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Abstract   

The conversion of proteins between internal and cartesian coordinates is a limiting step 
in many pipelines, such as molecular dynamics simulations and machine learning 
models. This conversion is typically carried out by sequential or parallel applications of 
the Natural extension of Reference Frame (NeRF) algorithm. This work proposes a 
massively parallel NeRF implementation which, depending on the polymer length, 
achieves speedups between 400-1200x over the previous state-of-the-art. It 
accomplishes this by dividing the conversion into three main phases: parallel 
composition of the monomer backbone, assembly of backbone subunits, and parallel 
elongation of sidechains; and by batching these computations into a minimal number of 
efficient matrix operations. Special emphasis is placed on reusability and ease of use. 
We open source the code (available at https://github.com/EleutherAI/mp_nerf) and 
provide a corresponding python package. 

   

Introduction   

Molecular modelling often employs two distinct sets of coordinates to represent 
proteins or other polymers, such as nucleic acids or glycans. One can represent a 
polymer using internal coordinates (bond lengths, bond angles and dihedrals) or 
cartesian coordinates (x,y,z)1. Either of these two coordinate systems allows for a 
complete representation of the molecule, and both have their strengths and 
weaknesses. Cartesian coordinates are easier to work with when treating the polymer 
as a rigid system (e.g. for rotations, translations or visualizations), whereas internal 
coordinates are preferred when working with forces and interactions between the 
polymer atoms.    
   
Due to this complementarity, it is often necessary to convert between the two 
representations. Translation between these systems, however, can become a 
bottleneck in many applications. To align with prior work, we will refer to the transform 
from cartesian to internal coordinates as forward translation2.  On modern hardware, 
this process can be straightforwardly parallelized across all polymer points, since the 
internal coordinates can be calculated independently for each point. This is not the 
case for reverse translation, however. Translation from internal coordinates to cartesian 
ones has typically been carried out sequentially, since the position of each atom 
depends on the position of the previous one3.  
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This sequential dependency bottlenecks reverse translation. Although the calculation 
can be parallelized across many polymers of similar length, this bottleneck is significant 
for applications that make intensive use of forward and reverse translation. Examples of 
such applications include the training of machine learning models4, protein structure 
refinement from NMR data1, analysis of protein structure changes3, and molecular 
dynamics simulations5.  
   
With the development of more and better computational tools, some effort has been 
devoted in recent years to alleviating the reverse translation bottleneck4,5. These works 
have focused on the usage of high-performance, optimized code; the division of the 
backbone into different fragments (which are folded independently and later 
ensembled)4; and tree ensembling algorithms5, among other strategies. 
These approaches, however, are often implemented specifically for Graphical 
Processing Units (GPUs), thus limiting usage to expensive and specialized hardware 
accelerators.  Despite these improvements, the translation from internal coordinates to 
cartesian ones continues to be a bottleneck even in the many GPU-based pipelines.   
  
The standard algorithm used for reverse translation is the Natural extension of 
Reference Frame (NeRF) procedure3. The pNeRF algorithm4 explored extending NeRF by 
dividing the polymer into different fragments, iteratively folding for each fragment in 
parallel, and then concatenating the independently folded fragments. However, it 
considered only the backbone, and the number of parallelized fragments was low (on 
the order of 1-10). A more recent implementation of a parallel NeRF algorithm5 
considered the sidechains as well, and performed a tree-based merge of the different 
fragments. However, it required specialized hardware such as CUDA-capable GPUs and 
there is friction when trying to adapt the implementation for different usecases.  
 
This work builds on top of the theoretical proof of correctness shown in previous work3, 
and also provides numerical validation through error analysis in back-and-forth 
translation cycles as in4. We introduce a massively-parallel (mp-NeRF) algorithm, which 
reorders the steps in the parallel implementations of the NeRF algorithm 
to unlock parallelization and optimize execution when possible. The algorithm 
leverages ideas from previous work4,5, and builds on top of them to provide an 
acceleration of over 400x-1200x, depending on the length of the protein being 
translated. It accomplishes this by decomposing operations into parallelizable units and 
using more efficient data structures that leverage the efficiency of matrix-based 
operations. This algorithm thereby increases the throughput of pipelines which make 
heavy use of such conversions, such as the training of machine learning models to 
predict protein folding.   
 

