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Evolutionary dynamics allows to understand many changes
happening in a broad variety of biological systems, ranging
from individuals to complete ecosystems. It is also behind a
number of remarkable organizational changes that happen
during the natural history of cancers. These reflect tumour
heterogeneity, which is present at all cellular levels,
including the genome, proteome and phenome, shaping its
development and interrelation with its environment. An
intriguing observation in different cohorts of oncological
patients is that tumours exhibit an increased proliferation
as the disease progresses, while the timescales involved
are apparently too short for the fixation of sufficient driver
mutations to promote an explosive growth. In this paper
we discuss how phenotypic plasticity, emerging from a
single genotype, may play a key role and provide a ground
for a continuous acceleration of the proliferation rate of
clonal populations with time. Here we address this question
by means of stochastic and deterministic mathematical
models that capture proliferation trait heterogeneity in clonal
populations and elucidate the contribution of phenotypic
transitions on tumour growth dynamics.
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1 Introduction2

Evolution is one of the central unifying concepts of biology and a driving force behind life,3

being a cornerstone of complex systems organization [1]. It is ubiquitous through the natural4

world from molecules to cells, organisms and populations and in fields as diverse as zoology,5

botany, microbiology and oncology. Evolutionary changes in the context of asexual reproduction6

are mainly driven by heritable somatic mutations and epigenetic changes, genetic drift and7

natural selection. Evolution theory has been classically grounded in genetics and Darwinian8

selection processes. In the light of evolution, tumour progression has often been explained9

by looking at the somatic changes of cancer cells [2,3]. However, from this viewpoint, one10

might incur in some reductionist assumptions that are sometimes in conflict with what is11

observed during the real course of the disease, including treatment failure and relapse [4].12

There is a growing interest in studying the evolutionary rules of cancer, and a number of13

important questions remain open. Increased attention has recently been given to intratumour14

heterogeneity as its potential role in therapeutic outcome and emergence of drug resistance [5–15

8]. Intratumour heterogeneity occurs at various levels, including the genome, transcriptome,16

proteome and phenome [9]. Research has mainly focused on mapping cancer genome instability17

and driver event mutations conferring a selective advantage to the affected cell clone. Non-genetic18

instabilities are also relevant since it is known that a single stable genotype may lead to a broad19

landscape of stable phenotypes [10,11]. Initial states of cancer development imply colonization of20

novel environments and subsequent stressful conditions [12], which may actually increase traits21

heritability (understanding heritability as the relation between genetic variance for the trait and22

the phenotypic variance for the same trait). Phenotypic variance is the result of a compendium23

of variances: the variance attributed to differences among genotypes, the variance associated24

exclusively with changes in the environment and the ’interaction variance’ which represents that25

some genotypes might respond to the environment in a different way than others [13]. Distinct26

phenotypic states frequently involve differences in functional cell properties and the proportion27

of these phenotypes has been related to cancer grade [14,15]. This resembles what occurs in28

other biological contexts, where a broader population composition, which comprises a higher29

phenotypic diversity, increases the odds for an adaptive response to external perturbations [16].30

Recent observations in both in vivo murine models and cohorts of cancer patients of different31

hystologies have found a superlinear scaling law relating proliferation and tumour size [17].32

Also a longitudinal dynamics was observed implying a continuous acceleration of proliferation33

rates during tumours natural history, which is a dynamical counterpart of the scaling law. This34

fact was attributed initially to the tumour’s genetic evolutionary dynamics and supported with35

different mathematical modelling frameworks. However, a closer look at this interpretation raises36

a number of questions. The results presented in [17] included two studies in animal models37

that displayed accelerated tumour growth dynamics in the course of one month. Longitudinal38

volumetric data obtained from images of cancer patients with untreated brain metastasis also39

showed similar growth patterns. Genetic changes seem to be necessary [18] but not sufficient to40

generate such an accelerated tumour growth since they require either an extremely high mutation41

rate, which would be restricted by cell viability, or a long time scale [19] that was not the case in42

the former results. For these reasons, neither the human data spanning typically few months, nor43

the animal models data, could be exclusively associated with tumour genetic changes because44

of the short time scales involved. This raises the question that we wish to explore in this paper:45

