
MP-NeRF: A Massively Parallel Method for Accelerating Protein
Structure Reconstruction from Internal Coordinates

Eric Alcaide1,2*, Stella Biderman2, Amalio Telenti1, M. Cyrus Maher1*

1 Vir Biotechnology Inc., San Francisco, California, 94158, USA
2 EleutherAI, Fully Online: https://www.eleuther.ai/about/

*Correspondence: ealcaide@vir.bio, cmaher@vir.bio

Abstract

The conversion of proteins between internal and cartesian coordinates is a limiting step
in many pipelines, such as molecular dynamics simulations and machine learning
models. This conversion is typically carried out by sequential or parallel applications of
the Natural extension of Reference Frame (NeRF) algorithm. This work proposes a
massively parallel NeRF implementation which, depending on the polymer length,
achieves speedups between 400-1200x over the previous state-of-the-art. It
accomplishes this by dividing the conversion into three main phases: parallel
composition of the monomer backbone, assembly of backbone subunits, and parallel
elongation of sidechains; and by batching these computations into a minimal number of
efficient matrix operations. Special emphasis is placed on reusability and ease of use.
We open source the code (available at https://github.com/EleutherAI/mp_nerf) and
provide a corresponding python package.

Introduction

Molecular modelling often employs two distinct sets of coordinates to represent
proteins or other polymers, such as nucleic acids or glycans. One can represent a
polymer using internal coordinates (bond lengths, bond angles and dihedrals) or
cartesian coordinates (x,y,z)1. Either of these two coordinate systems allows for a
complete representation of the molecule, and both have their strengths and
weaknesses. Cartesian coordinates are easier to work with when treating the polymer
as a rigid system (e.g. for rotations, translations or visualizations), whereas internal
coordinates are preferred when working with forces and interactions between the
polymer atoms.

Due to this complementarity, it is often necessary to convert between the two
representations. Translation between these systems, however, can become a
bottleneck in many applications. To align with prior work, we will refer to the transform
from cartesian to internal coordinates as forward translation2. On modern hardware,
this process can be straightforwardly parallelized across all polymer points, since the
internal coordinates can be calculated independently for each point. This is not the
case for reverse translation, however. Translation from internal coordinates to cartesian
ones has typically been carried out sequentially, since the position of each atom
depends on the position of the previous one3.

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted June 9, 2021. ; https://doi.org/10.1101/2021.06.08.446214doi: bioRxiv preprint

https://www.eleuther.ai/about/
mailto:ealcaide@vir.bio
mailto:cmaher@vir.bio
https://github.com/EleutherAI/mp_nerf
https://doi.org/10.1101/2021.06.08.446214
http://creativecommons.org/licenses/by/4.0/

This sequential dependency bottlenecks reverse translation. Although the calculation
can be parallelized across many polymers of similar length, this bottleneck is significant
for applications that make intensive use of forward and reverse translation. Examples of
such applications include the training of machine learning models4, protein structure
refinement from NMR data1, analysis of protein structure changes3, and molecular
dynamics simulations5.

With the development of more and better computational tools, some effort has been
devoted in recent years to alleviating the reverse translation bottleneck4,5. These works
have focused on the usage of high-performance, optimized code; the division of the
backbone into different fragments (which are folded independently and later
ensembled)4; and tree ensembling algorithms5, among other strategies.
These approaches, however, are often implemented specifically for Graphical
Processing Units (GPUs), thus limiting usage to expensive and specialized hardware
accelerators. Despite these improvements, the translation from internal coordinates to
cartesian ones continues to be a bottleneck even in the many GPU-based pipelines.

The standard algorithm used for reverse translation is the Natural extension of
Reference Frame (NeRF) procedure3. The pNeRF algorithm4 explored extending NeRF by
dividing the polymer into different fragments, iteratively folding for each fragment in
parallel, and then concatenating the independently folded fragments. However, it
considered only the backbone, and the number of parallelized fragments was low (on
the order of 1-10). A more recent implementation of a parallel NeRF algorithm5
considered the sidechains as well, and performed a tree-based merge of the different
fragments. However, it required specialized hardware such as CUDA-capable GPUs and
there is friction when trying to adapt the implementation for different usecases.