Methods   

 

Massively parallelized natural extension of reference frame   
Many polymers, such as large biomolecules, can be divided into a backbone and a 
set of offshoot branches, usually referred to as sidechains. This work initially takes a 
parallel scheme similar to pNeRF, which only considers the protein backbone and a small 
number of fragments to build in parallel, but takes it to the extreme by considering  the 
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backbone of each amino acid as a separate fragment. It also extends pNeRF by 
incorporating side chains. Since the polymer backbone is composed of repeated 
subunits, it is convenient to parallelize computation across monomer backbone 
fragments. The procedure can be separated into the 3 phases described in detail below. 
Briefly, these encompass folding backbone subunits, linking these subunits, and then 
folding side chains.    
   

1. Parallel composition of the minimal repeated structure  

For every polymer backbone subunit, we initialize two points near the origin 
coordinates.  Together with the origin point, these three points define a plane that can 
be used to define the first dihedral angle and initialize polymer extension. In subsequent 
steps, this reference frame is also used to calculate the relative orientations needed to 
connect monomer backbones properly. From there, we implement the NeRF algorithm 
sequentially for every atom in a given monomer backbone, until we reach the first point 
of the next monomer backbone, as illustrated in Fig. 1A.  This process is repeated in 
parallel for all monomers.  This step requires a number of NeRF calls equal to the 
number of atoms in the backbone monomer, times the number of structures across 
which the calculation is parallelized. A theoretical proof of the equivalence of this step 
with respect to sequential elongation can be found in AlQuraishi 20194. 
  

2. Assembly of backbone monomers.    

We then join the backbone monomers by an efficient roto-translation operation. That 
is, we move the points of each subunit so that its first atom is now linked to the last 
atom of the previous monomer, and we rotate the assembled subunits so that their 
orientation matches the reference frame of the structure.  This sequential pass 
requires: 

1.) Batched matrix multiplications to construct the rotation matrices, equal to the 
number of subunits to assemble 

2.) An iterative matrix multiplication to rotate all subunits sequentially 

3.) A cumulative sum of length 𝑁 − 1 given by the expression 𝑁𝑛𝑒𝑤𝑖
=  𝑁𝑖 +

∑ 𝑁𝑗−1
𝑖
𝑗=0  where 𝑁 𝑗−1

 represents the last point of the 𝑗th subunit after rotation 

and 𝑁𝑛𝑒𝑤 represents the roto-translated backbone subunits. This process is 
illustrated in Fig. 1B.  

   

3. Parallel composition of side chains  

After the backbone assembly, we perform the calculation of the side chains in parallel, 
as illustrated in Fig. 1C. This requires a maximum number of NeRF calls equal to the 
maximum number of atoms in any possible side chain, times the number of side chains 
across which the calculation is parallelized. Note that this is an upper bound, since not 
all sidechains will have the same number of points.    
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FIGURE 1: Illustration of the algorithm. a) Parallel composition of the monomers. b) 

sequential concatenation of monomers. c) Parallel composition of side chains.  
   

Implementation details   
The calculations for the rotation matrices to join the backbone fragments are 
decomposed into a rotation from the reference frame to the first monomer backbone (𝑀0), 
and from each monomer backbone to the next one in the chain (𝑀

𝑖
). This allows for the 

parallel construction of rotation matrices, leaving a cumulative matrix multiplication and 
a cumulative sum as the only sequential parts of the algorithm: 

 
When constructing the Mi matrix;  𝑝1, 𝑝2, 𝑝3 are, respectively, the coordinates of the 

carbonyl and alpha carbon atoms of the present amino acid, and the nitrogen atom of 
the next amino acid. When constructing the M0 matrix; 𝑝1, 𝑝2, 𝑝3 are the coordinates for  
the two points adjacent to the origin, and the origin itself. These define the reference 
frame. In the expression above, Mk represents both the Mi and M0 cases. 
 

