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Abstract: Area of Habitat (AOH) is defined as the ‘habitat available to a species, that is, habitat within its 16 

range’ and is produced by subtracting areas of unsuitable land cover and elevation from the range. Habitat 17 

associations are documented using the IUCN Habitats Classification Scheme, and unvalidated expert opinion 18 

has been used so far to match habitat to land-cover classes generating a source of uncertainty in AOH maps. 19 

We develop a data-driven method to translate IUCN habitat classes to land-cover based on point locality data 20 

for 6,986 species of terrestrial mammals, birds, amphibians and reptiles. We extracted the land-cover class at 21 

each point locality and matched it to the IUCN habitat class(es) assigned to each species occurring there. Then 22 

we modelled each land cover class as a function of IUCN habitat using logistic regression models. The resulting 23 

odds ratios were used to assess the strength of the association of each habitat land-cover class. We then 24 

compared the performance of our data-driven model with those from a published expert knowledge translation 25 

table. The results show that some habitats (e.g. forest and desert) could be more confidently assigned to land-26 

cover classes than others (e.g. wetlands and artificial). We calculated the association between habitat classes 27 

and land-cover classes as a continuous variable, but to map AOH, which is in the form of a binary 28 

presence/absence , it is necessary to apply a threshold of association. This can be chosen by the user according 29 

to the required balance between omission and commission errors. We demonstrate that a data-driven translation 30 

model and expert knowledge perform equally well, but the model provides greater standardization, objectivity 31 

and repeatability. Furthermore, this approach allows greater flexibility in the use of the results and allows 32 

uncertainty to be quantified. Our model can be developed regionally or for different taxonomic groups.  33 

 34 

Keywords: Habitat suitability models, commission and omission errors, Copernicus Global Land Service 35 

Land Cover (CGLS-LC100), ESA Climate Change Initiative (ESA-CCI), IUCN habitat, IUCN Red List. 36 

 37 

INTRODUCTION 38 

Habitat loss is the most important driver of biodiversity decline (Díaz et al.,, 2019). Therefore, there is an 39 

urgent need to determine where habitat is located within each species’ distribution (Pimm et al., 2014; Brooks 40 

et al., 2019). Several approaches have been developed to map global species’ distributions, but accurate spatial 41 

data are only available for a limited number of species (Rondinini et al., 2005; Rondinini & Boitani 2012).  42 

 43 

The most complete dataset of maps of species’ ranges is that available in the International Union for 44 

Conservation of Nature (IUCN) Red List (www.iucnredlist.org). The IUCN Red List has assessed more than 45 

134,400 species, and species groups, including mammals, amphibians, and birds, have been comprehensively 46 

assessed. The IUCN range maps are generally drawn to minimize errors of omission (i.e. false absence), with 47 

the result that they often contain substantial areas that are not occupied by the species, and so suffer from errors 48 

of commission (i.e. false presence) (Ficetola et al., 2014; Di Marco et al., 2017).  49 
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 50 

Area of Habitat (AOH; previously known as extent of suitable habitat, or ESH) is the ‘habitat available to a 51 

species, that is, habitat within its range’ (Brooks et al., 2019). AOH maps are produced by subtracting 52 

unsuitable areas from range maps, using data on each species’ associations with land cover and altitude 53 

(Beresford et al., 2011; Rondinini et al., 2011; Ficetola et al., 2015), and attempts to reduce commission errors 54 

in range maps. Therefore, the production of AOH maps requires an understanding of which habitats a species 55 

occurs in and where those habitats are located within its range.  56 

 57 

Information on habitat preferences is documented for each species assessed on the IUCN Red List (IUCN 58 

2013) following the IUCN Habitats Classification Scheme (IUCN habitat; IUCN, 2012), a classification and 59 

coding system of habitats that ensures global consistency. IUCN standardized habitat definitions independently 60 

of taxonomy or geography. However, IUCN habitat classes are not spatially explicit, although recent efforts 61 

have attempted to delimit them (Jung et al., 2020). Land-cover classes derived from remote sensing have been 62 

widely used as a surrogate of habitat (e.g. Buchanan et al., 2008; Beresford et al., 2011; Rondinini et al., 2011; 63 

Tomaselli et al., 2013; Montesino Pouzols et al., 2014; Corbane et al., 2015; Santini et al., 2019), although 64 

habitat is a complex multi-dimensional concept that is difficult to simplify into land-cover classes. 65 