This work builds on top of the theoretical proof of correctness shown in previous work3,
and also provides numerical validation through error analysis in back-and-forth
translation cycles as in4. We introduce a massively-parallel (mp-NeRF) algorithm, which
reorders the steps in the parallel implementations of the NeRF algorithm
to unlock parallelization and optimize execution when possible. The algorithm
leverages ideas from previous work4,5, and builds on top of them to provide an
acceleration of over 400x-1200x, depending on the length of the protein being
translated. It accomplishes this by decomposing operations into parallelizable units and
using more efficient data structures that leverage the efficiency of matrix-based
operations. This algorithm thereby increases the throughput of pipelines which make
heavy use of such conversions, such as the training of machine learning models to
predict protein folding.

Methods

Massively parallelized natural extension of reference frame
Many polymers, such as large biomolecules, can be divided into a backbone and a
set of offshoot branches, usually referred to as sidechains. This work initially takes a
parallel scheme similar to pNeRF, which only considers the protein backbone and a small
number of fragments to build in parallel, but takes it to the extreme by considering the

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted June 9, 2021. ; https://doi.org/10.1101/2021.06.08.446214doi: bioRxiv preprint

https://doi.org/10.1101/2021.06.08.446214
http://creativecommons.org/licenses/by/4.0/

backbone of each amino acid as a separate fragment. It also extends pNeRF by
incorporating side chains. Since the polymer backbone is composed of repeated
subunits, it is convenient to parallelize computation across monomer backbone
fragments. The procedure can be separated into the 3 phases described in detail below.
Briefly, these encompass folding backbone subunits, linking these subunits, and then
folding side chains.

1. Parallel composition of the minimal repeated structure

For every polymer backbone subunit, we initialize two points near the origin
coordinates. Together with the origin point, these three points define a plane that can
be used to define the first dihedral angle and initialize polymer extension. In subsequent
steps, this reference frame is also used to calculate the relative orientations needed to
connect monomer backbones properly. From there, we implement the NeRF algorithm
sequentially for every atom in a given monomer backbone, until we reach the first point
of the next monomer backbone, as illustrated in Fig. 1A. This process is repeated in
parallel for all monomers. This step requires a number of NeRF calls equal to the
number of atoms in the backbone monomer, times the number of structures across
which the calculation is parallelized. A theoretical proof of the equivalence of this step
with respect to sequential elongation can be found in AlQuraishi 20194.

2. Assembly of backbone monomers.

We then join the backbone monomers by an efficient roto-translation operation. That
is, we move the points of each subunit so that its first atom is now linked to the last
atom of the previous monomer, and we rotate the assembled subunits so that their
orientation matches the reference frame of the structure. This sequential pass
requires:

1.) Batched matrix multiplications to construct the rotation matrices, equal to the
number of subunits to assemble

2.) An iterative matrix multiplication to rotate all subunits sequentially

3.) A cumulative sum of length 𝑁 − 1 given by the expression 𝑁𝑛𝑒𝑤𝑖
= 𝑁𝑖 +

∑ 𝑁𝑗−1
𝑖
𝑗=0 where 𝑁 𝑗−1

 represents the last point of the 𝑗th subunit after rotation

and 𝑁𝑛𝑒𝑤 represents the roto-translated backbone subunits. This process is
illustrated in Fig. 1B.

3. Parallel composition of side chains

After the backbone assembly, we perform the calculation of the side chains in parallel,
as illustrated in Fig. 1C. This requires a maximum number of NeRF calls equal to the
maximum number of atoms in any possible side chain, times the number of side chains
across which the calculation is parallelized. Note that this is an upper bound, since not
all sidechains will have the same number of points.

