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12 Abstract
13 Muscle electrophysiology has emerged as a powerful tool to drive hu-
14 man machine interfaces, with many new recent applications outside the
15 traditional clinical domains. It is currently a crucial component of con-
16 trol systems in robotics and virtual reality. However, more sophisticated,
17 functional, and robust decoding algorithms are required to meet the fine
18 control requirements of these new applications. Deep learning approaches
19 have shown the highest potential in this regard. To be effective, deep
20 learning requires a large amount of high-quality annotated data for train-
21 ing; the only option today is the use of experimental electromyography
2 data. Yet the acquisition and labelling of training data is time-consuming
23 and expensive. Moreover, the high-quality annotation of this data is of-
2% ten not possible because the ground truth labels are hidden. Data aug-
25 mentation using simulations, a strategy applied in other deep learning
26 applications, has never been attempted in electromyography due to the
27 absence of computationally efficient and realistic models. Here, we present
28 a new highly realistic and ultra-fast computational model tailored for the
29 training of deep learning algorithms. For the first time, we are able to
30 simulate arbitrary large datasets of realistic electromyography signals with
31 high internal variability and leverage it to train deep learning algorithms.
32 Because the computational model provides access to all the hidden param-
33 eters of the simulation, it also allows us to use some annotation strategies
34 that are impossible with experimental data. We believe that this con-
35 cept of Myoelectric Digital Twin allows new unprecedented approaches to
36 muscular signals decoding and will accelerate the development of human-
37 machine interfaces.
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» 1 Introduction

3 Biosignals have been classically used for studying the underlying physiology, for
2 clinical diagnostics, and for monitoring. More recently, they have also been used
a for interfacing humans with external devices. For example, signals measured at
2 the surface of the skin from skeletal muscle electrical activity, i.e. surface elec-
s tromyography (SEMG), are used for the control of bionic limbs [I]. In this
4 application, the recorded electrical signals are converted into motion commands
s using machine learning [2, [3, [4]. In recent years, with the development of deep-
s learning based methods as well as wearable and cost-effective recording devices,
a7 there has been increased interest in using muscular signals as a basis for human-
s« machine interfaces [5l [6]. The potential applications go well beyond the tradi-
s tional clinical domains of prostheses and orthoses and range from robotic control
s to gaming and virtual reality [7]. A core challenge of deep-learning methods ap-
51 plied to biosignals is the acquisition of personalized and annotated training data
s2 in sufficient quantity and quality. Training data needs to be recorded for differ-
53 ent subjects, at different times, with high variability in electrode configurations
s« and experimental paradigms. In addition, it is challenging and in some cases
ss impossible to properly describe the underlying physiological or neural parame-
s ters (e.g. individual muscle forces, fiber physiological parameters, motor neuron
sv impulse timings), which are crucial for the correct annotation of data samples.
s As a result, acquiring experimental EMG data in sufficient quantity and quality
s is not only expensive and time-consuming, but in many cases not possible.

60 Data augmentation via simulation is an alternative approach to lengthy data
&1 acquisitions, and indeed augmentation techniques have been recently introduced
2 for electrophysiological signals [8, [0] 10} [11]. However, most of these augmenta-
63 tion methods use “black-box” models, which aim to capture essential features
s+ of the signal without relating them to the underlying physiology [12]. Thus, the
es ground truth for most of the crucial parameters is still unknown, greatly limiting
e the potential use cases of such approaches. More sophisticated biophysical mod-
v elling methods are based on solving so-called forward equations (e.g., Poisson
¢ equation in the electrostatics case). However, this type of biophysical mod-
e elling has not been considered in the context of data augmentation for machine
7 learning approaches. Indeed, state-of-the-art models are either not sufficiently
7 realistic or not computationally efficient to produce suitable training data. For
22 example, in the case of describing the generation of EMG signals, analytical
72 models based on simple geometries of the tissues [I3] 14} [15] [16] 17] provide
72 simulations which reflect the broad characteristics of the signals, but cannot be
 used to reproduce specific experimental conditions due to the overly simplified
7 anatomy. The more realistic models of EMG generation based on numerical
7 solutions of the Poisson equation with generic volume conductor shapes [18| [19]
7 are currently limited by their prohibitive computational time.

79 Here, we describe an EMG simulation method, based on the numerical so-
s lution of the forward equations suitable for deep learning data augmentation.
a1 It produces highly realistic EMG recordings, provides access to all underlying
&2 physiological parameters, and is extremely computationally efficient. Our re-
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&3 sults show that it is possible to simulate EMG signals for anatomically accurate
s conductor geometries and multiple muscles with tens of thousands of muscle
& fibers in a few seconds. As an application scenario, we also demonstrate the
s use of this model for data augmentation by pre-training neural networks that
sz decompose EMG into the underlying neural activity sent from the spinal cord
s to muscles [20].

8 Our model is the only realistic and computationally efficient simulator tar-
o geted to Al training and approaching the concept of a Myoelectric Digital Twin.
a It allows generating arbitrary large datasets of realistic and personalized EMG
o signals, with high data variability and with a perfect annotation of diverse hid-
o3 den parameters. As a result, our model may allow breakthrough approaches in
w Al-based EMG signal processing and decoding.

» 2 Results

« Biophysics

oo To allow the efficient simulation of a large quantity of highly realistic EMG
e recordings, we have developed a novel approach to solve the forward problem
o of the volume conductor in electrostatic conditions. Our approach is based on
10 & hierarchical and flexible decomposition of the EMG simulation pipeline which
11 allows the reuse and optimization of individual steps.

