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1. Given the biodiversity crisis, we more than ever need
to access information on multiple taxa (e.g. distribution,
traits, diet) in the scientific literature to understand, map
and predict all-inclusive biodiversity. Tools are needed
to automatically extract useful information from the ever-
growing corpus of ecological texts and feed this infor-
mation to open data repositories. A prerequisite is the
ability to recognise mentions of taxa in text, a special
case of named entity recognition (NER). In recent years,
deep learning-based NER systems have become ubiqui-
tous, yielding state-of-the-art results in the general and
biomedical domains. However, no such tool is available
to ecologists wishing to extract information from the
biodiversity literature.
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2. We propose a new tool called TaxoNERD that provides
two deep neural network (DNN) models to recognise
taxonmentions in ecological documents. To achieve high
performance, DNN-based NER models usually need to
be trained on a large corpus of manually annotated text.
Creating such a gold standard corpus (GSC) is a labori-
ous and costly process, with the result that GSCs in the
ecological domain tend to be too small to learn an ac-
curate DNN model from scratch. To address this issue,
we leverage existing DNN models pretrained on large
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biomedical corpora using transfer learning. The perfor-
mance of ourmodels is evaluated on fourGSCs and com-
pared to the most popular taxonomic NER tools.
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3. Our experiments suggest that existing taxonomic NER
tools are not suited to the extraction of ecological infor-
mation from text as they performed poorly on ecologically-
oriented corpora, either because they do not take ac-
count of the variability of taxon naming practices, or
because they do not generalise well to the ecological
domain. Conversely, a domain-specific DNN-based tool
like TaxoNERD outperformed the other approaches on
an ecological information extraction task.
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4. Efforts are needed in order to raise ecological informa-
tion extraction to the same level of performance as its
biomedical counterpart. One promising direction is to
leverage the huge corpus of unlabelled ecological texts
to learn a language representationmodel that could ben-
efit downstream tasks. These efforts could be highly
beneficial to ecologists on the long term.
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1 | INTRODUCTION47

Ecology is rapidly evolving into a data-intensive science that increasingly relies on massive datasets and global knowl-48

edge bases to address questions at broader spatial and temporal scales (Michener and Jones, 2012; Soranno and49

Schimel, 2014; Hallgren et al., 2016; Farley et al., 2018). Although large efforts are being made to elevate research50

data to be first-class scientific outputs and to promote findable, accessible, interoperable and reusable (FAIR) data51

(Wilkinson et al., 2016), the overall scientific literature is still a major container for much of the available information52

on organisms, populations, communities and ecosystems. In addition to the hundreds of millions of pages that make53

up the historical biodiversity literature, thousands of ecology papers are published every year (Cornford et al., 2020).54

This represents an enormous amount of unstructured informationwhich is hardly exploitable for large-scale ecological55

studies, unless we have the tools to automatically extract the relevant information to be fed into open biodiversity56

databases in a standardized form (Thessen et al., 2012).57

Information extraction (IE) is the task of automatically extracting structured information from machine-readable58

documents, usually from textual corpora expressed in natural language form. Information extraction and its subtasks59

are key components of a variety of high-level Natural Language Processing (NLP) applications, including knowledge60
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F IGURE 1 A simple information extraction pipeline for knowledge base population. This pipeline takes a corpus
of textual documents as input and generates a collection of factual knowledge represented by triples (entity, relation,
entity) as output. This network of interconnected entities forms what is commonly known as a knowledge graph (Ji
et al., 2020). Knowledge graphs are a cornerstone of modern artificial intelligence applications.

base population (KBP) that is of particular interest for ecologists. KBP consists of discovering new facts about entities61

from a large corpus of text in order to fill an incomplete knowledge base. In the ecological domain, this includes facts62

about organism occurrences, phenotypes, habitats, interactions, etc. Such statements are commonly represented in63

the form of triples (subject, predicate, object), where the subject and the object are entities that have some relation-64

ship between them as indicated by the predicate. In most cases, the subject is a taxon, while the object may be a65

geographical location, the value of a trait measurement, a type of habitat or another taxon depending on the nature66

of the extracted piece of information. Extracting triples from text to populate a knowledge base is challenging, as it67

requires the ability to detect mentions of entities of interest in text (= named entity recognition), disambiguate and68

normalise each textual mention by matching it to the corresponding entity in the knowledge base (= named entity69

normalisation or disambiguation), and find the semantic relationships that hold between pairs of entities (= relation70

extraction). A typical information extraction pipeline for knowledge base population is depicted in Fig. 1.71

This paper focuses on the first subtask of information extraction, called named entity recognition (NER), and more72

specifically, on a special case of NER that consists in detecting mentions of taxa in textual documents. Taxonomic73

entity recognition is critical for augmenting ecological knowledge bases with new facts, as much ecological knowledge74

refers to some taxonomic unit, whether at the species or at a higher taxonomic level. Identifying taxon names on75

textual documents is a challenging task. Taxonomic NER systems have to cope with the diversity of taxon naming76

practices (accepted scientific names with or without authorship information, synonyms, vernacular names in different77
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languages, acronyms and other abbreviations...), the homonymy of some taxon names with common words, and the78

ambiguity arising from the use of the same common name to refer to distinct species (Gerner et al., 2010).79

Previous efforts in taxonomic NER have mainly been directed towards the identification of organism mentions in80

the biomedical literature. Recognising species and linking them to relevant genes or proteins is indeed critical to the81

success of many downstream tasks such as gene normalisation and protein-protein interaction extraction (Pafilis et al.,82

2013). As a consequence, most existing taxonomic NER systems have been designed for biomedical use cases (Gerner83

et al., 2010; Naderi et al., 2011;Wei et al., 2012; Pafilis et al., 2013; Giorgi and Bader, 2018; Lee et al., 2020), although84

seminal works focused on the extraction of taxonomic names from biodiversity legacy literature (Koning et al., 2005;85

Sautter et al., 2006). Several taxonomic NER systems have been developed over the years, using different approaches86

that can generally be categorised as being based on rules, dictionaries, or machine learning (ML). In addition, a number87

of tools fall into the category of hybrid systems, combining machine learning with either dictionaries or sets of rules88

(Naderi et al., 2011; Akella et al., 2012).89

Rule-based systems (Koning et al., 2005; Sautter et al., 2006) use handcrafted rules to detect mentions of taxa90

in text, taking advantage of regularities in taxon naming conventions, e.g. the structure of binomial (Linnean) nomen-91

clature for species names. Consequently, these approaches are more appropriate for detecting scientific names and92

do not require any updates as taxonomies are revised or new species are discovered. However, they are often unable93

to identify alternative forms of taxon names such as vernacular names, which do not follow binomial naming con-94

ventions, resulting in a low recall. In addition, these methods generally have a low precision as they tend to mistake95

non-taxonomic scientific terms for taxon names.96

Dictionary-based systems (Gerner et al., 2010; Pafilis et al., 2013), on the other hand, are able to recognise taxon97

names with a high precision by using a well-curated and comprehensive list of taxon names against which chunks98

of text are matched to identify taxonomic entities. An advantage of dictionary-based approaches over rule-based99

ones is that they are equally well suited for recognising all types of taxon names. On top of that, entity normalisation100

is straightforward since dictionaries are generally derived from taxonomic databases such as the NCBI Taxonomy101