Could there be additional non-genetic evolutionary forces playing a role in accelerating tumour46

growth as observed in Ref. [17]?47

The recognition of the role of phenotypic aspects in cancer evolutionary dynamics has elicited48

a progressive change in perspective from seeing cancer as a ’genetic disease’ to a broader,49

’developmental’ perspective. Some analogies with embryonic development have been made,50

rapidly dividing tissues may have evolved increased cancer suppresion [41] and phenotypic51

plasticity in cancer has been biologically addressed in the literature of cancer stem cells [20]. Also52
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Figure 1. Stochastic fluctuations of cancer cell proliferation in two distinct scenarios: quasi-constant mean proliferation

rate (a)-(c) and increasing mean proliferation rate (d)-(f ). Tumour cells divide at random rates (a) and (d). Relative

proliferation (b) and (e), showing the time-varying proliferation divided by the initial proliferation. Phenotypic distributions

(c) and (f ) at subsequent times; insets depict the net growth ∆N in the cell number during a temporal window [0, T ].

diapause-like states have been described as a survival mechanism against chemotherapy [21,22].53

In this context, an initial clonal population will be subject to evolutionary pressures in a stochastic54

or environmental-induced way that finally shape the population structure.55

Fluctuations in proliferation rates of clonal cancer cell populations have been observed in56

cultures [23–25]. The repetition of the same cell-culture experiment leads to large variations in the57

outcome that cannot be due only to differences in the number of cells seeded initially. This well-58

known fact is typically attributed to uncontrollable changes in experimental conditions. Some59

authors have previously accounted for these baseline variations in cell cycle duration among60

heterogeneous cancer cell populations [26,27] that could be indeed tightly linked to tumour61

response to therapy [28]. By nature, phenotypic plasticity could affect any cell trait [29], but62

here we will focus on proliferation as a key phenotypic characteristic in cancers. Specifically, we63

will study in silico the possibility that stochastic changes in the growth rate of clonal populations64

could lead to an evolutionary dynamic of that trait. Our main hypothesis would be that small65

phenotypic changes resulting in either faster or slower proliferation could emerge as a result66

of noise-induced nongenetic variability. This may lead to some variability in clonal populations67

that may provide the appropriate ground for selection and evolutionary dynamics. Here we68

will address, from a mathematical perspective, what is the outcome of those dynamics. Figure69

1 illustrates the underlying rationale of how fundamentally different fluctuations in proliferation70

eventually impact on the net growth in cell number. The upper row (a)-(c) in Fig. 1 represents71

the scenario in which the cellular division time randomly varies around some basal value, as72

we could expect from any cellular trait. In this case, cell number shows a typical exponential73

growth profile (1(c)) without constraints. But, what happens if we introduce stronger fluctuations74

in proliferation with respect to basal value accounting for phenotypic changes? One possible, and75

fundamentally different, scenario is depicted in the second row (d)-(f) in Fig. 1. A significantly76

larger cell number change ensues with respect to the preceding scenario. We elaborate below on77

these qualitative settings by putting forward, both discrete and continuous, mathematical models78
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with the final goal of trying to answer, or at least shed light, to the question raised earlier of what79

is the main driving force behind the accelerated tumour growth observed in human cancers [17].80

