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Abstract 
Over the past few decades, neuroimaging has become a ubiquitous tool in basic research and 
clinical studies of the human brain. However, no reference standards currently exist to quantify 
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individual differences in neuroimaging metrics over time, in contrast to growth charts for 
anthropometric traits such as height and weight1. Here, we built an interactive resource to 
benchmark brain morphology, www.brainchart.io, derived from any current or future sample of 
magnetic resonance imaging (MRI) data. With the goal of basing these reference charts on the 
largest and most inclusive dataset available, we aggregated 123,984 MRI scans from 101,457 
participants aged from 115 days post-conception through 100 postnatal years, across more than 
100 primary research studies. Cerebrum tissue volumes and other global or regional MRI metrics 
were quantified by centile scores, relative to non-linear trajectories2 of brain structural changes, 
and rates of change, over the lifespan. Brain charts identified previously unreported 
neurodevelopmental milestones3; showed high stability of individual centile scores over 
longitudinal assessments; and demonstrated robustness to technical and methodological 
differences between primary studies. Centile scores showed increased heritability compared to 
non-centiled MRI phenotypes, and provided a standardised measure of atypical brain structure 
that revealed patterns of neuroanatomical variation across neurological and psychiatric disorders. 
In sum, brain charts are an essential first step towards robust quantification of individual 
deviations from normative trajectories in multiple, commonly-used neuroimaging phenotypes. Our 
collaborative study proves the principle that brain charts are achievable on a global scale over 
the entire lifespan, and applicable to analysis of diverse developmental and clinical effects on 
human brain structure. Furthermore, we provide open resources to support future advances 
towards adoption of brain charts as standards for quantitative benchmarking of typical or atypical 
brain MRI scans.  

Main 
The simple framework of growth charts to quantify age-related change was first published in the 
late 18th century1 and remains a cornerstone of paediatric healthcare – an enduring example of 
the utility of standardised norms to benchmark individual trajectories of development. However, 
growth charts are currently available only for a small set of anthropometric variables, e.g., height, 
weight and head circumference, and only for the first decade of life. There are no analogous 
charts available for quantification of age-related changes in the human brain, although it is known 
to go through a prolonged and complex maturational program from pregnancy to the third 
decade4, followed by progressive senescence from the sixth decade5, approximately. The lack of 
tools for standardised assessment of brain development and aging is particularly relevant to 
research studies of psychiatric disorders, which are increasingly recognised as a consequence of 
atypical brain development6, and neurodegenerative diseases that cause pathological brain 
changes in the context of normative senescence7. Preterm birth and neurogenetic disorders are 
also associated with marked abnormalities of brain structure8,9 that persist into adult life9,10 and 
are associated with learning disabilities and mental health disorders. Mental illness and dementia 
collectively represent the single biggest global health burden11, highlighting the urgent need for 
normative brain charts as an anchorpoint for standardised quantification of brain structure over 
the lifespan12. 
 
Such standards for human brain measurement have not yet materialised from decades of 
neuroimaging research, likely due to the challenges of integrating magnetic resonance imaging 
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(MRI) data across multiple, methodologically diverse studies targeting distinct developmental 
epochs and clinical conditions13. For example, the perinatal period is rarely incorporated in 
analysis of age-related brain changes, despite evidence that early biophysical and molecular 
processes powerfully influence life-long neurodevelopmental trajectories14,15 and vulnerability to 
psychiatric disorders3. Primary case-control studies are usually focused on a single disorder 
despite evidence of trans-diagnostically shared risk factors and pathogenic mechanisms, 
especially in psychiatry16,17. Harmonization of MRI data across primary studies to address these 
and other deficiencies in the extant literature is challenged by methodological and technical 
heterogeneity. Compared to relatively simple anthropometric measurements, like height or 
weight, brain morphometrics are known to be highly sensitive to variation in scanner platforms 
and sequences, data quality control, pre-processing and statistical analysis18, thus severely 
limiting the generalisability of trajectories estimated from any individual study19. Collaborative 
initiatives spurring collection of large-scale datasets20,21, recent advances in neuroimaging data 
processing22,23, and proven statistical frameworks for modelling biological growth curves2,24,25 
provide the building blocks for a more comprehensive and generalisable approach to age-normed 
quantification of MRI phenotypes over the entire lifespan (see SI 1 for details and consideration 
of prior work focused on the related but distinct objective of inferring brain age from MRI data). 
Here, we demonstrate that these convergent advances now enable the generation of brain charts 
that i) robustly define  normative processes  of sex-stratified, age-related change in multiple MRI-
derived phenotypes; ii) identify previously unreported brain growth milestones; iii) increase 
sensitivity to detect genetic and early life environmental effects on brain structure; and iv) provide 
standardised effect sizes to quantify neuroanatomical atypicality of brain scans collected across 
multiple clinical disorders. We do not claim to have yet reached the ultimate goal of quantitatively 
precise diagnosis of MRI scans from individual patients in clinical practice. However, the present 
work proves the principle that building normative charts to benchmark individual differences in 
brain structure is already achievable at global scale and over the entire life-course; and provides 
a suite of open science resources for the neuroimaging research community to accelerate further 
progress in the direction of standardised quantitative assessment of MRI data.    

Mapping normative brain growth 
We created brain charts for the human lifespan using generalised additive models for location, 
scale and shape (GAMLSS)2,24, a robust and flexible framework for modelling non-linear growth 
trajectories recommended by the World Health Organization24. GAMLSS and related statistical 
frameworks have previously been applied to developmental modelling  of brain structural and 
functional MRI phenotypes in open datasets19,26–31. Our approach to GAMLSS modelling 
leveraged the greater scale of data available to optimise model selection empirically, to estimate 
non-linear age-related trends (in median and variance) across the lifespan stratified by sex over 
the entire lifespan, and to account for site- or study-specific “batch effects” on MRI phenotypes in 
terms of multiple random effect parameters. Specifically, GAMLSS models were fitted to structural 
MRI data from control subjects for the four main tissue volumes of the cerebrum (total cortical 
grey matter volume [GMV] and total white matter volume [WMV], total subcortical grey matter 
volume [sGMV], and total ventricular cerebrospinal fluid volume [Ventricles or CSF]). See Online 
Methods, Supplementary Table [ST] 1.1-1.8 for details on acquisition, processing and 
demographics of the dataset. See Supplementary Information [SI] for details regarding 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 13, 2022. ; https://doi.org/10.1101/2021.06.08.447489doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.08.447489
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

4 

GAMLSS model specification and estimation (SI1); image quality control, which utilized a 
combination of expert visual curation and automated metrics of image quality (SI2); model stability 
and robustness (SI3-4); phenotypic validation against non-imaging metrics (SI3 and SI5.2); inter-
study harmonisation (SI5); and assessment of cohort effects (SI6). See SI19 for details on all 
primary studies contributing to the reference dataset, including multiple publicly available open 
MRI datasets32–42.   
 