(Federhen, 2002). Although these databases contain a huge number of taxonomic names, they cannot be considered102

exhaustive as new taxa are continuously described. Therefore, these systems are often characterised by a low recall,103

as they cannot handle new or abandoned taxon names, misspellings or other unexpected naming variants. In addition,104

dictionary-based approaches cannot resolve the ambiguity due to homonymy between taxon names and common105

words as matching is context-agnostic.106

Machine learning-based systems replace human-curated rules or fixed lists of names by a statistical model that107

has been trained to recognise taxon mentions from a feature vector representation of input data (Campos et al., 2012).108

ML-based systems can be trained to recognise any type of taxon names, depending on whether or not these names109

have been annotated in the training corpus. ML-based tools are also more robust to new names and misspellings110

than rule-based and dictionary-based systems. Besides, contextual features can be used to deal with ambiguous111

names, e.g. homonyms. The main drawback of these approaches is their dependency on annotated documents,112

which are difficult and expensive to obtain. Furthermore, earlier feature-based ML algorithms rely heavily on hand-113

crafted domain-specific features, requiring considerable engineering skills and domain expertise and leading to highly114

specialised solutions.115

In recent years, deep learning-based NER models have become ubiquitous and have achieved state-of-the-art116

results in a large number of domains (Li et al., 2020). In particular, remarkable progress has been made in biomedical117

information extraction through the widespread application of deep learning techniques (Liu et al., 2016; Perera et al.,118

2020). Deep learning refers to a class of machine learning techniques that use multiple processing layers (typically119

artificial neural networks) to learn latent representations of data with multiple levels of abstraction (Goodfellow et al.,120
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2016). The ability of deep neural networks (DNNs) to auto-detect hidden features in complex, highly dimensional121

data removes the burden of task-specific, knowledge-centred feature engineering. In return, their performance largely122

depends on the availability of large amounts of high quality, manually annotated data in the form of gold standard123

corpora (GSCs). Indeed, DNNs usually have a large number of parameters, which make them overfit on small training124

datasets, with the consequence that the resulting models perform poorly on unseen data. However, creating a GSC125

is laborious and time-consuming, requiring expertise for annotating domain-specific data. As a consequence, GSCs126

in the ecological domain are few in number and small in size. To tackle the problem of training data shortage, several127

techniques have been proposed, including data augmentation (Dai and Adel, 2020) and transfer learning (Giorgi and128

Bader, 2018; Qiu et al., 2020).129

Over the last few years, a number of open-source NLP toolkits featuring DNN-based NER solutions have been130

developed, with an emphasis on accessibility for non-expert users (Dernoncourt et al., 2017; Neumann et al., 2019;131

Wolf et al., 2019; Giorgi and Bader, 2020). While these toolkits often provide deep models for biomedical NLP, there132

is so far no such models for ecological applications. As new use cases emerge, including the need to extract factual133

statements from the ecological literature to augment biodiversity databases with up-to-date information, ecological134

information extraction sees a resurgence of interest from the community (Tamaddoni-Nezhad et al., 2013; Thessen135

and Parr, 2014; Compson et al., 2018; Nguyen et al., 2019; Chaix et al., 2019;Muñoz et al., 2019). However, ecologists136

still lack the tools to build biodiversity information extraction pipelines with state-of-the-art performance.137

This paper addresses the task of taxonomic NER as a critical component of such pipelines, and a first step towards138

the development of a toolkit of state-of-the-art algorithms that would help the ecology and evolution community139

make the most of the ever-growing corpus of texts on biodiversity. More specifically, we propose a new tool called140

TaxoNERD1 (Taxonomic Named Entity Recognition using DeepModels) that uses deep neural networks to recognise141

taxonomic entities in the ecological literature. TaxoNERD addresses two challenges of taxonomic NER in these do-142

mains: the diversity of taxon naming practices and related problems (e.g. homonymy, ambiguity or variability), and the143

relatively small size of the few GSCs available for this task. It is our hope that making such tools accessible for ecolo-144

gists and practitioners will pave the way towards the development of new tools for ecological information extraction145

and their wider adoption by the community.146

2 | MATERIALS AND METHODS147

The following sections introduce the two network architectures used to train TaxoNERD’s taxonomic NER models, as148

well as the pretrain-and-finetune approach adopted to learn these models from an ecological gold standard corpus.149

We also describe the corpora andmetrics used for evaluation, and briefly present the existing NER tools against which150

we compared our approach.151

2.1 | TaxoNERD’s model architectures152

2.1.1 | spaCy’s NER model153

spaCy2 is an increasingly popular open-source library for advancedNatural Language Processing in Python. spaCy pro-154

vides a variety of practical tools to build information extraction or natural language understanding systems, including155

pretrained DNNmodels for named entity recognition, part-of-speech tagging, dependency parsing, text classification156

1https://github.com/nleguillarme/taxonerd
2https://spacy.io/
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F IGURE 2 spaCy’s generic neural architecture for named entity recognition.

and more. spaCy’s models have emerged as the de facto standard for practical NLP due to their speed, robustness157

and close to state of the art performance. In addition, spaCy makes it easy to create, train, manage, deploy and use158

custom NLP pipelines. For all these reasons, we choose to build upon the spaCy library to create our taxonomic NER159

system.160

161

spaCy’s NER models rely on a pretty generic neural architecture, depicted in Fig. 2. This architecture consists of162

two subnetworks. The first subnetwork learns an embedding model whose role is to embed tokens (≈ words) into a163

continuous vector space. A word embedding is a low-dimensional real-valued vector representation of a word (Zhang164

et al., 2016). Word embeddings encode the meaning of the words they represent in the sense that the words that are165

closer in the vector space are expected to be similar in meaning. There are two kinds of word embeddings (Qiu et al.,166

2020): non-contextual and contextual embeddings.167

Non-contextual embeddings. Aword ismapped to a single context-independent vector representation using a lookup168

table. This lookup table is usually learned from a large corpus of unlabelled text using self-supervision (Mikolov169

et al., 2013; Pennington et al., 2014). One of the main limitations of non-contextual word embeddings is that170

words with multiple meanings are conflated into a single representation. Therefore, these embeddings cannot171

handle polysemy (one word having multiple meanings) and homonymy (words that share the same spelling but172

with different meanings) properly. Another issue is the out-of-vocabulary problem: models can only produce173

meaningful embeddings for words that have been seen in the training corpus.174

175

Contextual embeddings. To address the issue of polysemy and the context-dependent nature of words, contextual176

word embeddings move beyond word-level semantics in that each token is associated with a representation that177

is a function of the entire input sequence, thereby capturing uses of words across varied context. Contextual178

embeddings are typically obtained by mapping each input token in the sequence to its non-contextualised repre-179

sentation first, before applying an aggregation function to encode context. This aggregation function is usually180

modelled by a deep neural network, which is then called a neural contextual encoder. There are many possible181

architectures for this encoder (see Li et al. (2020) and Qiu et al. (2020) for a survey). Contextual embeddings pre-182

trained on large-scale unlabelled corpora achieves state-of-the-art performance on a wide range of NLP tasks.183
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(a) Architecture of TaxoNERD’s en_ner_eco_md NER model. (b) Architecture of TaxoNERD’s en_ner_eco_biobert NER model.

