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High-frequency oscillatory events, termed ripples, represent synchrony of neural activity in the

brain1. Experiments in animal models have characterized ripples during quiescent and sleep

states1 and to a lesser degree during active behavior2–4. Converging evidence from these ani-

mal studies5, computational modeling6, and recent examinations in human participants support

a link between hippocampal7–9 or medial temporal lobe (MTL)10, 11 ripples and memory retrieval.

Analyzing direct MTL recordings from 219 neurosurgical participants performing episodic recall

tasks, we ask whether ripples reflect the reinstatement of contextual information12–14, a defining

property of episodic memory12, 15, and beyond a recapitulation of recently-experienced stimuli7, 10.

Here we find that the rate of hippocampal ripples rises just prior to the free recall of recently-

formed memories. This pre-recall ripple effect appears most strongly in the CA1 and dentate gyrus

(DG) subfields of hippocampus–regions critical for episodic memory16–18. Neighboring entorhinal

and parahippocampal cortices exhibit a significantly weaker effect. The pre-recall ripple effect is

strongest prior to the retrieval of semantically- and/or temporally-related recalls, indicating the in-

volvement of ripples in contextual reinstatement, thereby specifically linking ripples with retrieval

of episodic memories.
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We investigate ripples in two intracranial EEG datasets of participants with electrodes in hippocampal

subfields CA1 or DG as well as entorhinal or parahippocampal cortex. Participants were tested on at least

one of two memory paradigms: delayed free recall of unrelated word lists (FR, 180 participants, 739

electrode pairs, Fig. 1a) and delayed free recall of categorized word lists (catFR, 104 participants with 65

of them also FR participants, 373 electrode pairs, Fig. 4a). Free recall, in which participants study a list of

sequentially presented items and subsequently attempt to recall them in any order, allows researchers to

isolate the processes underlying episodic memory retrieval19. Transitions between consecutively recalled

items enable the identification of neural processes underlying contextual reinstatement as it relates to

both semantic and temporal associations among studied items13, 14, 20. By relating ripples to how these

associations organize recall, as seen in the analysis of recall transitions, we aim to elucidate the relationship

between ripples and contextually-mediated retrieval processes.

To detect ripples we use an algorithm recently shown to isolate such high-frequency events in human

hippocampus during both memory encoding and retrieval7 (Methods). Ripple peak frequencies (Fig.

1c), durations, spatial proximity, and rates (Extended Data Figs. 1-2) are similar to previous work

7, 8, 10. Anatomical localization of electrodes was performed by a combination of neuroradiologist labels

and automated segmentation via separate processes for hippocampal subfields21 and entorhinal and

parahippocampal cortices22, 23.

We partitioned our data into two halves: a first half for developing initial analyses, and a second half

held out as a confirmatory dataset. We pre-registered our hypotheses as well as the initial figures for the

first half of the data on the Open Science Framework (https://osf.io/y5zwt). Therefore, for the main tests

throughout the manuscript, we present two statistical tests: 1) the significance of model coefficients on the

held out half of data (the “ held out” data) and 2) the significance of model coefficients on the full dataset

(Methods).

The analyses detail three main findings. First, we establish the pre-recall ripple effect, in which ripples

occur just prior to recalls that are not the first recalled from each list. Next, we find this effect is strongest

in hippocampal subfields CA1 and DG. Finally, we show that the pre-recall ripple effect is strongest on

trials that reinstate episodic information.
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The pre-recall ripple effect (PRE)

To elucidate the relation between ripples and recall we align hippocampal recordings to the onset of each

correct recall vocalization in the FR dataset. A raster plot for 10 example participants with hippocampal

recordings illustrates when ripples occur with respect to these recalls, where each row is a recall and each

dot represents the start time of a single ripple (Fig. 2a). The raster suggests that ripple rates rise several

hundred ms prior to vocalization onset, as shown in recent work7, 8, 10.

Models of free recall posit separate mechanisms for recall initiation and subsequent retrieval transitions,

with the former being driven by a persistent representation of items or context, and the latter being driven by

cue-dependent associative retrieval19, 24. Recordings from hippocampal subfields CA1 and DG, averaged

across all participants into peri-stimulus time histograms (PSTHs), reveal clear physiological evidence

for this distinction. Specifically, cue-dependent recalls (i.e., those following the first response, or ≥2nd

recalls) exhibit a sharp pre-retrieval rise in ripples (Fig. 2b), which we term the pre-recall ripple effect

(PRE for the remainder of the paper). In contrast, the 1st recall in each retrieval period does not show this

same PRE (Fig. 2b).

Using a linear mixed effects model to quantify this distinction while accounting for both within and

between participant variability (Eq. 1), the PRE is significantly stronger for ≥2nd recalls compared to

1st recalls in both CA1 (Fig. 2b, left) and DG (Fig. 2b, right). Further, the PRE is significant across

participants when looking at only ≥2nd recalls for both CA1 and DG (Fig. 2c; Eq. 2). As the first recall

on each list tends to happen early in the retrieval period, is the absence of a PRE for these trials related

to the absolute time of recall, and not the order of 1st v. 2nd? Looking at only those recalls that occur

within the first 5.0 s of the retrieval period, the PRE remains significantly stronger for ≥2nd recalls than

1st recalls (Extended Data Fig. 3a), suggesting the PRE is correlated with recalls that follow a previous

recall25 and not just recalls occurring later in the retrieval period. Meanwhile, when the 1st recall occurs

later in the retrieval period (after 5.0 s), the PRE is no different between 1st and ≥2nd recalls (Extended

Data Fig. 3b), further evidence that ripples are linked to words recalled via retrieval processes and not

persistent representations held from encoding26.

Does a participant’s strength of the PRE, as measured for ≥2nd recalls, correlate with memory
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performance? Splitting the participants from the FR dataset into those with the highest and lowest number

of recalls per list and comparing the PRE between these groups, participants with high recall show a

significantly stronger PRE in CA1 and in the same direction for DG (Fig. 2d). Using a linear mixed

model to quantify the relation between each participant’s list-level recall performance and their rise in

ripple rate from the PRE (Eq. 3) further evidences this effect, as there is a significant positive interaction

between participant memory and the PRE for CA1 electrode pairs and in the same direction for DG

pairs (Fig. 2d caption). In addition, comparing correct recalls with intrusions (i.e. recalls of items not

present on the target list27) reveals a significantly stronger PRE for correct recalls in CA1 and in the same

direction for DG (Fig. 2e). Taken together, the link between the PRE and correct, cue-dependent recall

implicates hippocampal ripples in episodic memory retrieval.