2 Materials and methods81

To study the impact of phenotypic changes in proliferation on the growth dynamics of a clonal82

tumour cell population, we resorted to two mathematical models. The first one was based on83

a discrete simulator incorporating stochastic jumps between different proliferative states. The84

second one, consisting of a continuous reaction-diffusion parabolic equation, recapitulated the85

key aspects of the discrete model and allowed us to find explicit analytical formulas for the86

temporal dynamics of the total tumour cell number, together with the mean and the standard87

deviation in proliferation.88

2.1 Discrete stochastic model89

Let us first put forward a discrete stochastic model describing the growth dynamics of a clonal90

population of tumour cells having different proliferation rates, i.e. one in which not all cells divide91

at the same pace. To simplify the analysis, we consider a large but finite number M of allowed92

proliferation rates ρi in the interval [ρmin, ρmax]. Each cell belongs to a proliferative state i (with93

i= 1, 2, . . . ,M ) defined by its rate ρi = (i− 1)∆ρ+ ρmin, where ∆ρ= (ρmax − ρmin)/(M − 1). Let94

Ni(t) denote the number of tumour cells having phenotype i, thus corresponding to a rate ρi, at95

time t. The total number of cells at time t is N(t) =
∑M

i=1 Ni(t). At time t= 0 the population, with96

N0 being the initial cell number, is distributed in the phenotypic landscape around a characteristic97

proliferation rate ρ∗ having a standard deviation σ∗. To simulate the population dynamics at98

later times, for every interval [t, t+∆t] in steps ∆t, we test whether each cell has undergone a99

phenotypic switch, with transition rate Γi→j , from proliferation state i to an adjacent state j =100

i± 1 characterized by a proliferation rate ρj . No phenotypic jumps are allowed from i= 1 to101

j = 0 and from i=M to j =M + 1. All these switches thus give rise to a net decrease in the102

number Ni(t) of cells having the same ρi at time t. Similarly, phenotypic jumps with transition103

rates Γj→i from adjacent proliferation states j = i± 1 into i result in a net increase in the cell104

number Ni(t). Additionally, during time interval [t, t+∆t], mitotic and apoptotic events could105

also take place, each either increasing or decreasing the cell number Ni(t) by one unit. Combining106

all these stochastic processes leads to a balance equation for the number of cells that, at time107

t+∆t, have a proliferation rate ρi108

Ni(t+∆t) = Ni(t)−∆t (Γi→i+1 + Γi→i−1)Ni(t) +∆t (Γi+1→iNi+1(t) + Γi−1→iNi−1(t))

+ ∆tρiNi(t)−∆tµNi(t), (2.1)

with µ being the death rate (taken equal for all cells). In our numerical simulations using (2.1)109

we assumed for simplicity that Γi→i+1 = Γi→i−1 = Γi+1→i = Γi−1→i ≡ Γ , hence giving rise to110

symmetric transition jumps, except at the end points i= 1 and i=M .111

The interplay of processes described above will result in a scenario where all phenotypic112

changes are inheritable, i.e. when a cell is committed to mitosis, its progeny will be placed113

in the same proliferative state. This gradually yields a progressive irreversibility from the114

starting characteristic proliferation rate ρ∗ towards a different phenotypic landscape. In an115

alternative scenario, to explore the possibility of a partial loss of inheritance (and thus of partial116

reversibility), we also considered the effect of adding a decay probability to the starting117

characteristic proliferation rate ρ∗, equivalent to the time required to complete mcd cell divisions.118

Computationally, this was implemented via a transition rate Γi→∗ into a localized distribution119

(e.g. Gaussian) centred around ρ∗ for each phenotype i. In both scenarios (i.e., under inheritance120

or partial loss of inheritance), to monitor the dynamics of the population in the phenotype space,121

we evaluated the different population frequencies fi(t) =Ni(t)/N(t), with i= 1, 2, . . . ,M , and122

the mean proliferation rate ⟨ρ⟩(t) =
∑M

i=1 ρifi(t).123
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2.2 Continuous reaction-diffusion-advection model124