The translation operation is implemented as a cumulative sum, accelerating its 
calculation.  Special effort is put into generalizing every possible function for an arbitrary 
number of atoms, so that a single function call can do the required calculations for as 
many atoms as possible, thus achieving a near-perfect usage of the processor native 
parallel capabilities (CPU-native vector instructions such as SIMD and AVX or GPU 
massively parallel architecture).   
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Protein-specific optimizations include omitting the oxygen atom in the backbone 
carbonyl, since it can only have one orientation relative to the carbon to which it is 
bonded.  We later incorporate it as a sidechain addition to the main backbone formed 
by the N-CA-C atoms of each amino acid. During the translation process, the rings 
present in amino acid sidechains are simplified so that there is a unique path connecting 
every atom in the sidechain to the backbone. We do this by masking one bond per ring, 
so that only linear and branched sidechains are considered, and thus there are no loops 
in the algorithm’s reconstruction path. This masking does not require further processing 
in the output, since the algorithm returns a point cloud, consistent with PDB format. For 
data processing, the sidechainnet6 format is used to encode proteins as arrays of shape 
(N x 14 x 3), where N is the length of the protein. 
 

A profiling report is included in the Supplementary Information section (Figure S1).  
 
Results   

   

To emphasize the power and efficiency of our methodology, we compare to both the 
state-of-the-art4 (SOTA) and the “state-of-practice,” i.e., the most advanced techniques 
that are currently in widespread use. A presentation of the compared algorithms and 
details about their implementations can be found in Table 1. 
    

Architecture Language Framework Reconstruction 

NeRF (Parsons et al.3) CPU C None Full 

pNeRF (AlQuraishi et al.4) CPU or GPU Python TensorFlow Backbone-only 

SOTA (Bayati et al.5) GPU C++ CUDA Full 

This Paper CPU or GPU Python PyTorch Full 

Table 1. Different algorithmic implementations and hardware requirements  
   

Computational Efficiency     
 

Length (residues)   
pNeRF/SOTA/ours  pNeRF4  

 SOTA5 

 (Bayati et al.)  Ours @ CPU-laptop  

Ours @ Hybrid 
(CPU/GPU)-

desktop  Ours @ GPU-desktop  
 -/114/114  -  2.4 s  0.0053 s  

(448x**)  
.0189 s  

(126x**)  
0.0211 s  
(113x**)  

-/-/-214  -  -  0.0065 s  .0204 s  0.0223 s  

350/331/331  0.40 s  3.5 s  0.0085 s  
(48x*, 411x**) 

0.0223 s  
(17x*, 156x**) 

0.0262 s  
(15x*, 133x**) 

-/-/401  -  -  0.0096 s  0.0228 s  0.0282 s  

-/500/500  -  7.3 s  0.0091 s  
(804x**)  

0.0263 s  
(277x**)  

0.0292 s  
(251x**)  

-/-/621  -  -  0.0127 s  0.0260 s  0.0333 s  

700/-/753  0.60 s  -  0.0147 s  
(40x*)  

0.0276 s  
(21x*)  

0.0366 s  
(16x*)  

-/-/862  -  -  0.0166 s  0.0293 s  0.0400 s  

-/1000/1000 -  18.66 s  0.0153 s  
(1215x**)  

0.0301 s  
(620x**)  

0.0433 s  
(430x**)  

   
*When compared to 4. **When compared to 5 

TABLE 2: Comparison of execution times between previous SOTA, pNeRF, and our 
implementation. We report results from the GPU version of pNeRF. For our 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 9, 2021. ; https://doi.org/10.1101/2021.06.08.446214doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.08.446214
http://creativecommons.org/licenses/by/4.0/


implementations, speedups are reported between parenthesis and with the “–
x” suffix expressing speedup with respect to pNeRF and the recent SOTA 

implementation. Note that the pNeRF implementation only considers the 3 backbone 
atoms N, Cα, C, whereas the other algorithms consider the full side chain. Due to the 

difficulty of benchmarking all algorithms on the same proteins, we conservatively 
compare to comparably sized, but longer proteins.  