The frequency range for the ripple detection algorithm—based on a recent study of human hippocampal

ripples7—is relatively broad (70-178 Hz). This range likely includes sharp-wave ripple–associated fast-

gamma as well as ripples28, 29. Whereas previous work has grouped these events as they differ only in

frequency and relative amplitudes between subfields28, 29, we ask if ripples detected using algorithms with

narrower ranges still reliably show a PRE. For a first check, we implement a ripple detection algorithm

with a narrower range (80-120 Hz) that was recently used to identify ripples in MTL8, 10, 11. This stricter

algorithm yields lower ripple rates with a wider distribution of durations and a peak ripple frequency

∼90 Hz (Extended Data Figs. 1c&5a), all similar to previous work8, 10, 11. Despite the lower ripple rates,

the PRE is significant for ≥2nd recalls compared to 1st recalls in CA1 and in the same direction for

DG (Extended Data Fig. 4b). For a second check, we utilize the original ripple detection algorithm,

but with a higher frequency range (125-200 Hz) to isolate ripples at frequencies typically reported in

rodent sharp-wave ripple work1, 28. This method once again yields lower ripple rates but with a similar

distribution of durations as the original algorithm and a frequency peak ∼150 Hz (Extended Data Figs.

1b&6a). Once again, we confirm the main result as the PRE is significant for ≥2nd recalls in both CA1

and DG (Extended Data Fig. 5b).

Finally, we address the possibility that PRE is related to seizurogenic tissue in epileptic participants,

even though recent work suggests epileptiform tissue should show a weaker link between ripples and

memory than healthy tissue8. For those participants with a clinically-defined seizure onset zone (SOZ),
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we take all trials from bipolar pairs in the SOZ and compare them to all trials from bipolar pairs not in

the SOZ. For each hippocampal subfield CA1 and DG, both SOZ and non-SOZ trials show a significant

PRE; however, neither subfield shows a significant difference when comparing the PRE between them

(Extended Data Fig. 6a), suggesting PRE is not related to epileptic activity.

The hippocampal PRE is stronger than in neighboring MTL regions

In addition to hippocampal electrode pairs, many participants had electrode coverage in entorhinal and

parahippocampal cortex (Fig. 3a-b). Ripples are known to occur in both these regions1, 10, so we asked

if a PRE occurs before recalls in the FR dataset as shown in hippocampus. Indeed, entorhinal cortex

shows a significant interaction between ≥2nd recalls and PRE when averaging recordings across all

participants (Fig. 3c, Eq. 1), as well as significant t-scores at the participant-level for ≥2nd recalls (Fig.

3e). Parahippocampal cortex ripples were not significant for either of these tests (Fig. 3d & 3f).

To directly compare the PRE between regions, we contrast them in a single model. We make pairwise

comparisons between the hippocampal subfields (CA1 and DG) and entorhinal and parahippocampal

cortices, but only for those participants with bipolar electrode pairs in at least two of these regions (e.g., a

participant with electrodes in CA1, DG, and entorhinal cortex would contribute 3 pairwise comparisons).

A separate linear mixed model for each participant, which accounts for differences between sessions with

random effects, compares the PRE on≥2nd trials between pairs of regions (Eq. 4). The t-scores from this

model are then combined for a one-sample t-test across participants (Fig. 3g). Both hippocampal subfields

CA1 and DG have a significantly stronger PRE than entorhinal cortex. CA1 has a significantly stronger

PRE than parahippocampal cortex, while DG vs. parahippocampal cortex is not significant, likely owing

to having the smallest sample (N=8 participants). There are no reliable differences in the PRE between

CA1 and DG or between entorhinal and parahippocampal cortex. We next asked whether the post-recall

drop in ripple rate evident in many participants (Fig. 2a-b), possibly due to a refractory period after the rise

in ripples from the PRE1, 30, is also specific to hippocampus. Taking advantage of these same participants

with electrode pairs in at least two regions, there is no evidence that any particular region drops in ripple

rate after recall more than any other (Fig. 3h), suggesting the post-recall drop is not consistent like the

PRE.
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The PRE is stronger during contextual reinstatement

Finally, we ask if the PRE correlates with behavioral measures specific to episodic memory27, 31, 32. We

first focus on the catFR dataset as the list of words in this task has a rich semantic and temporal structure

(Fig. 4a). In particular, words in the catFR task are drawn from a pool of 25 semantically-related categories

with three categories selected per 12-word list. Each set of four words from a category are presented

as pairs with the pairs never shown back-to-back. For example, dolphin and octopus might be a pair of

consecutively shown words followed by cupcake and pie, which are then followed by fish and whale

(Fig. 4a). This setup allows us to measure contextual reinstatement in semantic and temporal dimensions

when participants recall the words, as back-to-back recalls can transition between 1) a semantic pair

that was temporally adjacent in the list (20% of recalls), 2) a semantic pair that was temporally remote

in the list (20% of recalls), and 3) a pair of words that were temporally adjacent in the list but not

semantically-related (only 3% of recalls, as participants tend to recall via semantic associations in catFR,

so we do not investigate them further). The remaining transitions are remote unclustered (17%), meaning

two semantically unrelated words that were not adjacent on the list. By comparing groups of trials with

contextual associations to those without, we can assess if ripples not only precede recall, but also precede

reinstatement of contextual information used to remember items, a key signature of episodic memory12.

Note that we only use ≥2nd recalls in these analyses, as the 1st recall in every list does not show the

signature PRE (Fig. 2b & Fig. 4c-d), likely due to weaker contextual reinstatement before the first recall

(see Discussion).

Before assessing differences between types of recall, we confirm our main findings with the catFR

dataset, which acts as an independent dataset to support our findings from the FR dataset. First, using

three of the same participants that contributed to the FR raster plot and three new participants (Fig. 2a), a

raster aligned to recall for the catFR task once again shows visual evidence of a PRE (Fig. 4b). Across

all participants, the PRE is significant for ≥2nd recalls compared to 1st recalls in both CA1 (Fig. 4c)

and DG (Fig. 4d). Looking at participants individually, there is a significant PRE for ≥2nd recalls

across participants in CA1, and in the same direction for DG (Fig. 4e). However, due to randomness in

participant electrode montages, there happened to be many fewer electrode pairs in DG than CA1 for
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catFR (36 vs. 136, respectively; Fig. 4f), in addition to fewer participants collected in catFR than FR (104

vs. 180, respectively), making this test relatively underpowered.