To derive a partial differential equation-based model that would help to better elucidate the125

time dynamics of the previous discrete stochastic framework, we considered the same processes126

albeit we extended the phenotypic switches assuming nonnegative transition rates Γi→j from127

a proliferation state i to another state j, where i, j = 1, 2, . . . ,M , and phenotypic switches128

with transition rates Γj→i from proliferation states j into i. Notice that
∑M

j=1 Γi→j = 1 and129 ∑M
j=1 Γj→i = 1, although the transition rates Γi→j and Γj→i are not necessarily equal in general.130

The balance equation (2.1) reads now as131

Ni(t+∆t) = Ni(t)−∆t

M∑
j=1

Γi→jNi(t) +∆t

M∑
j=1

Γj→iNj(t) +∆tρiNi(t)−∆tµNi(t). (2.2)

Balance equation (2.2) is quite general and encompasses the inclusion over time of new132

subpopulations labelled by their proliferation phenotype as their sizes become nonzero as well133

as the extinction of others when their cell numbers vanish. Moreover, the terms Γi→jNi(t) and134

Γj→iNj(t) can be understood as outward and inward cell currents for phenotype i, respectively.135

We next perform a continuous limit approximation of (2.2). This amounts to let ∆t→ 0 and136

∆ρ→ 0 while the transition rates Γi→j →∞ and Γj→i →∞. In those limits, we assume that137

the two quantities D=∆ρ2/2
∑M

j=1 Γi→j(j − i)2 and v=∆ρ
∑M

j=1 Γi→j(j − i) remain finite.138

Hence, we arrive at the following reaction-diffusion-advection equation139

∂n

∂t
=D

∂2n

∂ρ2
− v

∂n

∂ρ
+ ρn− µn, (2.3)

where n= n(ρ, t) denotes the cell density function, such that n(ρ, t) dρ represents the number of140

tumour cells that, at time t, have a proliferation rate between ρ and ρ+ dρ. The first term on the141

right-hand side of (2.3) accounts for the fluctuations in the proliferation phenotype occurring with142

a diffusion constant D which is nonnegative. The second term describes the phenotypic drift in143

proliferation with a velocity v. Notice that this velocity may be positive or negative depending on144

the sign of
∑M

j=1 Γj→i(j − i) and is zero for fully symmetric or unbiased transitions. The third145

and fourth terms in (2.3) comprise the mitotic and apoptotic events. Additional mechanisms could146

be easily incorporated into (2.3), such as growth-limiting mechanisms preventing an unbounded147

increase in the total cell number. However, our main focus is to look at time scales for which the148

tumour has not yet achieved a large size.149

The reaction-diffusion-advection equation (2.3) is further supplemented with initial and150

boundary conditions: u(ρ, 0) = u0(ρ) and ∂n
∂ρ = 0, both at ρ= ρmin and ρ= ρmax. These two151

zero-flux boundary conditions ensure that no cell will have a proliferation rate outside the152

interval [ρmin, ρmax]. Rather than solving (2.3), which can be carried out by means of a Green’s153

function formalism, it is enough for our purposes to focus on time-evolving average quantities.154

Specifically, the total number of cells, given by N(t) =
∫ρmax
ρmin

n(ρ, t)dρ, the mean proliferation rate155

⟨ρ⟩(t) = 1
N(t)

∫ρmax
ρmin

ρn(ρ, t)dρ, and the variance ⟨σ⟩2(t) = 1
N(t)

∫ρmax
ρmin

(ρ− ⟨ρ⟩(t))2 n(ρ, t)dρ.156

3 Results157

3.1 Quantifying the inheritable scenario158

First, we simulated the fully inheritable case in a time frame of T = 30 days by means of159

the discrete stochastic model presented in Subsection 2.1. This time frame was sufficiently short160

to discard relevant mutational events. An example of a typical outcome is shown in Fig. 2(a).161