F IGURE 3 TaxoNERD’s deep NER models differ in the architecture of their embedding layer. The
en_ner_eco_model combines hash embeddings and CNN-based contextual encoding for speed, while the
en_ner_eco_biobert model leverages a Transformer-based pretrained language model called BioBERT for accuracy.

The second subnetwork assigns class labels to non-overlapping spans of tokens using a probabilistic transition-184

based chunking model similar to Lample et al. (2016). This model relies on a stack data structure to incrementally185

construct chunks of the input sequence and assign a class label to those chunks that correspond to named entities.186

At each time step, the possible actions (add a token to the stack, assign a label to the current chunk...) are scored187

by feeding a representation of the current state of the stack to a multilayer neural network. This representation is188

obtained by combining the embeddings of the tokens that make up the stack. Then the action with the highest score189

is chosen and the stack moves to another state. The process is repeated until the algorithm reaches a termination190

state.191

2.1.2 | TaxoNERD’s NER models192

TaxoNERD offers the user a choice of twoNERmodels, with a different balance between speed and accuracy. The two193

models use the same two-layer architecture as spaCy’s NER models but differ in the architecture of their embedding194

layer.195

en_ner_eco_md: a model designed for speed.196

The en_ner_eco_md model (Fig. 3a) is a taxonomic NER model that uses spaCy’s standard Tok2Vec layer to generate197

contextual embeddings for the input tokens. This embedding layer is itself composed of two subnetworks.198

The first subnetwork embeds input tokens into context-independent word vectors. The model first extracts a199

number of subword features (normalised string form, prefix, suffix and word shape), each of which is embedded200

separately using hash embedding (Svenstrup et al., 2017). Subword representations are concatenated and the resulting201
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vector is passed through a feed-forward subnetwork to generate a word vector for the input token. Enriching word202

vectorswith subword information is a common approach for tackling the out-of-vocabulary problem (Bojanowski et al.,203

2017). In addition to subword features, spaCy’s standard embedding layer can use pretrained word vector tables as204

additional features, which sometimes results in significant improvements in accuracy. The en_ner_eco_mdmodel uses205

a 50kword vector table trained on a biomedical corpus and provided as part of scispaCy3, a Python library for practical206

biomedical/scientific text processing which heavily leverages the spaCy library (Neumann et al., 2019).207

The second subnetwork encodes context into the context-independent embeddings generated by the first subnet-208

work using a convolutional neural network (CNN). CNNs are a class of deep neural networks, most commonly applied209

to image processing and computer vision, that uses a series of convolution layers to aggregate local information from210

multiple pixels/words/... and generate low-dimensional representations of the input data that successfully captures211

the spatial and/or temporal dependencies (Brodrick et al., 2019). The basic building block of spaCy’s contextual en-212

coder consists of a 3-gram convolution layer, that basically concatenates the vector representations of a token and213

its two neighbours, followed by a multi-layer perceptron that maps this concatenated vector to a lower dimensional214

output vector. This whole block (3-gram convolution layer + multi-layer perceptron) enables to relearn the meaning215

of a word (i.e. its embedding) based on its direct neighbours. By stacking more such blocks in the CNN architecture,216

the size of the surrounding context used to recalculate the embedding of a word increases, thus incorporating more217

contextual information in the representation.218

The NER model resulting from the combination of CNN-based word embedding and transition-based sequence219

labelling is an efficient alternative to the standard solutions based on recurrent neural networks (RNNs) which have220

long dominated the NLP landscape (Lample et al., 2016; Giorgi and Bader, 2018; Li et al., 2020) and are now gradually221

being deposed by the Transformer model (Vaswani et al., 2017). In particular, spaCy’s NER model is smaller and222

computationally cheaper. It therefore runs much faster than these state-of-the-art deep models, while delivering223

close performance.224

en_ner_eco_biobert: a model designed for accuracy.225

Since version 3.0, spaCy has added support for Transformer models. Transformers (Vaswani et al., 2017) are a family of226

neural network architectures that utilise the mechanism of self-attention, i.e. weighing the influence of different parts227

of the input sequence, to capture long-range dependencies in sequential data. Transformers allow for significantly228

more parallelisation than sequence models like CNNs and RNNs, and therefore reduced training times. Due to this229

feature, Transformers have rapidly become the mainstream architecture for many NLP problems, replacing older RNN230

models such as the long short-term memory (LSTM), and bringing NLP to a new era.231

Transformers are now commonly used to pretrain language representation models from a large amount of unan-232

notated text. In contrast to GSCs, large-scale unlabelled corpora are relatively easy to construct. Such corpora can be233

leveraged by learning contextualized word representation models from them in an unsupervised manner. Then, with234

minimal architectural modification, the resulting pretrained languagemodel can be applied to various downstreamNLP235

tasks via a procedure called transfer learning Giorgi and Bader (2020). The use of word embeddings extracted from236

pretrained language models has brought significant performance gains on a number of NLP tasks, including named237

entity recognition. Hundreds of pretrained language models based on the Transformer architecture are now available238

through libraries such as HuggingFace’s Transformers (Wolf et al., 2019), including general purpose language represen-239

tation models such as BERT (Devlin et al., 2018) and XLNet (Yang et al., 2019), and domain-specific language models,240

such as SciBERT (Beltagy et al., 2019) for scientific text processing and BioBERT (Lee et al., 2020) for biomedical text241

mining. To our knowledge, there is no pretrained language model for ecological or evolutionary applications.242

3https://allenai.github.io/scispacy/
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In the en_ner_eco_biobertNERmodel (Fig. 3b), spaCy’s standard Tok2Vec embedding layer is replaced byBioBERT243

(Bidirectional Encoder Representations fromTransformers for Biomedical TextMining), a domain-specific language rep-244

resentation model pretrained on large-scale biomedical corpora (PubMed abstracts and PMC full-text articles). In the245

absence of a Transformer model pretrained on ecological corpora, we chose a language model whose domain has com-246

monalities with ecology and evolution, and which shares with them a number of common entities of interest, notably247

taxa. In addition, Lee et al. (2020) obtained state-of-the-art results in a number of biomedical NLP tasks, including248

named entity recognition, relation extraction, and question answering, using BioBERT word vector representations.249

