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Abstract

Mapping the dynamics of immune cell populations over time or disease-course is key to
understanding immunopathogenesis and devising putative interventions. We present Track-
SOM, an algorithm which delineates cellular populations and tracks their development over a
time- or disease-course of cytometry datasets. We demonstrate TrackSOM-enabled elucida-
tion of the immune response to West Nile Virus infection in mice, uncovering heterogeneous
sub-populations of immune cells and relating their functional evolution to disease severity.
TrackSOM is easy to use, encompasses few parameters, is quick to execute, and enables an
integrative and dynamic overview of the immune system kinetics that underlie disease pro-
gression and/or resolution.

Keywords: Immune response dynamics, Immunology, Immunokinetics, Sequential clustering,
Cytometry, Single-cell analysis, Bioinformatics, West Nile Virus.
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1 Background

The immune response is a dynamic process in time, and inter-individual differences therein often
underlie diverging clinical outcomes. Under challenge, the immune response deviates from home-
ostasis with the expansion of numerous cellular phenotypes that enact challenge-specific effector
functions in a temporally coordinated fashion. This is seen, for instance, with accelerated cellular
differentiation in the bone marrow and the infiltration of immune cell populations into peripheral
tissues. Yet, the immune response is fallible, as attested to by autoimmunity, chronic diseases and
lethal infections, all of which can be mediated by the immune response and may be ameliorated by
immune intervention. Greater understanding of the temporal kinetics and interactions of immune
cell populations would present expanded opportunities to intervene for clinical benefit. Essential
to delivering this vision is an explicit mapping of how immune system status varies with time
(‘temporal mapping ’) and how that in turn associates with disease severity.

Cytometry is a popular and widely accessible technology for phenotypically characterising and
quantifying immune cells from a sample (e.g. blood), and taking samples over time or disease
progression presents an opportunity for developing such mappings of immune response against
disease stage. Cytometry quantifies numerous characteristics (‘markers’) on potentially millions
of individual cells. Advancements in this technology have now enabled measurements of upwards
of 45 markers per cell, and this will continue to grow (Bendall et al., 2014; Park et al., 2020;
Mair and Prlic, 2018; Nettey et al., 2018). A key analytical challenge in cytometry is aggregat-
ing (‘gating ’) these many and heterogeneous cells into their distinct cellular phenotypes. Given
the high-dimensional nature of such data, the task is challenging, requiring considerable domain
expertise, whilst being prone to subjectivity and poor reproducibility (Mair et al., 2016; Maecker
et al., 2012; Saeys et al., 2016). Many automated ‘clustering’ algorithms have emerged to support
this activity (Liu et al., 2020; Qiu et al., 2011; Van Gassen et al., 2015; Levine et al., 2015). Of
these, FlowSOM has gained popularity, being simple to use, fast to execute, and outstanding in
reproducing manual-gating efforts (Putri et al., 2021; Weber and Robinson, 2016).

Lacking, however, is algorithmic support for annotating the immune response dynamics with re-
spect to time and disease stage. This requires both (i) clustering to identify populations in each
dataset in the time/disease-stage sequence, and (ii) tracking how these populations evolve, which
can be complex. Both the absolute number of cells for each phenotype, and their relative rep-
resentation within the sample, are liable to change. So too are population marker expression
levels, which change as populations undergo differentiation, maturation and associated functional
alteration. Furthermore, differentiation, such as from haematopoietic stem cells through common
progenitors into distinct effector phenotypes, mean that phenotype trajectories through marker-
space can present as branching tree-like structures through the time/disease-stage sequence. In-
filtration into and egress out of peripheral tissues can manifest as populations appearing and
disappearing. Identifying the existence and timing of phenotypic sub-populations that can impact
on disease status is also highly relevant (Krzywinska et al., 2016). Required is a unified clustering-
and-tracking algorithmic framework that can deliver these insights. Filling this knowledge gap,
we previously developed ChronoClust (Putri et al., 2019a), a clustering algorithm wherein the
data themselves determine the number and shape (in marker space) of immune cell populations.
Importantly, ChronoClust can track the evolution of clusters across a sequence of datasets using a
tracking mechanism which (i) requires no tunable hyperparameters, and (ii) is independent of the
clustering algorithm used and can thus be ported onto other algorithms. Whilst ChronoClust’s
clustering performance is highly tunable, it is computationally cumbersome and finding appropri-
ate parameters can prove challenging, whereas we have found FlowSOM to offer better clustering
performance (Putri et al., 2021).

Here, we present TrackSOM, a novel automated clustering and phenotype-tracking algorithm for
cytometry data. It combines the high-quality clustering capacity and fast run time of FlowSOM
with the tracking capability of ChronoClust enabling it to map immune cell population dynamics
against time and/or disease severity status. We highlight these capabilities on a synthetic dataset
and by recapitulating previous findings on a West Nile Virus (WNV) bone marrow dataset. We
perform a parameter sensitivity analysis and demonstrate TrackSOM to have both an improved
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clustering performance and lower sensitivity to parameter value selections over ChronoClust. We
offer usage and parameter selection advice to potential users with novel data. Lastly, we demon-
strate usage on novel data by characterising the evolving immune response in the brains of WNV-
infected mice and relating this to disease severity. TrackSOM is open-source and available at
https://github.com/ghar1821/TrackSOM.

2 Results

2.1 The TrackSOM algorithm

TrackSOM takes as input a sequence of datasets, where each dataset captures cytometric quan-
tifications on a collection of cells, and the sequence represents time-points or disease-stages, Fig-
ure 1A. TrackSOM determines clusters, representing phenotypes, within each dataset and then
establishes links between them to reveal temporal evolutions between clusters across the sequence.
TrackSOM extends FlowSOM in providing this functionality. A self-organising map (SOM) is built
upon the amalgamated data from all datasets, thus identifying the data’s broad topological shape
across the entire sequence, Figure 1B. Each data-point is uniquely associated with a single SOM
node and the data that any given SOM node represents may be confined to a single or several
time-point(s) or disease-stage(s). TrackSOM’s ability to track how clusters evolve is based on
variation in which SOM nodes are supported by data-points as the dataset sequence progresses
(Figure 1C) - some nodes will become more relevant, others less so.

Clusterings (phenotypes) of data-points at each time-point are captured through meta-clusters,
which represent the collation of SOM nodes into discrete groupings, Figure 1C. Having built the
SOM, TrackSOM then processes each dataset (time-point/disease-stage) independently, isolating
SOM nodes containing data from that dataset only and forming meta-clusters accordingly. The
centroids of these non-empty SOM nodes are re-calculated (temporarily disregarding data from
other datasets) as per FlowSOM operation. Meta-clusters for the given dataset are derived through
consensus as drawn from multiple efforts at sub-sampling and hierarchically clustering the SOM’s
nodes, again in accordance with FlowSOM. The number of meta-clusters formed is parameter-
defined, as discussed below.