 66 

A translation table between habitat and land-cover classes is typically used to represent IUCN habitat classes 67 

spatially and to produce AOH maps. This is a table that shows which habitat classes map onto which land-68 

cover classes. Previous versions have been based solely on expert knowledge, raising concerns about the 69 

accuracy and objectivity of the resulting associations, as the assumptions generated in the translation process 70 

are rarely considered in detail and the errors are difficult or impossible to quantify (Bradley et al., 2012). 71 

Furthermore, there is a lack of standardization in the procedure (Seoane et al., 2005), which is subject to 72 

variability in expert opinion (Johnson & Gillingham, 2004). 73 

 74 

Repositories of point locality data (i.e. locational records where particular species have been recorded 75 

(Rondinini et al., 2006)) primarily from citizen science have been successfully used in habitat suitability 76 

models (e.g. Gueta & Carmel, 2016; Bradter et al.,, 2018; Crawford, Olds, Maerz, & Moore, 2020). The 77 

potential, therefore, exists to use such data also to develop an objective data-driven translation table between 78 

habitat and land-cover classes by extracting information on land cover from point localities of species with 79 

different habitat associations. 80 

 81 

Here we propose a standardized, data-driven methodology to produce a translation table between IUCN habitat 82 

classes and two widely used global land-cover maps, the Copernicus Global Land Service Land Cover (CGLS-83 

LC100; Copernicus Global Land Operations “Vegetation and Energy”, 2018a; Buchhorn et al., 2019) and the 84 

European Space Agency Climate Change Initiative land cover 2015 (ESA-CCI; ESA, 2017) using point 85 

locality data for mammals, birds, amphibians and reptiles (the best-documented groups of species). The aim 86 

of this analysis was to develop a translation table that quantifies the power of association between land cover 87 

and habitat classes. In doing so, we aim to illustrate a method that improves on expert opinion by (a) 88 

quantifying errors in associations between habitat and land cover classes, (b) being flexible to the needs of the 89 

user in terms of the required trade-off between reducing commission errors and increasing omission errors, 90 

and (c) can be developed at different spatial scales, for different taxa, using any set of habitat or land-cover 91 

classes.  92 

 93 

METHODS 94 

Data cleaning and preparation 95 

We downloaded point locality data for mammals (GBIF, 2019; GBIF, 2020), amphibians (GBIF, 2020) and 96 

reptiles (GBIF, 2020) from the Global Biodiversity Information Facility (GBIF) and for birds from GBIF 97 

(GBIF, 2019; GBIF, 2020) and eBird (eBird Basic Dataset, 2019). The data were restricted to point localities 98 
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dated from January 2005 to December 2018 for the model building (70% training and 30% test), and from 99 

January 2019 to December 2020 for the evaluation of the model. For eBird data, we selected only stationary 100 

point localities with a coordinate uncertainty of less than 30 m. To minimize errors, and uncertainties inherent 101 

to repositories of point locality data, we included only the most precisely georeferenced points (Rondinini et 102 

al., 2006; Meyer 2012) and applied a set of filters following the guidelines of  Boitani et al., (2011). The main 103 

attributes considered were currency, spatial accuracy and spatial coverage (Fig. 1). 104 

 105 

Figure 1 . Description  of the point locality cleaning process, following Boitani et al., (2011). The factors considered were 

currency, spatial accuracy and spatial coverage. The filters were applied from top to bottom. 

 

To make it clear where we are referring to explicit classes, we present land-cover class names in quotation 106 

marks and IUCN habitat class names in italics. 107 

 108 

The habitat class(es) association of each species were extracted from the IUCN habitat (IUCN, 2020). These 109 

follow a hierarchical classification of habitat with three levels. The definitions consider biogeography, 110 

latitudinal zonation and depth in marine systems. In this analysis, we used Level-1 habitat classes for all 111 

habitats except for artificial terrestrial, for which we used a modification of Level-2 (Appendix S1). We 112 

subdivided artificial terrestrial into three subclasses because in terms of land cover these are distinct habitat 113 

classes that could aggregate different species (Ducatez et al., 2018). 114 

 115 

Because the land-cover classes from the two remote sensing products are exclusively terrestrial, we limited the 116 

analysis to species coded only to terrestrial habitat classes, thus excluding species coded to one or more IUCN 117 

marine habitats. We also excluded species coded to more than five Level-1 habitat classes, because habitat 118 

generalists are likely to add little information to the habitat-land cover relationship. In contrast, specialist 119 

species coded to only one habitat class provide more insight into the relationship between habitat and land 120 

cover. For that reason, for each taxonomic class, we randomly subsampled point records from species coded 121 

to more than one habitat class to match the number of points of species coded to one habitat and thereby gave 122 

equal weight to habitat specialists even when they had fewer points. 123 

 124 

We developed models for two different global land-cover products derived from remote sensing: CGLS-LC100 125 

and ESA-CCI. The CGLS-LC100 has a 100-m spatial resolution and a global classification accuracy of 80.2% 126 