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted June 9, 2021. ; https://doi.org/10.1101/2021.06.08.446214doi: bioRxiv preprint

https://doi.org/10.1101/2021.06.08.446214
http://creativecommons.org/licenses/by/4.0/

FIGURE 1: Illustration of the algorithm. a) Parallel composition of the monomers. b)

sequential concatenation of monomers. c) Parallel composition of side chains.

Implementation details
The calculations for the rotation matrices to join the backbone fragments are
decomposed into a rotation from the reference frame to the first monomer backbone (𝑀0),
and from each monomer backbone to the next one in the chain (𝑀

𝑖
). This allows for the

parallel construction of rotation matrices, leaving a cumulative matrix multiplication and
a cumulative sum as the only sequential parts of the algorithm:

When constructing the Mi matrix; 𝑝1, 𝑝2, 𝑝3 are, respectively, the coordinates of the

carbonyl and alpha carbon atoms of the present amino acid, and the nitrogen atom of
the next amino acid. When constructing the M0 matrix; 𝑝1, 𝑝2, 𝑝3 are the coordinates for
the two points adjacent to the origin, and the origin itself. These define the reference
frame. In the expression above, Mk represents both the Mi and M0 cases.

The translation operation is implemented as a cumulative sum, accelerating its
calculation. Special effort is put into generalizing every possible function for an arbitrary
number of atoms, so that a single function call can do the required calculations for as
many atoms as possible, thus achieving a near-perfect usage of the processor native
parallel capabilities (CPU-native vector instructions such as SIMD and AVX or GPU
massively parallel architecture).

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted June 9, 2021. ; https://doi.org/10.1101/2021.06.08.446214doi: bioRxiv preprint

https://doi.org/10.1101/2021.06.08.446214
http://creativecommons.org/licenses/by/4.0/

Protein-specific optimizations include omitting the oxygen atom in the backbone
carbonyl, since it can only have one orientation relative to the carbon to which it is
bonded. We later incorporate it as a sidechain addition to the main backbone formed
by the N-CA-C atoms of each amino acid. During the translation process, the rings
present in amino acid sidechains are simplified so that there is a unique path connecting
every atom in the sidechain to the backbone. We do this by masking one bond per ring,
so that only linear and branched sidechains are considered, and thus there are no loops
in the algorithm’s reconstruction path. This masking does not require further processing
in the output, since the algorithm returns a point cloud, consistent with PDB format. For
data processing, the sidechainnet6 format is used to encode proteins as arrays of shape
(N x 14 x 3), where N is the length of the protein.

A profiling report is included in the Supplementary Information section (Figure S1).

Results

To emphasize the power and efficiency of our methodology, we compare to both the
state-of-the-art4 (SOTA) and the “state-of-practice,” i.e., the most advanced techniques
that are currently in widespread use. A presentation of the compared algorithms and
details about their implementations can be found in Table 1.

Architecture Language Framework Reconstruction

NeRF (Parsons et al.3) CPU C None Full

pNeRF (AlQuraishi et al.4) CPU or GPU Python TensorFlow Backbone-only

SOTA (Bayati et al.5) GPU C++ CUDA Full

This Paper CPU or GPU Python PyTorch Full

Table 1. Different algorithmic implementations and hardware requirements

Computational Efficiency

Length (residues)
pNeRF/SOTA/ours pNeRF4

 SOTA5

 (Bayati et al.) Ours @ CPU-laptop

Ours @ Hybrid
(CPU/GPU)-

desktop Ours @ GPU-desktop
 -/114/114 - 2.4 s 0.0053 s

(448x**)
.0189 s

(126x**)
0.0211 s
(113x**)

-/-/-214 - - 0.0065 s .0204 s 0.0223 s

350/331/331 0.40 s 3.5 s 0.0085 s
(48x*, 411x**)

0.0223 s
(17x*, 156x**)