Next, meta-cluster linkages across adjacent time-points/disease-stages are determined to track
meta-cluster evolutions. This is accomplished by identifying those meta-clusters in adjacent
datasets that share common SOM nodes, Figure 1D. This method is adapted from the ChronoClust
algorithm (Putri et al., 2019a), and we direct readers there for full details. Briefly, meta-cluster
evolutions are encoded into the meta-cluster IDs. New meta-clusters are defined as containing
exclusively SOM nodes that did not belong to any meta-clusters in the preceding datasets. This
includes the first time-point/disease-stage. New meta-clusters are assigned unused alphabetic la-
bels from an alphabetical sequence (A, B, ..., Z, AA, BB, ...). Meta-cluster evolutions are captured
in how these labels are amended over time. A meta-cluster that contains only a subset of a preced-
ing meta-cluster’s SOM nodes is termed a split meta-cluster. A meta-cluster can simultaneously
split multiple ways, and the child inheriting the majority of SOM nodes retains the parent’s label.
The remaining sibling meta-clusters are assigned A|1, A|2, etc. A merged meta-cluster has cap-
tured SOM nodes belonging to multiple preceding meta-clusters, and its label is a parenthesised
concatenation of its parent IDs, e.g. (A,B,C,D).

TrackSOM provides several visualisations, Figure 1E. Network plots denote all meta-clusters at all
time points/disease-stages as bespoke nodes, linked via their evolutions. Time-course heatmaps
capture time/disease-stage and meta-cluster IDs on separate axes. The visualisations are com-
plementary: time-course heatmaps can become convoluted for temporally complicated cluster
evolutions, and the network plot can provide a simpler global overview of the data. In both vi-
sualisations, node sizes indicate the proportion of a dataset’s data-points that the corresponding
meta-cluster captures. Meta-clusters can be coloured by average marker expression-level to de-
pict movements through marker-space as the sequence progresses, by time-point/disease-stage, or
originating meta-cluster for traceability of lineages.
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Figure 1: Caption on the next page.
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Figure 1: Schematic overview of TrackSOM’s operation and usage. (A) Time-course or disease-course cy-
tometry data is parsed by TrackSOM, resulting in a matrix of cells (rows) and marker values (columns) per
time-point/disease-stage. (B) A self-organising map (SOM) is then trained on all the matrices. Numbered
circles represent SOM nodes. (C) SOM nodes containing data from each given time-point/disease-stage
are then isolated and ‘meta-clustered’ (dotted polygons) using consensus hierarchical clustering. (D) The
temporal evolutions of the resulting meta-clusters are tracked through their shared SOM node mem-
berships. (E) Meta-cluster evolutions can be visualised as network plots (left) or time-course heatmaps
(right). For clarity, the figure refers predominantly to ‘time-points’, but these could instead be datasets
in a series of escalating disease severity. We have shown only 3 time-points, but TrackSOM is not limited
to this.

TrackSOM supports several modes of operation, related to the quantity and handling of meta-
clusters. Under Autonomous Adaptive operation, the number of meta-clusters created at each
time-point is automatically inferred. Alternatively, the user can specify the number of meta-
clusters to be created as either a single number for all time-points/disease-stages (Prescribed
Invariant operation) or a number for each time-point/disease-stage individually (Prescribed Vari-
ant). For each of these modes of operation, the merging of meta-clusters across time-points can
be enabled or disabled. Disabling merging can inflate the number of meta-clusters above user-
specified values, but better reflects the diverging nature of cellular differentiation.

2.2 TrackSOM tracks splitting, merging and transient clusters

We verified TrackSOM’s capacity to uncover cell population emergence, disappearance, splitting
and merging in time-series data by applying it to a synthetic dataset into which these phenomena
had been engineered. We manually gated the dataset to provide ‘ground truth’ labels of which
data-points belong to the same population (Figure 2). TrackSOM performance was evaluated
against these labels, using the Adjusted Rand Index (ARI) and tracking accuracy metrics for
clustering and cluster tracking, respectively (Methods Section 5.5). To comprehensively assess
TrackSOM’s performance we explored a broad range of parameter values. For each of Track-
SOM’s three modes of operation, we generated 100 parameter value sets (Supplementary Material
Table S2), varying the number of meta-clusters produced each day and the SOM grid size using
Latin Hypercube sampling (McKay et al., 1979; Read et al., 2020). Meta-cluster merging was
permitted.

TrackSOM reproduced manually-gated populations and was robustly resistant to parametric per-
turbation. Solutions from Prescribed Variant operation consistently obtained mean ARI scores
of at least 0.7 Figure 3A-B. TrackSOM’s other operational modes, Autonomous Adaptive and
Prescribed Invariant, fared less well. They scored ∼0.55 and 0.35-0.65 for ARI, respectively. Au-
tonomous Adaptive operation was strikingly invariant to parameter value variation. Closer manual
inspection of the clustered data (not shown) revealed it to consistently produce 3-4 meta-clusters
per day and, consequently, a suboptimal capture of the sprouting conglomerate as a single meta-
cluster. That Prescribed Variant operation obtained higher ARI scores than Prescribed Invariant
likely reflects a better capture of the varying numbers of populations across time (Figure 2),
to which Prescribed Variant can be adapted. Thus, overall, Prescribed Variant operation more
accurately reflected both manually gated populations and their temporal evolutions.

TrackSOM excelled in correctly capturing temporal cluster dynamics, Figure 3A&C. Of the cluster
evolutions uncovered, 83-100% reflected valid population transitions across the parameter pertur-
bations explored. These were not simply self-referential transitions of the same populations across
time-points; a quarter of the valid transitions were between distinct populations (e.g. meta-cluster
(A,C), population II, splitting at day 2 to form meta-clusters representing populations III, IV and
V, Figures 2D and S2).