For the first test of contextual reinstatement, we set up a comparison between those recalls that act as

the strongest contextual cues compared to those that act as the weakest. In particular, adjacent semantic

(Fig. 4a), where the subsequent recall was both temporally adjacent and semantically related to the

previous recall on the list, vs. remote unclustered, where the subsequent recall was neither. The hypothesis

is that if ripples are a signature of contextual reinstatement, we expect a PRE before recall of the adjacent

semantic pair (Fig. 4g). In other words, if one recall leads to a subsequent recall that is contextually

associated with it, the expectation is the PRE before the initial recall is a signature of the reinstatement

that leads to the transition from one recall to the next14, 33. Indeed, in CA1, the PRE for adjacent semantic

trials is significantly stronger than for remote unclustered trials (Fig. 4h). DG also shows a significantly

greater PRE for adjacent semantic trials for this comparison (Extended Data Fig. 7a).

The next test of contextual reinstatement is a comparison between remote semantic and remote

unclustered (Fig. 4a). This comparison isolates semantically-driven transitions, as all pairs of recalled

words that were adjacent on the list are excluded. Once again, in CA1, there is a significantly greater PRE

for remote semantic trials (Fig. 4i), although there is not a significant difference for these groups in DG

(Extended Data Fig. 7b).

For the final test of contextual reinstatement, we aim to isolate temporal clustering based on the

presentation order of the word list. Since the catFR task is designed to promote semantic associations, we

return to the FR task, where the 12 words are not designed to be semantically related (Fig 1a). To assess

temporal clustering we grouped all recalls that led to adjacent transitions from the list (absolute lag=1,

16% of transitions) and compare them to all recalls that led to remote transitions on the list (absolute lag

≥4, 20%)34. The hypothesis remains the same: that the PRE should occur before those recalls leading to

contextual reinstatement, in this case via temporal associations. For CA1, recalls that led to temporally

clustered transitions show a stronger PRE than recalls that led to remote transitions, although this effect

was not significant across multiple comparisons in Figs. 4h-j (Fig. 4j). There is no difference for DG trials

(Extended Data Fig. 7c).
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Discussion

We investigated high frequency ripples as participants studied and subsequently recalled lists of unrelated

items (N=180) or lists of categorically-related items (N=104). In both paradigms we found a punctate

rise in ripples immediately before participants recall words. This pre-recall ripple effect (PRE) is specific

to recalls that follow previously recalled items, signaling a cue-dependent retrieval process (Fig. 2b &

4c-d). Further, we find a stronger PRE for contextually-reinstated recalls (Fig. 4h-j). The PRE is also

strongest in hippocampal subfields CA1 and DG compared to entorhinal and parahippocampal cortex (Fig.

3g). These results implicate ripples in hippocampally-initiated episodic memory retrieval.

The free recall task provides a window into the organization of memory because it permits people to

report studied items in the order that they come to mind. The order and timing of recalled items reveals

the temporal and semantic organization of memory, as people tend to consecutively recall temporally-

proximate or semantically-related items35. Modeling these dynamics of memory search has highlighted the

importance of context–a latent representation that includes information about time, space, and semantics

of recently experienced or recalled items19. A key feature of these models is that remembering an item

retrieves its prior contexts, which in turn triggers the next item that comes to mind. However, the first

response is governed by the persistent context from the end of the list rather than the retrieved context

caused by the preceding item24, 26. Here, we find a stark dichotomy between the first recall on each list

and subsequent recalls, with the PRE specifically occurring before subsequent recalls (Figs. 2b & 4c-d),

suggesting that hippocampal ripples are a physiological correlate for retrieved context. The clustering

results further ballast the link between hippocampal ripples and contextual reinstatement, as recalls with

strong semantic and/or temporal association to the next recalled word show a significantly stronger PRE

compared to recalls with low clustering (Fig. 4g-j).

In sum, hippocampal ripples preferentially occur before those recalls most likely to be achieved via

contextual reinstatement of episodic memories, supporting the hypothesis that ripples mediate episodic

memory retrieval1, 5. Modeling results indicate amnesia in patients with MTL damage comes from an

inability to reinstate context15, which considered with the results presented here suggests a link between

memory loss and ripple malfunction.
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Fig. 1. Free recall task and ripple details. a, Each list of the free recall (FR) task consists of an encoding

period with 12 words presented sequentially, an arithmetic distractor, and a verbal free recall phase. b, Example

hippocampal CA1 trace of raw (top) and Hamming bandpass-filtered (bottom) local field potential (LFP) aligned to

the time of recall vocalization. Red indicates alignment to time of recall when the participant says "bat". c, Example

spectrograms of single ripples detected in CA1 for two participants, 4 from each. Each plot shows 100 ms before

and after aligned to the start of a single ripple event. d, Average spectrograms for all ripples across sessions in CA1

for the same two participants. e, Localization of hippocampal CA1 and dentate gyrus (DG) electrode pairs for all FR

participants. Views are all sagittal with ∼10° axial tilt so both hippocampi are visible in each plot. Electrode pairs

are color-coded by t-scores of pre-recall ripple rise (Eq. 2), with purpler colors indicating a stronger rise in ripples

before recall. CA1, N=205; DG, N=100.
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Fig. 2. High frequency ripples increase in hippocampal subfields CA1 and dentate gyrus shortly before
free recall. a, Raster plot aligned to free recall for all hippocampally-localized electrode pairs in 10 selected

participants. Each dot represents the start time of a ripple. Purple lines divide participants. b, Peri-stimulus time

histograms (PSTHs) for hippocampal subfields CA1 and dentate gyrus (DG) separated by whether the recall was the

1st made during the retrieval period or ≥2nd during the retrieval period for FR dataset. Trial numbers for each are

labeled, where a trial is defined as a single recall on a single electrode pair. Significance of interaction from mixed

model assessing the pre-recall ripple effect (PRE) for ≥2nd recalls (Eq. 1): held out data: CA1, P = 3.9 X 10-6, DG,

P = 0.010; 100% of data: CA1, P = 2.4 X 10-5, DG, P = 1.6 X 10-4 (FDR-corrected across 6 tests of Eq. 1 across

Figs. 2-4). Error bands are SE. Dotted gray line is to aid in visual comparison between PSTHs throughout the paper.

