392

vpoint(r̄) = SA−1b(r̄) = SA−1Bλ.

where B̄ is a nv× 4 matrix with Bij ,j = 1 for j = 1, ..., 4, and 0 otherwise. This393

implies that the solution of the system of Eq. (2) for any unit point source can be394
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computed as a barycentric sum of solutions on the vertices of the corresponding395

tetrahedron. Therefore, it is sufficient to compute solutions of Eq. (2) for “basis”396

sources located on mesh vertices, to be able to evaluate a solution for any point397

inside this mesh efficiently. Let ns be the number of such basis sources. For the398

most general case, when the source can be located anywhere inside the mesh399

and ns = nv, let B be a nv × ns identity matrix. The objective is to compute400

”basis” solutions:401

Vbasis = SA−1B (4)

where Vbasis is a ne×ns matrix, whose columns contain the solutions of Eq. (2)402

for a unit point source located at the corresponding mesh vertex. Hence, the403

potentials for any source location r is given by:404

vpoint(r) = Vbasisλ(r) (5)

where λ(r) ∈ Rns is a vector, whose four non-zero elements contain the barycen-405

tric coordinates of point r inside a corresponding tetrahedron. Note, that one406

may restrict potential sources to be located inside specific subdomains of the407

whole mesh (which is the case for EMG). In this case, ns corresponds to the408

number of vertices of these subdomains, and the matrix B is a submatrix of the409

identity matrix.410

The most straightforward way to compute Vbasis from Eq. (4) is to solve a411

problem of the form Ax = bi for each column of the matrix B. It would thus412

require solving ns systems of linear equations. For realistic conductor geome-413

tries, which have a large number of vertices, solving a single system may take up414

to a few minutes and solving ns systems quickly becomes impractical. There-415

fore, we propose the use of the adjoint method [37], which requires solving ne416

systems only. In the context of EMG, the number of electrodes is usually signifi-417

cantly smaller than the number of vertices in the muscle subdomain meshes, i.e.418

ne << ns. Let us define K = SA−1, which is a matrix of size ne × nv. Because419

A is symmetric, and the inverse of a symmetric matrix is also symmetric, we420

can write KT = A−1ST . Then, K can be found by solving the system:421

AKT = ST . (6)

The matrix ST has ne columns and, thus, only ne linear systems need to be422

solved to find K. The basis solutions can then be found as:423

Vbasis = KB. (7)

4.2 EMG signal of a single fiber activation424

The action potential generated by the flow of ionic currents across the muscle425

fiber membrane is the source of excitation. For a given intracellular action426

potential (IAP) model Vm(z), the transmembrane current source per unit length427

is proportional to the second derivative of Vm(z), where z is a fiber arc length428
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measured in mm. A general description of the current source density traveling429

at velocity v along the fiber with the origin at the neuromuscular junction at430

location z0 is [27, 29, 38]:431

I(z, t) = σinπr
2 · ∂
∂z

[
ψ(z − z0 − vt)wL1(z − z0 −

L1

2
) −

ψ(−z + z0 − vt)wL2
(z − z0 +

L2

2
)

]
(8)

where z ∈ [0, L] is a location along the fiber of length L, ψ(z) =
d

dz
Vm(−z), L1432

and L2 are the semi-lengths of the fiber from the end-plate to the right and to433

the left tendon, respectively, σin is the intracellular conductivity, and r is the434

fiber radius. We have chosen wL to be a Tukey window, as proposed in [24].435

The IAP Vm [mV
mm ] can be mathematically described in the space domain as436

proposed in [39]:437

Vm(z) = 96z3e−z − 90.

Let r(z) be a fiber geometry parametrized with respect to the fiber arc length438

z. Combining the transfer function of a point source in Eq. (3) with the fiber’s439

current density in Eq. (8), we obtain the equation for the EMG signal resulting440

from a single fiber activation:441

vfiber(t) =

∫
vpoint(r(z))I(z, t)dz. (9)

This integral can be efficiently approximated by discretizing the fiber geometry442

into sufficiently dense spatial samples {r(zi)}i and assuming that vpoint(r(z))443

is piecewise constant around these points. If we also rewrite Eq. (8) in a shorter444

form as I(z, t) = σinπr
2 · ∂
∂z
F (z, t), Eq. (9) becomes:445

vfiber(t) ≈
∑
i

vpoint(r(zi))

∫ zi+∆i

zi−∆i

I(z, t)dz =

∑
i

vpoint(r(zi))