To demonstrate data exploration through TrackSOM visualisations, we focused on one solution
that performed well in both metrics (Figure 3A, arrow). This solution was generated under Pre-
scribed Variant, generating 3, 3, 11, 9, and 17 meta-clusters per day from an 8x8 SOM grid.
Between days 2 and 3, population II ‘sprouts’ into three different directions, each representing
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Figure 2: The synthetic dataset, shown as 2D (left) and 3D (right) scatter plots. Data-points are coloured
by manual gating-assigned ground truth labels.
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Figure 3: (Caption on the following page.)
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Figure 3: TrackSOM performance on the synthetic dataset. We generated up to 100 unique parameter
value combinations for each of TrackSOM’s three modes of operation using Latin Hypercube sampling and
then performed clustering on the synthetic dataset. Merging of meta-clusters was allowed. (A) A scatter
plot of TrackSOM solution performances under the mean Adjusted Rand Index (ARI) over 5 time-points
and tracking accuracy. We plotted the cumulative distributions of TrackSOM solution performances for
(B) mean ARI and (C) tracking accuracy. Statistical comparisons are through the Kolmogorov-Smirnov
(KS) test; * signifies p-value < 0.005. We selected a single high-performing TrackSOM solution to explore
in greater detail (A, arrow). TrackSOM facilitates exploration of meta-cluster dynamics through several
graphing formats. (D-G) Time-course heatmaps depict meta-clusters (dots), temporal evolutions (lines),
relative meta-cluster sizes at each time-point (dot sizes), and either (D) the ground truth label it represents
(see Fig. 3) or (E-G) the meta-cluster locations and movements through space (colours; each dimension
shown independently). For (D), meta-clusters were assigned the ground truth label from which they
captured the most data-points. Plausible and implausible transitions were determined based on the
transition rules depicted in Figure S2. Network plots show meta-clusters coloured by (H) time-point and
(I) cluster of origin (splits and merges are coloured grey). Arrows indicate meta-cluster evolutions over
consecutive time-points.

movements across X, Y or Z dimensions, Figure 2. This divergence is clearly captured by Track-
SOM and shown in Figures 3E-G, where the branches stemming from meta-cluster (A,C) each
move in only one dimension. Figures 3H-I allow meta-cluster lineages to be identified from their
initial IDs, and show the slightly complex temporal transitions that have occurred, likely from a
slight over-clustering of the data and having permitted meta-cluster merging.

2.3 Articulating the evolving immune response to West Nile virus in-
fection in mouse bone marrow

We next evaluated TrackSOM against a real flow-cytometry dataset which captured the immune
response in the bone marrows of West Nile virus (WNV)-infected mice over 8 days. The dataset
was expertly pre-gated to generate ground truth labels from which ARI and tracking accuracy
scores could be calculated. We executed each of TrackSOM’s three modes of operation both
with and without meta-cluster merging, resulting in 6 operational modes in total. As with the
synthetic dataset, we executed up to 100 unique parameter value combinations for each operation
(Methods).

All of TrackSOM’s modes of operation were capable of generating high-quality clustering solutions.
The majority of solutions scored over 0.7 for ARI, Figure 4A-B. Autonomous Adaptive operation
was the least variable under parametric perturbation, but its ARI scores were sub-optimal owing to
its persistent under-clustering of the data: it typically generated 8 meta-clusters despite manual
gating defining 16 distinct cellular phenotypes (Figure S2). Prescribed Variant and Prescribed
Invariant operations together generated the best ARI scores but were more sensitive to parametric
perturbation with meta-cluster merging disabled. This is because under no-merging operation the
number of meta-clusters specified is a strict lower bound and inappropriate parameter values can
lead to an explosion in meta-cluster numbers, leading to reduced ARI scores. Conversely, with
merging enabled, this parameter is not a strict lower bound and TrackSOM has greater capacity
to correct for sub-optimal parameter values.

TrackSOM performance in tracking evolutions of cell populations was more variable across its
modes of operation, Figure 4A&C. Prescribed Variant and Prescribed Invariant were statistically
indistinguishable and both out-performed Autonomous Adaptive, irrespective of whether merging
was permitted. Interestingly, no-merging operation produced notably superior tracking accuracy
scores than the same modes of operation when merging was permitted. This is because no-merging
operation tended to generate more, homogeneous meta-clusters and self-referential transitions are
valid (Figure S4). Conversely, merging operation has a greater capacity to amalgamate distinct
cellular phenotypes and generate heterogeneous clusters, which can result in lower tracking accu-
racy scores.

Overall, the data reveal a possible trade-off between performance in clustering quality (mean
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Figure 4: Evaluation of TrackSOM and ChronoClust clustering solutions when applied to the WNV bone
marrow dataset. (A) Scatter plot of solutions in terms of mean clustering quality (ARI) over the 8 time-
point dataset and the validity of the cluster temporal transitions generated (tracking accuracy). Solutions
explored further in the text are denoted by the circle (ChronoClust) and the arrow (TrackSOM). (B-C)
Cumulative distribution of TrackSOM’s and ChronoClust’s (B) Mean ARI and (C) tracking accuracy.
Statistical comparisons for (A-C) are done through the Kolmogorov-Smirnov test.
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ARI) and meta-cluster evolution tracking, as seen in the scatter plot of Figure 4A. The very best
solutions by one metric are not necessarily optimal under the other. We were curious as to why
TrackSOM exhibited such a wide range of tracking accuracy scores (0.6-0.9) at the leading edge of
mean ARI scores (0.83). Mis-clustered data-points (leading to non-homogeneous meta-clusters)
will suppress the ARI score to the same extent, irrespective of which meta-clusters they occur
in. This is not the case for tracking accuracy, where all meta-clusters contribute equally to the
score, irrespective of their size in terms of data-points. Mis-clusterings that are concentrated in
a single, small meta-cluster at a given time-point could switch the assigned label of the meta-
cluster and lead to invalid transitions, thus impacting tracking accuracy. If mis-clusterings are
instead confined to large meta-clusters or broadly distributed across many meta-clusters, tracking
accuracy is unlikely to be affected through ARI would be. Hence, the location of mis-clustered
data-points could impact tracking accuracy whilst minimally affecting ARI. The explanation of
why solutions could vary in mean ARI (0.38-0.83) whilst retaining high quality tracking accuracy
(>0.9) lies in no-merging operation over-clustering the data and, as noted above, self-referential
transitions are valid across time-points.

We selected one No-merging Prescribed Invariant solution that performed particularly well in
both metrics for closer examination (arrow in Figure 5A). Figures 5A-B illustrate the solution as
time-series heatmaps and network plots respectively. TrackSOM was able to track the progressive
up-regulation of SCA-1 expression by several meta-clusters, and these mapped onto manually-
gated cell populations transiting from un-activated to activated phenotypes. For instance, meta-
clusters E, E—1 and E—3 capture monocytes becoming activated at day 5, 3 and 5 respectively.
Meta-cluster K represents stem and progenitor cells becoming activated at day 5, and meta-
cluster G does likewise for T and NK cell populations. Not all the meta-clusters capturing a given
population show up-regulation of SCA-1 marker: clusters P and K—1 also capture stem and
progenitor cells yet show no such transition, demonstrating a capacity to uncover heterogeneity
within phenotypes in response to infection. Further, being the bone marrow, activated forms of all
the cell populations exist in small numbers even at pre-infection, and this is reflected in the cluster-
population assignments, showing the sensitivity of TrackSOM to uncovering minor phenotypes in
the data. For instance, meta-cluster N captures pre-infection activated B cells, and meta-cluster
D does likewise for plasmacytoid dendritic cells (PDCs). The majority of cluster evolutions are
biologically plausible (see Figure S2), although there are some exceptions, e.g. in meta-cluster M,
B cells transit into T cells and NK cells. Such implausible transitions occur only in meta-clusters
that capture a minority of data points (indicated by small symbols) and these likely reside on the
periphery between several high-density regions of cell populations in marker-space.