(Copernicus Global Land Operations “Vegetation and Energy”, 2018b). The ESA-CCI has a 300-m spatial 127 

resolution and a global classification accuracy of 71.1% (ESA 2017). It is part of a time series from 1992 to 128 

2015, of which we used the 2015 map. Both products use the United Nations Food and Agriculture 129 
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Organization Land Cover Classification System (UN-LCCS), although they have different legends. CGLS-130 

LC100 has 12 land-cover classes at Level-1 and 23 classes at Level-3 (Level-2 is not used by CLGS-LC100), 131 

and we used Level-3. ESA-CCI has 22 land-cover classes at Level-1 and 38 classes at Level-2. In this analysis, 132 

we only used Level-1 because Level-2 is only available for some regions of the globe.   133 

 134 

To prepare the data for the model, we extracted the land-cover class at the coordinates of each point locality. 135 

Some land-cover classes did not have enough point localities falling within them to be modeled, although in 136 

all cases these were land-cover classes with very low global coverage. For CGLS-LC100, the under-137 

represented land-cover classes were “open forest deciduous needle leaf” (10 points, 0.03% of global land 138 

surface), “snow and ice” (108 points, 3.1% of global land surface), “moss and lichen” (124 points, 2.3% of 139 

global land surface) and “closed forest deciduous needle leaf” (383 points, 3.0% of global land surface). For 140 

ESA-CCI, the only class represented too infrequently for analysis was “lichens and mosses” (713 points, 2.2% 141 

of global land surface). 142 

 143 

Modeling of habitat-land cover associations 144 

To quantify the relationship between IUCN habitat classes and land-cover classes, we modeled the presence 145 

or absence of each land-cover class as a function of the IUCN habitat class(es) of the species whose point 146 

localities fell within it. An important consideration for modeling was that the number of habitat classes per 147 

species varied from one to five. Therefore, it was impossible to model land-cover class as a one-to-one 148 

relationship with habitat classes, as each point location was associated with one or multiple habitats. This 149 

consideration restricted the number of models we could use for our analysis. We required a flexible model that 150 

allowed a many-to-many match between habitat classes and land-cover classes to model this matrix of habitat 151 

vs land-cover class relations. In multinomial logistic regression models, the data and the computational power 152 

requirements increase exponentially with the number of response categories. In our case, with more than 20 153 

land-cover categories, this option was not feasible. Therefore, we modeled each land-cover class separately, 154 

transforming it into a binary variable of 1 or 0 (land cover present/not present in a point locality). Then, we 155 

used logistic regressions to model the binary land-cover class variable as a function of the different habitat 156 

classes: 157 

[1]𝑙𝑜𝑔
𝑝𝑙𝑐

1 − 𝑝𝑙𝑐
= 𝛽0 + 𝛽1𝐻𝐹𝑜𝑟𝑒𝑠𝑡 + 𝛽2𝐻𝑆𝑎𝑣𝑎𝑛𝑛𝑎 + 𝛽3𝐻𝑆ℎ𝑟𝑢𝑏𝑙𝑎𝑛𝑑 + 𝛽4𝐻𝐺𝑟𝑎𝑠𝑠𝑙𝑎𝑛𝑑 + 𝛽5𝐻𝑊𝑒𝑡𝑙𝑎𝑛𝑑𝑠 + 𝛽6𝐻𝑅𝑜𝑐𝑘𝑦𝐴𝑟𝑒𝑎𝑠158 

+ 𝛽7𝐻𝐷𝑒𝑠𝑒𝑟𝑡 + 𝛽8𝐻𝐴𝑟𝑡𝑖𝑓𝑖𝑐𝑖𝑎𝑙1 + 𝛽9𝐻𝐴𝑟𝑡𝑖𝑓𝑖𝑐𝑖𝑎𝑙2 + 𝛽10𝐻𝐴𝑟𝑡𝑖𝑓𝑖𝑐𝑖𝑎𝑙3 + 𝛽11𝐻𝐴𝑟𝑡𝑖𝑓𝑖𝑐𝑖𝑎𝑙4 159 

where (plc/(1-plc)) is the land cover odds ratio and βx are the model parameters for each of the habitats Hx.  160 