Orange line indicates significant time range. c, t-scores for each participant from a mixed model assessing PRE for

≥2nd recalls for areas CA1 and DG (Eq. 2). Positive values indicate a stronger PRE. Bars indicate ±1 standard error

from mean. One-sample t-test of t-scores from Eq. 2 vs. 0: held out data: CA1, P = 9.9 X 10-5; DG, P = 0.0040;

100% of data: CA1, P = 1.1 X 10-7; DG, P = 0.0011 (FDR-corrected for 6 t-tests across Figs. 2-4). d, t-scores for

even split of participants based on their average recalls per list (each participant in gray). Bars are mean (dark) ±

standard error (light). T-test of t-scores between the low and high recall participants: CA1, P = 0.036; DG, P = 0.23

(FDR-corrected across 2 tests). Significance of the interaction between rise in PRE and number of recalls per list is

also assessed via a mixed model (Eq. 3): CA1, P = 0.0023; DG, P = 0.45. Error bands are CIs. e, PSTHs for correct

≥2nd recalls vs. ≥2nd intrusions. Conventions are the same as 2b. Significance of PRE for correct vs. intrusion

trials (Eq. 5): held out data: CA1, P = 9.4 X 10-4, DG, P = 0.30; 100% of data: CA1, P = 1.4 X 10-3, DG, P = 0.11.
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Fig. 3. Regional differences in the pre-recall ripple effect (PRE). a, Localization of extrahippocampal elec-

trode pairs from left sagittal perspective. Entorhinal, N=53; Parahippocampal, N=61. b, Ventral perspective. c,
PSTH for entorhinal cortex trials, separated by 1st recall and ≥2nd recalls from each list for FR dataset. Significance

of mixed model assessing PRE for ≥2nd recalls (Eq. 1): held out data: P = 0.014, 100% of data: P = 0.0029

(FDR-corrected across 6 tests of Eq. 1). Error bands are SE and orange line indicates significant time range. d,
Same for parahippocampal cortex: held out data: P = 0.15, 100% of data: P = 0.013. e, Same conventions as Fig.
2c, with mixed model t-scores for PRE calculated for entorhinal electrode pairs in each participant (Eq. 2). Held out

data: P = 0.035; 100% of data: P = 0.024 (FDR-corrected across 6 tests). f, Same as e but for parahippocampal

cortex. Held out data: P = 0.49; 100% of data: P = 0.17 (FDR-corrected across 6 tests). g, Mixed model t-scores of

pairwise comparisons of PRE for each participant with electrodes in at least two of the four regions under study:

hippocampal areas CA1 and DG as well as entorhinal cortex (ENT) and parahippocampal cortex (PHC). The model

assesses PRE for ≥2nd recalls from a time range -600 to -100 ms before recall (Eq. 4). Asterisks indicate the first of

the pair being compared is significantly greater than the second (P<0.05, FDR-corrected for 6 pairwise comparisons

of pre-recall ripples using Eq. 4). h, Similar to g, but for a mixed model assessing a drop in ≥2nd recalls from a time

range 200 to 700 ms after recall (Eq. 4). No comparison shows a significant drop in ripples after recall (P<0.05,

FDR-corrected for 6 pairwise comparisons of post-recall ripples using Eq. 4). Error bars are SE throughout.
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Fig. 4. Context reinstatement and the pre-recall ripple effect (PRE). a, (top) Outline of categorized free

recall task (catFR). Word lists were comprised of 12 words from 3 semantic categories (shown as Ax, Bx, and Cx)

and shown during encoding in pairs of two. (bottom) Percentages of recall types by transitions between recalls. b,
Raster of ripples aligned to recall from three of the same participants in Fig. 2a that ran both task versions (1,3,

and 8) and three new participants (i-iii). Purple lines divide participants. c, PSTH for hippocampal subfield CA1

aligned to recalls in catFR with same conventions as Fig. 2b. Significance of mixed model assessing PRE for ≥2nd

recalls (Eq. 1): held out data: P = 1.8 X 10-4, 100% of data: P = 1.8 X 10-7 (FDR-corrected across 6 tests of Eq.

1). Error bands are SE and orange line indicates significant time range. d, Same for hippocampal area DG. Held

out data: P = 0.15, 100% of data: P = 0.015. e, Same conventions as Fig. 2c, with mixed model t-scores for PRE
calculated for CA1 and DG electrode pairs in each participant performing catFR (Eq. 2). Held out data: CA1, P
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= 4.8 X 10-5; DG, P = 0.20; 100% of data: CA1, P = 2.1 X 10-5; DG, P = 0.05 (FDR-corrected across 6 tests). f,
Localization of hippocampal electrode pairs in participants that ran catFR. Views are all sagittal with ∼10° axial

tilt so both hippocampi are visible in each plot. Electrode pairs are color-coded by t-scores of pre-recall rise, as

in Fig. 1e (Eq. 2). CA1, N=136; DG, N=36. g, Schematic for hypothesis of ripples as a signature of contextual

reinstatement. An example ripple before recall is shown (arrow) in zoomed-in iEEG (70-178 Hz filtered). h, PSTH

of catFR trials comparing adjacent semantic vs. remote unclustered trials, a test of contextual reinstatement vs. no

contextual reinstatement. Significance of coefficient comparing PRE for each trial type in mixed model (Eq. 5):

held out data: CA1, P = 0.0079; 100% of data: CA1, P = 2.5 X 10-4 (FDR-corrected across 6 tests of Eq. 5, Figs.
4h-j & Extended Data Fig. 7a-c). Error bands are SE and orange line indicates significant time range. i, PSTH

of catFR trials comparing remote semantic vs. remote unclustered trials, a test of semantic reinstatement vs. no

contextual reinstatement. Same significance test and conventions as h: held out data: CA1, P = 0.0076; 100% of

data: CA1, P = 2.5 X 10-4 (FDR-corrected). j, PSTH of FR data comparing adjacent recalls (lag = 1) vs. remote

recalls (lag≥4), a test of temporal reinstatement. Same significance test and conventions as h: held out data: CA1, P

= 0.089; 100% of data: CA1, P = 0.12 (FDR-corrected).
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Methods

Human participants. Our dataset included 219 adult participants in the hospital for medication-resistant epilepsy

with subdural electrodes placed on the cortical surface or within the brain for the purpose of localizing epileptic

activity. Data were recorded at 8 hospitals from 2015-2021. These include Thomas Jefferson University Hospital

(Philadelphia, PA), University of Texas Southwestern Medical Center (Dallas, TX), Emory University Hospital

(Atlanta, GA), Dartmouth-Hitchcock Medical Center (Lebanon, NH), Hospital of the University of Pennsylvania

(Philadelphia, PA), Mayo Clinic (Rochester, MN), National Institutes of Health (Bethesda, MD), and Columbia

University Hospital (New York, NY). Before data was collected at any hospital our research protocol was approved

by the Institutional Review Board at the University of Pennsylvania via a reliance agreement or at participating

hospitals.

