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Abstract 

Over the past 25 years, neuroimaging has become a ubiquitous tool in basic research and clinical 

studies of the human brain. However, there are no reference standards against which to anchor 

measures of individual differences in brain morphology, in contrast to growth charts for traits such 

as height and weight. Here, we built an interactive online resource (www.brainchart.io) to quantify 

individual differences in brain structure from any current or future magnetic resonance imaging 

(MRI) study, against models of expected age-related trends. With the goal of basing these on the 

largest and most inclusive dataset, we aggregated MRI data spanning 115 days post-conception 

through 100 postnatal years, totaling 122,123 scans from 100,071 individuals in over 100 studies 

across 6 continents. When quantified as centile scores relative to the reference models, individual 

differences show high validity with non-MRI brain growth estimates and high stability across 

longitudinal assessment. Centile scores helped identify previously unreported brain 

developmental milestones and demonstrated increased genetic heritability compared to non-

centiled MRI phenotypes. Crucially for the study of brain disorders, centile scores provide a 

standardised and interpretable measure of deviation that reveals new patterns of neuroanatomical 

differences across neurological and psychiatric disorders emerging during development and 

ageing. In sum, brain charts for the human lifespan are an essential first step towards robust, 

standardised quantification of individual variation and for characterizing deviation from age-

related trends. Our global collaborative study provides such an anchorpoint for basic 

neuroimaging research and will facilitate implementation of research-based standards in clinical 

studies. 
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Main 

First published in the late 18th century 1, the simple framework of growth charts to quantify 

developmental change against a reference standard remains a cornerstone of paediatric care. 

Although a powerful example of “personalised” or “precision” medicine, growth charts exist mainly 

for a small set of anthropometric variables (e.g., height, weight and head circumference). 

Critically, brain growth and maturation continues well beyond the developmental periods covered 

by anthropometric charts. The lack of brain reference standards is particularly relevant to 

psychiatric disorders that are increasingly considered to be disorders of neurodevelopment2 and 

arguably represent the single highest current global health burden 3. Furthermore, preterm infants 

and those born with congenital conditions – many with psychiatric sequelae – show marked 

morphological differences during early brain development 4–7 and even decades later during 

adulthood 7,8. With ageing, neurodegeneration and accelerated overall reductions in brain tissue 

volume are hallmark signatures of Alzheimer’s disease 9 and other types of dementia. 

Modernising the concept of growth charts to generate analogous life-spanning reference charts 

for the human brain would allow for standardised comparison across samples at scale, while 

simultaneously advancing our understanding of atypicality by providing benchmark reference 

points for both typical development and ageing.  

 

Standards for neuroimaging-based reference charts have not yet materialised, likely due to 

challenges of integration across studies targeting specific but often disjointed developmental 

epochs and clinical conditions. In particular, the period from fetal growth through early postnatal 

development (<4-6 years) is rarely incorporated, despite evidence that early molecular and 

mechanical processes shape growth trajectories 10,11 and vulnerability to psychiatric conditions 12. 

Case-control comparisons are usually limited to a single disorder, despite evidence of shared risk 

factors and mechanisms in psychiatric disorders 13,14. Additionally, compared to anthropometric 

growth charts, neuroimaging is more sensitive to technological variation in scanner platforms, 

acquisition, and analytic strategy. Collaborative initiatives spurring collection of large-scale 

datasets 15–17, recent advances in imaging-processing 18, and proven statistical frameworks 19,20 

provide the building blocks for comprehensive life-spanning reference charts of the human brain. 

Here, we present lifespan models of brain development and ageing that i) robustly capture the 

normative spectrum of age and sex; ii) identify previously unreported brain growth milestones; iii) 

increase sensitivity to genetic and early life events; iv) provide standardised effect-size deviations 

that reveal new patterns of neuroanatomical differences across multiple clinical disorders; and v) 

represent a global resource for future neuroimaging studies to leverage the benefits of reference-

based measures. 