Lifespan curves (Fig.1; ST2.1) showed an initial strong increase in GMV from mid-gestation 
onwards, peaking at 5.9CI-Bootstrap:5.8-6.1 years, followed by a near-linear decrease. This peak was 
observed 2-3 years later than prior reports relying on smaller, more age-restricted samples43,44. 
WMV also increased rapidly from mid-gestation through early childhood peaking at 28.7CI-

Bootstrap:28.1-29.2 years, with subsequent accelerated decline in WMV after 50 years. Subcortical GMV 
showed an intermediate growth pattern compared to GMV and WMV, peaking in adolescence at 
14.4CI-Bootstrap:14.0-14.7 years. Both the WMV and sGMV peaks are consistent with prior neuroimaging 
and postmortem reports45,46. In contrast, CSF showed an increase until age 2, followed by a 
plateau until age 30, and then a slow linear increase that exponentiated in the sixth decade of life. 
Age-related variance (Fig.1D), explicitly estimated by GAMLSS, formally quantifies 
developmental changes in between-subject variability. There was an early developmental 
increase in GMV variability that peaked at 4 years, whereas subcortical volume variability peaked 
in late adolescence. WMV variability peaked during the fourth decade of life, and CSF was 
maximally variable at the end of the human lifespan. 
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Fig. 1. Human brain charts. A | MRI data were aggregated from 100 primary studies comprising 123,984 
scans that collectively spanned the age range from mid-gestation to 100 postnatal years. Box-violin plots 
show the age distribution (log-scaled) for each study coloured by its relative sample-size (log-scaled). B | 
Non-centiled, “raw” bilateral cerebrum tissue volumes (from left to right: grey matter, white matter, 
subcortical grey matter and ventricles) are plotted for each cross-sectional control scan, point-coloured by 
sex, as a function of age (log-scaled). C | Normative brain trajectories were estimated by generalised 
additive modelling for location, scale and shape (GAMLSS), accounting for site- and study-specific batch 
effects, and stratified by sex (female/male curves coloured red/blue). All four cerebrum tissue volumes 
demonstrated distinct, non-linear trajectories of their medians (with 2.5% and 97.5% centiles denoted as 
dotted lines) as a function of age over the lifespan. Demographics for each cross-sectional sample of 
healthy controls included in the reference dataset for normative GAMLSS modelling of each MRI phenotype 
are detailed in ST1.2-1.8. D | Trajectories of median between-subject variability and 95% confidence 
intervals for four cerebrum issue volumes were estimated by sex-stratified bootstrapping (see SI3 for 
details). E | Rates of volumetric change across the lifespan for each tissue volume, stratified by sex, were 
estimated by the first derivatives of the median volumetric trajectories. For solid (parenchymal) tissue 
volumes, the horizontal line (y=0) indicates when the volume of each tissue stops growing and starts 
shrinking; the solid vertical line indicates the age of maximum growth of each tissue. See ST2.1 for all 
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neurodevelopmental milestones and their confidence intervals. Note that y-axes in panels B-E are scaled 
in units of 10,000 mm3 (10ml). 
 

Extended neuroimaging phenotypes 
To extend the scope of brain charts beyond the four cerebrum tissue volumes, we generalised 
the same GAMLSS modelling approach to estimate normative trajectories for additional MRI 
phenotypes including other geometric properties at a similar scale (mean cortical thickness and 
total surface area) and regional volume at each of 34 cortical areas47 (Fig.2, SI7-9, ST1-2). We 
found, as expected, that total surface area closely tracked the development of total cerebrum 
volume (TCV) across the lifespan (Fig.2A), with both metrics peaking at ~11-12 years (SA 10.97CI-

Bootstrap:10.42-11.51; TCV 12.5CI-Bootstrap:12.14-12.89). In contrast, cortical thickness peaked distinctively 
early at 1.7CI-Bootstrap:1.3-2.1 years, which reconciles prior observations that cortical thickness 
increases during the perinatal period48 and declines during later development49 (SI7). 
 
We also found evidence for regional variability in volumetric neurodevelopmental trajectories. 
Compared to peak GMV at 5.9 years, the age of peak regional grey matter volume varied 
considerably – from approximately 2 to 10 years – across 34 cortical areas. Primary sensory 
regions reached peak volume earliest, and fronto-temporal association cortical areas peaked later 
(Fig.2B; SI8). In general, earlier maturing ventral-caudal regions also showed faster post-peak 
declines in cortical volume, and later maturing dorsal-rostral regions showed slower post-peak 
declines (Fig.2B; SI8.2). Notably, this spatial pattern recapitulated a gradient from sensory-to-
association cortex that has been previously associated with multiple aspects of brain structure 
and function50.   
 

 
Fig. 2. Extended global and regional cortical geometric phenotypes. A | Trajectories for total cerebrum 
volume (TCV; left column), total surface area (SA; middle column), and mean cortical thickness (CT; right 
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column). For each global cortical geometric MRI phenotype, the following sex-stratified results are shown 
as a function of age over the lifespan, from top to bottom rows: raw, non-centiled data; population 
trajectories of the median (with 2.5% and 97.5% centiles; dotted lines); between-subject variance (and 95% 
confidence intervals); and rate-of-growth (the first derivatives of the median trajectory and 95% confidence 
intervals). All trajectories are plotted as a function of log-scaled age (x-axis) and y-axes are scaled in units 
of the corresponding MRI metrics (10,000 mm3 for TCV, 10,000 mm2 for SA and mm for CT). B | Regional 
variability of cortical volume trajectories for 34 bilateral brain regions, as defined by the Desikan-Killiany 
parcellation47, averaged across sex (see also SI7-8 for details). Since models were generated from bilateral 
averages of each cortical region, the cortical maps are plotted on the left hemisphere purely for visualisation 
purposes. In the top panel, a cortical map of age at peak regional volume (range 2-10 years); in the middle 
panel, a cortical map of age at peak regional volume relative to age at peak GMV (5.9 years), highlighting 
regions that peak earlier (blue) or later (red) than GMV; in the bottom panel, illustrative trajectories for the 
earliest peaking region (superior parietal lobe, blue line) and the latest peaking region (insula, red line), 
showing the range of regional variability relative to the GMV trajectory (grey line). Regional volume peaks 
are denoted as dotted vertical lines either side of the global peak, denoted as a dashed vertical line, in the 
bottom panel. The left hand y-axis on the bottom panel refers to the earliest peak (blue line), the right hand 
y-axis refers to the latest peak (red line), and both are in units of 10,000 mm3 (10ml).   