Free recall task (FR). participants performed a delayed free recall task where for each “list” they viewed a

sequence of common nouns with the intention to commit them to memory. The task was run at bedside on a laptop

and participants were tasked to finish up to 25 lists for a whole session or 12 lists for a half-session. The free recall

task consisted of four phases per list: countdown, encoding, distractor, and retrieval (Fig. 1a). Each list began with a

10-second countdown period with numbers displayed on the screen from 10 to 1. Next was encoding, where

participants were sequentially presented a list of 12 words centered on the screen that were selected at

random–without replacement in each whole session or two half sessions–from a pool of 300 high frequency,

intermediate-memorable English or Spanish nouns (http://memory.psych.upenn.edu/WordPools32). Word

presentation was 1600 ms with a jittered 750-1200 ms (randomly sampled uniform distribution) blank screen after

each word. After encoding was the distractor period, where participants performed 20 seconds of arithmetic math

problems to disrupt their memory for recently-shown items. The problems were of the form A+B+C=??, where each

letter corresponds to a random integer and participants typed their responses on the laptop keyboard. The final phase

was retrieval, which began with a series of asterisks accompanied by a 300 ms, 60 Hz tone to signal for the

participants to begin recalling as many words from the most recent list–in any order–they could remember for 30

seconds. Their vocalizations were recorded and later annotated offline using Penn TotalRecall

(http://memory.psych.upenn.edu/TotalRecall) to determine correct recalls. For each session the participant began

with a practice list of the same words that was not analyzed. The FR dataset includes 180 participants.

We group trials in the free recall task based on a number of criteria. 1st recalls refer to the first correct recall of a list

in a given retrieval period. ≥2nd recalls refer to all correct recalls after the first correct recall if any occurred for that

list. Intrusions include words said by the participant that were either from a previous list or were not from any list.

Categorized free recall task (catFR). A second variant of delayed free recall that participants performed was

identical to FR except that the words in each list were presented in pairs that were semantically related (Fig. 4a). A

word pool with 25 categories of 12 semantically-related words was created using Amazon Mechanical Turk to crowd

source typical exemplars for each category32. For the creation of each 12 word list, 3 categories were randomly

selected, and words were presented in sequential pairs but with no two pairs from the same category presented

back-to-back. This setup allowed us to study both adjacently (same pair) and remotely presented words from the

same category. Once again, each session began with a practice list of the same (unrelated) words that was not
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analyzed. The catFR dataset includes 104 participants with 65 of those participants also those that contributed to FR.

Intracranial electroencephalogram (iEEG) recordings. iEEG was recorded from subdural grids and strips

(intercontact spacing 10.0 mm) or depth electrodes (intercontact spacing 2.2-10.0 mm) using DeltaMed XlTek

(Natus), Grass Telefactor, Nihon-Kohden, or custom Medtronic EEG systems. Signals were sampled at 500, 512,

1000, 1024, 1600, 2000 or 2048 Hz but downsampled using a Fourier transformation to 500 Hz for all analyses

except for the control ripple detection using >250 Hz IED detection, where we downsampled to 1000 Hz and

removed participants recorded at <1000 Hz. Initial recordings were referenced to a common contact, the scalp. or

the mastoid process, but to eliminate potentially system-wide artifacts or noise and to better sense ripples locally we

applied bipolar rereferencing between pairs of neighboring contacts. Bipolar referencing is ideal as the spatial scale

of ripples is unlikely to exceed the inter-electrode spacing10, thereby allowing us to localize ripples by eliminating

system or muscle artifacts common to neighboring electrodes. Line removal was performed between 58-62 and

178-182 Hz using a 4th order Butterworth filter (120 Hz was in our sensitive ripple range and we did not find

artifacts in these frequencies).

Ripple detection. We utilized an algorithm recently shown to isolate ripples in human hippocampus7 that was

based on sharp wave ripple detection in rodents29 and interictal epileptiform discharge (IED) removal in epileptic

participants36. The local field potential (LFP) from bipolar iEEG channels was filtered using a 70-178 Hz bandpass

linear-phase Hamming-windowed FIR filter with a transition width of 5 Hz. The analytic signal envelope was then

calculated using a Hilbert transform and extreme values were clipped to 4 SD to eliminate biasing due to extreme

amplitudes29. The resultant signal was then squared, smoothed with a 40 Hz low-pass Kaiser-windowed FIR filter

with a transition width of 5 Hz, and the mean and SD were computed across all recalls in a session for that bipolar

channel to set a ripple detection threshold. We then defined candidate events as points where the unclipped, squared

envelope exceeded 4 SD above the mean. Each candidate event was expanded until the envelope fell below 2 SD

and was considered a ripple if it was longer than 20 ms, shorter than 200 ms, and didn’t occur within 30 ms of

another ripple, in which case they were merged. Finally, ripples within 50 ms of an IED were removed to avoid

potentially pathological events7, 8. IED detection followed a similar algorithm as outlined for ripples7, 36: LFP was

filtered using a 25-58 Hz bandpass linear-phase Hamming-windowed FIR filter with a transition width of 5 Hz,

Hilbert-transformed, squared, 40 Hz low-pass filtered, and events 4 SD above the mean across recalls for that

channel were considered IEDs.

Ripples were treated as discrete events throughout the paper (Fig. 1c, 2a, etc.) set to the beginning of each detected

ripple, although since most ripples were between 20-40 ms in duration (Extended Data Fig. 1a) differences in

timing relative to behavior were small. The ripple detection algorithm yields events that peak ∼90 Hz, similar to

recent work7–10. Notably, using a different algorithm shown to detect ripples in hippocampus8 and MTL10 yields

similar spectrograms and confirmed our main findings (Extended Data Fig. 4). Similarly, utilizing the primary

algorithm with a higher detection range (125-200 Hz), in an attempt to isolate ripple events from sharp wave

ripple–associated fast gamma28 once again confirmed our main findings with events that peaked ∼150 Hz

(Extended Data Fig. 5).
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Most participants had multiple MTL contacts within their montage, thereby providing multiple channels of iEEG for

every recall. As has been done in past work7, 10, since the spacing of clinical electrodes (2-10 mm) is much farther

than ripples are expected to travel in the brain (<0.2mm,28), we treated each recalled word for each channel as a

separate “trial”. Still, to ensure there was no redundancy across channels, we took three steps to guard against

ripples being counted more than once.