 161 

The transformation of the land-cover class into a binary form for each of the models generated a highly 162 

unbalanced variable, with many more zeroes than ones. In a logistic regression model, unbalanced data 163 

underestimate the probability of an event so it is recommended to adjust the number of 1s and 0s (King & Zeng 164 

2001; Pozzolo et al., 2015). We therefore randomly subsampled the 0s in the training set before running the 165 

model. The assumption behind this is that in the majority class there are many redundant observations and 166 

randomly removing some of them does not change the estimation of the within-class distribution (Pozzolo et 167 

al., 2015).  168 

 169 

To reduce the intrinsic spatial and taxonomic bias point locality data (Boitani et al., 2011; Meyer et al., 2016), 170 

and to account for multiple but varying numbers of point localities per species, we added taxonomic and spatial 171 

variables as random effects in the model (Bird et al., 2014). As taxonomic variables, we added species nested 172 

within taxonomic class (Amphibia, Reptilia, Aves, Mammalia). Adding intermediate taxonomic groupings 173 

(e.g. family or genus) in the nesting would result in many factor levels with single or very few replicates. To 174 

test whether there was any bias between taxonomic classes, we first produced separate models for each class, 175 

and found that the association between land cover and habitat classes from the different translation tables were 176 

very similar; therefore, we decided to model all classes together. As a spatial variable, we added the country 177 

of the point record as a random effect. 178 
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 179 

We used the coefficients of the models to evaluate the association between land-cover class and habitat classes. 180 

The intercept did not provide any information on the relationship between land-cover class and habitat class 181 

as it represents the odds of a point locality falling within a particular land-cover class after the subsampling of 182 

the data set, independently of the habitat (Ranganathan et al., 2017). The coefficients represent the odds ratio, 183 

in other words, the odds of a point locality falling in a particular land-cover class (when the species to which 184 

the point locality relates is coded for a particular habitat class) divided by the odds of the species occurring in 185 

that land-cover class when it is not coded for that habitat class. The ratio, therefore, indicates the extent to 186 

which being coded to a particular habitat class increases or decreases the odds of a species being found in a 187 

particular land-cover class. The units of the logit function are log(odds ratio), but for easier interpretation, we 188 

exponentiated them and present the results as odds ratios.  189 

 190 

Odds ratio values below 1 indicate a negative association between land cover and habitat classes, while those 191 

above 1 indicate a positive association. As the odds ratio is a continuous variable, it is necessary to set a 192 

threshold to transform the results into a binary translation table that can be used to assign, or not, a particular 193 

habitat class to a particular land-cover class. The threshold can be modified according to the needs of the user 194 

based on the required balance between minimizing commission errors (land-cover classes incorrectly 195 

associated with a habitat class) and increasing omission errors (land-cover classes incorrectly omitted from a 196 

habitat class). Coefficients that had p-values higher than 0.05 were considered to indicate a lack of association 197 

between land cover and habitat classes. To adjust the significance threshold of the p-values for multivariable 198 

analysis, we used Bonferroni corrections.  199 

 200 

To validate the models, we set aside 30% of the point occurrence data for testing, leaving 70% to train the 201 

model. As a validation test, we used the Area Under the Curve (AUC) from a Receiver Operating Characteristic 202 

(ROC) curve. AUC is a model accuracy measure that provides information on how well a model can distinguish 203 

among classes. In our case, we used it to test how well the models predicted the presence/absence of a point 204 

locally in a given land cover class. AUC values range from 0 to 1, a value of 0.5 means that the model does 205 

not performs better than random, while a value of 1 indicates that the model can perfectly separate the two 206 

groups.  207 

 208 

We then compared the performance of the data-driven translation table with that of an expert knowledge 209 

translation table (Santini et al., 2019) based on the same ESA-CCI land cover classification used here. We did 210 

not find any published translation table that used CGLS-LC100. Santini et al., matched the ESA CCI land 211 

cover classes against Level-2 IUCN habitat classes, so we aggregated the habitat classes to Level-1 IUCN 212 

habitat classes to make the two translation tables comparable. We limited the comparison to birds and mammals 213 

because they were the taxonomic groups considered by Santini et al.,  For each species we mapped suitable 214 

habitat based on both tables. We assessed the proportion of points located in the suitable habitat (point 215 

prevalence) and compared it with the proportion of suitable habitat inside the species’ range (model prevalence) 216 

to determine whether the results were better than a randomly assigned set of points (Rondinini et al., 2011).   217 