Mapping normative brain growth 

We created brain charts for the human lifespan using generalised additive models for location, 

scale and shape (GAMLSS) 19,20, a robust and flexible framework for modelling non-linear growth 

trajectories recommended by the World Health Organization 20. Models were based on cross-

sectional healthy volunteer data of the major cerebral brain tissue classes derived from structural 

magnetic resonance imaging (MRI): total cortical grey and white matter, total subcortical grey 

matter and total ventricular volume (see Methods and Supplementary Information [SI1]). Our sex-
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stratified models incorporated variation in site and processing pipeline to allow computation of 

standardised reference charts. The brain tissue classes from 96 studies (Fig. 1A, SI Table 1, SI 

Data Descriptions) showed clear, predominantly age-related trends, even prior to any modelling 

(Fig. 1B). Yet, marked heterogeneity of growth curves for individual studies (SI2) reinforces the 

importance of using the full aggregated dataset to achieve representative norms not biased by 

individual studies. The validity of the models is supported by high stability under cross-validation 

and bootstrap resampling (SI2). Comparing these models to multiple non-MRI metrics of brain 

size demonstrated high correspondence across the lifespan (SI2).  

 

Our models extend previously reported growth curves in multiple ways. Lifespan curves (Fig 1C) 

show an initial strong increase in total cortical grey matter volume (GMV) from mid-gestation 

onwards, peaking at 6.3 years postnatal (bootstrapped confidence intervals = CIBoot: 6-6.4 years), 

followed by a near linear decrease. The observed peak occurs 2-3 years later than prior reports 

relying on smaller age-restricted samples 21,22. Cerebral white matter volume (WMV) also 

increased rapidly from mid-gestation through early childhood, when rate-of-growth slowed before 

peaking at 28.9 years postnatal (CIBoot: 28.4-29.5 years), with subsequent accelerated decline in 

WMV after 50. Subcortical grey matter volume (sGMV) showed an intermediate growth pattern to 

GMV and WMV, with rate-of-growth peaking in adolescence at 14.7 years (CIBoot: 14.3-15.1 

years). Both the WMV and sGMV peaks are consistent with prior neuroimaging and postmortem 

reports 23,24. In contrast, ventricular cerebrospinal fluid volume (CSF) showed an increase until 

age 2, followed by a plateau until age 30 and a slow linear increase that exponentiated in the sixth 

decade of life. Total cerebrum volume (TCV), an aggregate of the above features, showed the 

highest rate of increase in infancy, peaking in adolescence at 13.3 years, and declining steadily 

until age 55 when the decline accelerated (SI3). Previously reported growth curve models have 

not, in general, modelled age-related changes in the variability of brain structure. Age-related 

variance (Fig. 1D), explicitly estimated by GAMLSS, formally demonstrates developmental 

changes in across-individual variability. There was an early developmental increase in GMV and 

sGMV variability that peaked at 5 years and subsequently declined. In contrast, WMV variability 

peaked during the fourth decade of life, and CSF was maximally variable at the end of the human 

lifespan (Fig. 1D). In line with prior literature 25, variance in males is higher than in females across 

imaging phenotypes. These variance differences across development demonstrate the 

importance of modelling age and sex-related differences in variability in addition to absolute size.  
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Fig. 1: Neuroimaging growth charts. A| MRI data were aggregated from 96 primary studies of 120,685 scans 

collectively spanning the age range from late pregnancy to 100 postnatal years. Box-violin plots show age distributions 

(log-scaled) of each study. B| Raw, non-centiled bilateral volume estimates plotted for each participant, coloured by 

study, as a function of age (log-scaled) and scaled to 10,000mm3. C| Normative growth curves estimated by generalised 

additive modelling for location scale and shape (GAMLSS), accounting for study offsets, processing pipeline, stratified 

by sex (female/male as red/blue) and providing reference centile boundaries of 95% (dotted lines), analogous to a 

paediatric growth chart. D| Across-individual variance with the 95% confidence interval determined by 1000 bootstraps 

stratified by sex. E| Rate of change across the lifespan (first derivative of the primary trajectory) stratified by sex, with 

solid black lines at zero (where the sign of the trajectory flips) and at age of peak growth (exact year denoted on the 

top mirrored x-axis).  