First, to investigate ripples aligned to the time of recall for each participant, we had to account for any recalls that

came close in time to a previous recall. Therefore, if a participant recalled a word within 2 s of a previous recall the

latter recall was removed from our sample. This process allowed us to create peri-stimulus time histograms (PSTHs)

aligned ±2 s to recall throughout the paper without double-counting ripples.

Second, after detecting ripples on each channel for a given participant, we created PSTHs (10 ms bins) for each

channel for each region (i.e. hippocampus, entorhinal cortex, and parahippocampal cortex). Then we measured the

pairwise correlations between the average PSTHs for each channel. For example, if a participant had 4 hippocampal

channels, we would measure 6 correlations. We then averaged these correlations and if they were ≥0.2 we removed

this session. We decided upon a 0.2 threshold based on 5 test participants during initial development of our

algorithms, and as shown in Extended Data Fig. 2a, for the FR dataset most sessions fell within a normal

distribution below 0.2.

Third, we manually inspected the raster plots (e.g. Fig. 2a & Fig. 4b) for every participant to ensure there was no

redundancy across electrodes. Since ripples are fairly low-frequency events (∼0.25-0.50 Hz, see PSTHs) it is clear

if two channels had consistently overlapping ripples since only 1-2 ripples would occur in the 4 seconds surrounding

each recall. Since as explained above ripples should not volume conduce across the intercontact spacing the

occasional pair of channels with overlapping ripples were exclusively those where two bipolar pairs shared the same

contact. In other words, if the first bipolar pair was LA1-LA2 and the second pair was LA2-LA3 the same ripples

might show up in each channel. This is likely due to the ripples being localized very close to the shared (LA2, in this

example) contact, thereby showing in both electrode pairs after subtracting background voltages in the surrounding

pairs (LA1 and LA3). In the end, as is clear from the final raster plots Figs. 2a & 4b, there is no indication of

redundant signals within the same participant after these series of checks.

There were also three steps we took to eliminate bad sessions from our sample. First, we only kept bipolar pairs with

average ripples rates across recalls for the session between 0.1-1.0 Hz. The resulting distribution of ripples rates for

FR is shown in Extended Data Fig. 2b. Second, for each channel in each session we measured the trial-by-trial

correlation (using 10 ms bins, as above) and removed channels >0.05 to ensure there were not consistent artifacts

across recalls. Indeed, the correlations across trials within a session rarely deviated beyond ±0.025 Extended Data
Fig. 2c. Third, we manually eliminated channels with bad electrodes as identified by the clinicians at the hospitals

or those with significant noise artifacts as detected by manual inspection of PSTHs. <5% of channels were removed

via the combination of these steps.
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Finally, we ran a control analysis where all electrodes in clinically-identified seizure onset zones (SOZs) were

compared to those electrodes not identified as in SOZs. participants without reports (<20%) were omitted from this

analysis.

Anatomical localization.

Pre-implant structural T1- and T2-weighted MRI scans were used to define the anatomical regions for each

participant in addition to a post-implant CT scan to localize electrodes in the participant brain. Electrode contacts

were semi-automatically localized using Voxtool (https://github.com/pennmem/voxTool) and the MRI and CT scans

were coregistered using Advanced Normalization Tools22 to align the brain regions to the electrode montage.

Bipolar electrode pairs in hippocampal subfields CA1 and DG were localized using a combination of

neuroradiologist labels (Joel M. Stein, Penn Medicine) and an automated segmentation process utilizing the T2

scan21. To localize electrode pairs in entorhinal and parahippocampal cortex, we used a combination of

neuroradiologist labels and an automated segmentation pipeline combining whole-brain cortical reconstructions

from the T1 scan in Freesurfer37, an energy minimization algorithm to snap electrodes to the cortical surface38,

along with boundaries and labels from the Desikan-Killiany-Tourville cortical parcellation protocol23, 39. The point

source of iEEG for bipolar electrode pairs was considered to be the midpoint between adjacent electrode contacts.

Exposed electrode contacts were typically 1-2 mm in diameter and 1.4-2.5 mm in length with the smallest contacts

0.8 mm in diameter and 1.4 mm in length.

Semantic and temporal clustering. To study contextual reinstatement we investigated the clustering between

contiguous recall transitions, in which we expect participants to recall words with semantic or temporal relationships

to the previous word they recalled. For semantic clustering, we focused on the catFR dataset, as this task was

specifically set up for participants to remember words drawn from semantic categories. As explained in the catFR

section above, each 12-word list in this task had words drawn from 3 categories, with the 4 words from the same

category presented in non-contiguous pairs. This setup provided a 2x2 matrix of possible transitions between

consecutive, correct recalls: semantic vs. non-semantically related words (i.e. from the same category or not) and

adjacent vs. remote words (i.e. words shown back-to-back during the encoding phase or not). This setup and the

resulting proportions of transitions for adjacent semantic, remote semantic, and remote unclustered (non-semantic)

are shown in Fig. 4a. Adjacent, unclustered transitions were only 3% of recalls so were excluded from analysis.

The remaining recalls were those that led to intrusions (12%) or the last word recalled from that list (28%) which

therefore had no transition. For each comparison between high- and low-clustering in Fig. 4h-i the groups of trials

that contributed to the PSTHs were pooled together across participants using the given categories and the ripple rates

were measured for each from -600 to -100 ms before recall. Many of the PSTHs show a rise in ripples well before

-600 ms (Fig. 4h-i & Extended Data Fig. 7a), and the effect sizes were typically larger when using a time range

-1100 to -100 ms before recall, but for consistency with the rest of the paper and our pre-registration we used only

the -600 to -100 ms time range.

We also tested temporal transitions using the FR dataset, which utilized 12 unrelated words per list so was more
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conducive to just temporal clustering. Here for each transition between correct recalls we found the distance (lag)

from those two words on the list. If the words were presented back-to-back on the list (either forwards or

backwards) the absolute lag was 1. We compared lag=1 recalls to absolute lag≥4 recalls as done in previous work34

to compare high- and low- temporal clustering.