A recent survey also showed that of 6 open-source language models, BioBERT performed best on biomedical tasks250

Lewis et al. (2020).251

Large pretrained Transformer models are tremendously effective for many NLP tasks. However, they have two252

main limitations. First, they usually require a large training corpus and easily overfit on small ormodestly-sized datasets.253

Although large-scale unlabelled corpora are far easier to obtain than large-scale GSCs, building a corpus large enough254

(several billion words) to learn such a model requires significant engineering efforts. Second, inference in large Trans-255

former models is prohibitively slow and expensive due to the use of self-attention in multiple layers. Therefore, the256

en_ner_eco_biobert model is more suitable for use cases where accuracy is more important than computation time.257

2.2 | Training TaxoNERD’s models using transfer learning258

Performance of DNN-based approaches to NER largely depends on the availability of large amounts of high quality,259

manually annotated data in the form of gold standard corpora. The deeper the network architecture, the better the260

expected performance, but a much larger dataset is needed to fully train model parameters and prevent overfitting.261

In domains where GSCs tend to be small, as is the case in ecology and evolution, training such large neural networks262

from scratch, starting with randomly initialised weights, would overfit the training set badly, which would cause the263

resulting models to perform poorly on unseen data.264

One approach to get around this problem is to first pretrain a DNN on a source task for which a large dataset is265

available. Then, the pretrained weights of this network are used to initialise the weights of a second network, which266

we continue to train on our typically smaller dataset for the target task (Fig. 4). This process, called transfer learning,267

has been shown to improve generalisation of the model, reduce training time on the target dataset, and reduce the268

amount of labelled data needed to obtain high performance (Giorgi and Bader, 2018). There are basically two common269

ways to transfer knowledge learned from one task or domain to another: feature extraction and fine-tuning.270

Feature extraction. The pretrained model is used as an off-the-shelf feature extractor. The pretrained weights of the271

feature extraction layer are frozen, and a new classification layer is trained on the target dataset.272

Fine-tuning. All the pretrained network’s weights are unfrozen and updated (fine-tuned) for the target task.273

The choice between feature extraction and fine-tuning may be guided by some criteria such as the size of the274

target dataset, and the similarity between the source and target datasets. In practice, fine-tuning is usually more275

general and convenient for many different downstream tasks, while requiring minimal architecture modifications.276

Following the pretrain-and-finetune approach that has become the dominant paradigm for NLP applications in277

the last few years, we trained TaxoNERD models by reusing embedding layers that have been pretrained on large278

biomedical corpora, and fine-tuning the pretrained models on a GSC which was built by combining the COPIOUS and279

Bacteria Biotope task corpora. More precisely, the en_ner_eco_mdmodel is trained by fine-tuning the en_sci_core_md280

model provided by the scispaCy library. As this model already includes a transition-based NER layer (trained to recog-281
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nise biomedical entities in general, without distinction between different types of entities), we kept the NER layer as it282

is, simply added a new class of entities corresponding to taxon names, and fine-tuned the whole network (embedding283

and labelling subnetworks) on our ecological GSC. To learn the en_ner_eco_biobert model, we used the BioBERT lan-284

guage representation model as our embedding layer, followed by a transition-based NER layer with one output class285

(taxon name) and randomly initialised weights, and fine-tuned the whole network on our GSC. In both cases, all the286

layers are updated for the target task.287

The networks for the target task were fine-tuned using Adam optimisation, with standard parameter values. The288

batch size was increased from 1 to 32 during training, as it has shown to be an effective trick (Smith et al., 2017). For289

regularisation, dropout was set to 0.2, and early stopping was used on the validation set with a patience of 1000 steps,290

i.e. the model stopped training if performance did not improve on the validation set during the last 1000 iterations291

(contrary to most deep learning framework, patience in spaCy is not specified as a number of epochs but as a number292

of steps).293

2.3 | TaxoNERD’s models evaluation294

2.3.1 | Gold standard corpora for taxonomic NER295

Weevaluated TaxoNERD’smodels on 4 gold standard corpora specifically designed for taxonomicNER orwith a strong296

focus on taxon names recognition : LINNAEUS, Species-800, COPIOUS, and the Bacteria Biotope task corpus (see297

Table 1 for a summary of these corpora). All four corpora are in English. Annotations usually include the boundaries of298

the named entity (start and end character offsets), its class and the entity’s text, and are written in some annotation299

format, the two most common being the Standoff and IOB2 formats (Fig. 5). To facilitate evaluation, all annotations300

were converted to the Standoff format.301

LINNAEUS (Gerner et al., 2010) is a GSC of 100 full-text biomedical articles that were randomly selected from the302

open-access subset of PubMed Central and manually annotated for species mentions. Mentions of genera or other303

higher-order taxonomic ranks (family, order, class...) were not annotated since it was not the focus of the original work.304

After annotation, all mentions of species termswere normalised bymatching eachmention to the corresponding taxon305

in the NCBI Taxonomy (Federhen, 2002). Of the 4,259 species mentions annotated in this corpus, 72% are common306

names, including terms that do not directly convey species names, such as "patient", "child", "boy" which indirectly307

refer to subspecies Homo sapiens sapiens. A total of 65% of all mentions are normal species mention while 28% are308

adjectival modifiers (e.g. "human" in "human P53").309

Species-800 (Pafilis et al., 2013), or S800, is a GSC that was developed to increase the diversity of species names310

compared to the LINNAEUS corpus. S800 was constructed by randomly selecting 100 MEDLINE abstracts from jour-311

nals in each of the following 8 categories: bacteriology, botany, entomology, medicine, mycology, protistology, virol-312

ogy, and zoology. Taxon mentions, including Linnaean binomials, common names, strain names, and author-defined313

acronyms, were manually annotated. While the main focus was on annotating species mentions, other taxonomic314

ranks (e.g. kingdoms, orders, genera, strains) were also considered. The S800 corpus contains approximately the315

same number of annotated species mentions as the LINNAEUS corpus (3,708 mentions). However, the former con-316

tains more than three times as many unique species and names as the latter.317

COPIOUS (Nguyen et al., 2019) is a GSC directed towards the extraction of species occurrence from the biodiver-318

sity literature. As such, COPIOUS covers a wider range of entities than LINNAEUS and S800, including taxon names,319

geographical locations, habitats, temporal expressions and person names. The COPIOUS corpus consists of 668 doc-320

ument pages downloaded from the Biodiversity Heritage Library (BHL). More than 28K entities have been manually321
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TABLE 1 Gold standard corpora (GSCs) used for evaluation.