Developmental milestones 

Neuroimaging milestones are defined by inflection points of the tissue-specific volumetric 

trajectories (Fig. 2, Methods). Relative to traditional pubertal age milestones 26, only GMV peaked 

before typical pubertal onset, with sGMV peaking mid-puberty and WMV peaking in young 

adulthood (Fig. 2). The rate-of-growth (velocity) peaked for GMV (5.08 months, CIBoot: 4.85-5.22 

months), sGMV (5.65 months, CIBoot: 5.75-5.83) and WMV (2.5 years, CIBoot: 2.4-2.6 years) in 

infancy and early childhood. TCV velocity peaked between the maximum velocity for GMV and 

WMV at ~7 months. Two major milestones of TCV and sGMV (peak velocity and peak size; Fig. 

2) coincided with the early neonatal and adolescent peaks of height and weight velocity 27,28. 
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These velocity peaks in early infancy have not been reported previously due to the lack of incorporation 

of prenatal datasets to allow for the modelling of rapid early growth 23,29.  

 

It has been hypothesized that age-varying cellular processes could be captured by these 

neuroimaging milestones, in terms of the relative growth trajectories of macroscopic volumetric 

measurements 30. In our dataset, we find an initial postnatal increase in GMV relative to WMV, 

likely due to increased complexity of neuropil including synaptic proliferation 31,32. Subsequently, 

GMV declines relative to WMV, likely due to both continued myelination and synaptic pruning 33. 

The exact timing of the GMV:WMV differentiation in early development has not been clearly 

demarcated by prior studies, partly due to the lack of data spanning the prenatal period. In 

contrast, lifespan growth curves demarcate an early period of GMV:WMV differentiation, 

beginning with the switch from WMV to GMV as the majority tissue compartment in the first month 

after birth (GMV/WMV ratio = 1), and ending when the absolute difference of GMV and WMV 

peaked around 3.5 postnatal years. This epoch of GMV:WMV differentiation overlaps with the 

period of greatest change in brain metabolites 34 (0-3 postnatal months) and the brain’s resting 

metabolic rate (RMR; minimum=7 months, maximum=4.2 years) 35, as well as the typical period 

of acquisition of motor capabilities 36 (Fig. 2).  

 

 
Fig. 2: Neurodevelopmental milestones, Summary of the reference norms (50th centile) for each tissue class and 
derived milestones as a function of age (log-scaled). Circles depict peak absolute values for each tissue type (point 
where velocity crosses zero in Fig. 1E), whereas triangles depict peak velocity (peaks in Fig.1E). Top grey sections 
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denote the age-range of the current lifespan neuroimaging (MRI) study, with empirical age-ranges (dark grey) for a 
subset of clinical conditions plotted against diagnostic age ranges derived from the literature (black outlines; Methods). 
Bottom grey sections depict overall age ranges for typical anthropometry and ultrasonography. Non-MRI developmental 
milestones are approximated based on previous literature and averaged across males and females (see Methods). 
Light grey vertical lines define lifespan epochs adapted from previous molecular neurobiological boundaries 37. 
Abbreviations; resting metabolic rate (RMR), Alzheimer's Disease (AD), Attention Deficit Hyperactivity Disorder 
(ADHD), Anxiety or Phobia (ANX), Autism Spectrum Disorder (ASD) including high-risk individuals with confirmed 
diagnosis at a later age, Major Depressive Disorder (MDD), Bipolar Disorder (BD), Schizophrenia (SCZ). 