Together, these data demonstrate that TrackSOM can accurately identify, without external guid-
ance, both majority and minority population phenotypes and track their evolution through time
in terms of changing marker expression levels. Further, it offers excellent performance in doing so
without being overly sensitive to exact parameter value choices.

2.3.1 Comparison with ChronoClust

We contrasted TrackSOM’s performance (above) with that of ChronoClust, the only other existing
temporal cytometry clustering algorithm (Putri et al., 2019a), on the WNV bone marrow dataset.
For a fair comparison with TrackSOM, we collected 100 unique parameter value combinations for
ChonoClust (see Methods), and obtained their mean ARI and tracking accuracy scores.

All TrackSOM modes of operation vastly out-performed ChronoClust based on mean ARI score,
Figure 4B. All TrackSOM solutions held ARI scores >0.38, whereas 30% of ChronoClust solu-
tions scored < 0, indicative of worse-than-random clustering. Curiously, these very poor ARI-
scoring ChronoClust solutions also exhibited very high tracking accuracy scores (Figure 4A).
Indeed, ChronoClust tended to generate higher tracking accuracy scores than TrackSOM, Fig-
ure 4C. Manual inspection of representative ChronoClust solutions revealed a pattern of severely
over-clustering the data (Figure S4) into highly homogeneous clusters (poor ARI) that exhibited
self-referential temporal transitions which are technically valid and thus promote high tracking
accuracy scores. Examining Figure 4A more closely, the best ChronoClust solution (black circle on
figure) held an ARI score of 0.76 and a tracking accuracy of 0.87. These scores are impressive, but

11

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 9, 2021. ; https://doi.org/10.1101/2021.06.08.447468doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.08.447468
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 5: Caption on next page.
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Figure 5: TrackSOM clustering of WNV bone marrow dataset using No Merging Prescribed Invariant
operation. (A) Time-series heatmaps illustrating meta-clusters’ (symbols) temporal changes (lines). Meta-
clusters on the left plot are coloured by the majority cell population they each represent. Biologically
plausibility of transitions are indicated based on known cellular differentiation pathways (see Figure S2).
The right plot captures average SCA-1 marker expression for each meta-cluster. (B) Network plots with
meta-clusters coloured by time-point, cell population represented, and average SCA-1 marker expression.

Operational mode PRCC: Mean ARI PRCC: Tracking

Parameter: SOM grid size
Autonomous Adaptive, Merging -0.72 -0.50
Autonomous Adaptive, No Merging ns ns
Prescribed Invariant, Merging 0.62 -0.93
Prescribed Invariant, No Merging 0.71 -0.71
Prescribed Variant, Merging 0.78 -0.95
Prescribed Variant, No Merging 0.82 -0.66

Parameter: Maximum number of meta-clusters considered
Autonomous Adaptive, Merging 0.68 ns
Autonomous Adaptive, No Merging 0.38 ns

Parameter: Number of meta-clusters
Prescribed Invariant, Merging -0.55 0.88
Prescribed Invariant, No Merging -0.83 ns

Parameter: Number of meta-clusters per time-point
Prescribed Variant (Pre-infection), Merging -0.29 ns
Prescribed Variant (Day 1), Merging -0.31 ns
Prescribed Variant (Day 2), Merging -0.35 ns
Prescribed Variant (Day 3), Merging -0.39 0.52
Prescribed Variant (Day 4), Merging ns 0.50
Prescribed Variant (Day 6), Merging ns 0.32
Prescribed Variant (Day 1), No Merging -0.37 ns
Prescribed Variant (Pre-infection), No Merging -0.52 ns

Table 1: Partial Rank Correlation Coefficients (PRCC) of TrackSOM parameters against clustering (mean
ARI) and tracking accuracy performance metrics for the indicated modes of operation. Data represents
samplings of TrackSOM parameter space and corresponding clustering of the WNV bone marrow dataset.
Only parameters with PRCC p-values < 0.005 are indicated (p-values not shown); ns, not significant.

still sub-optimal to what TrackSOM was readily able to produce in many solutions under parame-
teric perturbation. Indeed, the very wide distribution of ChronoClust solution scores suggests the
algorithm to be quite sensitive to its parameter values, mirroring prior findings elsewhere Putri
et al. (2021). Obtaining high-quality performance would require either considerable exploration
of ChronoClust parameter space or prior knowledge of good parameter value choices. Overall, we
consider TrackSOM the vastly superior algorithm, particularly under no-merging operation.

2.4 Advice on using TrackSOM

Key to the successful use of clustering algorithms on novel data is the selection of appropriate
parameter values. We performed a global sensitivity analysis to relate TrackSOM’s two most influ-
ential parameters – SOM grid size and the number of meta-clusters generated – to its clustering and
tracking performance. Accordingly, we calculated Partial Rank Correlation Coefficients (PRCC)
of these parameters against TrackSOM performance on the WNV bone marrow dataset.

Examining the SOM grid size parameter first, Table 1, we find frequent positive correlations of grid
size with mean ARI, yet negative correlations with tracking accuracy. For the Prescribed modes of
operation, we find a non-linear diminishing increase in mean ARI as the SOM grid size increases
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Figure 6: Practical guidelines for choosing TrackSOM’s mode of operation. As the separability and
tracking of cellular phenotypes mostly depends on the number of meta-clusters for each time-point, the
choice of operation mode is best guided by the user’s prior knowledge of the expected number of phenotypes
in the data.

(Supplementary Figures S8A, S9A, S10A, S11A). With SOM nodes being the fundamental unit
of clustering, excessively small SOM grid sizes will capture distinct cellular phenotypes into the
same nodes, ultimately reducing ARI scores. This effect was worse for no-merging operation,
where small SOM grid sizes generate more variable and lower ARI scores (Figures S8A versus
S9A), and S10A versus S11A, suggesting that merging operation has some capacity to correct for
poor choices of SOM grid size. Merging Autonomous Adaptive operation exhibited an opposite
pattern, with increasing SOM grid size reducing ARI scores, Figure S6A. We suspect this relates
to an interaction between SOM grid size and how FlowSOM chooses the number of metaclusters
to generate, see Supplementary Section Section S5.