Developmental milestones 
Neuroimaging milestones are defined by inflection points of the tissue-specific volumetric 
trajectories (Fig.3; Online Methods). Among the total tissue volumes, only GMV peaked before 
the typical age at onset of puberty51, with sGMV peaking mid-puberty and WMV peaking in young 
adulthood (Fig.3). The rate-of-growth (velocity) peaked for GMV (5.08CI-Bootstrap:4.85-5.22 months), 
sGMV (5.65CI-Bootstrap:5,75-5.83 months) and WMV (2.4CI-Bootstrap:2.2-2.6 years) in infancy and early 
childhood. TCV velocity peaked between the maximum velocity for GMV and WMV at ~7 months. 
Two major milestones of TCV and sGMV (peak velocity and size; Fig.3) coincided with the early 
neonatal and adolescent peaks of height and weight velocity52,53. The velocity of mean cortical 
thickness peaked even earlier, in the prenatal period at -0.38CI-Bootstrap:-0.4 to -0.34 years (relative to 
birth), corresponding approximately to mid-gestation. This early peak in cortical thickness velocity 
has not been reported previously, in part due to obstacles in acquiring adequate and consistent 
signal from typical MRI sequences in the perinatal period54. Similarly, normative trajectories 
revealed an early period of GMV:WMV differentiation, beginning in the first month after birth with 
the switch from WMV to GMV as the proportionally dominant tissue compartment, and ending 
when the absolute difference of GMV and WMV peaked around 3 years (SI9). This epoch of 
GMV:WMV differentiation, which may reflect underlying changes in myelination and synaptic 
proliferation4,55–58, has not been demarcated by prior studies45,59. It was likely identified in this study 
due to the substantial amount of early developmental MRI data available for analysis in the aggregated 
dataset (in total across all primary studies, N=2,571 and N=1,484 participants aged <2 years were 
available for analysis of cerebrum tissue volumes and extended global MRI phenotypes, respectively). 
The period of GMV:WMV differentiation encompasses dynamic changes in brain metabolites60 
(0-3 months), resting metabolic rate (RMR; minimum=7 months, maximum=4.2 years)61, the 
typical period of acquisition of motor capabilities and other early paediatric milestones62, and the 
most rapid change in TCV (Fig.3).  
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 13, 2022. ; https://doi.org/10.1101/2021.06.08.447489doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.08.447489
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

8 

 
Fig. 3. Neurodevelopmental milestones. Top panel: A graphical summary of the normative trajectories 
of the median (or 50th centile) for each global MRI phenotype, and key developmental milestones, as a 
function of age (log-scaled). Circles depict the peak rate-of-growth milestones for each phenotype (defined 
by the maxima of the first derivatives of the median trajectories; see Fig.1E). Triangles depict the peak 
volume of each phenotype (defined by the maxima of the median trajectories); the definition of GMV:WMV 
differentiation is detailed in SI9.1. Bottom panel: A graphical summary of additional MRI and non-MRI 
developmental stages and milestones. From top to bottom: blue shaded boxes denote the age-range of 
incidence for each of the major clinical disorders represented in the MRI dataset; black boxes denote the 
age at which these conditions are generally diagnosed as derived from literature63 (Online Methods); 
brown lines represent the normative intervals for developmental milestones derived from non-MRI data, 
based on previous literature and averaged across males and females (Online Methods); grey bars depict 
age ranges for existing (WHO and Centres for Disease Control and Prevention [CDC]) growth charts of 
anthropometric and ultrasonographic variables. Across both panels, light grey vertical lines delimit lifespan 
epochs (labelled above the top panel) previously defined by neurobiological criteria64. Abbreviations: resting 
metabolic rate (RMR), Alzheimer's disease (AD), attention deficit hyperactivity disorder (ADHD), anxiety or 
phobic disorders (ANX), autism spectrum disorder (ASD, including high-risk individuals with confirmed 
diagnosis at a later age), major depressive disorder (MDD), bipolar disorder (BD), and schizophrenia (SCZ). 
 

Individualised centile scores in clinical samples 
We computed individualised centile scores that benchmarked each individual scan in the context 
of normative age-related trends (SI1-6). This approach is conceptually similar to quantile rank 
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mapping, as previously reported26,28,29, where the (a)typicality of each phenotype in each scan is 
quantified by its score on the distribution of phenotypic parameters in the normative or reference 
sample of scans, with more atypical phenotypes having more extreme centile (or quantile) scores. 
The clinical diversity of the aggregated dataset allowed us to comprehensively investigate case-
control differences in individually-specific centile scores across multiple conditions. Relative to the 
control group (CN), there were highly significant differences in centile scores across large (N>500) 
diagnostic groups of multiple disorders (Fig.4A; SI10), with effect-sizes ranging from medium 
(Cohen’s d ranging from 0.2 to 0.8) to large (Cohen’s d > 0.8) (see ST3-4 for all false discovery 
rate (FDR)-corrected P-values and effect-sizes). The pattern of these group differences in centile 
scores varied across tissue types and disorders. Clinical differences in cortical thickness and 
surface area generally followed the same trend as volume differences (SI10). Alzheimer’s disease 
(AD) showed the greatest overall difference, with a maximum difference localised to gray matter 
in biologically female patients (median centile score = 14%, 36% points difference from CN 
median, corresponding to Cohen’s d=0.88; Fig.4A). In addition, we generated a cumulative 
deviation metric, the centile Mahalanobis distance (CMD), to summarise a comparative 
assessment of brain morphology across all global MRI phenotypes relative to the CN group 
(Fig.4B; SI1.6). Notably, schizophrenia (SCZ) ranked third overall behind AD and mild cognitive 
impairment (MCI), based on CMD (Fig.4C). Assessment across diagnostic groups, based on 
profiles of the multiple centile scores for each MRI phenotype and for CMD, highlighted shared 
and distinct patterns across clinical conditions (SI10-11). However, when examining cross-
disorder similarity of multivariate centile scores, hierarchical clustering yielded three clusters 
broadly comprising neurodegenerative, mood/anxiety, and neurodevelopmental disorders (SI11). 
Overall, these analyses highlight some complementary use-cases for examining both absolute 
and relative differences in centile scores within and across conventional diagnostic categories.  
 