Individualised centiles in clinical samples 

We computed harmonised, individualised centile scores that leverage information about expected 

age-related trends from the reference charts (SI Methods). Moreover, the clinical diversity of the 

aggregated dataset allowed us to comprehensively investigate case-control differences in 

individually-specific centile scores. Relative to the control group (CN), there were highly significant 

differences in centiles across large (n > 500) diagnostic groups (Fig. 3A; SI tables 2 and 3). The 

pattern of these centile differences varied across tissue types and disorders (Fig. 3A, SI7). In 

addition, we generated a cumulative deviation metric, the “centile Mahalanobis distance” (CMD), 

across all brain phenotypes relative to the CN median, to summarise a comparative assessment 

of brain morphology (Fig 3B, Methods, SI1.6). Alzheimer’s disease (AD) showed the greatest 

overall difference across disorders sampled, with a maximum difference localized to gray matter 

in biologically female patients (difference from CN median = 36%; Fig. 3A-B, SI7). Notably, 

schizophrenia ranked third overall behind AD and mild cognitive impairment (MCI), based on CMD 

(Fig. 3C, SI7). Although different mechanisms underlie the neuroanatomical abnormalities 

observed in AD and schizophrenia 38, and in the case of schizophrenia the cellular basis remains 

to be fully elucidated, cortical grey matter loss has been associated with cognitive impairment and 

psychiatric symptomatology in both disorders 39. Assessment across diagnostic groups, based on 

patterns of the multiple centile scores and CMD, highlighted the relative specificity of brain profiles 

across clinical conditions (SI8). However, when examining cross-disorder similarity, hierarchical 

clustering yielded three clusters broadly comprising neurodegenerative, mood/anxiety, and 

neurodevelopmental disorders (SI8). Overall, these analyses highlight the complementary use-

cases for examining both the absolute and relative differences in centiles within and across 

conventional diagnostic categories.  

 

Interindividual variation in centile scores and deviation also showed strong associations with 

development, early-life events, and shared genetic architecture. Across individual lifespan 

epochs, CMD was consistently greater in patients relative to controls irrespective of diagnostic 

category, with the largest difference found in adolescence (3.3-7.4% across epochs 37; SI4). 

Adolescence also represents the greatest period of overlap across diagnostic categories in our 

dataset and a period of overall vulnerability for neuropsychiatric disease onset (Fig. 2). In 5 

independent samples across the lifespan, average centile scores were related to multiple metrics 

of premature birth (gestational age at birth: t=13.164, P<2e-16; birth weight: t=36.395, P<2e-16; 

SI5). Centile scores also showed increased twin-based heritability estimates in 2 independent 

studies (total N=913 pairs) compared to non-centiled phenotypes (mean difference in h2 estimates 

= 11.8%; Fig. 3C, SI6). In summary, centile normalisation of brain metrics reproducibly detects 

case-control and genetic influences on brain structure, as well as long-term sequelae of adverse 

birth outcomes even in the adult brain 8. 
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Fig. 3: Clinical differences and heritability of centile scores. A| Centile distributions for each of the clinical samples 
relative to the CN group median (depicted as a horizontal black line). The deviation in each clinical group is overlaid as 
a lollipop plot (white line with circle corresponding to the clinical group median). Pairwise tests for significance were 
done using Monte-Carlo permutation (10,000 permutations) and p-values adjusted using Benjamini-Hochberg FDR 
correction across all possible pairs. Only significant differences to CN (corrected p < 0.001) are depicted here and 
highlighted with an asterisk. For a complete overview of all pairwise comparisons, see SI 2.7 and SI tables 2 and 3. B| 
Schematic of summary measure of the Centile Mahalanobis Distance (CMD). CMD is a multivariate scaled distance 
summary of the four phenotypes listed in panel A, quantifying the total relative deviation of an individual from the CN 
group median. C| Probability density plots of CMD across disorders. Vertical black line depicts the median CMD of the 
CN group. Asterisks indicate an FDR-corrected significant difference from the CN group. D| Heritability of raw volumetric 
phenotypes and their reference-normalized centile scores across two twin studies. Abbreviations: Control (CN), 
Alzheimer's Disease (AD), Attention Deficit Hyperactivity Disorder (ADHD), Anxiety or Phobia (ANX), Autism Spectrum 
Disorder (ASD), Mild Cognitive Impairment (MCI), Major Depressive Disorder (MDD), Schizophrenia (SCZ); Gray 
Matter Volume (GMV), Subcortical Gray Matter Volume (sGMV), White Matter Volume (WMV), Centile Mahalanobis 
Distance (CMD).  