102 First, a realistic anatomy, described by bone, muscle, skin, and electrode
w3 surfaces, is discretized into a tetrahedral volume mesh. A conductivity tensor,
14 anisotropic for muscles and isotropic elsewhere, is associated with each tetra-
s hedral of the volume. Unlike the state-of-the-art approaches, which solve the
106 quasi-static Maxwell’s equations for each fiber source and for each time instant,
17 we solve them for a set of unit point sources located at each vertex of the mesh
s associated with the muscle tetrahedrals, which are referred to as basis sources.
we  This computation does not depend on the time variable nor on the fibers and
1o motor unit geometry and their physiological properties. Therefore, changing
w  these parameters does not require recomputing the forward solutions.

112 Moreover, due to a rewriting of the equations involved using the so-called
s adjoint method, the solution is obtained by solving as many systems of equa-
ns  tions as there are electrodes, rather than basis sources. Because the number
us  of electrodes (= 10?) is typically much lower than the number of basis sources
us (= 10%), computational performance is substantially improved.

7 Second, using the same muscle surfaces used to describe the volume conduc-
us tor, individual fiber geometries can be automatically generated, if this data is
ue  not available from other sources (e.g. from diffusion magnetic resonance imag-
o ing). Moreover, the fibers are grouped into motor units (MUs) following the
21 state-of-the-art models for MU physiology. This step does not depend on the
122 forward computations, and thus altering the related parameters and producing
123 new simulation is highly efficient.

124 Third, the current source density propagating along the fibers is generated
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s using a realistic intracellular action potential model. The contribution of indi-
s vidual fibers to the EMG recordings is obtained by discretizing each fiber into
127 a set of points, integrating the current source density along its length, and pro-
s jecting onto the sensor locations using the basis points computed in the first
120 step. This approach effectively decouples the number of fibers and their dis-
10 cretization from the conductor model, allowing the simulator to handle tens of
1w thousands of fibers per muscle. Again, changing the fiber parameters (end-plate
1 location, action potential propagation velocity, tendons length, etc.) does not
133 require recomputing the other blocks of the simulation.

134 Fourth, given a muscle activation profile, we use the size principle to recruit
135 MUs and their associated fibers. This allows a simple and easily interpretable
s input to the simulation which can be used to simulate EMG recordings associ-
137 ated to specific muscle contractions and their movements.

138 The architecture described above, and detailed in Methods, has several ad-
1o vantages. First, each step of the procedure can be optimized individually, im-
1w proving the performance of the system and the quality of the simulated EMG.
w In particular, due to the algebraic properties of the computations and their in-
w2 dependence, a large part of them can potentially be performed in parallel (on
s CPU and GPU). Second, simulating data over a range of parameters does not
us  require a full recomputation of the model. This allows the generation of massive
us  EMG datasets covering a range of parameters and using personalized anatomy.
us In addition, the datasets are perfectly annotated, from overall muscle activation
w down to individual fiber action potential velocity.

148 As a result, our model is the first that allows the generation of ultra realistic
1w and arbitrarily large (because of its computational performance) datasets of
10 simulated EMG signals that can be used for Al training.

151 The details and all mathematical equations related to the model development
12 are described in the Methods.

55 The simulator reproduces analytical solutions

15« 'To produce realistic EMG data, the simulator leverages a flexible representation
155 of the underlying anatomy and physiology. This flexibility does not only allow
155 the use of realistic and personalized models, but also permits reproducing sim-
157 ple conductor geometry used in analytical solutions. A first validation of our
1553 numerical solution is performed by comparing it with its analytical counterpart
150 for a cylindrical volume conductor geometry [21I]. The normalized mean square
10 error between the two solutions depended on the depth of the fiber and varied
1 between 3% (1mm depth from the muscle surface) and 5% (11mm depth). Fig.
12 illustrates the analytical and numerical solutions for a fiber depth of 1 mm from
13 the muscle surface. Because of the low error, the two waveforms are almost in-
14 distinguishable. It is important to note that the two volume conductor models
s in this validation are not identical. The theoretical/analytical solution is com-
s puted for an infinitely long cylinder (repeated periodically when discretized),
ez while the numerical solution uses a cylinder of a large (sufficiently longer than
s the fiber and the electrode array), yet finite length. Increasing the length of the
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Figure 1: Comparison of the numerical and analytical [2I] solutions (on the
right) for a four layer cylindrical volume conductor model (on the left): analyt-
ical (red) and numerical (black) EMG signals for a differential array electrode
montage. The depth of the source fiber in this example is 1 mm from the muscle
surface.

1o cylinder did not significantly alter the error.

w The simulator produces realistic EMG data

i To evaluate the performance of the simulator at multiple scales, we started by
w2 simulating EMG signals associated to a single fiber activation inside the brachio-
w3 radialis muscle. The signal recorded by an array of 16 rectangular electrodes (15
w  differential channels) when a single fiber was active is shown in Fig. . The vol-
s ume conductor model is based on an anatomically accurate forearm geometry,
e which includes all the muscles, bones, fat, and skin tissues.

177 Different distinctive features are present in the simulated signal that are also
s observed in experimental EMG signals [22]. In particular, electrodes of channel
w4 are located on different sides of the neuromuscular junction (NMJ) and thus
180 the respective signals cancel each other out. Channels 7-11 present propagating
w1 EMG components resulting from the fiber AP propagating from the NMJ to
12 the tendons. Channels 2-6, as well as channels 12-15, contain non-propagating
183 SEMG components, which are due to the AP generation at the NMJ and its
s extinction at the tendon (end-of-fiber effect), respectively.