Even when the phenotypic transitions were fully symmetric, the system spontaneously drifted162

towards higher proliferation values, with the mean proliferation rate ⟨ρ⟩(t) reaching levels more163

than two times larger than the initial one ρ∗ [see inset Fig. 2(a)]. Also, a broadening in the164

phenotype landscape was apparent as time passed. In addition, the reaction-advection-diffusion165
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Figure 2. Computational results of the evolutionary dynamics in the landscape of the clonal tumour cell population studied

in the scenario with full phenotype inheritance. (a) Phenotypic frequency at times t= 0, 15, and 30 days (from left to

right) of a typical run using the discrete stochastic model. The inset shows a time-dependence of the mean proliferation

rate as an increasing broadening band, whereas the dotted line corresponds to a constant proliferation rate ρ∗ = 0.2

days−1. (b) Pseudocolor plot of the population cell density for ρ∈ [0, 1] days−1 and t∈ [0, 30] days computed from the

continuous reaction-advection-diffusion model (2.3). The dashed white line indicates the mean proliferation rate ⟨ρ⟩(t) of

the distribution as predicted by Eq. (3.5). The inset shows the standard deviation ⟨σ⟩(t) from the solution of (2.3) (thick

reddish curve) and the analytical formula (3.6) (overlapping dashed white curve). (c) Dynamics of the total cell population

N(t) from the solution of (2.3) (thick golden curve) and the analytical formula (3.4) (overlapping dashed white curve).

The dotted line corresponds to the case of a purely exponential growth with a constant proliferation rate ρ∗. Numerical

values used: For the discrete stochastic model Γ = 6.0 days−1, M = 101 nodes, ∆t= 1 h, whereas the number of

simulation runs was equal to 50. For the continuous reaction-advection-diffusion model, D= 3.0× 10−4 days−3 and

v= 0 days−2. For both the discrete and the continuous models, we used an initial Gaussian distribution centred around

ρ∗ = 0.2 days−1 and initial standard deviation σ∗ = 0.01 days−1. Also, µ= 0.01 days−1, N0 = 104 tumour cells,

ρmin = 0 day−1 and ρmax = 1 day−1.

model allowed us to reproduce these features in the same time frame, as depicted in Fig. 2(b),166

together with the standard deviation rate [inset Fig. 2(b)]. Moreover, both models predicted that167

the total cell population, when plotted in a logarithmic scale, increased much faster than a simple168

exponential growth, as shown in Fig. 2(c).169

To determine the underlying explicit time dependences of all these distinctive characteristics,170

and hence gain further insight, we employed the reaction-advection-diffusion model to compute171

the time derivatives of N(t), ⟨ρ⟩(t) and ⟨σ⟩2(t) using (2.3). These led to the following ordinary172

differential equations173

dN

dt
=−µN(t) + ⟨ρ⟩(t)N(t), (3.1)

for the total cell number and174

d⟨ρ⟩
dt

= v + ⟨σ⟩2(t), (3.2)

for the mean proliferation rate. In deriving (3.1) and (3.2) we neglected the boundary values175

n(ρmax, t) and n(ρmin, t), a valid assumption when the cell population does not reach significant176

levels at the end points of the proliferation interval. Moreover, when n(ρ, t) was assumed to have177

a Gaussian distribution with initial mean proliferation rate ρ∗ and standard deviation σ∗, we178

arrived at a third ordinary differential equation179

d⟨σ⟩2

dt
= 2D, (3.3)

for the variance.180
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The three differential equations (3.1)-(3.3) constitute an exactly solvable model. The first one181

yields182

N(t) =N0e
−µt+ρ∗t+

vt2

2 +
σ2
∗t2

2 +Dt3

3 , (3.4)

with N0 being the initial population. Thus, (3.4) shows that the total cell population evolves183

in a fundamentally different fashion than a simple exponential growth N(t) =N0e
ρ∗t, the latter184

occurring if no phenotypic changes take place in the initial proliferation rate.185