Longitudinal centile changes and novel data 

Due to the relative paucity of longitudinal imaging (~10%), models were generated from single 

cross-sectional time points. However, the generalisability of cross-sectional models to longitudinal 

assessment is important for potential clinical utility. Intra-individual variability of derived centiles 

across longitudinal data, measured with the interquartile range (IQR), was low across both CN 

and clinical groups (all median <5%; SI1.6). Low intra-individual variability indicates a stable 

estimation across multiple sessions in general, although there is also evidence of inter-study and 

cross-disorder differences (SI9). Interestingly, individuals who changed diagnosis showed greater 

instability, for example there was higher IQR in individuals who progressed from CN to AD or MCI 

to AD (~5% median difference, corrected P<0.01 across phenotypes; SI9 and SI Table 5). IQR 

was also slightly higher in younger samples (SI9). While the contribution of increased noise in 

earlier datasets due to the difficulties associated with scanning younger individuals cannot be 
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ruled out, higher IQR in early development is consistent with the idea of increased variability in 

periods of highly dynamic change observed across other anthropometric traits 40. 

 

A key extension of the present growth charts is the estimation of centiles for data not included in 

the original models, requiring estimation of study-specific parameters. Thus, we implemented a 

maximum likelihood approach to estimate parameters for any new study not already included 

(Fig. 4A). This approach was tested on simulated data, 4 independent real-world datasets, and 

on data containing varying subsets of original data to estimate minimum sample size for robust 

normalisation (Fig. 4B-C, SI1.7). Centiles derived from parameter estimation and centiles derived 

when data were included (i.e. the full model was rerun) showed near perfect correspondence (all 

R2 > 0.99). Jackknife and simulation analyses suggested that a minimum sample size of 100 

provides robust estimation of mean and variance parameters combined. With 100+ subjects, the 

predicted study-centile confidence intervals fall within the range of the empirical confidence 

intervals (Fig. 4C, SI1.7). 

 

 
Fig. 4: Application to novel data. A| Schematic overview of the pipeline used for estimation of centile scores for novel 

data. Principally, maximum likelihood estimation is used to estimate the likely offset in novel studies relative to the 

established reference norms, and these estimated parameters are then used to derive individual centile scores. B| 

Scatter plots show the results from a real-world example of this procedure across 4 datasets not contained in the 

original model comprising ~2100 new subjects. Lines represent correlations between the centile scores as estimated 

via the maximum likelihood procedure (“Centile computed from out of sample parameter estimation”) versus as 
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estimated when including the studies in the reference models (“Derived centile”). Correlations are near-perfect in all 

cases (R2 > 0.99,P  < 1-e16). Supplementary section 1.7.2 shows the real-world example broken down by study. C| 

tOut-of-sample parameter estimation for the mu and sigma components of the GAMLSS model (SI 1). Vertical range 

plots show the outcomes after iterative increases in the sample size of independent hold-out datasets where the true 

parameter estimates and their confidence intervals are known (true values illustrated by horizontal purple lines). 

 

The utility of brain reference charts 

We have aggregated the largest neuroimaging dataset to date in an effort to modernise the 

concept of growth charts in the context of the human brain. We find that even at the macroscopic 

level of brain tissue classes, these standards show clear and robust clinical differences across 

multiple independent datasets. Their stability across longitudinal measurements and their ability 

to track documented changes in diagnoses bodes well for future predictive applications, especially 

as more longitudinal datasets become available 41 and as early life data become more prevalent 
15. In particular, investigations of imaging-genetics relationships, such as associations with 

polygenic risk scores and genome-wide association studies 42, may benefit from using centiles 

due to the increased heritability estimates from normalisation 43. Perhaps most importantly, 

centiles enable harmonisation across geographic and demographic profiles, and therefore can 

enrich the assessment of individual differences across clinical and behavioural domains 44. It 

should be stressed that the analogy to paediatric growth charts is not meant to imply a 

predetermined application for brain charts in a typical clinical setting – in the first instance, the 

utility of brain charts will be in the research context. 