Between-subject variation in centile scores also showed strong associations with development, 
early-life events, and shared genetic architecture. Across all major epochs of the lifespan, CMD 
was consistently greater in cases relative to controls, irrespective of diagnostic category, with the 
largest difference found in adolescence and late adulthood across epochs64 (SI10.3). 
Adolescence also showed the greatest overlap between diagnostic categories in our dataset, and 
is well-recognised as a period of increased incidence of mental health disorders (Fig.4; SI10-11). 
Across 5 primary studies covering the lifespan, average centile scores were related to two metrics 
of premature birth (gestational age at birth: t=13.164, P<2e-16; birth weight: t=36.395, P<2e-16; 
SI12). Centile scores also showed increased twin-based heritability in two independent studies 
(total N=913 twin-pairs) compared to non-centiled phenotypes (average increase of 11.8% points 
in h2 across phenotypes; Fig.4D, SI13). In summary, centile normalisation of brain metrics 
reproducibly detected case-control differences and genetic effects on brain structure, as well as 
long-term sequelae of adverse birth outcomes even in the adult brain10.  
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Fig. 4. Case-control differences and heritability of centile scores. A | Centile score distributions for 
each diagnostic category of clinical cases relative to the control group median (depicted as a horizontal 
black line). The median deviation of centile scores in each diagnostic category is overlaid as a lollipop plot 
(white line with circle corresponding to the median centile score for each group of cases). Pairwise tests for 
significance were based on Monte-Carlo resampling (10,000 permutations) and P-values were adjusted for 
multiple comparisons using the Benjamini-Hochberg (FDR) correction across all possible case-control 
differences. Only significant deviations from the control group median  (with corrected P<0.001) are 
highlighted with an asterisk. For a complete overview of all pairwise comparisons, see SI10 and ST3. 
Groups are ordered by their multivariate distance from the control group (see panel C and SI10.3). B | The 
centile Mahalanobis distance (CMD) is a summary metric of multivariate deviation that quantifies the 
aggregate atypicality of an individual scan in terms of all global MRI phenotypes. The schematic shows 
segmentation of four cerebrum tissue volumes, followed by estimation of univariate centile scores, leading 
to the orthogonal projection of a single participant’s scan  (Subx)  onto the four principal components of the 
control group (CN; coloured axes and arrows): the CMD for Subx is then the sum of its distances from the 
CN group mean on all 4 dimensions of the multivariate space. C | Probability density plots of CMD across 
disorders. Vertical black line depicts the median CMD of the control group. Asterisks indicate an FDR-
corrected significant difference from the CN group (P<0.001). D | Heritability of raw volumetric phenotypes 
and their centile scores across two twin studies (ABCD and HCP; see SI 19). All dots have error bars for 
the standard error, but in some cases these are too narrow to be observed. Abbreviations: control (CN), 
Alzheimer's disease (AD), attention deficit hyperactivity disorder (ADHD), anxiety or phobia (ANX), autism 
spectrum disorder (ASD, including high-risk individuals with confirmed diagnosis at a later age), mild 
cognitive impairment (MCI), major depressive disorder (MDD), schizophrenia (SCZ); grey matter volume 
(GMV), subcortical grey matter volume (sGMV), white matter volume (WMV), centile Mahalanobis distance 
(CMD). Asterisks indicate level of FDR-corrected significance: P<0.05, P<0.01 or P<0.001 for *, ** and *** 
respectively. 

Longitudinal centile changes 
Due to the relative paucity of longitudinal imaging data (~10% of the reference dataset), normative 
models were estimated from cross-sectional data collected at a single time point. However, the 
generalisability of cross-sectional models to longitudinal assessment is important for future 
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research. Within-subject variability of centile scores derived from longitudinally repeated  scans, 
measured with the interquartile range (IQR; SI1.7), was low across both clinical and control 
groups (all median IQR < 0.05 centile points), indicating that centile scoring of brain structure was 
generally stable over time, although there was also some evidence of between-study and cross-
disorder differences in within-subject variability (SI14). Notably, individuals who changed 
diagnostic categories, e.g., progressed from MCI to AD, over the course of repeated scanning 
showed small but significant increases in within-subject variability of centile scores (SI14; ST5-6). 
Within-subject variability was also slightly higher in younger samples (SI14), which could reflect 
increased noise due to the technical or data quality difficulties associated with scanning younger 
individuals, but is also consistent with the evidence of increased variability in earlier development 
observed across other anthropometric traits65. 

Out-of-sample centile scoring of “new” MRI data 
A key challenge for brain charts is the accurate centile scoring of out-of-sample MRI data, not 
represented in the reference dataset used to estimate normative trajectories. We therefore 
carefully evaluated the reliability and validity of brain charts for centile scoring of such “new” 
scans. For each new MRI study, we used maximum likelihood to estimate study-specific statistical 
offsets from the age-appropriate epoch of the normative trajectory; then we estimated centile 
scores for each individual in the new study benchmarked against the offset trajectory (Fig.5; 
SI1.8). Extensive jack-knife and leave-one-study-out (LOSO) analyses indicated that a study size 
of N>100 scans was sufficient for stable and unbiased estimation of out-of-sample centile scores 
(SI4). This study size limit is in line with the size of many contemporary brain MRI research 
studies. However, these results do not immediately support the use of brain charts to generate 
centile scores from smaller scale research studies, or from an individual patient’s scan in clinical 
practice – this remains a goal for future work. Out-of-sample centile scores proved highly reliable 
in multiple test-retest datasets and were robust to variations in image processing pipelines (SI4). 
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Fig. 5. Schematic overview of brain charts, highlighting methods for out-of-sample centile scoring. 
Top panel: Brain phenotypes were measured in a reference dataset of MRI scans. GAMLSS modelling was 
used to estimate the relationship between (global) MRI phenotypes and age, stratified by sex, and 
controlling for technical and other sources of variation between scanning sites and primary studies. Bottom 
panel: The normative trajectory of the median and confidence interval for each phenotype was plotted as a 
population reference curve. Out-of-sample data from a new MRI study were aligned to the corresponding 
epoch of the normative trajectory, using maximum likelihood to estimate the study specific offsets (random 
effects) for three moments of the underlying statistical distributions: mean (𝜇), variance (𝜎), and skewness 
(𝝂) in an age- and sex-specific manner. Centile scores could then be estimated for each scan in the new 
study, on the same scale as the reference population curve, while accounting for study-specific “batch 
effects” on technical or other sources of variation (see SI1.8 for details). 
 