There is a consistent pattern of increasing SOM grid sizes reducing the tracking accuracy. Tracking
accuracy can diminish when the number of meta-clusters drops, because numerous meta-clusters
tends towards self-referential transitions which are always valid. However, the presently observed
pattern is independent of the number of meta-clusters created: PRCC controls for this param-
eter, and we find no discernible differences between merging and non-merging operations (the
latter tends to raise meta-cluster numbers). This suggests that the pattern is driven by incorrect
meta-cluster label re-assignments across time-points, which result in invalid population transi-
tions. SOM nodes do not aim to capture equal numbers of data-points, instead they emphasise
a comprehensive coverage of space, even between high-density regions. As such, increasing the
SOM grid size will result in more nodes supported by fewer data points. Such nodes will be
more sensitive to how the distribution of the data change between time-points, and for minority
phenotypes (which are represented by relatively few nodes), these dynamics under large grid sizes
could result in strong fluctuations of nodes entering and leaving the meta-cluster. We believe this
could result in assignments of incorrect labels to meta-clusters and thus invalid transitions that
reduce tracking accuracy scores.

As expected, increasing meta-cluster numbers tended to increase tracking accuracy for Prescribed
modes of operation, though we found no effect for Autonomous Adaptive operation (Table 1, graphs
in Figures S6-S11). This likely reflects increasingly homogenous meta-clusters, many of which will
generate self-referential transitions as explored in the datasets above. For Prescribed (In)variant
operational modes, increasing the number of meta-clusters reduced the ARI scores, likely due to the
resultant over-clustering relative to manual-gated populations. Curiously, Autonomous Adaptive
operation again exhibited a converse pattern, wherein the maximum meta-cluster number explored
increased ARI scores; see Supplementary Section Section S5.

For users with un-analysed data we offer the following usage advice (Figure 6). If the number of
cellular phenotypes to be discovered is completely unknown, Autonomous Adaptive operation can
give a solid performance. Prescribed Invariant operation can be more effective, but is dependent
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on parameter values that such users are unlikely to have a basis to choose well; this is seen for
both synthetic (Figure 3A-C) and bone marrow datasets (Figure 4A-C). Autonomous Adaptive
operation can accommodate a large number of meta-clusters to explore generating (we attempted
up to 40 with no deterioration in performance, Figure S6B & S7A), and we recommend users
setting this to a large number as TrackSOM will adjust as needed. If the number of populations
sought is known, then the Prescribed (In)variant operations are more appropriate. Prescribed
Variant is more appropriate where the number of populations to be discovered varies over time,
for instance via tissue infiltrates. If the number of populations is instead constant over time, then
Prescribed Invariant is more appropriate and has fewer parameters to set.

Preventing meta-cluster merging arguably better reflects the biology of cellular differentiation,
and it conferred better performance in all operational modes, however this came at the possible
expense of less meaningful clustering through an explosion of meta-cluster numbers if parameters
are poorly chosen. However, the alternative - enabling merging - can instead generate convoluted
cluster transitions. We suggest users try both modes and select that which better suits their
circumstance. For selecting a SOM grid size, values between 10 and 15 consistently delivered a
good balance between ARI and tracking accuracy scores (Figures S8-S11).

2.5 Mapping the CNS immune response onto WNV clinical disease
severity

Figure 7: Progressing clinical disease severity seemingly associates with a shifting profile of immune
cell populations in the brains of WNV-(and mock-)infected mice at 7 days post-inoculation. Shown are
FiTSNE plots Linderman et al. (2019), stratified by disease severity (not time). Plots represent a sub-
sampling of the total cells present at each disease severity, a pooling of these cells to calculate FiTSNE
coordinates, and then plotting of cells by stage on each panel. Thus, populations are similarly spatially
arranged across the panels. Cells are coloured by local density through kernel density estimation. Notably,
the strongly represented cluster on the left side of the Mock dataset has not disappeared with increased
disease severity, rather, those cells are diluted by a considerable increase in total cells present in the brains
at later disease stages.
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TrackSOM is not constrained to analysing time-course data, it can also relate immune system
status to the spectrum of clinical disease severities that present at a single time-point. We demon-
strated this in a novel, un-gated dataset representing the immune cells in the brains of WNV-(and
mock-)infected mice at day 7 post-inoculation. A lethal dose (LD-100) was administered and mice
were stratified into 6 groups based on the spectrum of clinical disease severities they exhibited at
day 7, time of euthanisation. The corresponding cytometry datasets were organised into a sequence
of increasing disease severities. We ran TrackSOM over this sequence to relate changes in cellular
phenotypes to disease stage at this single time-point. In accordance with the above TrackSOM
usage advice, we employed Prescribed Variant operation with meta-cluster merging disabled (see
Methods) and conducted some manual exploration of meta-cluster and grid size numbers before
manually selecting a solution that we judged to best separate the cell phenotypes. We anticipated
that the number of cellular populations would increase with disease severity. This was supported
by preliminary unguided analysis through FiTSNE, where increased severity associated with a
larger number of distinct clusters of cells (Figure 7).

TrackSOM successfully distinguished numerous meta-clusters of cells, that we could resolve to
immune cell phenotypes, and related their phenotypic evolution to increasing disease severity,
Figure 8. TrackSOM tracked how the absolute (Supplementary Figure S12)and relative counts
of cellular populations (Figures 9), and their marker expression levels (Figure 8 insets and grids)
shifted with disease severity. As disease severity rose from mock-infection to the most severe
WNV-05 we observed substantial rises in infiltrating macrophage, CD4 and CD8 T cell, NK cell
and neutrophil populations. Further, we track a drop in the proportion of microglia from 80%
to 15% of total cells, consistent with the concomitant substantial increases over this time in
infiltrating macrophages. The proportion of infiltrating macrophages rose sharply from 10% to
70% of total cells by WNV-05. Several of these cell populations are not ordinarily found in the
brain, yet were identified by TrackSOM in the mock-infection dataset, likely representing either
the capture of post-flushing remnant intravascular cells in the samples and/or the recognition of
central nervous system-associated macrophage populations in the homeostatic brain (Ivan et al.,
2021).