 

Another capacity of life-spanning centile scores is to enable direct comparisons between 

normative and clinical samples at different developmental stages. Notably, the effect sizes for 

metrics of premature birth were similar across samples spanning birth to 81 years. Moreover, the 

magnitude of centile differences in cortical gray matter and white matter in schizophrenia was 

comparable to that observed in AD, with largely non-overlapping age ranges. This result is 

consistent with the theory of mirrored neuroanatomical vulnerability in development and ageing, 

for example with late-to-develop brain areas being particularly susceptible to ageing-related 

atrophy 45. While brain imaging is part of the standard diagnostic work-up in dementia, with the 

ability to discriminate between pathological processes 46, our results underscore the potential 

diagnostic yield for a wider scope of human disease with the use of appropriate reference 

standards.  

 

Inherent in the lifespan models is the ability to assess limitations in sample characteristics. 

Aggregated data revealed that fetal, neonatal and mid-adulthood (30-40yrs) epochs are 

underrepresented (Fig. 1A, SI Dataset Descriptions). Unfortunately, as is common in existing 

genetic datasets, ethnic and geographic representativeness was heavily biased towards 

European and North American samples. While our use of study-specific distribution parameters 

mitigates any geographic bias in centile scores, increasing inclusivity will strengthen population-

representativeness 47,48 and further strengthen out-of-sample estimation. The choice to stratify the 

lifespan models by sex was made based on the same logic as prior anthropometric growth charts: 

males have larger brain tissue volumes than females in absolute terms, but this difference is not 

associated with any difference in clinical or cognitive outcome. Future work aimed at directly 
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assessing sex-specific associations with centiles scores would also benefit from more detailed 

and dimensional self-report variables 49,50.  

 

As ongoing and future efforts provide increasing amounts of high quality data, we predict an 

iterative process of improved statistical models. While methodological (e.g., segmentation), 

theoretical (e.g., establishing regional homology across early developmental periods), and data 

sharing limitations directed our focus towards the major cerebral tissue classes, our models could 

also be adapted to integrate fine-grained regional measures and additional morphological 

features in future work. For the current set of reference charts, we provide interactive tools to 

explore existing models and to derive normalised centiles for new datasets across the lifespan at 

www.brainchart.io. 
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Online methods: Brain charts for the human lifespan  
To accurately and comprehensively establish standardised brain reference charts across the 

lifespan, it is crucial to leverage multiple independent and diverse datasets, especially those 

spanning prenatal and early postnatal life. Here we sought to chart normative brain development 

and ageing  across the largest age-span and largest aggregated neuroimaging dataset to date 

using a robust and scalable methodological framework 1,2. We leveraged these normative 

reference charts in clinical cohorts to generate individualised assessments of age-relative 

centiles. These centiles were then leveraged to investigate cross-diagnostic and longitudinal 

atypicalities of brain morphology across the lifespan. We used generalised additive models for 

location scale and shape (GAMLSS) 1 to estimate cross-sectional normative age-related trends 

(supplementary information [SI]) from 75,241 individuals without neuropsychiatric conditions from 

96 studies (see supplementary tables T1.1-T1.6 for full demographic information and SI Dataset 

Descriptions). The GAMLSS approach allows not only or age-related changes in average brain 

size but also age related-changes in the variability of brain size, in the form of both linear and 

nonlinear changes over time, thereby overcoming potential limitations of conventional additive 

models that only allow additive means to be modelled 1. In addition, site-specific offsets in 

estimates of average brain size and variability in brain size are also modelled. These modelling 

criteria are particularly important in the context of establishing growth references as 

recommended by the World Health Organisation 2, as it is reasonable to assume the distribution 

of higher order moments (e.g. variance) changes with age, sex, site and pre-processing pipeline 

- especially given the impossibility of fully comprehensive longitudinal data for individuals 

spanning the ~100 year age range. Furthermore, recent studies suggest that changes in across-

individual variability might intersect with vulnerability for developing a mental health condition 3. 