Discussion 
We have aggregated the largest neuroimaging dataset to date to modernise the concept of growth 
charts for mapping typical and atypical human brain development and ageing. The ~100-year age 
range enabled the delineation of milestones and critical periods in maturation of the human brain, 
revealing an early growth epoch across its constituent tissue classes -- starting before 17 post-
conception weeks, when the brain is at ~10% of its maximum size and ending at ~80% maximum 
size by age 3. Individual centile scores benchmarked by normative neurodevelopmental 
trajectories were significantly associated with neuropsychiatric disorders as well as with 
dimensional phenotypes (SI5.2 and SI12). Furthermore, imaging-genetics studies66 may benefit 
from the increased heritability of centile scores compared to raw volumetric data (SI13). Perhaps 
most importantly, GAMLSS modelling enabled harmonisation across technically diverse studies 
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(SI5), and thus unlocked the potential value of combining primary MRI studies at scale to generate 
normative, sex-stratified brain growth charts, and individual centile scores of (a)typicality.   
 
The analogy to paediatric growth charts is not meant to imply that brain charts are immediately 
suitable for benchmarking or quantitative diagnosis of individual patients in clinical practice. Even 
for traditional anthropometric growth charts (height, weight and BMI) there are still significant 
caveats and nuances concerning their diagnostic interpretation in individual children67; and, 
likewise, it is expected that considerable further research will be required to validate the clinical 
diagnostic utility of brain charts. However, the current results bode well for future progress towards 
digital diagnosis of atypical brain structure and development68. By providing an age- and sex-
normalised metric, centile scores enable trans-diagnostic comparisons between disorders that 
emerge at different stages of the lifespan (SI10-11). The generally high stability of centile scores 
across longitudinal measurements also enabled assessment of documented changes in 
diagnosis such as the transition from MCI to AD (SI14), which provides one example of how 
centile scoring could be clinically useful in quantitatively predicting or diagnosing progressive 
neurodegenerative disorders in the future. Our provision of appropriate normative growth charts 
and on-line tools also creates an immediate opportunity to quantify atypical brain structure in 
clinical research samples, to leverage available legacy neuroimaging datasets, and to enhance 
ongoing studies.  
 
Several important caveats are worth highlighting. The use of brain charts does not circumvent the 
fundamental requirement for quality control of MRI data. We have shown that GAMLSS modelling 
of global structural MRI phenotypes is in fact remarkably robust to inclusion of poor quality scans 
(SI2), but it should not be assumed that this level of robustness will apply to future brain charts of 
regional MRI or functional MRI phenotypes; therefore the importance of quality control remains 
paramount. It will also be important in future to represent ethnic diversity appropriately in 
normative brain charts69,70. Even this large MRI dataset was heavily biased towards European 
and North American populations, as is also common in anthropometric growth charts and existing 
genetic datasets. Further increasing ethnic and demographic diversity in MRI research will enable 
more population-representative normative trajectories69,70 that can be expected to improve the 
accuracy and strengthen the interpretation of centile scores in relation to appropriate norms26. 
The available reference data were also not equally representative of all ages, e.g., foetal, neonatal 
and mid-adulthood (30-40y) epochs were under-represented (SI17-19). While our statistical 
modelling approach was designed to mitigate study- or site-specific effects on centile scores, it 
cannot entirely correct for limitations of primary study design, such as ascertainment bias or 
variability in diagnostic criteria. Our decision to stratify the lifespan models by sex followed the 
analogous logic of sex-stratified anthropometric growth charts. Males have larger brain tissue 
volumes than females in absolute terms (SI16), but this is not indicative of any difference in clinical 
or cognitive outcomes. Future work would also benefit from more detailed and dimensional self-
report variables relating to sex and gender71.  
 
We have focused primarily on global brain phenotypes, which were measurable in the largest 
possible aggregated sample over the widest age range, with the fewest methodological, 
theoretical and data sharing constraints. However, we have also provided proof-of-concept brain 
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charts for regional grey matter volumetrics, demonstrating plausible heterochronicity of cortical 
patterning, and illustrating the potential generalisability of this approach to a diverse range of fine-
grained MRI phenotypes (Fig.2; SI8). As ongoing and future efforts provide increasing amounts 
of high-quality MRI data, we predict an iterative process of improved brain charts for an increasing 
number of multimodal72 neuroimaging phenotypes. Such diversification will require the 
development, implementation, and standardisation of additional data quality control procedures27 
to underpin robust brain chart modelling. To facilitate further research using our reference charts, 
we have provided interactive tools to explore these statistical models and to derive normalised 
centile scores for new datasets across the lifespan at www.brainchart.io. 
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Online methods: Brain charts for the human lifespan  
To accurately and comprehensively establish standardised brain reference charts across the 
lifespan, it is crucial to leverage multiple independent and diverse datasets, especially those 
spanning prenatal and early postnatal life. Here we sought to chart normative brain development 
and ageing across the largest age-span and largest aggregated neuroimaging dataset to date 
using a robust and scalable methodological framework1,2. We leveraged these normative 
reference charts in clinical cohorts to generate individualised assessments of age-relative 
centiles. These centiles were then leveraged to investigate cross-diagnostic and longitudinal 
atypicalities of brain morphology across the lifespan. We used generalised additive models for 
location, scale and shape (GAMLSS)1 to estimate cross-sectional normative age-related trends 
from 100 studies (see supplementary tables [ST] 1.1-1.7 for full demographic information and 
supplementary information [SI] 19 for dataset descriptions). The GAMLSS approach allows not 
only modelling of age-related changes in brain phenotypes but also age related-changes in the 
variability, in the form of both linear and nonlinear changes over time, thereby overcoming 
potential limitations of conventional additive models that only allow additive means to be 
modelled1. In addition, site-specific offsets (mean and variance) for each brain phenotype are also 
modelled. These modelling criteria are particularly important in the context of establishing growth 
references as recommended by the World Health Organisation2, as it is reasonable to assume 
the distribution of higher order moments (e.g., variance) changes with age, sex, site/study and 
pre-processing pipeline—especially given the impossibility of fully comprehensive longitudinal 
data for individuals spanning the ~100 year age range. Furthermore, recent studies suggest that 
changes in across-individual variability might intersect with vulnerability for developing a mental 
health condition3. The use of data spanning the entire age range is also critical, as estimation 
from partial age-windows can lead to biased estimations when extrapolated to the whole lifespan. 
In summary, using a sex-stratified approach2, age, preprocessing pipeline and study were each 
included in the GAMLSS model estimation of first order (𝜇) and second order (𝝈) distribution 
parameters of a generalised gamma distribution using fractional polynomials to model nonlinear 
trends. See Supplementary Information [SI] for more details regarding GAMLSS model 
specification and estimation (SI1), image quality control (SI2), model stability and robustness (SI3-
4), phenotypic validation against non-imaging metrics (SI3 & SI5.2), inter-study harmonisation 
(SI5) and assessment of cohort effects (SI6). 
 