∫ zi+∆i

zi−∆i

σinπr
2 · ∂
∂z
F (z, t)dz =

σinπr
2
∑
i

vpoint(r(zi))
(
F (zi + ∆i, t)− F (zi −∆i, t)

)
. (10)

Note, that vpoint(r(zi)) can be efficiently computed from Eq. (5). Moreover,446

once vpoint(r(zi)) are computed for all given fibers, we can change the parame-447

ters of the current source density (action potential waveform shape, propagation448

velocity, location of neuromuscular junction), and compute the corresponding449

EMG signal with Eq. (10) by only matrix multiplication complexity.450
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4.3 Geometrical and physiological modeling of motor units451

The motor unit action potential (MUAP) is the summation of the single fiber452

action potentials (APs) of the muscle fibers in the MU. Different types of MUs453

can be modeled [40, 41]. Our approach consists in generating fiber and motor454

unit distributions inside a unit circle, and then projecting it into arbitrary 3D455

muscle geometry (Fig. 5D), using methods similar to those described in [42].456

This provides a high level of control for the fiber and MU distribution parame-457

ters independently of a particular muscle geometry. A common way to simulate458

fibers and MUs is to start by defining MU positions, sizes and territories, and459

then simulate fibers inside these MUs according to their parameters [43, 44]. We,460

however, propose another approach. First, we simulate uniformly distributed461

fibers inside a unit circle. Then, MU centers and their circular territories are462

generated and, finally, we associate each fiber to an MU. A fiber is associated463

to one of the MUs that contains it inside its territory with a probability propor-464

tional to the MU density (Fig. 5C). This approach has two main advantages.465

First, it guaranties (by construction) the uniform fiber distribution inside a cir-466

cular muscle cross-section. Second, once fibers are generated and projected into467

a muscle geometry, different MU distributions can be generated very quickly,468

without regenerating fibers and recomputing transfer functions vpoint(r(zi)) for469

their nodes.470

MU recruitment model471

During muscle contraction, the MUs are recruited according to the size princi-472

ple [23]. This can be simulated by associating a threshold of excitation to each473

MU, as described for example by Fuglevand et al. [45]. Linear or non-linear474

rate coding models can be used [45, 46, 47].475

The excitation rate as a function of time for each muscle is converted into476

the firing rates of the active MUs. Inter-discharge intervals are then generated477

with variability of the discharges around the mean firing interval [48].478

4.4 Implementation remarks479

The implementation of the main steps presented in the previous section can480

be summarized as follows. Once the matrices S, A and B are computed, the481

matrix K is determined using Eq. (6) by solving ne linear systems. Then,482

Eq. (7) is used to find the solutions for ns basis points, which is a fast matrix483

multiplication operation. For any given point source location r, we compute484

its barycentric coordinates in associated tetrahedron and apply Eq. (5) to get485

values of electrical potentials at electrode locations. Finally, for a given fiber486

geometry, the single fiber action potential as recorded by the EMG electrodes487

is computed using Eq. (9).488

The results presented in this study are obtained using a Python imple-489

mentation of the proposed strategy. Assembling the matrix A and solving490

the system (6) is delegated to the FEniCS computing platform [49, 50]. The491
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General Fibers Fibers MUAPs Raw sEMG
basis points basis points EMG response assembling assembling

7 min
(13 sec/elec)

2 min 30 sec 0.8 sec 2.6 sec

Table 1: Computational performance of each of the main steps of a raw EMG
simulation. General basis points computation refers to equation (7); fiber basis
points are computed with equation (5); fibers EMG response is computed with
equation (9).

forearm geometry that is here representatively used as a conductor model is492

taken from the website of BodyParts3D, The Database Center for Life Science493

(http://lifesciencedb.jp/bp3d/). The volume mesh is generated from the494

surface meshes of the forearm tissues using the CGAL C++ library [51].495

4.5 Computational performance496

In this section, we report the computational time of the proposed model for a497

specific simulation case. The exact computational time values strongly depend498

on the implementation, experiment design, model parameters etc. The order of499

magnitude, however, stays the same. Note, that no multiprocessing tools were500

used in these computations. Each step, however, is highly scalable and can501

be efficiently distributed between parallel processes, which would significantly502