 218 

RESULTS 219 

The number of point localities and species available for this analysis was 200,683 and 455 respectively for 220 

mammals, 4,083,510 and 5,154 for birds, 92,327 and 479 for amphibians, and 131,077 and 898 for reptiles. 221 

For the CGLS-LC100 land-cover product, 71 coefficients showed a significantly positive association (odds 222 

ratio >1) and 38 coefficients showed a significantly negative association (odds ratio <1) between land-cover 223 

classes and habitat classes (Fig. 2). For the ESA-CCI land-cover product, 101 coefficients showed a 224 

significantly positive association and 40 coefficients showed a significantly negative association (Fig. 3).  225 
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 226 

Figure 2. Odds ratio values describing the association between CGLS-LC100 land-cover classes and IUCN habitat 

classes. Odds ratio values significantly < 1 indicate a negative association, and values significantly > 1 indicate a positive 

association. The significantly positive associations are divided into tertiles (shown in shades of green), indicating three 

possible options for setting a threshold to convert continuous variables into a binary association/non-association variable 

for creating AOH maps. AUC indicates the values of Area Under the Curve from a ROC, a measure of accuracy of a 

classification model. 

 227 

Higher odds ratios (>1) indicated stronger positive associations between land cover and habitat classes, and 228 

lower odds ratios (nearer to zero) indicated stronger negative associations. We divided the significantly positive 229 

values into tertiles to identify three potential thresholds for creating a table of binary association/non-230 

association variables for producing AOH maps: 1.138-1.351, 1.362-1.712 and 1.743-13.720 for CGLS-LC100, 231 

and 1.121-1.393, 1.396-1.704 and 1.708-19.148 for ESA-CCI.  232 

Forest and Desert had the strongest positive associations between land cover and habitat classes. The Forest 233 

habitat class was associated with almost all the forest and tree cover land-cover classes (CGLS-LC100 average 234 

positive odds ratio = 3.8; ESA-CCI average positive odds ratio = 4.0) and with no other land-cover classes. 235 

The desert habitat class was also strongly associated with particular land-cover classes: “shrubs”, “herbaceous 236 

vegetation”, and “bare/sparse vegetation” in CGLS-LC100 (average positive odds ratio = 4.6) and “shrubland”, 237 

“grassland”, “sparse vegetation (tree, shrub, herbaceous cover < 15%)” and “bare areas” in ESA-CCI (average 238 

positive odds ratio = 3.0). Rocky areas were associated with almost the same land-cover classes as Desert but 239 

with lower odds ratios. 240 

 241 
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 242 

Figure 3. Odds ratio values describing the association between ESA-CCI land-cover classes and IUCN habitat classes. 

Odds ratio values significantly < 1 indicate a negative association, values significantly > 1 indicate a positive association. 

The positive associations are divided into tertiles (shown in shades of green), indicating three possible options for setting 

a threshold to convert continuous variables into a binary association/non-association variable for creating AOH maps. 

AUC indicates the values of Area Under the Curve from a ROC, a measure of accuracy of a classification model. 

 243 

Savanna, Shrubland and Grassland habitat classes were associated with “shrubs”, “herbaceous vegetation” 244 

and “cultivated and managed vegetation agriculture” in CGLS-LC100 land cover, and “cropland”, “herbaceous 245 

cover”, “shrubland”, “grassland”, “sparse vegetation”, “mosaic cropland” and “mosaic herbaceous cover” in 246 

ESA-CCI. However, the power of association varied between these different combinations. The Savanna 247 
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habitat class was also associated with some forest classes while Shrubland and Grassland habitats were also 248 

associated with bare areas.  249 

 250 

We divided artificial terrestrial habitats into three different classes: Artificial arable and pasture lands, 251 