185 A further example is a simulation of an excitation of a single muscle, illus-
s trated in Fig. 2B. A simple excitation drive for the Brachioradialis muscle is
7 simulated as gradually increasing from 0% to 100% of the maximum voluntary
188 contraction and smoothly decreasing back to 0%. As described in Section
19 50000 muscle fibers were realistically distributed into 200 motor units over the
o muscle volume and recruited according to the size principle [23]. The signal was
w1 simulated for 8 circular bipolar electrodes located around the forearm. In this
12 example, the volume conductor effect becomes particularly visible with elec-
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13 trodes nearer to the active muscle having higher signal amplitudes. Notice that
104 the electrodes record different signal waveforms as the muscle units are located
s at varying distances from the electrodes, weighting their contribution to the ob-
ws served EMG signals. We also observe an increase of the signal amplitude with
17 muscle excitation, an important feature of experimental EMG signals, which is
18 a consequence of progressive motor unit recruitment and of an increase in the
19 discharge rates of the active motor units.

200 Finally, we simulated sEMG signals from multiple muscle excitations, corre-
20 sponding to the active wrist flexion and extension and passive wrist abduction
22 against gravity. We used a simple muscle excitation model for three groups of
203 muscles (flexors, extensors and abductors). More details about the experimental
20a  design are presented in Section [Details of realistic simulation examplesl Fig.
s and Fig. clearly show the qualitative similarities in signal characteristics
26 between experimental and simulated data. Our model was able to reproduce
27 the different signal patterns during both flexion and extension. Beside the dif-
208 ferent activation across the electrodes during flexion and extension, the effect
200 of wrist abduction is also visible in both data sets. Thus, channels 2, 3 and 7,
20 8 present a small signal activity during the whole duration of the simulation,
au  and not only during flexion/extension peaks. Similar activity can also be seen
a2 in experimental data, with channels 2 and 7 being the most active.

213 In addition to the analysis in the time domain, simulated data were com-
ae pared against the experimental data in the frequency domain. Fig. |3|illustrates
25 an example of the measured and simulated single channel sSEMG. It has to be
26 noted that the spectral characteristics of a signal strongly depends on multiple
217 simulation parameters. In this example, we ran several hundreds simulations
218 by varying the simulation parameters in a realistic range and selected the set of
210 parameters leading to the minimal spectral difference. This approach, which is
20 a simple version of inverse modelling, was possible because of the high compu-
21 tational speed of the simulations.

» The simulator is ultra fast

223 The computational performance of an EMG signal simulation depends on the
24 model properties and the particular experimental setup. Consequently, there is
225 1o benchmark to evaluate and compare the performance of different simulation
26 methods. The computational time magnitude of the state-of-the-art methods
27 18, in the best cases, in the order of hours for a single simulation (with a fixed
28 set of model parameter values, ~ 50000 fibers, 5 electrodes) [24] [19].

29 By exploiting the mathematical properties of the forward equations and
20 source model, we were able to achieve a computational performance of the or-
a1 der of minutes per simulation. Moreover, in our model, changing most of
2 the simulation parameters does not require recomputing the whole model and
213 reduces the computational time of new simulations to the order of seconds,
24 if the volume conductor remains constant. As a result, it becomes practically
235 possible to simulate arbitrary large datasets of highly realistic EMG signals with
236 high variability in the simulation parameters. Details on the computational time
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Figure 2: Simulation examples at multiple activation scales. (A) Single fiber
activation in the Brachioradialis muscle measured by an electrode array with 15
differential channels. (B) 2-seconds long activation of the Brachioradialis muscle,
reaching 100% of maximum voluntary contraction (MVC). 8 bipolar electrodes
located around the forearm are simulated. (C) Simulation of wrist flexion and
extension by activating the corresponding flexor and extensor muscles. (D) The
experimental EMG signals of wrist flexion/extension.
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Figure 3: Comparison of experimental (red) and simulated (blue) single channel
normalized sSEMG signals in the time and frequency domains. The simulator
parameters have been optimized to match the experimental signals.

a7 dn several conditions are provided in Methods (section [Computational perfor-|
230 The proposed model is also highly scalable for multiprocessing, and the cur-
20  Tent computational time can be further reduced by several orders of magnitude
21 by implementing parallel computation on CPU and GPU.

2 Realistic and fast EMG simulations open unique perspec-
xs tives for deep learning

24 Here, we show a potential use of high volumes of simulated surface EMG data
us  for deep learning, utilising the proposed model to generate MUAP templates
xs  which can be used to pre-train neural networks. This methodology is used in
a7 other deep learning domains, such as the use of the ImageNet image database
2 to pre-train object classifiers prior to adaptation to specific applications [25].
249 The myoelectric digital twin simulations (Fig. [4B) were used to pre-train
0 a neural network that could extract motor unit activations from unprocessed
1 HD-sEMG signal [26]. This pre-trained network was then trained to decom-
2 pose experimentally measured HD-sEMG signals collected at the dominant wrist
253 from nine participants (Fig. ) This procedure was then repeated, but with a
4 randomly initialised version of the network instead of the pre-trained weights.
x5 See section for details.