Corpus Documents Taxon mentions NCBI IDs Taxonomic rank Documents type
LINNAEUS 100 4,259 Y Species PubMed Central full papers
S800 800 3,708 Y All MEDLINE abstracts
COPIOUS 668 12,227 N All but microorganisms Biodiversity Heritage Library pages
BB task corpus 392 2,487 Y Only microorganisms PubMed abstracts + full-text extracts

annotated by experts, 44% (12,227) of which are taxa. Annotated taxonmentions include species, genera, families and322

all higher-order taxonomic ranks. Both current and historical scientific names were annotated. For scientific names323

that include authorship information, two entities were created, one with the authorship information, the other with-324

out. These entities are overlapping as they share a common substring. Annotations also include vernacular names325

of species but vernacular names of taxonomic classes (e.g. fish, birds, mammals...) were not tagged as taxon names.326

Since COPIOUS was developed specifically for extracting information about Philippine biodiversity, a non-negligible327

part of common names are English transcriptions of Filipino names. However, the authors state that the corpus is328

general enough to be employed for other biodiversity applications. Also, all microorganism names were excluded as329

COPIOUS focuses on highly endangered species.330

Conversely, the Bacteria Biotope (BB) task corpus (Bossy et al., 2019) focuses on the extraction of information331

about microbial ecology. This GSC comprises 215 PubMed abstracts related to microorganisms and 177 extracts of332

variable lengths (from one single sentence to a few paragraphs) selected from 20 full-text articles about microorgan-333

isms of food interest. All mentions of microorganism names, habitats and phenotypes have been manually annotated,334

as well as mentions of geographical places. In addition, microorganisms are normalised to taxa from the NCBI Tax-335

onomy, and habitat and phenotype entities are normalised to concepts from the OntoBiotope ontology. Mentions336

of microorganisms represent 34% (2,487) of the 7,232 entity mentions in the corpus. 54.8% of these microorganism337

mentions have no exact string match with any concept in the NCBI Taxonomy.338

Both COPIOUS and the BB task corpus contain overlapping entities, which are not supported by TaxoNERD’s NER339

models or any of the other evaluated systems. To get rid of overlapping entities, we preprocessed the entire corpora340

by replacing all overlapping entities by the entity corresponding to their union, thus favouring longer mentions (for341

instance, scientific names with authorship over simple binomial names).342

2.3.2 | NER evaluation metrics343

Each GSC was split into three disjoint subsets : one for training, one for validation during training, and one for testing.344

Only the test set was used during evaluation. Although the training and validation sets of LINNAEUS and S800 were345

not used for learning TaxoNERD’s models, we decided to evaluate the methods on their test sets only so that results346

are easier to compare with those obtained by models trained using these corpora (like the species recognition models347

from Giorgi and Bader (2018) and Lee et al. (2020)). For LINNAEUS, we used the train/validation/test split of Giorgi348

and Bader (2018). For S800, we used the split_s800 script4 to generate the three subsets. COPIOUS train, test349

and validation subsets are available on the COPIOUS project webpage5. Finally, since the BB task corpus has been350

published as part of a BioNLP challenge6, annotations are provided only for the train and validation sets. Therefore,351

we used the validation set for testing, and randomly split the train set into train/validation subsets with a 85:15 ratio.352

4https://github.com/spyysalo/s800
5http://www.nactem.ac.uk/copious/
6https://sites.google.com/view/bb-2019/
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TABLE 2 NER tools selected for evaluation.

Tool Language Approach Scientific names Common names Tax. ranks Normalisation
MER Awk Dictionary Y Y All Y (NCBI)
Taxonfinder JavaScript Dictionary Y N All N
LINNAEUS Java Dictionary Y Y Species Y (NCBI)
SPECIES C++ Dictionary Y Y Species Y (NCBI)
NetiNeti Python Rules + ML Y N All N
gnfinder Scala Dictionary + ML Y N All Y (190+ sources)
TaxoNERD Python Deep Neural Networks Y Y All Y (NCBI, GBIF)

Precision, recall and F-score are commonly used to assess and compare NER systems using gold standard corpora.353

Precision is the percentage of predicted entities that match gold entities (i.e. entities that are annotated in the GSC),354

recall is the percentage of gold entities that are correctly predicted, and F-score (also called F1-score) combines these355

two measures into a single score and is defined as the harmonic mean of precision and recall. Whether a prediction is356

considered correct depends on the matching criterion used. The most common criterion is exact match: a predicted357

entity is counted as a true positive if both its boundaries and its class fully coincide with a gold entity (see Fig. 6).358

However, exact match may not be the most appropriate criterion for evaluating taxonomic NER systems. The359

annotation of entity boundaries in a GSC depends on the task the corpus was designed for, but also on the person360

performing the annotation. For example, annotation guidelines may ask the annotator to include authorship informa-361

tion in scientific names or to stick to the binomial name only. Sometimes, both versions are annotated and we end up362

with two overlapping entities (as in COPIOUS). Using exact match, a NER system that was designed to detect taxon363

names with authorship will exhibit lower performance on a corpus in which only binomial names were annotated,364

although it is able to find the relevant piece of information. Annotation inconsistencies are also very frequent within365

a corpus. Inter-annotator disagreement may be due to different interpretations of annotation guidelines, or to differ-366

ence in the level of expertise of each annotator. Inconsistencies also exist in the work of a single annotator, as it has367

often been observed that the annotation behaviour changes over time as annotators gain more experience with their368

task (Leser and Hakenberg, 2005).369

Irregularities in the annotation scheme tend to underestimate NER methods performance, as these methods may370

correctly predict an entity without exactly matching the gold entity boundaries. This is punished twice by the exact371

match criterion, since it results in both a false negative and a false positive for simultaneously missing the gold entity372

and predicting a partial match. One possible solution is to relax the matching criterion to a certain degree Tsai et al.373

(2006). Indeed, in many applications, finding pieces of information is better than finding nothing at all, and exact match374

may not reflect the true performance of a system in a practical setting. In addition to exact match, we evaluated all375

methods using a relaxed criterion, approximate match, that counts a predicted entity as a true positive if there is some376

gold entity that is a substring of the predicted entity (see Fig. 6). This criterion reflects the fact that for information377

extraction applications, it is often better to overestimate entity boundaries than to miss relevant information.378

2.4 | TaxoNERD: comparison with existing approaches379

We compared TaxoNERD’s NER models en_ner_eco_md and en_ner_eco_biobert with the most popular taxonomic380

NER systems currently available to ecologists and practitioners. We chose to include only those tools that are readily381

available either as standalone command-line tools or as high-level libraries that can be easily reused to build complex382

information extraction pipelines. A summary of the features of each evaluated tool is provided in Table 2.383
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LINNAEUS7 (Gerner et al., 2010) and SPECIES8 (Pafilis et al., 2013) are two popular dictionary-based command-384

line softwares for taxon names recognition in biomedical documents. LINNAEUS dictionary of names covers 386,108385

species and 116,557 higher-order taxonomic ranks, while SPECIES dictionary contains all the species and strain names386

from theNCBI Taxonomy (as of 2013), including scientific names, common names and other synonyms. Both tools also387

include abbreviations that were generated automatically from species scientific names (for instance D. melanogaster388

from Drosophila melanogaster).389

Taxonfinder9 (Leary, 2014), NetiNeti10 (Akella et al., 2012) and Global Names Finder11 (gnfinder) all belong to390

the category of scientific name taggers as they were specifically designed to recognize mentions of scientific names391

only. Taxonfinder uses a combination of regular expressions and dictionaries to tag organism scientific names in text.392