Artificial degraded forest and plantations, and Artificial urban and rural gardens. These habitats had the least 252 

certain relationships because the odds ratio values were the closest to 1 (CGLS-LC100 average positive odds 253 

ratio = 1.367, 1.333 and 1.577 respectively; ESA-CCI average positive odds ratio = 1.468, 1.370 and 1.579 254 

respectively). Some unexpected land-cover classes were associated with these habitat classes, e.g.  Arable and 255 

pasture lands and degraded forest and plantations were associated with “urban areas”.  However, these 256 

unexpected associations disappeared when increasing the threshold. 257 

 258 

Wetland and Artificial aquatic habitats had intermediate odds ratio values (CGLS-LC100 average positive odds 259 

ratio = 1.7; ESA-CCI average positive odds ratio = 1.8). In terms of land-cover associations, they were 260 

associated (in some cases strongly) with land-cover classes related to water, but also to some land-cover classes 261 

that have no relation with wetlands or aquatic environments (e.g. some type of forest or cultivated areas).  262 

 263 

The AUC of models for CGLS-LC100 ranged from 0.644 to 0.940. The land-cover classes with the lowest 264 

AUC were the “open and closed unknown forest” (AUC = 0.644 and 0.736) classes, followed by “water 265 

bodies” (AUC = 0.745) and “urban areas” (AUC = 0.763). Those with the highest AUC values were the other 266 

forest classes (AUC range 0.854 – 0.940) and “bare and sparse vegetation” (AUC = 0.924). For ESA-CCI, the 267 

AUC ranged from 0.709 to 0.972. The land-cover classes with the lowest AUC were mosaic land-cover classes 268 

(AUC range 0.709 - 0.874), followed by “water bodies” (AUC = 0.750) and “urban areas” (AUC = 0.768). 269 

The land-covers with the highest AUC values were “lichens and mosses” (AUC = 0.972), “cropland irrigated 270 

or post-flooding” (AUC = 0.954), “sparse vegetation” (AUC = 0.937) and tree cover land classes (AUC range 271 

0.834 – 0.949). 272 

 273 

The results of the models can also be mapped spatially (Fig. 4) using one of the three thresholds of associations 274 

between habitat and land-cover classes. In such maps, habitats are overlaid because the same land-cover class 275 

may represent more than one habitat class and/or because both habitats occur in the same geographical areas. 276 

The overlap among habitats increases as the threshold of association is reduced.  277 

 278 

Figure 4 Map of habitat classes (Level 1) from the IUCN Habitat classification scheme based on the highest threshold 

for CGLS-LC100  data-derived translation (Fig 2) . 
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To compare the performance of the data-driven table and the expert-derived table, we used 211,304 point 279 

localities for 489 species of mammal and 461,277 point localities for 2,112 species of bird. We compared the 280 

point prevalence (the proportion of georeferenced points falling in the land-cover classes assigned by each 281 

translation table according to the habitat of each species) between our data-driven method and the expert based 282 

assessment of Santini et al., and  found that point prevalence in  Santini et al., (2019) was similar to the point 283 

prevalence we found from our model when using the middle and high odd-ratio thresholds (Table 1). The ratio 284 

between point prevalence and model prevalence (the proportion of the range remaining after apparently 285 

unsuitable land cover classes are excluded) between the two methods was also very similar, and higher than 1, 286 

indicating that the habitat associations were better than random for both approaches.   287 

Table 1. Mean point prevalence and model prevalence for birds and mammals using the three tertile thresholds for ESA 

CCI land cover derived from data-driven assessment (see Figure 4) and the expert knowledge-based assessment of 

Santini et al., (2019).  

 Lower terti17le 

threshold 

Middle tertile 

threshold 

Upper tertile 

threshold 

Santini et al., (2019) 

 BIRDS 

Point prevalence 0.94 0.81 0.66 0.74 

Model prevalence 0.91 0.76 0.59 0.68 

 MAMMALS 

Point prevalence 0.93 0.82 0.67 0.73 

Model prevalence 0.90 0.80 0.62 0.70 

 288 

 289 

DISCUSSION 290 

By modeling the relationship between IUCN habitat classes and the CGLS-LC100 and ESA-CCI land-cover 291 

classes, we generated two translation tables, quantifying the strength of association between habitat and land 292 

cover classes. The strength of association is represented by the odd ratio values, which indicate the extent to 293 

which a species being coded to a particular habitat class increases or decreases the odds of that species being 294 

found in a particular land-cover class. The relationship between IUCN habitat classes and land cover classes 295 

is expressed as a continuous variable.  296 

 297 

Among habitat classes, Forest, Desert and Rocky areas have the strongest associations with land-cover classes, 298 

perhaps owing to the higher accuracy of the relevant land-cover classes. For both CGLS-LC100 and ESA-299 