Plots. Raster plots were formed by taking the time of each recall and plotting the time of the beginning of each

detected ripple. As explained in Ripple Detection, any recalls within 2 s of a previous recall were removed from

consideration in order to avoid double-counting ripples. Therefore, every ripple in the raster and PSTHs are unique

events. PSTHs were formed by binning ripples (100 ms bins) and averaging the raster plots across participants after

separating recalls into two groups: the first correct recall from each list or the remaining correct recalls from each

list (≥2nd). For visualization only, these PSTHs are shown triangle smoothed using a 5-bin window7 and a separate

linear mixed model with sessions nested in participants was run at each bin to calculate the error bars (SE). Ripple

rates are the frequency in Hz. within each bin. Dashed light gray horizontal lines (set to 0.35 Hz for the main

figures) for all PSTHs are there to serve as visual aids for comparison between figures.

In order to visualize the consistency of the PRE across participants we fit a separate linear mixed effects model for

each participant (Eq. 2) and plotted the t-scores for each given region (Figs. 2c, 3e-f, & 4e). We only plotted

participants with ≥20 trials of ≥2nd recalls.

To compare PRE between regions Fig. 3g we show pairwise comparisons of t-scores for those participants with

electrodes in at least two of our regions under study. For each bar only participants with ≥25 trials for both regions

being compared were included in these plots. The sample sizes of participants for each bar between the pre-recall

and post-recall tests (Figs. 3g-h) are slightly different based on whether the mixed effects model (4) converged, as

some participants had relatively sparse ripples rates.

Held out data and pre-registration The unparalleled size of our datasets (the FR dataset alone has 20x more trials

than previous studies of ripples in humans7, 8, 10) permitted us to come up with our initial hypotheses based on

analysis of only ∼40% of the FR and catFR datasets. That is, after creating the raster plots and ensuring all data was

in usable form via the data-cleaning steps outlined above, we used a random kernel to select a subset of participants

that had 40% of hippocampal trials for FR. We performed the same steps for catFR using a separate randomization

to select a subset of participants that had 40% of hippocampal trials. Since the 40/60% partition was based on trials

in the entirety of the hippocampus, the held out participants did not necessarily have 60% of data for the individual

subfields CA1 or DG, nor did they necessarily have 60% of data for entorhinal or parahippocampal cortex. However,

we expected by chance to have at least close to an ∼50% partition between the exploratory and confirmatory sets for

all tests. The number of trials or participants that go into each analysis are labeled on each plot or within the caption.

We registered these hypotheses on the Open Science Framework (https://osf.io/y5zwt), which contains specific

details on our randomization and shows initial figures for most analyses presented in this paper done with only the

exploratory ∼50% of the data. Throughout the paper, significance was assessed on the whole dataset.
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Data and code availability Data were collected as part of the DARPA Restoring Active Memory (RAM) initiative

and is available to the public: http://memory.psych.upenn.edu/Electrophysiological_Data. Code and processed data

for all plots and analyses is available at: http://memory.psych.upenn.edu/files/pubs/SakoKaha21.code.tgz. Questions

should be addressed to sakon@upenn.edu.
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Equations

Linear mixed effects models were run using the function MixedLM in the python package statsmodels with

restricted maximum likelihood and Nelder-Mead optimization with a maximum of 2000 iterations. The following

equations are written in pseudocode of the inputs to statsmodels.

To test the hypothesis that the PRE is stronger for recalls that were not the first from each list (Fig. 2b), we used the

linear mixed effects model:

ripple_rate∼recall_indicator ∗bin_indicator+(recall_indicator ∗bin_indicator|participant)+

(recall_indicator ∗bin_indicator|participant : session)
(1)

where recall_indicator is 0 for 1st recalls from each list and 1 for ≥2nd recalls from each list, bin_indicator is 0

for the bin -1600 to -1100 ms and 1 for the bin -600 to -100 ms aligned to time of recall,

(recall_indicator ∗bin_indicator|participant) are random intercepts and slopes for each factor and the interaction

in each participant, (recall_indicator ∗bin_indicator|participant : session) are random intercepts and slopes for

sessions nested in each participant, and ripple_rate is the ripple rate for each trial. The null hypothesis is no

difference in the interaction between recall type (1st vs. ≥2nd) and bin.

We also investigated PRE individually for each participant (Fig. 2c). We fit a linear mixed model on the

participant’s ≥2nd recall trials:

ripple_rate∼ bin_indicator+(1|session) (2)
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where 1|session is a random intercept for different sessions and the other factors are the same as in Eq. (1). The null

hypothesis is no difference in ripple rate between the -600 to -100 ms bin and the same bin aligned 1 second earlier.

Similarly, we assessed PRE for individual electrode pairs within participants so we could overlay t-scores on their

anatomical localizations (Fig. 1e & 4f). These t-scores came from the coefficient fit for bin_indicator in Eq. (2)

with trials selected only for single electrode pairs at a time.

To test the hypothesis that participants with better memories show a stronger PRE (reported in the caption of Fig.
2d), we used the linear mixed effects model:

∆ripple_rate∼num_recalls+(num_recalls|participant)+

(num_recalls|participant : session)
(3)

where num_recalls is the number of total recalls by the participant from the list the trial came from, ∆ripple_rate is

the difference in ripples from the bin -600 to -100 ms and -1600 to -1100 ms, and the other factors are random

effects for participant and session nested in participant as in Eq. (1). The null hypothesis is no difference between

number of recalls per list and change in ripple rate.

To make pairwise comparisons between regions to test if some regions have a stronger PRE than others (Fig. 3g),

we used the linear mixed effects model:

ripple_rate∼ region_indicator+(region_indicator|session) (4)

where region_indicator is 0 or 1 for two different regions (in the order shown beneath each swarm plot in Fig. 3g),

(region_indicator|session) is a random intercept and slope for each session, and ripple_rate is the ripple rate in the

bin from -600 to -100 ms aligned to recall. Note that every test is for bipolar electrode pairs in different regions for

the same participant, therefore only variance across sessions had to be accounted for. The null hypothesis is no

difference in PRE between regions. Significance for each of the 6 pairwise comparisons was assessed with an

FDR-corrected (Benjamini-Hochberg) t-test to correct for the 6 comparisons.

We also made pairwise comparisons between regions for post-recall ripples (Fig. 3h). The equation is the same as

Eq. (4), except the ripple rates were from the bin 200 to 700 ms after recall.