256 The simulation pre-trained network outperformed random initialisation in
7 decomposition accuracy when compared to the original decomposition as mea-
s sured by the rate of agreement (RoA) metric [27] (Fig. lC). The median (IQR)
20 ROA of the pre-trained network was 93.8% (84.8 to 100.0), compared to 82.4%
20 (71.6 to 100.0) in the random initialisation network, a significant difference ac-
21 cording to the Wilcoxon signed-rank test (p <0.001). Of the 39 decoded motor
%2 units, 22 had improved RoAs with pre-training and one had a worse RoA, with
%3 the remaining 16 showing no change, generally because the initial RoA was al-
x4 ready 100% without pre-training. The pre-trained network had a much lower
»s variance in the accuracy of predictions on the test sets than random initialisa-
x%6  tion, quickly optimising to a model effective for generalisation to new signals.
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Figure 4: (A) Decomposition of experimental high density EMG recordings into
underlying spinal motor neuron activities. The results obtained with the neural
network (NN) were tested against the decomposition by a reference blind source
separation method and manual editing by an expert operator. (B) Myoelectric
digital twins were used to generate MUAP templates for different muscles and
different model parameters (tissue conductivities, fiber properties, tendon sizes,
etc). 64 sets, each containing 5 simulated MUAPs for 130 electrodes, were used
for pre-training. (C) Rate of agreement (%) between the neural network MU
activity predictions and the decomposition algorithm on one second of wrist
flexor HD-sEMG signal. Median and interquartile range plotted over 39 motor
units from nine participants. Both outputs were converted to timestamps using
a two class K-means clustering. The neural network using a gated recurrent unit
(GRU) network that was pre-trained using simulated EMG signal significantly
outperformed a GRU with random initialisation (p <0.001).
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» 3 Discussion

xs  We have proposed an efficient computational approach to highly realistic surface
%0  EMG modeling. The method provides the solution to the generation of EMG
a0 signals from anatomically accurate volume conductor properties and number of
on muscle fibers, within limited computational time compatible with real-time sig-
o2 nal generation. The proposed model is the only available EMG simulator with
a3 realistic description of the volume conductor and optimized for such computa-
o tional efficiency. The main value of the model is that it eliminates bottlenecks
s of the state-of-the-art methods and opens unprecedented perspectives for using
e simulated sEMG for data augmentation in the deep learning framework and
arr - therefore for building a myoelectric digital twin.

218 The computational efficiency in the volume conductor solution has been rec-
a9 ognized as an important component of EMG modeling, and some attempts to
20 decrease the computational time in EMG simulations have been described. For
21 example, the approaches developed by Dimitrov & Dimitrova [28] and Farina et
22 al. [29] 21] substantially decreased the computational time in analytical EMG
23 modeling for simple volume conductor geometries. These models provide simu-
2ss  lations which reflect the broad characteristics of EMG signals, but can not be
s anatomically accurate because of the restrictions on the volume conductor and
26 fiber source geometry. Realistic models using numerical solutions have also been
s7  recently proposed. The previous most complete and efficient model has been
23 proposed by Pereira Botelho et al. [19]. These authors have used an anatom-
29 ically accurate model to simulate EMG signals generated during index finger
20 flexion and abduction. They gained computational speed by using the principle
2 of reciprocity. In fact, one part of our calculations also includes the adjoint
22 method, which is an algebraic representation of this principle. By using reci-
203 procity, Pereira Botelho et al. [19] reported a computational time of 1 hour for
204 simulating the activation of nearly 15500 fibers for 5 electrodes. This time, how-
205 ever, remains impractical for simulating arbitrary large data sets for a variety of
206 parameter values. The model we proposed in this paper substantially surpasses
27 the computational efficiency reported in [I9]. We achieved it by efficiently
28 exploiting mathematical properties of the forward equations, in particular by
200 introducing the concept of basis points and by separating model parameters
s and variables into independent computational blocks. The approach does not
soonly reduce the computational time for a full simulation, but also allows us to
sz scale the solution, so that new solutions for the same volume conductor can be
33 obtained without re-computing the volume conductor transformation. In this
;4 way, the generation of EMG signals within the same volume conductor, but
ss  varying all other simulation parameters, can be performed in extremely short
w6 time. Complex EMG signals from tens of thousands of muscle fibers located
s in multiple muscles, can be generated (and regenerated with different param-
w8 eter values) in a computational time of the order of seconds. In contrast to
30 previous models, our proposed simulator does not compromise accuracy and
si0  computational speed.

an Some limitations remain in the current state of the presented model. It does

10
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sz not include some sources of variability that are present in experimental EMG
a3 signals and strongly impact their processing and analysis. For example, the
sie model does not include advanced noise and artifacts descriptions, biomechanical
ais - modeling of the musculoskeletal system, and non-stationary volume conductor
as  properties and fiber geometry. While these aspects are beyond the scope of this
si7 - paper, they are relevant features to include in future developments.

318 The advances presented in this work, together with the proposed future de-
a9 velopments, naturally lead to the concept of a myoelectric digital twin - a hyper-
a0 realistic, personalized, computationally-efficient model which generates EMG
;1 data in a quality and quantity sufficient not only to augment but to replace real
22 data, with utility for Al training in the various real world applications. Here we
23 have illustrated the potential of this approach by augmenting training data for
s24  deep neural networks, with the aim of identifying the discharge times of spinal
»s  motor neurons from surface EMG signal. By using the simulator to augment
26 training (through a pre-training procedure), we showed a substantial increase
sz in the performance of the decomposition network when applied to experimental
s data, demonstrating a highly relevant use of the proposed approach for de-
29 creasing the need for experimental training data in human-machine interfacing
;50 applications.