The use of data spanning the entire age range is also critical, as estimation from partial age-

windows can lead to biased estimations when extrapolated to the whole lifespan. In summary, 

using a sex-stratified approach 2, age, preprocessing pipeline and study were each included in 

the GAMLSS model estimation of first order (𝜇) and second order (𝝈) distribution parameters of a 

generalised gamma distribution using fractional polynomial to model nonlinear trends. See 

Supplemental Methods for further details. 

 

 

In general, the GAMLSS framework can be specified in the following way: 

 

𝑌 ∼ 𝐷(𝜇, 𝜎, 𝜈, 𝜏), 

𝑔𝜇(𝜇) = 𝑋𝜇𝛽𝜇 + 𝑍𝜇𝛾𝜇 + ∑  𝑠𝜇,𝑖(𝑥𝑖)𝑖 , 

𝑔𝜎(𝜎) = 𝑋𝜎𝛽𝜎 + 𝑍𝜎𝛾𝜎 + ∑  𝑠𝜎,𝑖(𝑥𝑖)𝑖 , 

𝑔𝜈(𝜈) = 𝑋𝜈𝛽𝜈 + 𝑍𝜈𝛾𝜈 + ∑  𝑠𝜈,𝑖(𝑥𝑖)𝑖 , 

𝑔𝜏(𝜏) = 𝑋𝜏𝛽𝜏 + 𝑍𝜏𝛾𝜏 + ∑  𝑠𝜏,𝑖(𝑥𝑖)𝑖 . 

 

Here, the outcome vector, 𝑌, follows a probability distribution 𝐷 parameterised by up to four 

parameters, (𝜇, 𝜎, 𝜈, 𝜏). The four parameters, depending on the parameterisation of the probability 

density function, may correspond to the mean, variance, skewness, and kurtosis (i.e. the first four 

moments); however, for many distributions there is not a direct one-to-one correspondence. Each 
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component is linked to a linear equation through a link-function, 𝑔∙(), and each component 

equation may include three types of terms: fixed effects, 𝛽∙(with design matrix, 𝑋∙); random-effects, 

𝛾∙ (with design matrix, 𝑍∙); and non-parametric smoothing functions, 𝑠∙,𝑖 applied to the 𝑖th covariate. 

The nature of the outcome distribution determines the appropriate link-functions and which 

components are used. In principle any outcome distribution can be used, from well-behaved 

continuous and discrete outcomes, through to mixtures and truncations. 

 

Within this paper we consider fractional polynomials as a flexible, yet limited in complexity, 

approach to modelling age-related changes. Although non-parametric smoothers are more 

flexible, they can become unstable and infeasible, especially in the presence of random-effects. 

Hence, the fractional polynomials enter the model within the 𝑋∙terms, with associated coefficients 

in 𝛽∙. The GAMLSS framework includes the ability to estimate the most appropriate powers within 

the iterative fitting algorithm, searching across the standard set of powers, 𝑝 ∈

{−2, −1, −0.5,0,0.5,1,2,3}, where the design matrix includes the covariate (in our setting, age) 

raised to the power, namely, 𝑥𝑝. Fractional polynomials naturally extend to higher-orders, for 

example a second-order fractional polynomial of the form, 𝑥𝑝1 + 𝑥𝑝2. 