For the mean proliferation rate we find186

⟨ρ⟩(t) = ρ∗ +
(
v + σ2

∗
)
t+Dt2. (3.5)

Equation (3.5) accounts for the drift in the mean proliferation seen in all of our simulations, which187

is quadratic with time. Notice that even in the absence of the drift velocity (v= 0), ⟨ρ⟩(t) still188

increases with time, the dominant contribution being due to the stochastic fluctuations embodied189

in the diffusion coefficient D and, to a lesser extent, to the initial variability σ∗.190

The time dependence of the standard deviation is191

⟨σ⟩(t) =
√

σ2∗ + 2Dt , (3.6)

which provides another explicit and simple expression for the broadening in the phenotype192

landscape observed in our numerical simulations. This form for the standard deviation is193

characteristic of other standard diffusive processes [30].194

Figures 2(b) and 2(c) also compare the numerical solutions of the mean proliferation rate,195

the standard deviation and the cell number obtained from (2.3) and formulas (3.4)-(3.6) giving196

additional confirmation of the internal consistency of our findings. Hence, in the scenario where197

full phenotype inheritance occurs, three distinctive features arise: a broadening in the phenotype198

landscape, a drift in the mean proliferation and a total cell population growing faster than a classic199

exponential law.200

3.2 Quantifying the partially inheritable scenario201

We then considered the scenario of a partial loss of inheritance in the phenotypic traits by202

assuming that all phenotypes have a probability Γi→∗ to revert to the basal phenotype with203

proliferation rate ρ∗. As in the inheritable scenario, a drift of the mean proliferation rate ⟨ρ⟩(t)204

towards higher values with time was observed [see Fig. 3(e)], although the magnitude of this205

drift was smaller as the relative importance of Γi→∗ increased. Another visible difference from206

Fig. 2 with the full phenotype inheritance scenario is that the distribution displays a bimodal207

profile for a certain range of Γi→∗, evidencing the coexistence of a peak corresponding to the208

clonal population distributed around the initial proliferation rate ρ∗ and a second broader peak209

comprising the more evolved phenotypes [see Fig. 3(a-d)]. The standard deviation of the ⟨σ⟩(t)210

phenotypic distribution increases in time for all values for the reverse transition rate. Reasonably,211

this increase is less impressive as the reverse transition rate grows, but the increase in phenotypic212

variability is robust across all tested conditions (Fig. 3(f)]. Also, faster than a simple exponential213

growth occurred in the population [Fig. 3(g)] the magnitude of which was modulated by the214

partial phenotypic inheritance condition embodied in Γi→∗.215

4 Discussion216

In this study we put forward a mathematical model based on stochastic phenotypic transitions.217

For simplicity, and since we were mainly interested in characterising how and why tumour218

growth accelerates in time, we focused on proliferation. It is already known that tumour cells have219

a higher growth rate than proliferative non-tumoral tissues. Clonal cell lines exhibit also a higher220

frequency of random monoallelic expression that could increase phenotypic plasticity and spread221

the probability of success in a changing environment without altering the population identity.222
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Figure 3. Computational results of the evolutionary dynamics in the landscape of the clonal tumour cell population

studied in the scenario of partial loss of inheritance. (a)-(d) Phenotypic frequency at times t= 0, 15, and 30 days

for different values of the transition rate Γi→∗: (a) Γi→∗ = 0 days−1, (b) Γi→∗ = 0.024 days−1, (c) Γi→∗ = 0.06

days−1, (d) Γi→∗ = 0.12 days−1. (e) Time-dependence of the mean proliferation corresponding to the cases (a)-(d). (f)

Time-dependence of the standard deviation corresponding to the cases (a)-(d). (g) Dynamics of the total cell population

corresponding to the cases (a)-(d).