Taxonfinder maintains separate dictionaries for species, genera and higher-order taxonomic ranks, all derived from393

a manually curated version of NameBank12. NetiNeti is a hybrid rule-based/machine learning solution to recognise394

scientific names of organisms in biomedical and biodiversity literature, including misspelled and new species names.395

Candidate mentions are identified using simple scientific name capitalisation and abbreviations rules and fed to a bi-396

nary classifier (Naïve Bayes) to decide whether they are a scientific name or not. Gnfinder is a hybrid dictionary-based397

and machine learning system for scientific names detection in text. Since December 2019, it has replaced Taxon-398

Finder and NetiNeti as the name-finding engine in the Global Names Recognition and Discovery service (Mozzherin399

and Shorthouse, 2019). It is currently used by the Biodiversity Heritage Library to locate taxonomic names in their400

corpus of legacy biodiversity documents (Constantino, 2020). Gnfinder uses a set of dictionaries (including separate401

dictionaries for species, genera and uninomials) to detect scientific name candidates and extract a number of useful402

features that are fed to a Naïve Bayes classifier to refine predictions.403

We deliberately discarded taxonomic NER tools that cannot be considered as standalone tools because they are404

tied to a specific NLP architecture, e.g. the OrganismTagger (Naderi et al., 2011) system which comes as a GATE405

pipeline, or because they are only available as RESTful APIs, e.g. SR4GN (Wei et al., 2012). We also ruled out software406

that were not or very poorly documented, e.g. TaxonGrab (Koning et al., 2005), although we decided to include407

Taxonfinder because it is quite self-explained. Because LINNAEUS and SPECIES are tied to their built-in lists of names,408

specifically designed for biomedical use cases, their results on ecological corpora may not be representative of the409

true predictive power of dictionary-based approaches. We decided to include, as a baseline, our own dictionary-410

based taxonomic NER system created using MER (Couto and Lamurias, 2018), a minimal named-entity recognition411

and linking tool which only requires a lexicon with the list of terms representing the entities of interest. We created412

this lexicon by extracting all the taxon names from a dump of the NCBI Taxonomy, for a total of about 3.4M names.413

3 | RESULTS414

All scripts used for methods evaluation are available on the accompanying GitHub page13. TaxoNERD’s models ability415

to detection mentions of taxa in text was evaluated on all four GSCs and compared to five existing taxonomic NER416

systems and one dictionary-based baseline. Performance are measured in terms of precision, recall and F-score using417

7http://linnaeus.sourceforge.net/
8https://species.jensenlab.org/
9https://github.com/pleary/node-taxonfinder

10https://github.com/dshorthouse/NetiNeti
11https://github.com/gnames/gnfinder
12http://ubio.org/index.php?pagename=namebank
13https://github.com/nleguillarme/snr_tools_and_methods
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both exact and approximate match criteria. The results are presented in Table 3 and shown in Fig. 7.418

Dictionary-based approaches (LINNAEUS and SPECIES) performed best on biomedically-oriented corpora (LIN-419

NAEUS and S800), with LINNAEUS achieving the highest F-score of all evaluated methods on the LINNAEUS corpus,420

and SPECIES being ranked first on the S800 corpus. This may be explained by the fact that the LINNAEUS and S800421

corpora were first proposed as evaluation corpora for the LINNAEUS and SPECIES softwares respectively. It is likely422

that both methods were specifically tailored to perform well on their respective evaluation corpus. This could also423

explain the dramatic drop in performance observed for both methods on ecologically-oriented corpora (although the424

BB task corpus is composed of biomedical documents, it focuses on microorganisms ecology).425

Scientific name taggers (Taxonfinder, NetiNeti, gnfinder) achieved a rather high precision on both the LINNAEUS426

and Bacteria Biotope task corpora (with Taxonfinder achieving the second higher precision rate on both corpora), at the427

exception of gnfinderwhose precision using exactmatch is significantly lower than that of the other twomethods. This428

can be attributed to the fact that gnfinder tends to significantly overestimate entity boundaries, including irrelevant429

punctuation marks and neighbouring words as part of the entities, which negatively impacts its performance using430

the exact match criterion. However, using approximate matching, the performance of gnfinder is similar to that of431

the other scientific name taggers. Their recall is consistently low on all corpora as these methods are designed to tag432

scientific names only, and all corpora also include annotations for common names. Despite using different approaches433

(dictionary, rules + machine learning, dictionary + machine learning), these methods perform quite similarly, with a434

slight advantage for Taxonfinder.435

TaxoNERD’s deep neural models significantly outperformed all other approaches on the two ecological corpora436

(COPIOUS and the BB task corpus). Of our two DNN models, the Transformer-based model en_ner_eco_biobert con-437

sistently achieves the highest F-score on all corpora. TaxoNERD’s models show a tendency to slightly overestimate438

entity boundaries. A possible explanation is that COPIOUS annotations of taxon scientific names include the author-439

ship information when available. As TaxoNERD’s models are partly trained on the COPIOUS corpus, they may have440

learned to recognise punctuation marks and other symbols following a taxon scientific name as being part of this441

name. Using the approximate match criterion that values boundaries overestimation, the F-score of our deep models442

increases by about 3-6%. The performance of TaxoNERD’s models on the COPIOUS corpora is of the same order443

of magnitude as that obtained by Nguyen et al. (2019) with their Bi-directional Long Short Term Memory (BiLSTM)444

model.445

Finally, it is worth noting that our baseline dictionary-based approach (MER) performed poorly on all corpora,446

despite using a dictionary containing all the names in the NCBI Taxonomy. Nevertheless, its recall was significantly447

higher than that of LINNAEUS and SPECIES on the COPIOUS corpus.448

4 | DISCUSSION449

The recognition of ecological concepts in text is a key technology for biodiversity information extraction and knowl-450

edge base population, and accurate NER tools are needed to make the most of the already large and continuously451

growing corpus of ecological texts. While researchers are mainly interested in species distribution, traits, habitats or452

interactions, a fundamental prerequisite to extract this information is the ability to detect mentions of taxa in text. A453

number of taxonomic NER tools are readily available to ecologists, including scientific name taggers and dictionary-454

based NER systems for recognising species names in biomedical documents.455

Our experiments suggest that these existing tools are unsuitable to extract information from the ecological and456

evolutionary literature. Despite their relative effectiveness at detecting scientific names, as demonstrated on the BB457
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task corpus which comprises a large proportion of such names, scientific name taggers are handicapped by their inabil-458

ity to detect common names. This is a barrier to ecological information extraction, as most references to taxonomic459

entities in the literature use their vernacular names, a taxon scientific name being often used only once or twice in the460