increase the performance. Computations for each muscle and fiber are indepen-503

dent and can be performed in parallel. Parallel computing would also apply to504

the electrodes in the general basis points computation.505

For the purpose of demonstration, we simulated a 1-min-long, 100% maxi-506

mum voluntary contraction (MVC) excitation of the Brachioradialis muscle with507

50000 individual fibers and 200 motor units. The mesh of the volume conductor508

contained 2.1M vertices, which formed 13M tetrahedra. 16 rectangular and 16509

circular electrodes were included in the model. The sampling frequency of the510

simulated signals was 2000 Hz. Table 1 shows the computational time for each511

of the main steps in this simulation.512

An important property of our model is that each step depends only on the513

data produced by the previous steps. This property can be exploited to change514

some simulation parameters without recomputing every step of the simulation.515

For example, it is not necessary to recompute solutions for the fiber basis points516

if fibers geometry and conductor model stay the same and only the parameters517

related to the fiber properties (AP velocity, end-plate location, tendon sizes,518

etc.), MU distribution or recruitment model are modified. In this example, the519

total simulation time for this new set of parameters will only take approximately520

30 + 0.8 + 2.6 = 33.4 s.521

A brief description of the main parameters required at each step follows. The522

full arm and electrode geometry as well as the tissue conductivities define the523
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computation of general basis points. To compute fibers basis points solutions,524

the 3D geometry of the fibers is required. Computing the fiber EMG responses525

requires the shape of the intracellular AP waveforms, AP propagation velocity,526

sizes of tendon and active fiber parts, neuromuscular junction location, fiber di-527

ameter and intracellular conductivity, and sampling frequency. To compute the528

MUs action potentials, the MU distribution in the muscle, i.e. the association of529

fibers to each motor unit, need to be defined. In the proposed model, once the530

number of MUs, their sizes and territory areas are selected, the MU distribu-531

tion is randomly generated. Finally, to synthesize the sEMG signal, the muscle532

excitation drives and recruitment model parameters (motor unit recruitment533

thresholds and firing rates) are required.534

4.6 Comparison with the cylindrical analytical solution535

First, we compared our numerical solution with its analytical counterpart for a536

simple volume conductor geometry [21]. We used a four layer cylindrical model537

with layers corresponding to bone (r = 0.7cm), muscle (r = 2cm), fat(r =538

2.3cm) and skin (r = 2.4cm) surfaces. 16 point electrodes were simulated on the539

skin surface directly above a fiber. The fiber was located at varying depths into540

the muscle tissue, in the range 1 mm to 11 mm. Differential sEMG signals were541

simulated using the analytical and numerical solutions of the forward problem.542

4.7 Details of realistic simulation examples543

For the single muscle excitation example, 50k muscle fibers were generated inside544

the muscle and distributed within 200 motor units. The size of MUs varied545

exponentially from 11 to 1150 fibers. The areas of MU territories varied from546

10% to 50% of the muscle cross-sectional area. The muscle excitation drive547

was decomposed into MU impulse trains according to the size principle. In this548

example, the firing rate for each MU ranged from 8 Hz to 35 Hz and all MUs549

were recruited when an excitation level of 75% MVC was reached.550

For the multiple muscles experiment, the flexor group included the Palmaris551

longus, Flexor carpi ulnaris (ulnar head), Flexor carpi ulnaris (humeral head),552

and Flexor carpi radialis muscles. The extensor group included the Extensor553

digitorum, Extensor carpi ulnaris, Extensor carpi radialis brevis, and Exten-554

sor carpi radialis longus muscles. During a wrist flexion, the muscles of the555

flexor group reached an excitation level of 90% MVC. During extension, ex-556

tensor group was activated with the same exciation level. Moreover, a small557

but constant excitation of the abduction muscle group was added to simulate558

the wrist resistance against gravity. The abduction muscle group included the559

Flexor carpi radialis, Extensor carpi radialis brevis, and Extensor carpi radialis560

longus muscles. For each muscle, a number of muscle fibers between 32k and561

78k was simulated, depending on the muscle cross-sectional area. Muscle fibers562

were distributed within motor units, whose number varied from 150 to 300 per563

muscle.564
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4.8 Details of deep learning experiment565

To evaluate the effect of using the simulation-pre-trained network, an experimen-566

tally collected high-density surface electromyography (HD-sEMG) signal dataset567

was used, originally created to test wrist-wearable interfaces[52]. The experi-568

mental protocol was designed in agreement with the Declaration of Helsinki and569

was approved by Imperial College London ethics committee (JRCO: 18IC4685).570

Nine participants (4 females, 5 males, ages: 23-31) took part in the study after571