Notably, TrackSOM identified the infiltration of phenotypic sub-populations with worsening dis-
ease severity, indicated by the branching meta-clusters in Figure 8. Macrophages were repre-
sented by 11 meta-clusters in mock-infection, curiously high given their low relative abundance
(Figure 9A), and 4 of these underwent extensive branching into distinct sub-populations as dis-
ease progressed. Most of these macrophage sub-phenotypes up-regulated the CD80 activation
marker with increasing disease severity, indicative of inflammation. NK cells were captured by
one meta-cluster which upregulates the NK1.1 marker expression. Both CD4 and CD8 T cell pop-
ulations were captured by meta-clusters that bifurcated at the point of mild (WNV-01) symptoms
in accordance with CD4 and CD8 marker expression levels respectively, presumably capturing
differentiating functions under immune challenge (Xiao et al., 2007). Microglia were captured by
a single meta-cluster at mock infection that branched into several sub-lineages with heightening
symptoms, varying in CD11b, Ly6C and CD45 expression.

Overall, TrackSOM was able to elucidate and map the changing profile of CNS immune cell pop-
ulations onto a progression of clinical symptom severities emanating from WNV-infection.

3 Discussion

Immune responses are fallible. Identical inoculation doses can cause disease that resolves in some
individuals but are lethal in others (King et al., 2007), and autoimmunity perhaps represents
the quintessential immune system error (Li et al., 2018). In addition, many non-communicable
diseases, of which prevalence rates are rising globally, have an immune system component (De
Visser et al., 2006; Zeng et al., 2019). Many such diseases are characterised by periods of remission
and relapse, often with localised exacerbation of inflammation, such as the skip legions that
characterise Crohn’s disease (Roda et al., 2020) or the localised lesions in multiple sclerosis. The
tone of the immune response, and its influence on health status, is a complex consequence of
broad interactions between numerous dynamic cell populations (Li et al., 2018; Zeng et al., 2019).
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Figure 8: Caption on next page.
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Figure 8: TrackSOM-enabled exploration of the immune response in the brains of WNV-infected mice over
6 graded clinical disease severities. All data represent day 7 post-inoculation. Shown is a network plot of
TrackSOM meta-clusters and their evolution with worsening clinical disease severity at this time-point.
Analysis is focused on meta-clusters given high-confidence manual phenotype labels (non-blurred). Meta-
clusters in the central network plot are coloured by disease severity and arrows indicate the sequence of
progression. Meta-clusters in the insets and grids are coloured by the indicated mean marker expression
level. Node sizes relate to the proportion of cells captured in the meta-cluster at given disease severity.
For insets, colourbars capture the full range of values for each marker independently.

Figure 9: The profile of immune cell phenotypes varies with increasing disease severity in the brains of
WNV-infected mice. Mapped are the proportion of the given cell phenotypes per mouse. Only cells
(and TrackSOM meta-clusters) that we could label with high-confidence are included in the calculation
of proportions. Data represent between n=2 and n=6 mice per group (Supplementary Table S5). Note
that ranges for y-axes vary across panels.
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Thus, the identification and characterisation of novel cell sub-populations has potential therapeutic
benefit (Krzywinska et al., 2016). Mapping the immune response, at the level of cell population
dynamics and interactions, over time and in relevant organs of the body, and relating these maps
to disease outcomes, is essential for discovering possible intervention targets.

We developed TrackSOM with a view to enable mapping of the immune response against time
and/or disease severity. TrackSOM fuses FlowSOM (Van Gassen et al., 2015), an effective, fast and
widely-adopted automated gating algorithm, and ChronoClust (Putri et al., 2019a), a temporal
clustering algorithm. TrackSOM excelled in unveiling the temporal evolution of clusters engi-
neered into a synthetic dataset. When applied to pre-gated, time-series bone marrow cytometry
data from WNV-infected mice, TrackSOM correctly tracked the activation of several immune cell
populations and the up-regulation of the SCA-1 marker. On un-gated data, TrackSOM identified
and tracked the infiltration and functional evolution of distinct (sub)populations of key immune
cell phenotypes and mapped these against clinical disease stage. Further, TrackSOM readily
revealed how the phenotypic composition, in terms of both absolute cell counts and relative abun-
dance, varied with disease severity. TrackSOM is a powerful tool for studying coordinated immune
population dynamics and how these pertain to disease status; it has already been used to identify
cell populations and their shifting functional status over time in COVID-19 infection in humans
(Koutsakos et al., 2021).

When evaluating clustering solutions, we observed a degree of trade-off across our two algorithm
performance metrics. Solutions judged optimal for cluster quality tended to be poorer for cluster
evolution tracking, and vice versa, particularly for Chronoclust. This is seemingly contradictory;
how could poor quality clusters be well-tracked? The tracking accuracy metric is somewhat igno-
rant of cluster quality, and judges specifically only if cluster transitions are valid. Over-clustering,
wherein single phenotypes are split across numerous meta-clusters, will tend to produce valid, self-
referential transitions, thus scoring low on ARI but high on tracking accuracy. Under-clustering,
wherein single meta-clusters amalgamate several phenotypes, will adopt and retain the majority
population label, again valid for tracking accuracy but poor for ARI. There are advantages to
multi-metric evaluation, as single metrics (and thus values) struggle to comprehensively describe
all aspects of a complex phenomenon. Complementary perspectives through multiple metrics can
offer a robust and comprehensive evaluation framework (Putri et al., 2021), and is the approach
we took here. We identified and focused on solutions that exhibited minimal trade-offs between
the two metrics, those solutions that generated an optimal balance of the conflicting criteria.
With only two metrics, scatter plots such as Figures 3 & 4 were sufficient to identify such solu-
tions. Where more metrics are employed, and the potential trade-offs more severe, a formalised
framework through Pareto fronts can be employed (Putri et al., 2021).

TrackSOM’s Autonomous Adaptive operation carries considerable appeal, being largely insensitive
to exact parameter value choices and thus simplifying the task of choosing appropriate values.
However, we found it to consistently under-cluster the data, failing to fully distinguish all the subtly
different cell populations discovered through expert manual gating. Its performance lagged behind
the best that the Prescribed (In)Variant operations could produce when given optimal parameter
values. Autonomous Adaptive operation draws upon FlowSOM’s procedure for self-determining
an appropriate number of meta-clusters. The selection is made by identifying the point at which
the reducing variance captured per meta-cluster sharply diminishes as the number of meta-clusters
generated increases (Van Gassen et al., 2015) (a standard approach in clustering called the ‘elbow
method’). FlowSOM’s method is simple and quick to execute, however it evidently does not
converge on a clustering that an expert would manually produce. Identifying an alternative method
that more closely aligns with expert opinion in cytometry specifically would be transformative for
the discipline, enabling a heuristic search for appropriate parameter values that algorithm users
must currently best-guess at and laboriously evaluate. This is a worthy avenue of future work,
though prior efforts indicate that it is non-trivial (Wiwie et al., 2015).