0.0262 s
(15x*, 133x**)

-/-/401 - - 0.0096 s 0.0228 s 0.0282 s

-/500/500 - 7.3 s 0.0091 s
(804x**)

0.0263 s
(277x**)

0.0292 s
(251x**)

-/-/621 - - 0.0127 s 0.0260 s 0.0333 s

700/-/753 0.60 s - 0.0147 s
(40x*)

0.0276 s
(21x*)

0.0366 s
(16x*)

-/-/862 - - 0.0166 s 0.0293 s 0.0400 s

-/1000/1000 - 18.66 s 0.0153 s
(1215x**)

0.0301 s
(620x**)

0.0433 s
(430x**)

*When compared to 4. **When compared to 5

TABLE 2: Comparison of execution times between previous SOTA, pNeRF, and our
implementation. We report results from the GPU version of pNeRF. For our

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted June 9, 2021. ; https://doi.org/10.1101/2021.06.08.446214doi: bioRxiv preprint

https://doi.org/10.1101/2021.06.08.446214
http://creativecommons.org/licenses/by/4.0/

implementations, speedups are reported between parenthesis and with the “–
x” suffix expressing speedup with respect to pNeRF and the recent SOTA

implementation. Note that the pNeRF implementation only considers the 3 backbone
atoms N, Cα, C, whereas the other algorithms consider the full side chain. Due to the

difficulty of benchmarking all algorithms on the same proteins, we conservatively
compare to comparably sized, but longer proteins.

Our algorithm achieves more than 400x-1200x improvements over the previous SOTA
for proteins, depending on the protein length studied. It does this using only CPUs, which
makes it broadly applicable and able to exploit parallelism in CPU cluster setups. It can
be seen in Table 2 that the GPU implementation is slower than its CPU counterpart for
all values of polymer length. This might be due to the cost of data transfers and
synchronization between CPU and GPU, the cost of spawning GPU kernels for each
step, the lower clock frequency of the GPU, which notably slowed down the sequential
assembly of backbone monomers, and an under-utilization of its parallelism.
Although proteins longer than 1000-AA are infrequent, the GPU implementation might
show advantage in other, longer polymers such as nucleic acids. As evidenced in Table
2, this massively parallel algorithm eliminates the need for hardware accelerators
for this task, lowering the requirements to perform efficient conversion of polymers
from internal to cartesian coordinates.

Accuracy

We check the cumulative error that comes with repeated transformations from internal
to cartesian and back again. This round-trip is of special importance in algorithms that
use internal coordinates, but that need conversion functions before and after since the
molecular simulation or base representation is in cartesian coordinates. A variation in
the error during the first 100 out of 1000 forward-backward cycles of conversion can be
observed. We hypothesize this might be due to numerical inaccuracies in floating-point
arithmetic. Importantly, we note that errors do not significantly accumulate even
over 1000 roundtrip translation cycles.

FIGURE 3: Cumulative mean error (RMSD) as a function of encoding-decoding cycles.

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted June 9, 2021. ; https://doi.org/10.1101/2021.06.08.446214doi: bioRxiv preprint

https://doi.org/10.1101/2021.06.08.446214
http://creativecommons.org/licenses/by/4.0/

Design Tradeoffs

We would like to emphasize that some design choices are currently limiting the speed
of the implementation presented here. However, we accept these tradeoffs to ease use
and facilitate adoption. These design choices include implementing the algorithm in
Python instead of a compiled language. Python is a high-level language widely known
among the scientific community, with many scientific software packages implemented
in it. Since Python is an interpreted language, functions that are not ultimately
implemented in more performant languages like C++ can be slow. However, since the
majority of our execution time is devoted to matrix operations implemented in C (Figure
S1, Table S1), we do not incur a large performance penalty in Python. We estimate that
the current implementation could be accelerated by 2x if we switched to a compiled
language. However, this would inevitably lead to a reduction in adoption, increased cost
of code maintainability and a reduction on the possible extensions, adaptations,
reusability, and readability of the current implementation.