Finally, to compare PRE between two groups of trials, i.e. high- vs. low-clustering trials (Fig. 4h-j), correct vs.

intrusion trials (Fig. 2e), or SOZ vs. non-SOZ (Extended Data Fig. 6), we used the linear mixed effects model:

ripple_rate∼ group_indicator+(group_indicator|participant)+(group_indicator|participant : session) (5)

where group_indicator is 0 for the first group of trials and 1 for the second group of trials,

(group_indicator|participant) is a random intercept and slope for each participant,

(group_indicator|participant : session) is a random intercept and slope for each session nested in participants, and
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ripple_rate is the ripple rate in the bin from -600 to -100 ms aligned to recall. The null hypothesis is no difference

in PRE between the two groups.
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Extended Data
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Extended Data Fig. 1. Durations of ripples. a, The distribution of ripple durations for the detection algo-

rithm used throughout the main text for all ripples contributing to the ≥2nd recall PSTHs in Fig. 2b. b, The

distribution of ripple durations for the same ripple detection algorithm using only the higher frequency range

(125-200 Hz). c, The distribution of ripple durations for the Vaz et al. ripple detection algorithm10.
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Extended Data Fig. 2. Distribution of parameters used to remove bipolar pairs or sessions. a, Average

pairwise correlations between ripple rate PSTHs within each session for participants with multiple hippocampal

bipolar pairs. Sessions were removed if the pairwise correlation was ≥0.2 (dotted line), which would indicate

artifacts across channels. b, Average ripple rate at each hippocampal bipolar pair for each session. Bipolar pairs with

ripple rates <0.1 or >1.0 Hz. (dotted lines) were removed, which would indicate pairs likely not in hippocampus

or with noise artifacts, respectively. c, Average pairwise correlations between ripple rate PSTHs within each

hippocampal bipolar pair for single sessions. Bipolar pairs were removed for a given session if the correlation was

≥0.05 (dotted line), which would indicate artifacts across trials.
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Extended Data Fig. 3. PSTHs of ripples aligned to recall for less than or greater than 5 s of retrieval pe-
riod. a, Ripples aligned to time of recall for recalls that occurred in the first 5 s of the retrieval period. Trials are

combined for CA1 and DG to increase the sample size of ≥2nd recalls and due to their nearly identical effects in

Fig. 2b. PRE was significantly greater for ≥2nd trials (P = 0.0018, Eq. 1). b, Same, but for recalls occurring in the

final 25 s of the retrieval period. There was no significant difference in PRE (P = 0.35, Eq. 1).

27/31

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 7, 2021. ; https://doi.org/10.1101/2021.06.07.447409doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.07.447409
http://creativecommons.org/licenses/by-nc-nd/4.0/


Vaz et al (2019) ripple 
(80-120 Hz) with 

(≥250 Hz) IED detector

-200 -100 0 100 200
Time (ms)

25

75

125

175

225
Fr

eq
ue

nc
y 

(H
z)

R1065J

CA12553 ripples

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

-200 -100 0 100 200
Time (ms)

25

75

125

175

225

Fr
eq

ue
nc

y 
(H

z)

R1065J

DG1914 ripples

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

-200 -100 0 100 200
Time (ms)

25

75

125

175

225

Fr
eq

ue
nc

y 
(H

z)

R1334T

CA1199 ripples

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

-200 -100 0 100 200
Time (ms)

25

75

125

175

225

Fr
eq

ue
nc

y 
(H

z)
R1334T

DG187 ripples

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
Time from recall (s)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Ri
pp

le
 ra

te
 (e

ve
nt

s/
s)

1st recalls
≥2nd recallsCA1

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
Time from recall (s)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Ri
pp

le
 ra

te
 (e

ve
nt

s/
s)

1st recalls
≥2nd recallsDG

a

b

6858 trials
8726 trials

16306 trials
19971 trials

n.s.

Extended Data Fig. 4. PRE still present using detection method from Vaz et al (2019). a, Average spec-

trograms across ripples for same two participants shown in Fig. 1D for both CA1 and DG. Note the peak is still ∼90

Hz as in the original method. b, PSTHs for 1st vs. ≥2nd recalls for CA1 and DG using the Vaz et al. detector. The

PRE was significantly greater for ≥2nd recalls for CA1 (P = 2.5 X 10-4, Eq. 1) but not for DG (P = 0.13).
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Extended Data Fig. 5. PRE still present using higher frequency (125-200 Hz.) ripple detection method.
a, Average spectrograms across ripples for same two participants shown in Fig. 1D for both CA1 and DG. Note the

peak ∼150 Hz. b, PSTHs for 1st vs. ≥2nd recalls for CA1 and DG using high frequency detector. The PRE was

significantly greater for ≥2nd recalls for CA1 (P = 2.2 X 10-4, Eq. 1) and DG (P = 0.019).
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Extended Data Fig. 6. PRE occurs both within and outside seizure onset zone (SOZ). a, For all partici-

pants that had a clinically-defined seizure onset zone, we plotted PSTHs aligned to recall for all CA1 trials recorded

in and not in the SOZ (participants with no SOZ information were excluded) for ≥2nd recalls. Both trials in SOZ (P

= 1.6 X 10-13, Eq. 2) and not in SOZ (P = 1.6 X 10-16, Eq. 2) showed a significant PRE. However, PRE between

these groups of trials was not significantly different (P = 0.40, Eq. 5). b, Same as a, but for electrodes in DG. Both

trials in SOZ (P = 9.2 X 10-4, Eq. 2) and not in SOZ (P = 7.0 X 10-11, Eq. 2) showed a significant PRE. PRE
between these groups of trials was not significantly different (P = 0.071, Eq. 5).
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Extended Data Fig. 7. Contextual reinstatement and the PRE in dentate gyrus. a, PSTH of catFR trials

comparing adjacent semantic vs. remote unclustered trials, a test of contextual reinstatement vs. no contextual

reinstatement. Significance of coefficient comparing each trial type in mixed model (Eq. 5): held out data: DG,

P = 0.054; 100% of data: DG, P = 0.022 (FDR-corrected across 6 tests of Eq. 5, Figs. 4h-j & Extended Data
Fig. 7a-c). b, PSTH of catFR trials comparing remote semantic vs. remote unclustered trials, a test of semantic

reinstatement vs. no contextual reinstatement. Same significance test and conventions as a: held out data: DG,

P = 0.95; 100% of data: DG, P = 0.56 (FDR-corrected). c, PSTH of FR data (original task outlined in Figs. 1-3
comparing adjacent recalls (lag = 1) vs. remote recalls (lag≥4), a test of temporal reinstatement. Same significance

test and conventions as a: held out data: DG, P = 0.87; 100% of data: DG, P = 0.39 (FDR-corrected).
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