« 4 Methods

= 4.1 Forward problem

si3 The fiber extracellular potentials that are measured by EMG electrodes are
s generated by transmembrane currents. The properties of bioelectric currents
35 and potential fields can be determined from solutions of the Maxwell’s equations,
136 taking into account the electrical properties of biological tissues. Because of the
s relatively low frequencies of signal sources of biological origin, the quasi-static
1 assumption can be applied [30}[31], so that the electric potential and the primary
s current sources are related by the following Poisson equation [30] [32] B3] with
s Neumann boundary conditions:

V- (oVep)=—-I inQ
99 (1)
c— =0V¢-n=0 on 02
on
s where Q C R? is a volume conductor domain of interest, 9 its boundary
s with outward pointing normal unit vector n, ¢(r) [V] is the electric potential,
us I(r) [A/m3] is the current source density (CSD), o(r) [S/m] is a conductivity
s tensor. The second line of the equation (boundary condition) reflects the as-
us  sumption that no current flows out of the domain of interest. In the context of
us  EMG modeling, this implies that there is no current flow between the skin and
a7 air. The current source density I(7) is interpreted as the volume density of cur-
us  rent entering or leaving the extracellular medium at position 7 € Q. A negative
s CSD corresponds to current leaving the extracellular medium (due to the fiber

11
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Figure 5: (A) Surface geometry of muscles, bones, subcutaneous tissue, skin
and electrodes used for arm modeling (taken from BodyParts3D, The Database
Center for Life Science (http://lifesciencedb. jp/bp3d/))). (B) Cross-section
of the volume mesh generated from the arm surfaces. (C) Uniformly distributed
fibers inside a unit circle are grouped into motor units of different sizes, locations
and territories. (D) Example of mapping of 10 small motor units from the
circle into an arbitrary muscle by morphing the unit circle into the muscle cross
section.

30 transmembrane currents) and is thus conventionally called a sink. Likewise,
1 current entering the extracellular medium is called a source [34], 35].

352 Equation (1) cannot be solved analytically for general volume conductor
3 geometries, but several numerical methods can be used to approximate its so-
s« lution. Here, we use the finite element method (FEM) [30], which discretizes
35 the volume conductor €2 as a tetrahedral mesh ;. Given this mesh, we use the
6 Galerkin method to project the potential ¢ onto the space of piecewise affine
7 functions defined on €. Fig. and Fig. illustrate an example of a realistic
s forearm model and corresponding discretized volume mesh respectively.

350 This discretization process converts the continuous operator problem of
w0 Eq. to a finite system of linear equations:

Av=0> (2)

1 where A is a symmetric and sparse n, X n, matrix, n, is the number of mesh
w2 vertices, v € R™ is a vector of potential values at mesh nodes, and b € R™ is a
3 vector containing source information. Because the electric potential is defined
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s Up to a constant, the matrix A always has a one dimensional null space. To
s obtain a unique solution to the system of Eq. , we constrain potentials v to
w6 have a zero sum.

367 In the context of EMG, we are not interested in finding electric potentials
w8 everywhere in the conductor, but only at the electrode locations. Let S be a
o selection matrix with a shape n. x n, which only selects the values at EMG
s electrode locations (n. is the number of electrodes). Each row of S can be
sn designed to select a single point location or to integrate over an area (e.g. the
s electrode-skin interface) depending on the location and number of its non-zero
w3 elements. Also, let b(7) correspond to a point source at location r. The resulting
s EMG signal is thus given by:

'Upoint(’r) = SA—lb(T)' (3)

375 Let us analyze in more detail the structure of A and b from Eq. . Let
s {wi(r),i = 1..n,} be a set of n, P! (piecewise linear) basis functions over the
w7 tetrahedral mesh €;. Note, that w’ is 1 at the i-th vertex of the mesh, is 0 at
srs  all other vertices and is linear at all tetrahedra adjacent to the i-th vertex. In
s this case, A and b have the following structure:

Aij = /Qt o(r)Vw' (r)Vuw’ (r)dr

b; = /Qt I(r)w' (r)dr.

380 First, let us notice that A is symmetric and, in general, a very large matrix
s which can be stored only because it is sparse. Indeed, the functions w’ have a
2 compact support and their pairwise scalar product is non-zero only for “neigh-
33 bor” functions. Since the pseudo-inverse (or the inverse) of a sparse matrix
s 1s usually not a sparse matrix, it is impractical to compute it because of the
s amount of memory needed to store it. Thus, iterative methods are typically
;s used to solve the system of Eq. for every given b.

387 Consider the case of I(r) = d§(r — 7) which corresponds to a unit point
s current source at location 7. Without loss of generality, we assume that this
;9 source is inside a tetrahedron formed by the vertices i1, ...,74 of the mesh. In
s0  this case, we obtain:

0, otherwise

{Aj, if 5 € {i1,...,ia},
b; =
s where {\;, j =1,...,4} are the barycentric coordinates of the point 7 inside the

32 tetrahedron {i1,...,i4}. Applying this expression to Eq. , we obtain:

Vpoint(F) = SAT'b(F) = SA™'BA.

.3 where B is a n, x 4 matrix with Eij 4 =1for j=1,...,4, and 0 otherwise. This
s implies that the solution of the system of Eq. for any unit point source can be
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35 computed as a barycentric sum of solutions on the vertices of the corresponding
306 tetrahedron. Therefore, it is sufficient to compute solutions of Eq. for “basis”
s7 - sources located on mesh vertices, to be able to evaluate a solution for any point
;s inside this mesh efficiently. Let ngs be the number of such basis sources. For the
30 most general case, when the source can be located anywhere inside the mesh
w0 and ns = n,, let B be a n, X ng identity matrix. The objective is to compute
a1 ”basis” solutions:

Vbasis = SA?lB (4)

w2 where Vg5 18 @ ne X ng matrix, whose columns contain the solutions of Eq.
w3 for a unit point source located at the corresponding mesh vertex. Hence, the
w04 potentials for any source location r is given by:

Upoint (1) = ViasisA(T) (5)

ws  where A(r) € R™ is a vector, whose four non-zero elements contain the barycen-
ws tric coordinates of point 7 inside a corresponding tetrahedron. Note, that one
w7 may restrict potential sources to be located inside specific subdomains of the
ws  whole mesh (which is the case for EMG). In this case, n, corresponds to the
w00 number of vertices of these subdomains, and the matrix B is a submatrix of the
a0 identity matrix.

