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Abstract 
Humans life depends on the functionality of molecules in the body. One of these essential 
molecules is the protein that plays a vital role in our life, such that its malfunction can cause 
severe damages. Such roles make protein structure and its functionality necessary to 
understand. One of the problems that help us understand the relation between protein 
structure is the well-known protein design problem which attempts to find an amino acid 
sequence that can fold into a desired tertiary structure. However, despite having an 
acceptable accuracy in protein design, this accuracy is an identical percentage of amino acid 
retrieving. At the same time, it is well-known that amino acids can replace each other in 
evolution while the function and structure of protein stay the same. Thus the designed 
sequence does not have the opportunity to be close to the target in the evolutionary aspect. 
This paper presents an extension to Wang's deep learning model, which uses evolutionary 
information in the Blosum62 substitution matrix to take amino acid replacement probability 
into account while designing a sequence. 
 

Introduction 
Proteins are one of the most important molecules in life. Different functionalities, e.g., 
helping the olfactory system in sensing smells[1], catalyzing metabolism reactions[2], and a 
vast majority of other significant roles in the human body, made this macromolecule an 
essential topic of study in biology. The functionality of protein comes from its most significant 
structure, the tertiary structure[3]. This structure defines an almost unique shape for the 
protein. This unique shape determines the ligands that the protein can interact with and how 
robust their binding is. Thus, misfolding in a protein causes issues with binding that affect its 
functionality. In addition, some neurological diseases arise from protein misfolding, e.g., 
Alzheimer's, Parkinson's, and Huntington's disease[4]. With all this importance in mind and 
PDB saturation in tertiary structures, understanding the relationship between primary and 
tertiary structures helps us in protein tertiary structure prediction and genome sequence 
functionality prediction. One of the approaches for understanding the relationship between 
primary and tertiary structures is  discovering a sequence of amino acids that can get a desired 
tertiary structure, referred to as the protein design problem (PDP). Some applications of PDP 
are designing proteins that can interact with specific targets[5] and designing biosensors[6]. 
 
 
The PDP takes a backbone-only tertiary structure of a protein as input and produces a 
sequence of amino acids as its output. The objective of the problem is that when the output 
amino acid sequence folds into a 3-Dimensional shape, the folded structure be similar to the 
input structure. PDP is an NP-Hard problem[7]. For a more solid perception let's assume a 
polypeptide chain with 100 residues, in this case, there are 10020 unique possible amino acid 
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sequences for this chain, and thus discovering the most compatible with desired structure is 
hard to solve. 
 
There are three broad classes of PDP algorithms, exact algorithms, heuristic algorithms,  and 
machine learning.  The first class contains exact algorithms such as dead-end elimination that 
can provide a guaranty to find a solution if it exists, but there is no guaranty for runtime in 
this class of algorithms; therefore, running such algorithms for PDP costs high in terms of 
runtime[8]. The second class of algorithms uses a heuristic algorithm to optimize a designed 
energy function and find a sequence that minimizes this energy function. PDP models 
abundantly use heuristic algorithms like Monte Carlo; however, running this kind of 
optimization algorithm needs a vast iteration at each design, and also, besides this runtime 
issue for heuristic algorithms, it is hard to design energy functions[9]. For example, PDP tools 
like RosettaDesign[10] and EvoDesign[11]use this approach. The last class of algorithms uses 
machine learning methods, especially  Deep Learning methods. Deep learning, just like other 
machine learning methods, uses data to learn a mapping between the input and desired 
output. Although these algorithms need a vast amount of data and considerable time for 
training concerning network architecture, they are more desirable because of their speed in 
usage. 
 
Machine learning approaches for PDP use previously collected protein structures and 
sequences to learn protein design. Thus, there is no need for designing an energy function. 
Due to machine learning capability, there were efforts, during recent years, to overcome the 
protein design problem using this technique and made considerable progress.  In 2014 Li et 
al. used a simple neural network with two hidden layers and extracted structural features as 
input[12]. After that, in 2018, O'Connell et al. developed a deep neural network with higher 
accuracy and more extracted features from data for the network input[13]. In the same year, 
Wang et al. provided a more complex model and the same method for input extraction from 
data[14]. The last developed model called DenseCPD by Qi et al. in 2020 uses a residual 
convolutional network and a representation of 3D structure to predict corresponding amino 
acid type for each residue[15]. These models, despite having acceptable accuracies lack 
quality in produced sequences.This inadequateness in the quality of generated sequences has 
two main reasons. The first is a supervised training method where the targets for output are 
one-hot encodings of amino acid classes and the second reason is lack of information in the 
input data. 
 