In general, the GAMLSS framework can be specified in the following way: 
 

𝑌 ∼ ℱ(𝜇, 𝜎, 𝜈, 𝜏) 

𝑔!(𝜇) = 𝑋!𝛽! + 𝑍!𝛾! +3	𝑠!,#(𝑥#)
#

 

𝑔$(𝜎) = 𝑋$𝛽$ + 𝑍$𝛾$ +3	𝑠$,#(𝑥#)
#

 

𝑔%(𝜈) = 𝑋%𝛽% + 𝑍%𝛾% +3	𝑠%,#(𝑥#)
#

 

(1) 
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𝑔&(𝜏) = 𝑋&𝛽& + 𝑍&𝛾& +3	𝑠&,#(𝑥#)
#

 

 
Here, the outcome vector, 𝑌, follows a probability distribution 𝐹 parameterised by up to four 
parameters, (𝜇, 𝜎, 𝜈, 𝜏). The four parameters, depending on the parameterisation of the probability 
density function, may correspond to the mean, variance, skewness, and kurtosis (i.e., the first four 
moments); however, for many distributions there is not a direct one-to-one correspondence. Each 
component is linked to a linear equation through a link-function, 𝑔∙(), and each component 
equation may include three types of terms: fixed effects, 𝛽∙(with design matrix, 𝑋∙); random-effects, 
𝛾∙ (with design matrix, 𝑍∙); and non-parametric smoothing functions, 𝑠∙,# applied to the 𝑖th covariate. 
The nature of the outcome distribution determines the appropriate link-functions and which 
components are used. In principle any outcome distribution can be used, from well-behaved 
continuous and discrete outcomes, through to mixtures and truncations. 
 
Within this paper we consider fractional polynomials as a flexible, yet limited in complexity, 
approach to modelling age-related changes. Although non-parametric smoothers are more 
flexible, they can become unstable and infeasible, especially in the presence of random-effects. 
Hence, the fractional polynomials enter the model within the 𝑋∙terms, with associated coefficients 
in 𝛽∙. The GAMLSS framework includes the ability to estimate the most appropriate powers within 
the iterative fitting algorithm, searching across the standard set of powers, 𝑝 ∈
{−2,−1,−0.5,0,0.5,1,2,3}, where the design matrix includes the covariate (in our setting, age) 
raised to the power, namely, 𝑥(. Fractional polynomials naturally extend to higher-orders, for 
example a second-order fractional polynomial of the form, 𝑥(! + 𝑥(". 
 
There are several options for including random-effects within the GAMLSS framework depending 
on the desired covariance structures. We consider the simplest case, including a factor-level (or 
group-level) random-intercept, where the observations are grouped by the study covariate. The 
random-effects are drawn from a normal distribution with zero mean and variance to be estimated, 
𝛾∙ ∼ 𝑁(0, 𝛿∙

)). The ability to include random-effects is fundamental to accounting for co-
dependence between observations. It is therefore possible to take advantage of the flexibility of 
"standard" GAMLSS, as typically used to develop growth charts2,4,5, while accounting for co-
dependence between observations using random-effects. The typical applications of GAMLSS 
assume independent and identically distributed outcomes; however within our context it is 
essential to account for within-study covariance implying the observations are no longer 
independent.  
 
The resulting models were evaluated using several sensitivity analyses and validation 
approaches. See Supplementary Information [SI] for further details regarding GAMLSS model 
specification and estimation (SI1), image quality control (SI2), model stability and robustness (SI3-
4), phenotypic validation against non-imaging metrics (SI3 & SI5.2), between-study 
harmonisation (SI5) and assessment of cohort effects (SI6).  While the models of whole brain  and 
regional morphometric development were robust to variations in image quality, and cross-
validated by non-imaging metrics, we expect that several sources of variance, including but not 
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limited to MRI data quality and variability of acquisition protocols, may become increasingly 
important as brain charting methods are applied to more innovative and/or anatomically fine-
grained MRI phenotypes. It will be important for future work to remain vigilant about the potential 
impact of data quality and other  sources of noise on robustness and generalisability of both 
normative trajectories and the centile scores derived from them. 
 
Based on the model selection criteria, outlined in the Supplementary Information (SI 1) in detail, 
the final models for normative trajectories of all MRI phenotypes were specified as illustrated 
below for GMV: 
 

𝐺𝑀𝑉	~	𝐺𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑠𝑒𝑑	𝐺𝑎𝑚𝑚𝑎(𝜇, 𝜎, 𝜈) with (2.1) 

𝑙𝑜𝑔 (𝜇) = 	 𝛼𝜇 + 𝛼𝜇,𝑠𝑒𝑥(𝑠𝑒𝑥) + 𝛼𝜇,𝑣𝑒𝑟(𝑣𝑒𝑟) + 𝛽𝜇,1(𝑎𝑔𝑒)
−2 + 𝛽𝜇,2(𝑎𝑔𝑒)

−2 𝑙𝑜𝑔 (𝑎𝑔𝑒) + 𝛽𝜇,3(𝑎𝑔𝑒)
−2 𝑙𝑜𝑔 (𝑎𝑔𝑒)2 + 𝛾𝜇,𝑠𝑡𝑢𝑑𝑦 

𝑙𝑜𝑔 (𝜎) = 	 𝛼𝜎 + 𝛼𝜎,𝑠𝑒𝑥(𝑠𝑒𝑥) + 𝛽𝜎,1(𝑎𝑔𝑒)
−2 + 𝛽𝜎,2(𝑎𝑔𝑒)

3 + 𝛾𝜎,𝑠𝑡𝑢𝑑𝑦 

𝜈 = 𝛼𝜈. 
 
For each component of the generalised gamma distribution, 𝛼 terms correspond to fixed effects 
of the intercept, sex (female/male), and software version (five categories) ; 𝛽 terms correspond to 
the fixed effects of age, modeled as fractional polynomial functions with the number of terms 
reflecting the order of the fractional polynomials; and 𝛾 terms correspond to the study-level 
random-effects. Note that we have explicitly included the link-functions for each component of the 
generalised gamma, namely the natural logarithm for 𝜇 and 𝜎 (since these parameters must be 
positive) and the identity for 𝜈. 
 