signing informed consent forms. The participants performed 5-second isomet-572

ric contractions of their dominant-hand index finger at 15% of maximal force,573

with sEMG activity measured using two flexible 5x13 electrode grids with 8-mm574

spacing placed on the circumference of the wrist, immediately proximal to the575

ulnar head. HD-sEMG signal was sampled at 2048Hz, whilst force profiles were576

sampled with a custom load cell at 10Hz. The signal was then decomposed into577

motor neuron activity using convolutive blind source separation [53]. For the578

purpose of training and testing the supervised decomposition pipeline, motor579

neuron activity was accepted if it was present for at least 80% of the contraction580

window. For each participant the HD-sEMG signal and accompanying decom-581

posed motor neuron activity (as a sparse binary matrix) was then split into a 4582

second training window and a 1 second testing window.583

A gated recurrent unit (GRU) network was used as the deep learning model584

due to previous studies showing good performance with this data type[26]. After585

hyperparameter optimisation by grid search, a minimally-parameterised model586

was found to perform optimally, likely due to the short length of the training587

data available. Input HD-sEMG signal was first encoded by a single layer GRU588

with a hidden dimension of 1024 in length[54]. To make a time instant predic-589

tion a densely-connected linear layer with sigmoid activation function took as590

an input a moving 20 sample-wide window from the GRU output, centred on591

the time instant of interest. Predicted activity was converted to spike times-592

tamps using a two-class K-means clustering algorithm. Binary cross entropy was593

used as the loss function and Adam with weight decay used as the optimising594

algorithm[55].595

To improve model generalisation an early-stopping framework was used,596

based on 10% of the training data retained as a validation set. Training, val-597

idation and test data was z-score standardised using the mean and standard598

deviation calculated from the training set. During training the input signal was599

augmented with noise of standard normal distribution. To account for the high600

sparsity of the output matrix, samples containing motor neurons were artifi-601

cially oversampled, with each each input batch of 512 time instants containing602

at least 20% motor neuron activation. All machine learning was implemented603

using the pytorch library in python. Final performance was assessed using the604

rate of agreement metric (RoA).605

The optimised architecture of the GRU network was used for pre-training,606

which was conducted using multi-task learning in a hard parameter sharing607

paradigm[56]. Four digital twins were created for simulation using different608

model parameters (tissue conductivities, MU distribution, fiber properties, etc.),609
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Figure 6: (A) Methodology used to build windows from the simulated MUAP
template set for the pre-training phase. Each simulated template was 160 sam-
ples wide at a 2048Hz sampling rate and with 130 channels. First either a
MUAP template was placed in the centre of the window or it was left empty at
a 50% probability. Then MUAP templates from other MU classes were added
to the window at a random offset to generate superpositions. Finally standard
normal distributed noise was added to the window, with the central 80 samples
then paired with the label for supervised learning. (B) The neural network ar-
chitecture and pre-training methodology used to improve the performance of a
deep learning-based HD-sEMG decomposition algorithm. The neural network
consists of a single gated recurrent unit layer, with predictions made using a
20-sample wide window of the hidden vector output, which is flattened before
being passed to a sigmoid-activated densely-connected linear layer. In the pre-
training phase a multi-task learning regimen is used to optimise the parameters
of the gated recurrent unit using the simulated sEMG. This pre-trained layer
can then be used to improve the optimisation performance on real sEMG data.

20

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 27, 2022. ; https://doi.org/10.1101/2021.06.07.447390doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.07.447390
http://creativecommons.org/licenses/by-nc/4.0/


with the generated motor unit activation (MUAP) templates from flexor dig-610

itorum profundus and superficialis used to create 64 sets, each containing 5611

MUAPs. Each set was used to generate windows of signal with a range of612

MUAP superpositions (Fig. 6A). In signal windows with motor neuron activity613

a MUAP template was placed in the centre of the window, before being ad-614

ditively superimposed with a random number of MUAP templates from other615

motor units at random time offsets. In windows without activity no template616

was placed in the centre of the window. During multi-task learning training, the617

same GRU layer (and parameters) were shared between the 64 recordings, but618

each recording had its own output layer, operating on a 20 sample-wide window619

as in the experimental recordings (Fig. 6B). In this way the GRU layer was620

trained to act as a more general feature extractor, whilst the individual linear621

output layers made class predictions specific to each recording. Training again622

used noise augmentation, binary cross-entropy and Adam with weight decay.623

To use the simulation-pre-trained network in the experimental data the GRU624

parameters from the pre-trained network were used, whilst the linear output625

layer used a normal random initialisation. This was the compared to a normal626

random initialisation of both the GRU and output layer. In both instances627

the network was trained using the methodology specified above, with the only628

difference being whether the GRU layer was simulation-pre-trained or not.629
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