   
Our algorithm achieves more than 400x-1200x improvements over the previous SOTA 
for proteins, depending on the protein length studied. It does this using only CPUs, which 
makes it broadly applicable and able to exploit parallelism in CPU cluster setups.  It can 
be seen in Table 2 that the GPU implementation is slower than its CPU counterpart for 
all values of polymer length. This might be due to the cost of data transfers and 
synchronization between CPU and GPU, the cost of spawning GPU kernels for each 
step, the lower clock frequency of the GPU, which notably slowed down the sequential 
assembly of backbone monomers, and an under-utilization of its parallelism. 
Although proteins longer than 1000-AA are infrequent, the GPU implementation might 
show advantage in other, longer polymers such as nucleic acids. As evidenced in Table 
2, this massively parallel algorithm eliminates the need for hardware accelerators 
for this task, lowering the requirements to perform efficient conversion of polymers 
from internal to cartesian coordinates.   
   
   

Accuracy   

We check the cumulative error that comes with repeated transformations from internal 
to cartesian and back again. This round-trip is of special importance in algorithms that 
use internal coordinates, but that need conversion functions before and after since the 
molecular simulation or base representation is in cartesian coordinates. A variation in 
the error during the first 100 out of 1000 forward-backward cycles of conversion can be 
observed. We hypothesize this might be due to numerical inaccuracies in floating-point 
arithmetic. Importantly, we note that errors do not significantly accumulate even 
over 1000 roundtrip translation cycles.  

  
FIGURE 3: Cumulative mean error (RMSD) as a function of encoding-decoding cycles.   
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Design Tradeoffs 

We would like to emphasize that some design choices are currently limiting the speed 
of the implementation presented here. However, we accept these tradeoffs to ease use 
and facilitate adoption. These design choices include implementing the algorithm in 
Python instead of a compiled language.   Python is a high-level language widely known 
among the scientific community, with many scientific software packages implemented 
in it. Since Python is an interpreted language, functions that are not ultimately 
implemented in more performant languages like C++ can be slow. However, since the 
majority of our execution time is devoted to matrix operations implemented in C (Figure 
S1, Table S1), we do not incur a large performance penalty in Python. We estimate that 
the current implementation could be accelerated by 2x if we switched to a compiled 
language. However, this would inevitably lead to a reduction in adoption, increased cost 
of code maintainability and a reduction on the possible extensions, adaptations, 
reusability, and readability of the current implementation.  
 
Our implementation is also differentiable7, thus allowing one to train end-to-end 
deep learning models with it. Examples of relevant projects are RGN-Networks8, or the 
ongoing open source replication9 of AlphaFold210, which makes heavy use of the 
conversion from internal representation to cartesian coordinates. The differentiability 
of the code, however, makes it marginally slower because of the data structures needed 
to accumulate important information for the gradient calculations, and also because the 
maintenance of this property prevents us from using more efficient libraries like NumPy, 
that allow compilation of the code to C (e.g. using Cython or Numba) to achieve faster 
runtimes.  
 
Nevertheless, these features could be adapted for a specific case in which a particular 
set of properties might be preferred over other ones (e.g. single-thread speed over 
differentiability, parallelization over single-thread speed, etc.). We leave further 
optimizations and adaptations to more specific scenarios to the community. In 
aggregate, we estimate that the current CPU runtimes could be reduced 2x to 3x by 
adopting a scheme focused on single-thread speed above everything else, which we find 
to be an acceptable tradeoff given the 400-1200x speedup obtained through parallelism. 
   

Conclusions   

In this work, we have proposed a new, massively parallel scheme for the implementation 
of the Natural Extension of Reference Frame when applied to polymers, and showcased 
substantial runtime improvement over previous works.  The design principles put in 
practice allow for easy adoption and usage across the community for different kinds of 
polymers such as proteins, nucleic acids, glycans or synthetic materials.   We hope this 
accelerated implementation can reduce the times for computational simulations, 
accelerate the training of machine learning models, and open the window to new 
advances in polymer structural science.   
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