Similarly for the other phenotypes: 
 

𝑊𝑀𝑉	~	𝐺𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑠𝑒𝑑	𝐺𝑎𝑚𝑚𝑎(𝜇, 𝜎, 𝜈) with (2.2) 

𝑙𝑜𝑔 (𝜇) = 	 𝛼𝜇 + 𝛼𝜇,𝑠𝑒𝑥(𝑠𝑒𝑥) + 𝛼𝜇,𝑣𝑒𝑟(𝑣𝑒𝑟) + 𝛽𝜇,1(𝑎𝑔𝑒)
−2 + 𝛽𝜇,2(𝑎𝑔𝑒)

3 + 𝛽𝜇,3(𝑎𝑔𝑒)
3 𝑙𝑜𝑔 (𝑎𝑔𝑒) + 𝛾𝜇,𝑠𝑡𝑢𝑑𝑦 

𝑙𝑜𝑔 (𝜎) = 	 𝛼𝜎 + 𝛼𝜎,𝑠𝑒𝑥(𝑠𝑒𝑥) + 𝛽𝜎,1(𝑎𝑔𝑒)
−2 + 𝛽𝜎,2(𝑎𝑔𝑒)

3 + 𝛾𝜎,𝑠𝑡𝑢𝑑𝑦 

𝜈 = 𝛼𝜈, 
 

𝑠𝐺𝑀𝑉	~	𝐺𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑠𝑒𝑑	𝐺𝑎𝑚𝑚𝑎(𝜇, 𝜎, 𝜈) with (2.3) 

𝑙𝑜𝑔 (𝜇) = 	 𝛼𝜇 + 𝛼𝜇,𝑠𝑒𝑥(𝑠𝑒𝑥) + 𝛼𝜇,𝑣𝑒𝑟(𝑣𝑒𝑟) + 𝛽𝜇,1(𝑎𝑔𝑒)
−2 + 𝛽𝜇,2(𝑎𝑔𝑒)

−2 𝑙𝑜𝑔 (𝑎𝑔𝑒) + 𝛽𝜇,3(𝑎𝑔𝑒)
3 + 𝛾𝜇,𝑠𝑡𝑢𝑑𝑦 

𝑙𝑜𝑔 (𝜎) = 	 𝛼𝜎 + 𝛼𝜎,𝑠𝑒𝑥(𝑠𝑒𝑥) + 𝛽𝜎,1(𝑎𝑔𝑒)
−2 + 𝛽𝜎,2(𝑎𝑔𝑒)

−2 𝑙𝑜𝑔 (𝑎𝑔𝑒) + 𝛾𝜎,𝑠𝑡𝑢𝑑𝑦 

𝜈 = 𝛼𝜈, 
 

𝑉𝑒𝑛𝑡𝑟𝑖𝑐𝑙𝑒𝑠	~	𝐺𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑠𝑒𝑑	𝐺𝑎𝑚𝑚𝑎(𝜇, 𝜎, 𝜈) with (2.4) 

𝑙𝑜𝑔 (𝜇) = 	𝛼𝜇 + 𝛼𝜇,𝑠𝑒𝑥(𝑠𝑒𝑥) + 𝛼𝜇,𝑣𝑒𝑟(𝑣𝑒𝑟) + 𝛽𝜇,1(𝑎𝑔𝑒)
3 + 𝛽𝜇,2(𝑎𝑔𝑒)

3 𝑙𝑜𝑔 (𝑎𝑔𝑒) + 𝛽𝜇,3(𝑎𝑔𝑒)
3 𝑙𝑜𝑔 (𝑎𝑔𝑒)2

+ 𝛾𝜇,𝑠𝑡𝑢𝑑𝑦 

𝑙𝑜𝑔 (𝜎) = 	𝛼𝜎 + 𝛼𝜎,𝑠𝑒𝑥(𝑠𝑒𝑥) + 𝛽𝜎,1(𝑎𝑔𝑒)
−2 + 𝛽𝜎,2(𝑎𝑔𝑒)

−2 𝑙𝑜𝑔 (𝑎𝑔𝑒) + 𝛽𝜎,3(𝑎𝑔𝑒)
−2 𝑙𝑜𝑔 (𝑎𝑔𝑒)2 

𝜈 = 𝛼𝜈, 
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𝑇𝐶𝑉	~	𝐺𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑠𝑒𝑑	𝐺𝑎𝑚𝑚𝑎(𝜇, 𝜎, 𝜈) with (2.5) 

𝑙𝑜𝑔 (𝜇) = 	𝛼𝜇 + 𝛼𝜇,𝑠𝑒𝑥(𝑠𝑒𝑥) + 𝛼𝜇,𝑣𝑒𝑟(𝑣𝑒𝑟) + 𝛽𝜇,1(𝑎𝑔𝑒)
−2 + 𝛽𝜇,2(𝑎𝑔𝑒)

−2 𝑙𝑜𝑔 (𝑎𝑔𝑒) + 𝛽𝜇,3(𝑎𝑔𝑒)
3 + 𝛾𝜇,𝑠𝑡𝑢𝑑𝑦 

𝑙𝑜𝑔 (𝜎) = 	𝛼𝜎 + 𝛼𝜎,𝑠𝑒𝑥(𝑠𝑒𝑥) + 𝛽𝜎,1(𝑎𝑔𝑒)
−2 + 𝛽𝜎,2(𝑎𝑔𝑒)

−2 𝑙𝑜𝑔 (𝑎𝑔𝑒) + 𝛽𝜎,3(𝑎𝑔𝑒)
−2 𝑙𝑜𝑔 (𝑎𝑔𝑒)2 + 𝛾𝜎,𝑠𝑡𝑢𝑑𝑦 

𝜈 = 𝛼𝜈, 
 
 

𝑆𝐴	~	𝐺𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑠𝑒𝑑	𝐺𝑎𝑚𝑚𝑎(𝜇, 𝜎, 𝜈) with (2.6) 

𝑙𝑜𝑔 (𝜇) = 	 𝛼𝜇 + 𝛼𝜇,𝑠𝑒𝑥(𝑠𝑒𝑥) + 𝛼𝜇,𝑣𝑒𝑟(𝑣𝑒𝑟) + 𝛽𝜇,1(𝑎𝑔𝑒)
−2 + 𝛽𝜇,2(𝑎𝑔𝑒)

