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 829 

Fig. 3 Structural analysis of predicted and known Nsp5 cleavage motifs. (a) NetCorona 830 

scores are shown for all P5-P4’ motifs surrounding glutamine residues in three datasets of 831 

human proteins, binned by score differences of 0.01. The distributions of scores were not 832 

statistically different from one another. (b) Despite a high NetCorona score in ACHE, the motif’s 833 

location in the core of the protein leads to a low Nsp5 access score. (c) TAB1 contains several 834 

motifs predicted to be cleaved, including at Q108 and Q132. The Nsp5 access score is slightly 835 

higher for the Q132 motif due to the greater accessible surface area (ASA). (d) DHX15 contains 836 

the motif with the highest Nsp5 access score observed in the human proteins studied, located 837 

on the C-terminus of the protein. (e) SARS-CoV-2 proteins Nsp15 and Nsp16 contain the native 838 

Nsp5 cleavage motif with the lowest Nsp5 access score calculated (487), which helped provide 839 

a cut-off to Nsp5 access scores in human proteins. (f) The Nsp5 access score of human protein 840 

motifs are indicated, binned by score differences of 50. 92 motifs in 92 unique human proteins 841 

have a Nsp5 access score >500.  842 
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 843 

Fig. 4 Sum of the compartment score (a) or expression score (b) of all human proteins with a 844 

Nsp5 access score above 500 (92 proteins). Both the compartment and the expression score 845 

were obtained from STRING based on text-mining and database searches.  846 

 847 
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 848 

Fig. 5 Proteins with a Nsp5 access score of 500 or more, that could be found in the same 849 

cellular compartment as Nsp5 (48 proteins), were plotted against their expression in the human 850 

body. For each protein, the mean expression by IHC is the mean across all tissues measured 851 

and reported in the HPA (Not detected = 0, Low = 1, Medium = 2, High = 3, Not measured = NA 852 

[which were ignored/removed]).  853 
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Fig. 6 Network of proteins with plausible Nsp5 colocalization a Nsp5 access score above 861 

500. Node color represents the Nsp5 access score (light yellow = 500, dark red = 1005). Node 862 

size indicates the mean expression across all tissue. Edge linking two nodes notes a known 863 

interaction between these proteins. Grey squares are proteins added by STRING to add 864 

connectivity to the network, but do not have an access score above 500 and/or plausible 865 

colocalization with Nsp5. Circles highlighting pathways were based on STRING gene set 866 

enrichment analysis coupled with manual searches in databases (Uniprot, GeneCARD, 867 

PubMed). 868 

 869 

 870 

 871 

 872 

     

      

    

   

       

       

     

     

     

      

      

   

     

    

     

      

     

      

    

     

    

    

    

    

    

     

      

     

    

      

     

     

    

   

      

     

     

    

    

      

      

     

     

     

    

   

      

     

     

     

     

     

     

Apoptosis 

Cytokine response 

DNA damage 

mRNA processing 

Ubiquitination 
Vesicle trafficking 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 8, 2021. ; https://doi.org/10.1101/2021.06.08.447224doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.08.447224
http://creativecommons.org/licenses/by-nc-nd/4.0/


28 

 

Additional Files 873 

Additional files are available here: https://doi.org/10.6084/m9.figshare.14751306 874 

 875 

Additional File 1: This includes Supplementary Tables S1-S15 876 

 877 

Additional File 2: human_all_proteins_netcorona.txt (108MB) 878 

This is the raw data output by NetCorona following analysis of the “All Human Proteins” dataset 879 

 880 

Additional File 3: human_one_gene_netcorona.txt (46MB) 881 

This is the raw data output by NetCorona following analysis of the “One Protein Per Gene” 882 

dataset 883 

 884 

Additional File 4: dataset human_w_PDB_netcorona.txt (16MB) 885 

This is the raw data output by NetCorona following analysis of the “Proteins With PDB” dataset 886 

 887 

Additional File 5: Figure S1 interaction scores vs max NetCorona score.pdf 888 

Nsp5-human protein interaction data from Samavarchi-Tehrani et al. [51], plotted against the 889 

maximum NetCorona score for human proteins from the “One Protein Per Gene” dataset. 890 

 891 

Additional File 6: matching predicted motif to PDB.xlsx 892 

Raw data displaying how predicted cleaved motifs were matched to a PDB file 893 

 894 

Additional File 7: Figure S2 ASA vs NetCorona score.pdf 895 

Accessible surface area (ASA) of a predicted and known Nsp5 motifs plotted against NetCorona 896 

scores, with data published by Moustaqil et al. and Koudelka et al. highlighted [46, 47], and the 897 

Nsp5 access score cut-off displayed. 898 
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