One-hot encoded targets for training cause the network to restore the wild-type sequence of 
structure, although some non-identical protein sequences have similar foldings due to their 
mutations in evolution. Also, feature selection is difficult to do, and selecting these features 
as a representation of a residue of the protein structure may not be a valuable input. The first 
three models have feature selection and identical retrieval of amino acids, and the last model, 
Dense CPD, despite having a new representation of protein structure that seems informative 
yet tends to retrieve identical amino acids to the target training sequence. 
 
The fact that each amino acid tends to replace specific amino acids can be interpreted by 
studying the evolution of protein sequences. This information is available in substitution 
matrices. Substitution matrices like Blosum encompass helpful information from protein 
sequence evolutionary data, which can help us understand which amino acids have the desire 
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to take place at another amino acid position in a sequence.  Substitution matrices take amino 
acid substitution scores and conserver blocks of protein into account and generate a matrice 
with substitution scores for each two amino acids based on evolutionary data. Therefore, 
amino acids with the desire to stay conserved have a lower substitution score[16]. 
 
In this paper, we review Wang's model in detail and then extend this model to obtain 
generated sequences with higher quality. 
 

Material and Methods 

As illustrated in Figure 1 Protein Design Diagram, we can explain PDP as a problem with inputs, 
outputs, and goals. The input is a backbone-only model of tertiary structure for a protein, and 
the output is a sequence of amino acids. The aim is to design the output sequence so that the 
resulting structure is similar to the input structure when it folds into a tertiary structure. 

 
Figure 1 Protein Design Diagram 

Among the provided machine learning methods for PDP so far, Wang's model has the second-

highest accuracy among reviewed models after DenseCPD, therefore due to the lack of 

resources to train DenseCPD, we decided to extend Wang's model.  

 

In the following sections, first, we discuss data collection, and after that, we review Wang's 

model. After Wang's model, we present an extension to Wangs model 

 

Dataset 
Data collection happens by retrieving protein structure and corresponding sequences from 
PDB with the following criteria as Wang's model does. (1) The structure determination 
method is x-ray crystallography, (2) The resolution of the tertiary structure is better than 2Å, 
(3) The length of the protein sequence is more than 50 amino acids, (4) The entry does not 
contain any DNA or RNA molecules, and (5)Amino acid sequences of all found entries have 
less than 30% pairwise identity. 
Furthermore, by cross-referencing the retrieved data with the OPM database[17], membrane 
proteins can be found and removed. Later, each entry containing D-amino acids vanishes from 
the dataset, and the non-amino acid residues of each protein also exclude from the structure. 
In the next step, each protein with a sequence length of 𝐿𝑠 split into 𝐿𝑠 clusters, where each 
corresponds to one of the residues. Each cluster contains a target residue and its 15 nearest 
neighbors regarding the 𝑐𝛼 − 𝑐𝛼  distance. For each cluster, all the neighbor and target 
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residues rotate and translate such that the 𝑐𝛼  atom of the target residue locates on the 
(0,0,0) point, the 𝑁 atom of the target residue lies on the −𝑥 axis, and the 𝐶 atom of the 
target residue takes place in the 𝑧 = 0 plane. 

Wang’s model 

In this section, we review the input, output, and architecture of Wang's model in detail. 

Input 
For input, feature extraction happens on each cluster, and each one of the clusters would 
have two types of feature sets; one set of features for the target residue of that cluster and 
the other set of features correspond to each of the neighbors in the cluster. 
Target residue feature set contains sine and cosine of three backbone dihedral angles 𝜙, 𝜓, 
and 𝜔, the total solvent accessible surface area(SASA) of backbone atoms, and the three 
stated secondary structures (helix, sheet, or coil) represented with a one-hot vector. As for 
the neighboring residues, the feature set for each one contains sine and cosine of three 
backbone dihedral angles phi, psi, and omega, the total solvent accessible surface area of 
backbone atoms, three stated secondary structures (helix, sheet, or coil) represented with a 
one-hot vector, 𝐶 − 𝐶 Euclidean distance to target residue, unit 𝐶 − 𝐶 vector from the target 
residue to the neighboring residue, unit 𝐶 − 𝑁 vector in the under process neighbor residue, 
unit 𝐶 − 𝐶 vector in the under process neighbor residue, and number of hydrogen bonds 
between the target and the neighbor residue. Thus, the feature extraction procedure for each 
cluster results in 10 features for the target residue and 24 features for each neighboring 
residues. 

 

Output 
We perform one-hot encoding of the amino acid type for each cluster's target residue as 
output targets. Thus, the model outputs a vector of size 20 that we interpret as probabilities 
of different amino acid types for the input cluster. 
 