 

There are several options for including random-effects within the GAMLSS framework depending 

on the desired covariance structures. We consider the simplest case, including a factor-level (or 

group-level) random-intercept, where the observations are grouped by the study covariate. The 

random-effects are drawn from a normal distribution with zero mean and variance to be estimated, 

𝛾∙ ∼ 𝑁(0, 𝛿∙
2). The ability to include random-effects is fundamental to accounting for co-

dependence between observations. It is therefore possible to take advantage of the flexibility of 

"standard" GAMLSS, as typically used to develop growth charts 2,4,5, while accounting for co-

dependence between observations using random-effects. The typical applications of GAMLSS 

assume independent and identically distributed outcomes; however within our context it is 

essential to account for within-study covariance implying the observations are no longer 

independent.  

 

This model allowed us to leverage the aggregated life-spanning neuroimaging dataset to derive 

developmental milestones (i.e., peaks of trajectories) and compare them to existing literature. 

Peaks were determined based on the GAMLSS model output (50 th centile) for each of the tissue 

classes and TCV, for both total volumes (Fig. 1B) and rates of change or growth (“velocity”; Fig. 

1E). Diagnostic age ranges from previous literature 6,7 were plotted (black boxes in Fig. 2) to 

compare with empirical age ranges of patients with a given diagnosis across the aggregated 

neuroimaging dataset. Note that age of diagnosis is significantly later than age of symptom onset 

for many disorders 6. Developmental milestones were re-plotted from published work for brain 

resting metabolic rate (RMR)8, anthropometric variables 9, and typical acquisition of the six gross 

motor capabilities 4. Pubertal age ranges were taken from reported typical age ranges 10,11. 

 

Furthermore, these neuroimaging-derived brain reference charts also enabled each individual to 

be quantified relative to a statistical distribution defined at the reference level for any point during 

the lifespan 12,13. Individual centile scores were obtained relative to the reference curves, 

conceptually similar to traditional anthropometric growth charts. These normative scores 
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represent a novel set of population and age standardized clinical phenotypes, providing the 

capacity for cross-phenotype, cross-study and cross-disorder comparison. A single summary 

deviation metric for each individual was also generated.. Main group effects were analysed with 

a bootstrapped (500 bootstraps) non-parametric generalisation of Welch’s one-way ANOVA. 

Pairwise, sex stratified, post-hoc comparisons were conducted using non-parametric Monte-Carlo 

permutation tests (10,000 permutations) and thresholded at a Benjamini-Hochberg false 

discovery rate (FDR) of  q < 0.05.  

 

To utilise the centiles in a diagnostically meaningful or predictive way, they need to be stable 

across multiple measuring points. To assess this intra-individual stability, we calculated the 

subject specific interquartile range (IQR) of centiles across timepoints for the datasets that 

included longitudinal scans (n = 9,306, 41 unique studies). Exploratory longitudinal clinical 

analyses were restricted to clinical groups that had at least 50 subjects with longitudinal data to 

allow for robust group-wise estimates of longitudinal variability. In addition, there was a small 

subset of individuals with documented pathological progression across longitudinal scans, for 

instance from high-risk status to formal diagnosis. Here, we would expect an associated change 

in centile measurement. To test this hypothesis, we assessed whether these individuals showed 

differences in centile variability (as assessed with IQR), and their approximate direction of change.  

 

Finally, we provide an interactive tool (www.brainchart.io) and have made our code and models 

openly available (https://github.com/ucam-department-of-psychiatry/Lifespan). The tool not only 

allows the user to visualise the underlying datasets’ demographics and reported reference charts 

in a much more detailed fashion than static images allow, it also provides the opportunity for 

interactive exploration of differences in centile scores across many clinical groups that is beyond 

the present manuscript. Perhaps most significantly, it includes an out-of-sample estimator of 

model parameters for novel data that enables the user to compute percentile scores for their own 

datasets without the computational or data-sharing hurdles involved in adding that data to the 

reference chart. All modelling included extensive validation, sensitivity analyses and multi-modal 

validation against existing growth chart references . 

 

Though already based on the largest and most comprehensive neuroimaging dataset to date and 

supporting analyses of out-of-sample data , the underlying reference charts will also be updated 

as additional data is made available.  
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