an The most straightforward way to compute Vp,s:s from Eq. is to solve a
a2 problem of the form Ax = b; for each column of the matrix B. It would thus
a3 require solving ns systems of linear equations. For realistic conductor geome-
aa  tries, which have a large number of vertices, solving a single system may take up
a5 to a few minutes and solving n, systems quickly becomes impractical. There-
as  fore, we propose the use of the adjoint method [37], which requires solving n.
a7 systems only. In the context of EMG, the number of electrodes is usually signifi-
ais cantly smaller than the number of vertices in the muscle subdomain meshes, i.e.
o Me << ng. Let us define K = SA™!, which is a matrix of size n. x n,. Because
20 A is symmetric, and the inverse of a symmetric matrix is also symmetric, we
w2 can write K7 = A71ST. Then, K can be found by solving the system:

AKT = ST, (6)

w2 The matrix ST has n. columns and, thus, only n, linear systems need to be
43 solved to find K. The basis solutions can then be found as:

‘/Emsis = KB. (7)

o« 4.2 EMG signal of a single fiber activation

s The action potential generated by the flow of ionic currents across the muscle
w6 fiber membrane is the source of excitation. For a given intracellular action
w2 potential (IAP) model V,,,(z), the transmembrane current source per unit length
w28 is proportional to the second derivative of V,,(z), where z is a fiber arc length
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20 measured in mm. A general description of the current source density traveling
a0 at velocity v along the fiber with the origin at the neuromuscular junction at
m location zg is [27, 29] B8]:

L
I(z,t) = ogpmr? - 5 W(z — 20 — vt)wy, (z — 29 — 71) -
Lo
W(—z+ 20 — vt)wp,(z — 20 + > ) (8)

d
2 where z € [0, L] is a location along the fiber of length L, ¢(z) = an(—z)7 L

a3 and Lo are the semi-lengths of the fiber from the end-plate to the right and to
«  the left tendon, respectively, oy, is the intracellular conductivity, and r is the
w5 fiber radius. We have chosen wy, to be a Tukey window, as proposed in [24].
s The TIAP V,, [%] can be mathematically described in the space domain as

s proposed in [39)]:

Vin(2) = 962377 — 90.

s Let r(2) be a fiber geometry parametrized with respect to the fiber arc length
a0 z. Combining the transfer function of a point source in Eq. with the fiber’s
w0 current density in Eq. , we obtain the equation for the EMG signal resulting
w1 from a single fiber activation:

W pipen (t) = / Wpoint (1(2)) I (2, t)dz. ()

w2 This integral can be efficiently approximated by discretizing the fiber geometry
«:  into sufficiently dense spatial samples {r(z;)}; and assuming that vpeint(r(2))
ws 18 piecewise constant around these points. If we also rewrite Eq. in a shorter

0
ws  form as I(z,t) = o712 - a—F(z,t), Eq. becomes:
z

zi+A;

Vfiver(t) & Z vpoint("'(zi))/ I(z,t)dz =

i— A

Z vpomt(r(zi))/z

T 3 Opoina(r(z2)) (F a4+ A 8) = Flz = As 1)) (10)

zi+A; ) )
oinre - —F(z,t)dz =
i—A " 0z ( )

us  Note, that vpeint(T(2;)) can be efficiently computed from Eq. . Moreover,
w7 ONCE Vpoint(T(2;)) are computed for all given fibers, we can change the parame-
ws  ters of the current source density (action potential waveform shape, propagation
uo  velocity, location of neuromuscular junction), and compute the corresponding
s EMG signal with Eq. by only matrix multiplication complexity.
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s 4.3 Geometrical and physiological modeling of motor units

2 The motor unit action potential (MUAP) is the summation of the single fiber
3 action potentials (APs) of the muscle fibers in the MU. Different types of MUs
¢ can be modeled [40] [41]. Our approach consists in generating fiber and motor
sss  unit distributions inside a unit circle, and then projecting it into arbitrary 3D
s muscle geometry (Fig. [BD), using methods similar to those described in [42].
ss7 - This provides a high level of control for the fiber and MU distribution parame-
s ters independently of a particular muscle geometry. A common way to simulate
w0 fibers and MUs is to start by defining MU positions, sizes and territories, and
w0 then simulate fibers inside these MUs according to their parameters [43][44]. We,
w1 however, propose another approach. First, we simulate uniformly distributed
w2 fibers inside a unit circle. Then, MU centers and their circular territories are
w3 generated and, finally, we associate each fiber to an MU. A fiber is associated
w4 to one of the MUs that contains it inside its territory with a probability propor-
ws  tional to the MU density (Fig. ) This approach has two main advantages.
ws  First, it guaranties (by construction) the uniform fiber distribution inside a cir-
w7 cular muscle cross-section. Second, once fibers are generated and projected into
s a muscle geometry, different MU distributions can be generated very quickly,
w0 without regenerating fibers and recomputing transfer functions vpein:(7(2;)) for
a0 their nodes.

1 MU recruitment model

a2 During muscle contraction, the MUs are recruited according to the size princi-
w3 ple [23]. This can be simulated by associating a threshold of excitation to each
s MU, as described for example by Fuglevand et al. [45]. Linear or non-linear
w5 rate coding models can be used [45] [46], [47].