Model 
The presented model by wang et al., as presented in Figure 2: Architecture of Wang's model 

has two sub-networks and three final layers before the output layer. The sub-networks are 

called residue probability network and weight network. The residue probability network tends 

to find primal probabilities for the class of target residue by seeing this residue and one of its 

neighbor residues features, and the Weight network produces a weight by considering the same 

input as the residue probability network as well. The output of two subnetworks is then 

multiplied by each other and kept as part of the input for later layers. This procedure executes 

concurrently for 15 nearest neighbors of the target amino acid, and then the multiplied result 

of all is concatenated to each other. The concatenated result feeds into three layers of densely 

connected layers, and at the end, a softmax layer containing 20 nodes outputs a probability 

vector. 

This network mimics the behavior of convolutional networks, which sees not only the target 

input but also its neighbors. 
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Figure 2: Architecture of Wang's model 

  

 

 
 

Extending wang’s model 

Input and architecture 
The input and architecture for our extended model is the same as Wang’s model and no 
change happens. 

output 
A solution to the quality of sequences lies in the way they evolve. So instead of training the 
network with one-hot encoded targets, it is rational to use a vector that considers other 
probabilities. We use the characteristic of the Blosum matrices and present a new target of 
training that contains probabilities of multiple amino acid classes. We chose Blosum62, which 
contains substitution information from proteins with less than 62% identity[18]. 
To present these scores as targets of training the network, preprocessing is necessary. To 
transform scores into probabilities, we applied the softmax function to each row of the 
Blosum62 matrix. Eventually, these converted rows are considered as targets and replaced 
with one-hot encoded vectors for loss calculation. 
 

Results 
We used Keras3 for the implementation of both of the networks, as the Wang et al. paper 
suggested. Also, all activations are ReLU, the used loss is categorical cross-entropy with a 
learning rate of 0.01 and a Nesterov momentum of 0.9, and the batch size is 128. 
 
Because the number of clusters was numerous, 100,000 clusters were selected randomly and 
split into three non-redundant train, test, and validation datasets with sizes of 70,000, 15,000, 
and 15,000. The same results as the original model were first regenerated. Then, after 
modifying and training the network on the same data, we compared the results of both the 
original and extended models on the test set. 
 
 
 
 
 
 

 
3 https://keras.io/ 
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 Test Accuracy 

Wang’s model 36.39% 

Extended model 44.89% 

DenseCPD 55.53% 

Table 1: Acuuracy of models on amino acids identical prediction 

Comparision shows a remarkable improvement in sequence identity and accuracy compared 
to Wang's model and acceptable accuracy regarding the data sample and training time 
compared to the DenseCPD. 
 
Furthermore, we design and analyze sequences for two proteins that do not exist in the train, 
test, and validation sets. These two proteins have PDB ID 1HOE and 1QV1 with lengths of 74 
and 187 respectively.  
 
Analyzing includes different tools and comparison: 

1. aligning the designed and natural protein sequences using PSI-Blast 
2. predicting the 3-Dimensional structures, and aligning them with the original structure 

using I-Tasser and TM-Align 
3. comparison of extracted secondary structures, dihedral angles, and SASA from 

predicted tertiary structures using DSSP 
4. predicting the subcellular localization using LocTree3 
5. examining predicted binding site of each sequence using ProNA2020 

PSI-Blast alignment 
PSI-Blast can align multiple sequences and returns alignment score, E-value, and identity of 
sequences[19]. The alignment score is the total score of alignment calculated by a 
substitution matrix, and the E-value reflects the probability of finding a match for the query 
sequence in the database. As we can see in Table 2: Analyzing sequences quality using PSI-
Blast alignment with natural sequence, there is a significant improvement in both score and 
E-value for the sequence designed by the extended model. Even though the identity of 
Wang's generated sequence is higher than the extended model for 1QV1, we can see the 
extended model gets higher scores and lower E-value. For the other protein, 1HOE, Wang's 
designed sequence has a very shallow alignment; therefore, no score and E-value are 
available, and also, the identity is lower than the extended model's designed sequence. 
 

 1QV1 1HOE 

Model Score E-Value Identity Score E-Value Identity 

Wang 31.2 1 × 𝑒−5 52.50% - - 32.34% 

Extended 164 𝟒 × 𝒆−𝟓𝟔 49.09% 65.5 𝟕 × 𝒆−𝟐𝟏 50% 
Table 2: Analyzing sequences quality using PSI-Blast alignment with natural sequence 

3-Dimensional structures comparison 
Since protein folding is also an NP-hard problem and there is no deterministic solution, we 
use a folding prediction tool named I-Tasser[20]. For comparison, first, we use the I-Tasser to 
predict a structure for the natural sequence of the protein, and then we predict the structure 
for the two designed sequences. In all predictions, we use the first model that I-Tasser 
provides. Next, we use TM-Align[21], a tool for tertiary structure alignment, and align 
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predicted tertiary structures for natural and the two designed sequences to measure the 
closeness of predicted 3-Dimensional structures. Two factors describe this similarity; root-
mean-squared deviation (RMSD) and alignment score (TM-Score). A lower RMSD indicates a 
better match of atomic positions, and a higher TM-Score means the two aligned structures 
are close in terms of quality. 
 