In this study our initial setting consisted of a genetically homogeneous clonal population, with223

all cells having a growth rate concentrated around a certain value. These cells were allowed to224

slightly increase or decrease their growth rate in time with equal probability and thus explore225

a landscape of proliferation states while keeping a hypothetical common genotype. One key226

prediction of the mathematical models developed in this work was that the sole action of227

stochastic phenotypic transitions, leads to a growth of the total clonal tumour cell population228

that is fundamentally much faster than classical exponential growth. Besides the recent findings229

of explosive tumour growth in several types of cancers [17], it is also intriguing to look at other230

natural contexts where dramatic increases in other population species may also take place, such as231

cyanobacteria and algae blooms occurring in eutrophic waters [31], revealing the need for further232

explorations within the interplay between oncology and ecology via evolutionary theory.233

Phenotypic plasticity together with noisy gene and protein levels expression has been pointed234

out by means of next-generation sequencing techniques such as single cell RNA-sequencing or235

tissue-specific differentially methylated regions (tDMRs), giving an increasing importance to the236

distribution of gene expression levels or epigenetics marks beyond the classical genocentric point237

of view [32]. This stochastic phenomenon has also been reported at many other levels in nature,238

including differing levels of resistance to antibiotics in genetically identical bacteria or even the239

stochastic mechanism underlying the development of trichromatic vision of human individual240

cone cells [33].241

Many authors have previously analysed evolutionary cancer dynamics in phenotype-242

structured populations [34]. However they usually include selection pressures as a key issue to243

observe the consequences of this phenotypic variability. A very interesting approach to these244

questions from a statistical mechanics perspective suggests that the number of available states245

shapes tumour growth [35]. However, to the best of our knowledge, the effect of the existence of a246
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proliferation phenotypic landscape and its potential role as an underlying force having a steering247

effect on the natural history of tumours has not been addressed in detail.248

While genomic instability and driver gene mutations play an essential role in the evolutionary249

dynamics of human cancers, the sustained increase in proliferation observed in [17], which our250

mathematical models also predict, has some resemblance with classic Darwinian selection ideas251

which are tightly linked to the selection of the fittest genotype (in our case phenotype). On the252

other hand, the process found is not of a Lamarckian-type since we did not consider phenotypic253

switches to be environmentally-driven in our models [7,36].254

One of the novel aspects of this work is the spontaneous increase in average growth rate255

with time. A reduction in cell cycle duration over time had previously been described under256

therapy-induced cell death [28]. There it was assumed that the tumour population consisted257

of cells with different albeit intrinsic and fixed proliferation rates. These were inherited and258

microenvironmental-independent without undergoing any changes in the simulations. In our259

models phenotypic diversity emerges from a clonal population that continuously experiences260

stochastic transitions which may be small but eventually drive the tumour cells towards more261

proliferative phenotypes. This diffusion in phenotype landscape reminds us of spread dynamics262

of invasive species, in which the rate of new site colonization is not constant over time as has been263

proved in a variety of biological kingdoms, from virus to vertebrates [37].264

Adaptive plasticity could be considered as a trait itself and consequently be subject to265

evolutionary processes. However, we could expect that it does not play such an important role266

in a ’constant’, non-tumour, environment. Cancer cells are exposed to changing environmental267

conditions across tumour life history and this may lead to a short-term evolutionary response268

where genetic variation would not be the main driving force. Phenotypic diversity is a convenient269

strategy for the success of population expansions in a broad range of contexts. Although it is270

challenging to test this kind of hypothesis at the laboratory due to the required long time-scale271

(as a consequence of long individual lifespan), some attempts in unicellular organisms have been272

reported in the literature. Those evidences reflect that at short time scales, phenotypic variations273

are key as a strategy to succeed in fluctuating environments as shown in Chlamydomonas [38] and274