476 The excitation rate as a function of time for each muscle is converted into
a7 the firing rates of the active MUs. Inter-discharge intervals are then generated
ws  with variability of the discharges around the mean firing interval [48].

m 4.4 Implementation remarks

a0 The implementation of the main steps presented in the previous section can
1 be summarized as follows. Once the matrices S, A and B are computed, the
a2 matrix K is determined using Eq. @ by solving n. linear systems. Then,
@ Eq. is used to find the solutions for ng basis points, which is a fast matrix
s multiplication operation. For any given point source location r, we compute
a5 its barycentric coordinates in associated tetrahedron and apply Eq. to get
a6 values of electrical potentials at electrode locations. Finally, for a given fiber
w7 geometry, the single fiber action potential as recorded by the EMG electrodes
a3 1S computed using Eq. @

489 The results presented in this study are obtained using a Python imple-
wo  mentation of the proposed strategy. Assembling the matrix A and solving
w1 the system @ is delegated to the FEniCS computing platform [49, 50]. The
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General Fibers Fibers MUAPs Raw sEMG
basis points | basis points | EMG response | assembling | assembling
7 min .
(13 sec/elec) 2 min 30 sec 0.8 sec 2.6 sec

Table 1: Computational performance of each of the main steps of a raw EMG
simulation. General basis points computation refers to equation ; fiber basis
points are computed with equation ; fibers EMG response is computed with

equation @[)

w2 forearm geometry that is here representatively used as a conductor model is
203 taken from the website of BodyParts3D, The Database Center for Life Science
ws (http://lifesciencedb. jp/bp3d/). The volume mesh is generated from the
w5 surface meshes of the forearm tissues using the CGAL C++ library [51].

s 4.5 Computational performance

a7 In this section, we report the computational time of the proposed model for a
ws  specific simulation case. The exact computational time values strongly depend
w0 on the implementation, experiment design, model parameters etc. The order of
s0 magnitude, however, stays the same. Note, that no multiprocessing tools were
so0  used in these computations. Each step, however, is highly scalable and can
sie  be efficiently distributed between parallel processes, which would significantly
s03 increase the performance. Computations for each muscle and fiber are indepen-
se  dent and can be performed in parallel. Parallel computing would also apply to
ss the electrodes in the general basis points computation.

506 For the purpose of demonstration, we simulated a 1-min-long, 100% maxi-
sov  mum voluntary contraction (MVC) excitation of the Brachioradialis muscle with
sos 50000 individual fibers and 200 motor units. The mesh of the volume conductor
so0 contained 2.1M vertices, which formed 13M tetrahedra. 16 rectangular and 16
s circular electrodes were included in the model. The sampling frequency of the
su  simulated signals was 2000 Hz. Table [1| shows the computational time for each
sz of the main steps in this simulation.

513 An important property of our model is that each step depends only on the
siu data produced by the previous steps. This property can be exploited to change
sis some simulation parameters without recomputing every step of the simulation.
sis  For example, it is not necessary to recompute solutions for the fiber basis points
si7  if fibers geometry and conductor model stay the same and only the parameters
sis related to the fiber properties (AP velocity, end-plate location, tendon sizes,
si0 etc.), MU distribution or recruitment model are modified. In this example, the
s0 total simulation time for this new set of parameters will only take approximately
s 30+ 0.84 2.6 =334 s.

522 A brief description of the main parameters required at each step follows. The
s23 full arm and electrode geometry as well as the tissue conductivities define the

17


http://lifesciencedb.jp/bp3d/
https://doi.org/10.1101/2021.06.07.447390
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.07.447390; this version posted July 27, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

s« computation of general basis points. To compute fibers basis points solutions,
sss the 3D geometry of the fibers is required. Computing the fiber EMG responses
s6  requires the shape of the intracellular AP waveforms, AP propagation velocity,
s27 - sizes of tendon and active fiber parts, neuromuscular junction location, fiber di-
s ameter and intracellular conductivity, and sampling frequency. To compute the
s20  MUs action potentials, the MU distribution in the muscle, i.e. the association of
s0  fibers to each motor unit, need to be defined. In the proposed model, once the
sn. number of MUs, their sizes and territory areas are selected, the MU distribu-
s tion is randomly generated. Finally, to synthesize the sEMG signal, the muscle
s13  excitation drives and recruitment model parameters (motor unit recruitment
s thresholds and firing rates) are required.

s 4.6 Comparison with the cylindrical analytical solution

s3s  First, we compared our numerical solution with its analytical counterpart for a
s simple volume conductor geometry [2I]. We used a four layer cylindrical model
s with layers corresponding to bone (r = 0.7cm), muscle (r = 2cm), fat(r =
s 2.3cm) and skin (r = 2.4cm) surfaces. 16 point electrodes were simulated on the
ss0  skin surface directly above a fiber. The fiber was located at varying depths into
s the muscle tissue, in the range 1 mm to 11 mm. Differential SEMG signals were
s2  simulated using the analytical and numerical solutions of the forward problem.

s 4.7 Details of realistic simulation examples

s For the single muscle excitation example, 50k muscle fibers were generated inside
sss the muscle and distributed within 200 motor units. The size of MUs varied
si6  exponentially from 11 to 1150 fibers. The areas of MU territories varied from
sev - 10% to 50% of the muscle cross-sectional area. The muscle excitation drive
ss was decomposed into MU impulse trains according to the size principle. In this
ss0  example, the firing rate for each MU ranged from 8 Hz to 35 Hz and all MUs
ss0  were recruited when an excitation level of 75% MVC was reached.