CCI, the highest classification accuracy classes are “forest”, “tree cover areas” and “bare soil”.  Using a 300 

different approach based on a decision tree, Jung et al., (2020) found that Forest has the highest validation 301 

accuracy, although they obtained lower validation accuracy for Rocky areas and Desert habitat classes.  302 

 303 

On the other hand, Wetlands and Artificial habitats are more difficult to represent using land-cover maps. 304 

Wetland-related land-cover classes have the lowest classification accuracy in both land-cover maps. From a 305 

remote sensing perspective, wetlands are difficult to map because they are highly dynamic, with rapid 306 

phenological changes through the year (Gallant, 2015; Lumbierres et al., 2017). Remote sensing products at a 307 

global scale cannot distinguish small ponds or temporary water bodies (Pekel et al., 2016; Klein et al., 2017). 308 

Therefore, wetland land-cover classes have more omission errors, and this has a direct impact on the results of 309 

our model.  310 

  311 

Artificial land-cover classes are also difficult to map, as they tend to be more heterogeneous (Álvarez-Martínez 312 

et al., 2018), producing misclassifications among land-cover classes. Land-cover maps have difficulty 313 

separating artificial land-cover classes from natural ecosystems, e.g., plantation from forest, grassland from 314 

cropland, or lake from reservoir (Álvarez-Martínez et al., 2018). Overall, species richness and average 315 

abundance are often lower in artificial environments than in their natural equivalent, even if there is variation 316 
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across different biogeographical contexts (Barlow et al., 2007; Newbold et al., 2015) and this introduces 317 

commission errors. Moreover, we found that artificial land-cover are associated with some natural habitat 318 

classes. This is likely a consequence of greater accessibility of these habitats, and hence disproportionate 319 

prevalence in citizen science data (Meyer et al., 2015). Because a high proportion of citizen science point 320 

location data are recorded in artificial land-cover classes, there is an increased probability that species primarily 321 

associated with natural habitats are reported there, so a data-driven method may associate some natural habitats 322 

with artificial land-cover classes. 323 

 324 

There are several differences between the two land-cover layers used to produce the translation tables that 325 

could determine the use of the table. CGLS-LC100 has a resolution of 100 m while ESA-CCI has a coarser 326 

resolution of 300 m, also CGLS-LC100 has an overall classification accuracy of 80.2% compared with 71.1% 327 

for ESA-CCI. Moreover, CGLS-LC100 avoids using mosaics classes and in general, mapping less complex 328 

habitats is easier than more heterogeneous habitats (Corbane et al., 2015; Álvarez-Martínez et al., 2018). 329 

However, ESA-CCI has the advantage of being available as a longer time series, 1992-2020 for ESA-CCI vs 330 

2015-2019 for CGLS-LC100, which allows studying habitat changes. For both land cover maps we excluded 331 

some land-cover classes because of the lack of point localities; we recommend adding these land cover classes 332 

manually when using the translation tables, according to the user's needs.  333 

 334 

The coding of habitats to each species on the IUCN Red List could introduce some noise to the modeling 335 

process. Coding is based on qualitative assessment by experts, and is therefore susceptible to individual biases 336 

(Brooks et al., 2019; Santini et al., 2019). The current version of the Habitat Classification Scheme on the 337 

IUCN website is described as a draft version. We, therefore, recommend that IUCN updates and improves this 338 

document and anticipate this would influence our odds ratio estimates.  339 

 340 

Both the data-driven table and the expert knowledge translation table represented land cover distribution inside 341 

the range better than random. However, our data-driven approach presents several advantages compared to an 342 

expert knowledge approach. We present the relationship between IUCN habitat and land cover classes as a 343 

continuous variable, allowing greater flexibility in using the results. To use the model to produce AOH maps, 344 

the user is able to decide a threshold of association to transform the results into a binary table according to the 345 

required balance between omission and commission errors. Moreover, a data-driven approach allows us to 346 

quantify the uncertainty associated with the habitat to land cover association and could help to evaluate 347 

potential uncertainties in the AOH maps. This approach can be used to develop a translation table between any 348 

set of habitat codes and any set of land cover variables at a global or regional scale. As better data (species 349 

point and land-cover maps) become available, the translation table can be improved, assuring objectivity, 350 

standardization, and repeatability. 351 

 352 
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