text for the sake of precision. The main alternative to scientific name taggers are dictionary-based taxonomic NER461

systems such as LINNAEUS and SPECIES. However, both methods rely on dictionaries that have been carefully tai-462

lored for biomedical use cases. As a result, these systems show high precision and recall on biomedical documents but463

their performance significantly drops on ecological corpora. When applied on ecological documents, both LINNAEUS464

and SPECIES miss many names, especially uninomials as these tools focus on species names. They are also prone to465

boundary estimation errors, missing authorship information and "sp." or "spp." abbreviations, as these forms of scien-466

tific names are not included in their dictionaries. Generally speaking, dictionary-based approaches lack robustness to467

previously unseen names, misspelling and other unexpected variants which are common in ecological papers. Their468

performance also depends heavily on the amount of effort put into creating a high-quality dictionary of names, as469

demonstrated by the poor performance of our baseline dictionary-based approach that uses a raw list of names from470

the NCBI Taxonomy.471

None of the aforementioned taxonomic NER tools were able to recognise taxonomic entities in the COPIOUS472

corpus with satisfactory accuracy. COPIOUS being the biggest corpus of all four gold standards, it is also the one473

containing the largest diversity of taxon names, including scientific names (with or without authorship information),474

common names, abbreviations... which impedes the performance of dictionary-based NER systems and scientific475

name taggers. COPIOUS is also the only corpus composed exclusively of texts from the biodiversity literature, which476

causes biomedical NER tools like LINNAEUS and SPECIES to fail. TaxoNERD’s deep neural models on the contrary477

have been specifically trained to recognise taxon mentions in ecological documents and achieve high precision and478

recall on both COPIOUS and the BB task corpus. As anticipated, the Transfomer-based architecture achieves higher479

accuracy than spaCy’s standard architecture based on trigram CNNs. Although the difference in performance be-480

tween the two models is quite spectacular on the BB task corpus (which could be attributed to the use of BioBERT, a481

language model pretrained on biomedical corpora, to obtain embeddings for words in the BB task corpus, composed482

of biomedical documents), this difference narrows on COPIOUS. This suggests that the en_ner_eco_md is also a good483

candidate for taxonomic NER in the ecological literature. The choice between the two models will depend on the484

compromise the user has to make between speed and accuracy, or on the availability of GPUs to speed up the in-485

ference process in Transformer-based models. Interestingly, the performance of TaxoNERD’s models on COPIOUS is486

consistent with the inter-annotator agreement reported by Nguyen et al. (2019) for this corpus. This suggests that487

our models are as good as human annotators at recognising taxon mentions in this corpus of documents.488

Most of TaxoNERD’s errors on COPIOUS test set are due to TaxoNERD missing local (Filipino) vernacular names,489

and sometimes common English names (false negatives). Despite its propensity to overestimate entity boundaries,490

it also happens that TaxoNERD misses all or part of the authorship information (sometimes by a simple punctuation491

mark), which is punished twice by both criteria (one false positive, one false negative). On the BB task corpus, most492

errors are due to TaxoNERD missing alpha-numeric codes in strain names, e.g. "B1157" in "L. lactis subsp. cremoris493

B1157", or to TaxoNERD’s tagging non-microorganism names, which are not annotated in the BB task corpus. Detect-494

ing strain mentions is recognised as a particularly difficult problem (Naderi et al., 2011) as they are prone to boundary495

estimation errors.496

Although TaxoNERD is able to extract relevant information from ecological text with high precision and recall, per-497

formance drops on biomedical corpora. When looking at the predicted entities for the LINNAEUS and S800 corpora,498

we observe that TaxoNERD’s models tend to tag non-taxonomic scientific terms ("Oligonucleoside methylphospho-499

nates"), allele and gene variant names, people names, and other capitalised expressions ("Sequencing Kit", "Staminal500
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column", "Immense tree") as taxonomic entities. Additionally, TaxoNERD failed to recognise some terms considered as501

taxon names in the LINNAEUS and S800 corpora. This includes virus strain names and acronyms, such as "H1N1"502

or ""H5 influenza virus", but also terms that do not directly convey species names such as "patient", "participants" or503

"people". As these terms are not relevant for ecological information extraction, this simply confirms that TaxoNERD504

is well suited for taxonomic NER in the ecological literature but should not be used (or at least carefully) for biomed-505

ical NER. It is also worth mentioning that the second major source of errors in the S800 corpus was the presence of506

many unannotated taxon names. Although TaxoNERD successfully detects these mentions, they are counted as false507

positives and result in a significant drop in precision.508

DNN-based NER systems have achieved state-of-the-art results in a number of domains, and biomedical infor-509

mation extraction pipelines are now heavily relying on pretrained biomedical language models such as BioBERT (Lee510

et al., 2020), which are fine-tuned for downstream tasks, including named entity recognition and relation extraction.511

At the same time, we can see the number of initiatives to make DNN-based NLP solutions accessible to non experts512

multiplying. While researchers have access to state-of-the-art tools for biomedical information extraction (Perera513

et al., 2020), the ecological community has yet to get on the deep learning train and develop its own models and tools514

tailored to its specific use cases.515

TaxoNERD is a very first step in this direction, which has not yet renounced its biomedical heritage, as it relies516

on pretrained biomedical models that are fine-tuned on an ecological corpus. Yet, it shows a significant gain in per-517

formance compared to existing tools for taxonomic NER in the biodiversity literature. Available as a command-line518

tool and a Python library, TaxoNERD can recognise all variants of scientific names and common names, as well as519

user-defined abbreviations thanks to scispaCy’s implementation of the simple abbreviation detection algorithm of520

Schwartz and Hearst (2002). With its two models, TaxoNERD provides different ways to balance speed and accuracy.521

TaxoNERD can also link taxon mentions to entities in a reference taxonomy using an approximate nearest neighbour522

search algorithm. Currently, TaxoNERD can link taxonomic entities to the NCBI Taxonomy (Federhen, 2002), GBIF523

Backbone Taxonomy (GBIF Secretariat, 2019) and TAXREF, the French national taxonomic register (Gargominy et al.,524

2019). Based on spaCy, TaxoNERD can be easily integrated into complex ecological information extraction pipelines525

while remaining very easy to use, bringing the predictive power of DNN-based NER systems to non-expert users.526

TaxoNERDopens upmany avenues for improving the performance of ecological NER systems. First, deep learning527

algorithms perform better with more data. To our knowledge, COPIOUS and the BB task corpus are the only gold528

standards designed specifically for ecological applications. Although this represents a significant amount of annotated529

documents, the performance of our models tends to peak. Using a larger training corpus, we could probably increase530

the accuracy of our models, or we could train more complex architectures with a greatest predictive power. However,531

as already mentioned, creating a GSC is a complex and costly process. A first alternative is data augmentation, which532

consists of expanding the training set by applying transformations to training instances without changing their labels533