Lactobacillus sp. [39], also allowing for specialization in the long-term, as shown by Escherichia coli275

culture over 2000 generations under an alternating temperature regimen [40]. The behaviour of276

subclonal populations interacting within the constraints of the tumour microenvironment could277

resemble the dynamics of the interaction of functional groups of species with variation in resource278

exploitation ability and environmental requirements. Although phenotypic diversity implies an279

additional productivity cost for the functional group, a higher phenotypic variance seems to280

increase the long run performance [16].281

Another interesting point concerns the role of inheritance of phenotypic modifications. It282

is already known that phenotypic modifications in somatic cells can be passed on from one283

generation to another by mitosis as stated previously in the fully inheritable scenario [42,43]284

and they do not necessarily reverse after the inducing agent ceases [44]. In fact, increasing285

evidence suggest that adaptation can be graded. Short-term stress would evoke tiny modifications286

in gene expression through signalling-mediated regulation of gene expression. On the other287

hand, a sustained stress situation could lead to a more radical switch in cell state, through288

epigenetic regulation or positive feedback loops, and hence drive to a permanent phenotypic289

modification [45–47]. We considered important to reflect those different inheritance patterns290

in our work through the partially inheritable scenario. Our results indicate that the shift291

towards a more aggressive average profile in the tumour phenotypic distribution is qualitatively292

robust across both scenarios, even when modifying the reverse transition rate. The relationship293

between this shift in proliferation phenotypic distribution and spatial heterogeneity remains294

to be explored. Microenvironmental spatial heterogeneity due, for example, to the gradients295

of nutrients and metabolic waste generated by tumour cells [48] might also affect that reverse296

transition rate. The availability of physical space and new niches for dispersal and colonization297

might also accelerate the shift in the tumour average proliferation rate [49–51]. Indeed, the298
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theoretical location of evolution at the tumour boundary has been previously reported [52]299

and the highest proliferation activity seems to be located also at the tumour edge, specially in300

poor prognosis cases, as it was recently underlined in two cohorts of breast and lung cancer301

patients [53].302

The broadening in the phenotype landscape predicted by our models may play a key role303

not only in the heterogeneity of the clonal tumour cell population, but also in the emergence304

of resistance mechanisms under the administration of cytotoxic therapies [7]. Although these305

may successfully target the most proliferative cells, eventually those in the lower spectrum306

of the phenotype landscape would be able to repopulate the fastest proliferation cell states.307

Phenotypic diversity is a convenient strategy for the success of population expansions in a broad308

range of contexts. A better understanding of the fundamental biological processes underlying309

phenotypical plasticity as a source of intratumoral heterogeneity might be useful for tumour310

containment or implementing adaptive therapies [13,54], and, ultimately, for better design of311

therapeutic strategies.312

In conclusion, in the context of mathematical models displaying phenotype plasticity, we313

have observed three distinctive features: a broadening in the phenotype landscape, a drift in314

the mean proliferation and a total cell population growing faster than classic exponential laws.315

Our models were conceptually simple and can be extended along many directions, including316

not only spatial effects (e.g. saturation), other traits besides proliferation, as well as more317

cell subpopulations (e.g. immune cells). The main predictions seem to be robust enough for318

experimental validation. It is remarkable that these effects emerge spontaneously in the absence of319

selection pressures and are independent of initial seeding and phenotypic switching probability.320

When phenotypic traits were allowed to be lost partially, resembling the dilution of epigenetic321

marks as cell division progresses, the effects were still preserved. This evolution towards a more322

aggressive phenotype would undoubtedly be accentuated by the presence of selection pressures323

in the tumour microenvironment. Furthermore, we cannot ignore that this stochastic variation324

is probably affecting almost any cell trait and consequently tumour cell interactions with other325

tumour cells and also with the surrounding tissue. However, our results indicate that the existence326

of this stochastic non-genetic variability in the proliferation rate seems enough to spontaneously327

drive to a more aggressive tumour average phenotype.328

Data Accessibility. Simulations were conducted in MATLAB (version R2020a). Code files for the329

discrete model simulations are publicly accessible at: https://github.com/molabEvoDynamics/rep_330
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