A key investigative theme in immunology is to relate the kinetics of immune cell (sub)populations
with disease outcomes, and to identify the key events at which outcomes bifurcate; these point
to potential therapeutic targets. TrackSOM’s primary contribution is as an algorithm that auto-
matically identifies and tracks the dynamics of cellular (sub)populations, mapping these over time
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and/or progressing disease status. A salient line of future investigation is the automated extrac-
tion of features in the rich data TrackSOM generates that constitute key distinguishers of clinical
outcomes. For instance, TrackSOM could be run twice, over datasets of patients who recover ver-
sus those who do not. Within a supervised machine learning context, classifiers could be built over
TrackSOM-originating features describing (sub)population kinetics to highlight those of particular
relevance. Further, the classifiers would be of natural clinical benefit, potentially informing clinical
decisions for novel patients by predicting their future clinical outcomes. Consider a contemporary
possibility: predicting in advance which COVID-sufferers would require ventilators or admission
into intensive care units. We are currently pursuing such technologies.

We focused here on cytometry because it is relatively cheap to run, accessible and widely adopted.
Single-cell RNA sequencing (scRNAseq) is a related technology with falling costs and growing
popularity. There is interest in identifying phenotype differentiation pathways through scRNAseq
using ‘trajectory inference’ algorithms (Setty et al., 2016; Street et al., 2018; Trapnell et al., 2014;
Saelens et al., 2019; Wolf et al., 2019; Van den Berge et al., 2020). This resembles TrackSOM’s
usage context, and whilst trajectory inference algorithms have been applied over amalgamated
time-series datasets (Byrnes et al., 2018; Scavuzzo et al., 2018), the algorithms themselves do not
account for time, and thus do not relate changes to specific time-points. Pseudodynamics (Fischer
et al., 2019) added an explicit accounting for time to trajectory inference methods. ScRNAseq
differs from cytometry in that the data generated typically cover many thousands of features
(genes) and hundreds of cells, whereas cytometry captures under 100 features and up to millions
of cells. How well Pseudodynamics can accommodate cytometry data, and how well TrackSOM
performs over scRNAseq data is worthy of future investigation.

4 Conclusions

The TrackSOM algorithm operates over cytometry data to automatically identify distinct cellular
phenotypes and map their changing profiles onto progressing clinical disease stage and/or time.
It provides critical support to analyse the immune response in terms of the dynamic and evolving,
multi-faceted system that it is. TrackSOM was used to map out the immune response in the bone
marrow over a week of time in WNV-infected in mice. TrackSOM outperformed ChronoClust, the
only other existing temporal clustering and tracking cytometry algorithm, in terms of both quality
of clusters generated and accuracy in tracking them. Making use of a comprehensive sensitivity
analysis that provided putative users with operational advice, TrackSOM was applied to a non-pre-
gated dataset to generate insight into how and when the phenotypic composition of immune cells in
the brains of WNV-infected mice altered with worsening disease severity. In both brain and bone
marrow, TrackSOM identified sub-populations within most phenotypes that exhibited differing
trajectories through marker-space. TrackSOM is fast to execute and encompasses several modes
of operation that can be chosen to best suit a given user’s experimental context. This includes a
mode that requires very little parameter tuning to obtain high-performance results. The explicit
tracking of cellular population dynamics provided by TrackSOM paves the way for integrated
characterisation of the evolving immune response and mapping this to disease development and
resolution.

5 Materials and Methods

5.1 TrackSOM algorithm

TrackSOM reads in time-course data in either FCS or CSV file formats. TrackSOM is written in R
and uses FlowSOM’s R implementation as available from https://bioconductor.org/packages/

release/bioc/html/FlowSOM.html. By default, prior to the start of building the SOM, Track-
SOM independently normalises each feature across all time-points using the z-score normalisation
provided by FlowSOM’s ReadInput function.

TrackSOM inherits FlowSOM’s parameters and their respective default values, though these de-
fault values can be changed to suit the user’s needs. Our present study focuses on varying the SOM
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grid size and the number of meta-clusters, parameters known to be most influential on FlowSOM
clustering performance; all other parameters retain their default values. A full list of adjustable
parameters is available in Supplementary Tables S1 and S2.

For Autonomous Adaptive operation the number of clusters trialled ranges from 3 to a user-
specified maximum value. The value selected is that at which the rate of change in the variance
captured in the meta-clusters suddenly decreases (this is adopted directly from the FlowSOM
algorithm). For the Prescribed (In)variant modes of operation, the specified number(s) of meta-
clusters is passed into FlowSOM’s consensus hierarchical clustering function for each time-point.
If meta-cluster merging is disabled, user-specified meta-cluster numbers are a minimum value.
FlowSOM-based meta-clustering of SOM nodes proceeds as usual, but TrackSOM will amend the
result to split apart meta-clusters that would otherwise represent mergings from the preceding
time-points.

For every cell, at every time-point, TrackSOM outputs which SOM the cell was captured by, which
meta-cluster (if any) the cell was represented by, and that meta-cluster’s evolution through the
dataset sequence. Together with the visualisations, this output allows users to associate meta-
clusters with cellular phenotypes. Network plots are arranged through force-directed layouts. The
colouring of meta-cluster nodes by marker expression level on plots represents raw values mapped
to the colour scales for each marker independently.

5.2 Synthetic dataset

The synthetic dataset is 3-dimensional (3D) and contains three distinct conglomerates of data-
points that evolve over five time-points, Figure 2. We term them conglomerates as they encompass
several Gaussian distributions that appear, disappear, move and/or change shape over time; these
Gaussian distributions generate high-density sub-populations of data-points for TrackSOM to
distinguish and track. The ‘sprouting’ conglomerate commences as a single high-density cloud of
data-points that extend in three different directions over time. This mimics the transition of cells
from common progenitors through different differentiation pathways. The ‘splitting’ conglomerate
grows in two opposite directions, cleanly separating at day 4. The ‘transient’ conglomerate exists
only at days 3 and 4. These two conglomerates mimic the infiltration of cell populations into the
peripheral, challenged tissue, undergoing further differentiation and ultimately dissipating.

This dataset was adapted from that used in Putri et al. (2019a). It was generated by sampling
data-points from non-isometric 3D Gaussian distributions that move, change shape, disappear
and/or appear across five simulated time-points. Data-points are sampled afresh for each time-
point - they do not persist between time-points. A total of 7000 data-points are generated for
each time-point, with an additional 100 for days 3 and 4, representing a rare, transient cellular
population. Manual-gating to allocate data-points into populations was performed by constructing
non-overlapping polygons around the locations of Gaussian distributions. More information on
the dataset’s specification, in terms of constituent Gaussian distributions, is available at https:

//github.com/ghar1821/TrackSOM.