Our implementation is also differentiable7, thus allowing one to train end-to-end
deep learning models with it. Examples of relevant projects are RGN-Networks8, or the
ongoing open source replication9 of AlphaFold210, which makes heavy use of the
conversion from internal representation to cartesian coordinates. The differentiability
of the code, however, makes it marginally slower because of the data structures needed
to accumulate important information for the gradient calculations, and also because the
maintenance of this property prevents us from using more efficient libraries like NumPy,
that allow compilation of the code to C (e.g. using Cython or Numba) to achieve faster
runtimes.

Nevertheless, these features could be adapted for a specific case in which a particular
set of properties might be preferred over other ones (e.g. single-thread speed over
differentiability, parallelization over single-thread speed, etc.). We leave further
optimizations and adaptations to more specific scenarios to the community. In
aggregate, we estimate that the current CPU runtimes could be reduced 2x to 3x by
adopting a scheme focused on single-thread speed above everything else, which we find
to be an acceptable tradeoff given the 400-1200x speedup obtained through parallelism.

Conclusions

In this work, we have proposed a new, massively parallel scheme for the implementation
of the Natural Extension of Reference Frame when applied to polymers, and showcased
substantial runtime improvement over previous works. The design principles put in
practice allow for easy adoption and usage across the community for different kinds of
polymers such as proteins, nucleic acids, glycans or synthetic materials. We hope this
accelerated implementation can reduce the times for computational simulations,
accelerate the training of machine learning models, and open the window to new
advances in polymer structural science.

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted June 9, 2021. ; https://doi.org/10.1101/2021.06.08.446214doi: bioRxiv preprint

https://doi.org/10.1101/2021.06.08.446214
http://creativecommons.org/licenses/by/4.0/

References

1. P. Güntert, C. Mumenthaler, and K. Wüthrich, Journal of Molecular Biology, 1997 273, 283.
2. Bayati, M. Parallel Methods for Protein Coordinate Conversion. Masters Thesis,
Northeastern University, Boston, MA, April, 2015.
3. J. Parsons, J. B. Holmes, J. M. Rojas, J. Tsai, and C. E. Strauss, Journal of Computational
Chemistry26, 1063 (2005)
4. AlQuraishi, M. Journal of Computational Chemistry, 2019, 40(7), pp.885-892.
5. Bayati, M., Leeser, M. and Bardhan, J. Journal of Computational Chemistry, 2020, 41(24),
pp.2104-2114.
6. J.E. King, D. Koes. SidechainNet: An All-Atom Protein Structure Dataset for Machine
Learning. https://arxiv.org/abs/2010.08162 (accessed Feb, 13, 2021)
7. Baydin, Atilim Gunes et al. J. Mach. Learn. Res. 18 (2017): 153:1-153:43.
8. AlQuraishi, M. Cell Systems, 2019, 8(4), pp.292-301.e3.
9. Wang, P. and Alcaide, E. et al. AlphaFold2 Open Replication.
https://github.com/lucidrains/alphafold2 (accessed Feb, 26, 2021)
10. J. Jumper et al. AlphaFold2.
https://www.predictioncenter.org/casp14/doc/presentations/2020_12_01_TS_predictor_Alph
aFold2.pdf (accessed Feb, 08, 2021)

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted June 9, 2021. ; https://doi.org/10.1101/2021.06.08.446214doi: bioRxiv preprint

https://arxiv.org/abs/2010.08162
https://github.com/lucidrains/alphafold2
https://www.predictioncenter.org/casp14/doc/presentations/2020_12_01_TS_predictor_AlphaFold2.pdf
https://www.predictioncenter.org/casp14/doc/presentations/2020_12_01_TS_predictor_AlphaFold2.pdf
https://doi.org/10.1101/2021.06.08.446214
http://creativecommons.org/licenses/by/4.0/