−2 𝑙𝑜𝑔 (𝑎𝑔𝑒) + 𝛽𝜇,3(𝑎𝑔𝑒)
−2 𝑙𝑜𝑔 (𝑎𝑔𝑒)2 + 𝛾𝜇,𝑠𝑡𝑢𝑑𝑦 

𝑙𝑜𝑔 (𝜎) = 	 𝛼𝜎 + 𝛼𝜎,𝑠𝑒𝑥(𝑠𝑒𝑥) + 𝛽𝜎,1(𝑎𝑔𝑒)
−2 + 𝛽𝜎,2(𝑎𝑔𝑒)

−2 𝑙𝑜𝑔 (𝑎𝑔𝑒) + 𝛽𝜎,3(𝑎𝑔𝑒)
−2 𝑙𝑜𝑔 (𝑎𝑔𝑒)2 + 𝛾𝜎,𝑠𝑡𝑢𝑑𝑦 

𝜈 = 𝛼𝜈, 
 
 

𝐶𝑇	~	𝐺𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑠𝑒𝑑	𝐺𝑎𝑚𝑚𝑎(𝜇, 𝜎, 𝜈) with (2.7) 

𝑙𝑜𝑔 (𝜇) = 	 𝛼𝜇 + 𝛼𝜇,𝑠𝑒𝑥(𝑠𝑒𝑥) + 𝛼𝜇,𝑣𝑒𝑟(𝑣𝑒𝑟) + 𝛽𝜇,1(𝑎𝑔𝑒)
−2 + 𝛽𝜇,2(𝑎𝑔𝑒)

−2 𝑙𝑜𝑔 (𝑎𝑔𝑒) + 𝛾𝜇,𝑠𝑡𝑢𝑑𝑦 

𝑙𝑜𝑔 (𝜎) = 	 𝛼𝜎 + 𝛼𝜎,𝑠𝑒𝑥(𝑠𝑒𝑥) + 𝛽𝜎,1(𝑎𝑔𝑒)
−1 + 𝛽𝜎,2(𝑎𝑔𝑒)

0.5 + 𝛾𝜎,𝑠𝑡𝑢𝑑𝑦 

𝜈 = 𝛼𝜈. 
 
No smoothing terms were used in any GAMLSS models implemented in this study, although the 
fractional polynomials can be regarded as effectively a parametric form of smoothing. Reliably 
estimating higher order moments requires increasing amounts of data, hence none of our models 
specified any fixed- nor random-effects in the 𝜈 term. However, 𝛼% was found to be important in 
terms of model fit and hence we have used a generalised gamma distribution. 
 
This approach also allowed us to leverage the aggregated life-spanning neuroimaging dataset to 
derive developmental milestones (i.e., peaks of trajectories) and compare them to existing 
literature. These sex-stratified models incorporated variation in study and processing pipeline to 
allow computation of standardised reference charts. The cerebrum tissue classes from 100 
studies (Fig. 1A, ST1.1-1.7, SI18) showed clear, predominantly age-related trends, even prior to 
any modelling (Fig. 1B). Yet, marked heterogeneity of growth curves for individual studies 
(www.brainchart.io) reinforces the importance of using the full aggregated dataset to achieve 
representative norms not biased by individual studies. The validity of the models is supported by 
high stability under cross-validation and bootstrap resampling (SI3). Comparing these models to 
multiple non-MRI metrics of brain size demonstrated high correspondence across the lifespan 
(SI3). Peaks were determined based on the GAMLSS model output (50th centile) for each of the 
tissue classes and TCV, for both total tissue volumes (Fig. 1B) and rates of change or growth 
(“velocity”; Fig. 1E). Diagnostic age ranges from previous literature6,7 were plotted (blue boxes in 
Fig. 3) to compare with empirical age ranges of patients with a given diagnosis across the 
aggregated neuroimaging dataset (black boxes in Fig. 3). Note that age of diagnosis is 
significantly later than age of symptom onset for many disorders6. Developmental milestones were 
re-plotted based on published work for brain resting metabolic rate (RMR)8, from its minimum in 
infancy to its maximum in early childhood; anthropometric variables (height and weight), which 
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reach a first peak in velocity during infancy and a second peak in velocity in adolescence9; and 
typical acquisition of the six gross motor capabilities4. Pubertal age ranges were taken from 
reported typical age ranges10,11. 
 
Furthermore, these neuroimaging-derived brain reference charts also enabled each individual to 
be quantified relative to a statistical distribution defined at the reference level for any point during 
the lifespan12,13. Individual centile scores were obtained relative to the reference curves, 
conceptually similar to traditional anthropometric growth charts. These normative scores 
represent a novel set of population and age standardised clinical phenotypes, providing the 
capacity for cross-phenotype, cross-study and cross-disorder comparison. A single summary 
deviation metric for each individual was also generated. Main group effects were analysed with a 
bootstrapped (500 bootstraps) non-parametric generalisation of Welch’s one-way ANOVA. 
Pairwise, sex stratified, post-hoc comparisons were conducted using non-parametric Monte-Carlo 
permutation tests (10,000 permutations) and thresholded at a Benjamini-Hochberg false 
discovery rate (FDR) of q < 0.05.  
 
To utilise the centiles in a diagnostically meaningful or predictive way, they need to be stable 
across multiple measuring points. To assess this intra-individual stability we calculated the subject 
specific interquartile range (IQR) of centiles across timepoints for the datasets that included 
longitudinal scans (n = 9,306, 41 unique studies). Exploratory longitudinal clinical analyses were 
restricted to clinical groups that had at least 50 subjects with longitudinal data to allow for robust 
group-wise estimates of longitudinal variability. In addition, there was a small subset of individuals 
with documented pathological progression across longitudinal scans, for instance from high-risk 
status to formal diagnosis. Here, we would expect an associated change in centile measurement. 
To test this hypothesis we assessed whether these individuals showed differences in centile 
variability (as assessed with IQR), and their approximate direction of change.  
 
Finally, we provide an interactive tool (www.brainchart.io) and have made our code and models 
openly available (https://github.com/ucam-department-of-psychiatry/Lifespan). The tool not only 
allows the user to visualise the underlying datasets’ demographics and reported reference charts 
in a much more detailed fashion than static images allow, it also provides the opportunity for 
interactive exploration of differences in centile scores across many clinical groups that is beyond 
the present manuscript. Perhaps most significantly, it includes an out-of-sample estimator of 
model parameters for novel data that enables the user to compute percentile scores for their own 
datasets without the computational or data-sharing hurdles involved in adding that data to the 
reference chart. All modelling included extensive validation, sensitivity analyses and multi-modal 
validation against existing growth chart references. 
 
Though already based on the largest and most comprehensive neuroimaging dataset to date and 
supporting analyses of out-of-sample data, the underlying reference charts will also be updated 
as additional data is made available.  
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