5.3 WNV bone marrow dataset

This dataset has been previously reported in Putri et al. (2019a,b), and concerns quantifications
of leukocytes in the bone marrows of mice over 8 days. Details on animal procedures are provided
in Supplementary Section Section S3. The data comprise of 14 markers: FSC, SSC, Ly6C, CD45,
CD48, Ly6G, CD117, SCA1, CD11b, CD11c, B220, CD115, CD16/32, CD3-CD19-NK1.1. Time-
point 1 represents pre-infection (mock). Mice are infected with WNV on time-point 2 (WNV Day
1). There are 190,000 data-points (cells) per time-point. Author Ashhurst manually gated the
dataset to assign each data-point (cell) a label representing its cellular phenotype, Supplementary
Material Figure S1. TrackSOM was evaluated against these ground-truth labels. The following
16 cellular phenotypes were identified for each time-point, (1) Stem and progenitor cells, (2) B
cells, (3) T and NK cells (indistinguishable given the markers in the flow panel), (4) Monoblasts,
(5) Monocytes, (6) Eosinophils, (7) Neutrophils, (8) Plasmacytoid dendritic cells (PDC), with all
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8 populations existing as activated or un-activated types. For assessing the tracking of tempo-
ral cluster dynamics, biologically valid transitions between phenotypes are known and shown in
Figure S2, right.

The TrackSOM solution presented in Figure 5 was obtained using no merging Prescribed Invariant
operation, creating at least 19 meta-clusters per day from a 7x7 SOM grid.

5.4 Algorithm parameter sweeps

We broadly explore TrackSOM and ChronoClust parameter space when clustering the WNV bone
marrow dataset, and TrackSOM for the synthetic dataset. For TrackSOM, we generated 100
sets of parameter values using Latin Hypercube sampling for each dataset (McKay et al., 1979).
For ChronoClust, we sub-sampled 100 results generated under Latin Hypercube from a prior
publication using this dataset (Putri et al., 2019b). Briefly, Latin Hypercube sampling segregates
each parameter’s range of values to be explored into discrete bins that are each sampled once and
in a manner that minimises correlation between any two parameters. Hence, each parameter is
partitioned into 100 bins, resulting in 100 unique parameter value sets. The strategy constitutes
a broad yet efficient sampling of a parameter space (Read et al., 2020).

Latin Hypercube generates parameter values as floating-point numbers. However, because Track-
SOM’s SOM grid size and number of meta-clusters parameters are encoded as integers, we round
the parameter samples to the nearest integer before passing them to TrackSOM. This rounding
can resolve to identical points in parameter space, and we discard duplicates from the analysis.
Nonsensical parameter samplings, which specify more meta-clusters than the number of non-empty
nodes available for any given time-point, were also discarded.

The parameters and ranges of values explored are given in Supplementary Material Table S2 and
S3. The rationale for how parameter value ranges were chosen for each algorithm and dataset are
provided in the Supplementary Material Sections Section S1 and Section S2.

5.5 Quantifying clustering and tracking performance

TrackSOM and ChronoClust performances were evaluated on datasets where ground-truth labels
were available. The algorithms were executed over all available data-points in the dataset sequence,
and evaluations were then performed on only those data-points (cells) for which ground-truth
labels are available. This is standard practice in cytometry algorithm evaluation, as manual
gating assigns only high-confidence labels to non-noise data-points (Weber and Robinson, 2016;
Putri et al., 2021).

When applying TrackSOM and ChronoClust to the synthetic and WNV bone marrow datasets, for
each time-point, each clustering solution was evaluated against the corresponding manually-gated
ground-truth clustering using the Adjusted Rand Index (ARI) metric (Hubert and Arabie, 1985).
ARI is a clustering similarity metric, representing the probability that two clustering solutions
place any two randomly chosen data-points into the same cluster, and adjusting this for the
rate of agreement reached under random assignment. ARI scores range from 1 to -1. The former
represents a complete congruence in how two clustering solutions have clustered a dataset. A value
of 0 represents the level of similarity expected if one of the clusterings represented random cluster
assignment: some data-points of the same ground-truth label would still be clustered together.
ARI values are obtained for each dataset in the sequence independently, and we then report the
mean of these values.

To evaluate the quality of cluster evolution tracking, we adopted the tracking accuracy metric
in Putri et al. (2019a). This metric computes the proportion of transitions which are valid (e.g.,
biologically plausible, such as un-activated B cells transitioning to activated B cells as characterised
by up-regulation of the SCA-1 marker). Valid transitions for the synthetic and WNV bone marrow
datasets are shown in Supplementary Figure S2.

The tracking accuracy metric requires each meta-cluster to be assigned a cell type (ground-truth)
label. In our evaluation, each meta-cluster is assigned the majority label of the data-points it
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captured. In the event of a tie, alphabetical order of labels is used.

5.6 WNV CNS dataset

C57BL/6 female mice aged between 8 to 12 weeks were either inoculated or mock-inoculated
with a lethal WNV dose (LD-100) and then culled for analysis 7 days later. Mice were stratified
into 6 groups based on severity of symptoms at time of culling. As the WNV dose inoculated
is universally lethal, the differential disease severity observed between groups at day 7 represent
mice progressing through disease at different stages. Both the numbers of mice and the clinical
scoring criteria are reported in Supplementary Table S5. Further details on animal procedures
are provided in Supplementary Section Section S3. We applied TrackSOM in Prescribed Variant
no-merging operation, specifying 25, 27, 30, 30, 30 and 30 meta-clusters be formed across the six
groups from Mock to WNV-05. A 10x10 SOM grid size was used. We quantified the following 18
markers through flow cytometry: FSC, SSC, Ly6C, CD45, CD62L, CD4, CD86, CD11b, B220,
Siglec-F, I-A/I-E, Ly6G, CD8-alpha, CD11c, CD115, CD80, CD3e, NK1.1.

5.7 Statistical methods

Latin Hypercube sampling and partial rank correlation coefficients (PRCC) were performed using
the Spartan R package version 3.0.2 (Alden et al., 2013). PRCC values range from -1 to 1, in-
dicating perfect monotonic negative and positive correlations respectively. The metric ascertains
the effect of one parameter on TrackSOM performance whilst controlling for the effect of other
parameters whose values will simultaneously be varying given the Latin hypercube design (Marino
et al., 2008); this is a form of global sensitivity analysis (Read et al., 2012). We report only asso-
ciations with p < 0.005, a value chosen to mitigate for multiple hypothesis testing of parameters
against performance metrics across six modes of TrackSOM operation. ARI implementation was
provided by the mclust R package version 5.4.7 (Scrucca et al., 2016). The FiTSNE plots and
scatter plots for the WNV CNS data are provided through the Spectre R package version 0.4.0
(Ashhurst et al., 2021).
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