(Dai and Adel, 2020). Another alternative is to use DNNs to learn a good language representation model from a large534

corpus of unannotated documents, and to use transfer learning to adapt the pretrained model to downstream tasks.535

In contrast to gold standards, large-scale unlabelled corpora are relatively easy to construct as they do not require any536

annotation effort. While there exists a number of pretrained language models for biomedical NLP, there exists none537

for ecological applications. Although we demonstrated with TaxoNERD that biomedical language models can be fine-538

tuned on ecological datasets with satisfactory performance, a domain-specific language representation pretrained on539

a large-scale ecological corpus would surely boost the performance of ecological information extraction tools.540

Post-processing can also improve the quality and accuracy of predictions (Perera et al., 2020). For example, if a541

certain named entity is tagged once or several times in a document, and the same entity exist elsewhere in the text,542

untagged, then post-processing could make sure these missed NEs are also tagged with their predicted class, thus543
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increasing recall. Another important subtask at this point is to resolve coreferences, i.e. mentions of taxa that appears544

as pronouns or noun phrases and which must be linked to the taxon names they refer to. Resolving coreferences545

is essential for a lot of higher-level information extraction tasks, including relation extraction, as much information546

concerning a taxon may be contained in sentences that do not explicitly use the taxon name. However, it is still547

considered one of the most difficult NLP tasks (Ng, 2017). State-of-the-art neural coreference resolution models548

have been made available in spaCy and require careful evaluation on ecological texts, but it seems likely that, as for549

many NLP tasks, domain-specific models will be needed to obtain better performance. Closely related to the problem550

of coreference resolution, entity normalisation is the task of disambiguating each textual mention to the correct entry551

in a given knowledge base. For instance, in the sentence "Brown bears (Ursus arctos) flexibly change their feeding habits552

depending on the availability of dietary resources", the mentions "Brown bears", "Ursus arctos" and "their" all refer to the553

unique entity with ID NCBI:txid9644 in the NCBI Taxonomy. Entity normalisation is a critical step in the process of554

turning unstructured textual information into machine-understandable facts.555

In the longer term, we envision the creation a toolkit of state-of-the-art algorithms that would let ecologists and556

practitioners create their own pipelines to extract useful information on species distributions, traits or interactions557

from scientific and grey literature. This toolkit would include an ecological NER system with additional entity types558

(e.g. habitat, phenotype, etc.), coreference resolution and entity normalisation engines, a relation extractor to detect559

relationships between entities (e.g. interspecific interactions), and other NLP tools that will hopefully facilitate access560

to the considerable amount of knowledge held by the current (and future) body of published literature in ecology and561

evolution.562
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F IGURE 4 State-of-the-art NER systems are based on deep neural networks that learn latent features from large
amounts of data. When only small datasets are available for the target task, a common approach is to use transfer
learning. In this example, transfer learning is used to adapt a DNN trained on a large biomedical corpus to the
ecological domain. The feature extraction subnetwork (pink nodes) is frozen, while the NER layers (green, then blue
nodes) are retrained on the ecological corpus. Alternatively, the pretrained model parameters can be unfrozen and
the whole network be fine-tuned on the target task corpus.
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F IGURE 5 A gold standard corpus is a collection of manually annotated documents. An entity’s annotation
includes at least the left and right boundaries of the entity span as well as its class. Standoff and IOB2 are the two
most common tagging formats. In IOB2, the B- prefix indicates that the token is the beginning of an entity, and the I-
prefix indicates that the token is inside an entity. An O tag indicates that a token belongs to no entity.

F IGURE 6 All methods were evaluated in terms of precision, recall and F-score using two matching criteria:
exact and approximate match. As the exact match criterion tends to be too strict, underestimating the performance
of NER methods in practical settings, we also used a relaxed criterion that judges as correct a predicted entity if it
encompasses a gold entity.
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TABLE 3 Precision, recall and F-score for the eight taxonomic NER systems evaluated on the four gold standard
corpora, using exact match and approximate match as evaluation criteria.

Exact match Approximate match
Corpus Software

PRE (%) REC (%) F1 (%) PRE (%) REC (%) F1 (%)
LINNAEUS MER 27.35 47.40 34.69 27.38 47.40 34.71

LINNAEUS 95.71 78.14 86.04 96.03 78.39 86.32
SPECIES 86.04 64.22 73.55 86.73 64.73 74.13
Taxonfinder 86.83 20.84 33.61 86.83 20.84 33.61
NetiNeti 76.89 16.48 27.14 77.69 16.65 27.43
gnfinder 52.13 13.58 21.54 78.36 20.41 32.38
TaxoNERD (md) 51.75 26.56 35.10 56.57 29.08 38.42
TaxoNERD (biobert) 59.06 26.73 36.80 61.89 28.01 38.57

S800 MER 28.82 55.80 38.01 29.86 57.63 39.34
LINNAEUS 77.41 70.14 73.60 77.84 70.53 74.01
SPECIES 75.31 72.36 73.80 77.20 74.19 75.66
Taxonfinder 57.04 40.68 47.49 57.04 40.68 47.49
NetiNeti 59.06 39.50 47.34 60.04 40.16 48.12
gnfinder 27.88 21.77 24.45 53.92 42.11 47.29
TaxoNERD (md) 45.74 45.50 45.62 54.26 54.05 54.15
TaxoNERD (biobert) 48.54 62.97 54.82 53.77 69.84 60.76

COPIOUS MER 22.63 23.82 23.21 22.81 24.02 23.40
LINNAEUS 50.20 12.55 20.08 50.59 12.65 20.24
SPECIES 54.86 13.82 22.08 55.25 13.92 22.24
Taxonfinder 48.63 29.51 36.73 48.95 29.76 37.02
NetiNeti 45.36 25.39 32.56 47.81 26.82 34.36
gnfinder 23.85 15.29 18.64 46.94 30.10 36.68
TaxoNERD (md) 75.77 67.45 71.37 82.49 74.09 78.06
TaxoNERD (biobert) 75.85 74.51 75.17 82.14 81.00 81.57

BB task MER 34.39 43.50 38.41 34.39 43.50 38.41
LINNAEUS 60.91 46.75 52.90 60.91 46.75 52.90
SPECIES 67.47 49.25 56.94 67.47 49.25 56.94
Taxonfinder 79.56 63.25 70.47 80.19 63.75 71.03
NetiNeti 74.50 56.25 64.10 75.50 57.00 64.96
gnfinder 51.05 42.50 46.38 79.28 66.00 72.03
TaxoNERD (md) 73.11 77.50 75.24 76.42 81.20 78.74
TaxoNERD (biobert) 87.20 90.25 88.70 89.13 92.48 90.77
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F IGURE 7 Precision and recall obtained on the four gold standard corpora using the exact match criterion (top)
and the approximate match criterion (bottom). Grey lines represent iso-F1 curves. The different colors are used to
distinguish between the different categories of tools : dictionary-based NER systems (violet), scientific name taggers
(blue) and deep neural networks (pink).