551 For the multiple muscles experiment, the flexor group included the Palmaris
2 longus, Flexor carpi ulnaris (ulnar head), Flexor carpi ulnaris (humeral head),
ss3 and Flexor carpi radialis muscles. The extensor group included the Extensor
ssa  digitorum, Extensor carpi ulnaris, Extensor carpi radialis brevis, and Exten-
sss sor carpi radialis longus muscles. During a wrist flexion, the muscles of the
6 flexor group reached an excitation level of 90% MVC. During extension, ex-
ss7  tensor group was activated with the same exciation level. Moreover, a small
sss but constant excitation of the abduction muscle group was added to simulate
ss0  the wrist resistance against gravity. The abduction muscle group included the
ss0  Flexor carpi radialis, Extensor carpi radialis brevis, and Extensor carpi radialis
s longus muscles. For each muscle, a number of muscle fibers between 32k and
sz 18k was simulated, depending on the muscle cross-sectional area. Muscle fibers
sss  were distributed within motor units, whose number varied from 150 to 300 per
s muscle.
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s 4.8 Details of deep learning experiment

sss 1o evaluate the effect of using the simulation-pre-trained network, an experimen-
sev  tally collected high-density surface electromyography (HD-sEMG) signal dataset
ses  was used, originally created to test wrist-wearable interfaces[52]. The experi-
sso  mental protocol was designed in agreement with the Declaration of Helsinki and
s was approved by Imperial College London ethics committee (JRCO: 181C4685).
sn Nine participants (4 females, 5 males, ages: 23-31) took part in the study after
s signing informed consent forms. The participants performed 5-second isomet-
s;3  ric contractions of their dominant-hand index finger at 15% of maximal force,
s with SEMG activity measured using two flexible 5x13 electrode grids with 8-mm
sis  spacing placed on the circumference of the wrist, immediately proximal to the
st ulnar head. HD-sEMG signal was sampled at 2048Hz, whilst force profiles were
s7 - sampled with a custom load cell at 10Hz. The signal was then decomposed into
s motor neuron activity using convolutive blind source separation [53]. For the
so purpose of training and testing the supervised decomposition pipeline, motor
ss0 neuron activity was accepted if it was present for at least 80% of the contraction
s window. For each participant the HD-sEMG signal and accompanying decom-
s2 posed motor neuron activity (as a sparse binary matrix) was then split into a 4
se3 second training window and a 1 second testing window.

584 A gated recurrent unit (GRU) network was used as the deep learning model
s due to previous studies showing good performance with this data type[26]. After
ss  hyperparameter optimisation by grid search, a minimally-parameterised model
ss7  was found to perform optimally, likely due to the short length of the training
sss  data available. Input HD-sEMG signal was first encoded by a single layer GRU
s.0  with a hidden dimension of 1024 in length[54]. To make a time instant predic-
s tion a densely-connected linear layer with sigmoid activation function took as
s an input a moving 20 sample-wide window from the GRU output, centred on
s the time instant of interest. Predicted activity was converted to spike times-
s3  tamps using a two-class K-means clustering algorithm. Binary cross entropy was
soa  used as the loss function and Adam with weight decay used as the optimising
ss  algorithm[55].

596 To improve model generalisation an early-stopping framework was used,
sev based on 10% of the training data retained as a validation set. Training, val-
ss idation and test data was z-score standardised using the mean and standard
soo deviation calculated from the training set. During training the input signal was
so augmented with noise of standard normal distribution. To account for the high
s1 sparsity of the output matrix, samples containing motor neurons were artifi-
e2 cially oversampled, with each each input batch of 512 time instants containing
o3 at least 20% motor neuron activation. All machine learning was implemented
s« using the pytorch library in python. Final performance was assessed using the
s rate of agreement metric (RoA).

606 The optimised architecture of the GRU network was used for pre-training,
s  which was conducted using multi-task learning in a hard parameter sharing
oos paradigm[b6]. Four digital twins were created for simulation using different
0 model parameters (tissue conductivities, MU distribution, fiber properties, etc.),
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Figure 6: (A) Methodology used to build windows from the simulated MUAP
template set for the pre-training phase. Each simulated template was 160 sam-
ples wide at a 2048Hz sampling rate and with 130 channels. First either a
MUAP template was placed in the centre of the window or it was left empty at
a 50% probability. Then MUAP templates from other MU classes were added
to the window at a random offset to generate superpositions. Finally standard
normal distributed noise was added to the window, with the central 80 samples
then paired with the label for supervised learning. (B) The neural network ar-
chitecture and pre-training methodology used to improve the performance of a
deep learning-based HD-sEMG decomposition algorithm. The neural network
consists of a single gated recurrent unit layer, with predictions made using a
20-sample wide window of the hidden vector output, which is flattened before
being passed to a sigmoid-activated densely-connected linear layer. In the pre-
training phase a multi-task learning regimen is used to optimise the parameters
of the gated recurrent unit using the simulated sEMG. This pre-trained layer
can then be used to improve the optimisation performance on real SEMG data.
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0 with the generated motor unit activation (MUAP) templates from flexor dig-
e itorum profundus and superficialis used to create 64 sets, each containing 5
sz MUAPs. Each set was used to generate windows of signal with a range of
sz MUAP superpositions (Fig. @A) In signal windows with motor neuron activity
sua MUAP template was placed in the centre of the window, before being ad-
a5 ditively superimposed with a random number of MUAP templates from other
s16 motor units at random time offsets. In windows without activity no template
si7  was placed in the centre of the window. During multi-task learning training, the
as  same GRU layer (and parameters) were shared between the 64 recordings, but
s19 each recording had its own output layer, operating on a 20 sample-wide window
20 as in the experimental recordings (Fig. ) In this way the GRU layer was
e21  trained to act as a more general feature extractor, whilst the individual linear
s2 output layers made class predictions specific to each recording. Training again
23 used noise augmentation, binary cross-entropy and Adam with weight decay.
624 To use the simulation-pre-trained network in the experimental data the GRU
o5 parameters from the pre-trained network were used, whilst the linear output
e6 layer used a normal random initialisation. This was the compared to a normal
sz random initialisation of both the GRU and output layer. In both instances
&8 the network was trained using the methodology specified above, with the only
20 difference being whether the GRU layer was simulation-pre-trained or not.
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