 1QV1 1HOE 

Sequence RMSD TM-Score RMSD TM-Score 
Natural 0.71 0.96057 0.49 0.97615 

Rosetta 0.64 0.98886 2.14 0.74829 

Extended 0.74 0.74829 0.77 0.96262 
Table 3: Comparison of predicted structures with the natural structure I-Tasser and TM-Align 

Secondary structures, dihedral angles, and SASA comparison 
Next, we extract dihedral angles phi and psi, solvent accessible surface area, and secondary 
structures from predicted structures using the DSSP program[22]. The dissimilarity function 
used to compare angles and SASA is root-mean-squared-error (RMSE) because the numbers 
are continuous; consequently, a lower RMSE presents a higher similarity. 
 
  
 
 

 1QV1 1HOE 

Model 𝑅𝑀𝑆𝐸𝑆𝐴𝑆𝐴 RMSE𝜙 𝑅𝑀𝑆𝐸𝜓 𝑅𝑀𝑆𝐸𝑆𝐴𝑆𝐴 RMSE𝜙 𝑅𝑀𝑆𝐸𝜓 

Natural 42.62 36.69 40.12 41.40 56.22 84.64 
Rosetta 40.19 48.59 49.18 45.05 64.38 105.2 

Extended 42.77 41.61 60.10 43.92 55.63 96.70 
Table 4: RMSD of extracted dihedral angles and SASA to the dihedral angles and SASA of real structure using DSSP 

 
Continuing the comparisons, next is the secondary structure. For this comparison, first, we 
use the DSSP tool and extract secondary structures of retrieved PDB entry for protein, 
predicted structure for the retrieved PDB, and the predicted structure of the designed 
sequences. For each structure, we build a sequence of its residues secondary structure and 
then measure the accuracy. Besides accuracy, we also measure precision and recall to show 
the reliability of the accuracy. 
 

 1QV1 1HOE 

Model Accuracy Precision Recall Accuracy Precision Recall 

Natural 86.63% 81.46% 86.48% 67.56% 72.86% 72.04% 

Rosetta 87.70% 79.63% 86.23% 58.10% 52.82% 54.67% 
Extended 88.23% 85.96% 90.93% 70.27% 75.76% 68.50% 

Table 5: Accuracy, precision, and recall for the extracted secondary structures from predicted structures and natural 
secondary structures 
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Subcellular localization prediction 
For the subcellular localization prediction, we use a tool named LocTree3, which predicts the 
subcellular localization of input protein sequence among 18 classes for eukaryotes[23]. We 
report confidence alongside the prediction of the GO terms. 
 

Binding sites prediction and comparison 
Eventually, we compare the binding sites of each sequence. To do so, first, we use ProNA2020 
to predict whether each position of the sequence does belong to a binding site or not and 
generate a binary binding site sequence[24]. Afterward, we compare the binding site 
sequence of designed sequences with the binding site sequence of the natural protein 
sequence. As a measurement, we use accuracy, which shows us how good the predicted 
binding sites of the designed protein can be close to the prediction of sites for the natural 
sequence. 
 
 
 
 
 
 
 
 
As we can see for most of the comparisons, our extended model generates a well-quality 
sequence and can do better than the Rosetta. However, Rosseta has a better performance on 
the 1QV1, which is almost twice longer than 1HOE. Nevertheless, the extended deep learning 
model has the advantage of run time, which is significantly lower than the Rosetta and 
generates sequences that are slightly different from Rosetta generated sequences in terms 
of quality. 
 

Conclusion 
In this paper, we investigated the protein design problem and its methods. One of the 
methods used machine learning, but despite having more than 30% identity of output to the 
natural sequence of the tertiary input structure, the generated sequences had low quality 
such that no natural protein sequence would have those characteristics. We provided an 
extension to this model, named Wang's model, and with such a minimal extend achieved 
much better results. 
  

 1QV1 1HOE 

Sequence subcellular localization confidence subcellular localization confidence 

Natural GO:0005737 30% GO:0005576 97% 

Rosetta GO:0005737 37% GO:0005576 73% 

Extended GO:0005737 42% GO:0005576 79% 
Table 6: Subcellular localization prediction for natural sequence and designed sequences 

 1QV1 1HOE 
Rosetta 91.89% - 

Extended 93.24% 68.91% 
Table 7: Accuracy of predicted binding sites comparing to predicted binding site of natural sequence 
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