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Abstract

Invasive aspergillosis is a fungal respiratory infection that poses an increasingly serious
health risk with the rise in the number of immunocompromised patients and the
emergence of fungal strains resistant to first-line anti-fungal drugs. Consequently, there
is a pressing need for host-centric therapeutics for this infection, which motivated the
work presented in this paper. Given the multi-scale nature of the immune response,
computational models are a key technology for capturing the dynamics of the battle
between the pathogen and the immune system. We describe such a multi-scale
computational model, focused on the mechanisms for iron regulation, a key element for
fungal virulence in the pathogen Aspergillus fumigatus. A key feature of the model is
that its parameters have been derived from an extensive literature search rather than
data fitting. The model is shown to reproduce a wide range of published time course
data, as well as custom validation data generated for this purpose. It also accurately
reproduces many qualitative features of the initial course of infection.

Author summary

The battle between the immune system and invading pathogens is highly dynamic,
involving mechanisms from the intracellular and tissue scales to the whole-body scale.
Medical interventions aim to change the dynamic trajectory of the infection in the
patient’s favor. Computational models that capture the system dynamics can play an
important role in understanding the mechanisms determining the course of infection and
discovering possible interventions. The model described here focuses on a well-defined
and complex mechanism, the “battle over iron” between the host and a respiratory
fungal pathogen, a crucial virulence factor. It includes several cell types, cytokines, and
other molecules involved in the immune response. A key feature of the model is its
broad validity, resulting from efforts to find information about numerical values for all
of the many model parameters in the literature, rather than determining them by fitting
the model to one or more time courses of experimental data. Consequently, the model
can form the basis for investigating host-centric interventions in the course of the disease,
as well as for expanding it to study other pathogens and inflammatory lung diseases.
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Introduction 1

Invasive aspergillosis is a human infection with increasing incidence, related to the use 2

of immunosuppressive therapies, such as cancer chemotherapy and immunosuppression 3

for stem cell or solid organ transplantation [1]. More recently, it has also been observed 4

that 19.6% to 33.3% of patients with COVID-19 in ICU were reported to have 5

aspergillosis, mainly A. fumigatus [2]. Mortality remains high, 30-60% in recent 6

surveys [3], despite advances in diagnostics and therapy. Increasing triazole resistance in 7

this infection [4] has raised the specter of a “perfect storm” [5] in an increasing 8

population of susceptible individuals with a diminished repertoire of treatment options. 9

The research presented here was motivated by the search for host-centric 10

interventions in immuno-compromised patients that can be used in combination with 11

antifungal treatments. An important mechanism in innate immunity is the 12

sequestration of iron from pathogens, a nutrient critical for nearly all organisms. A 13

well-established literature supports the concept that the “battle over iron” is 14

characteristic of the host’s attempt to attenuate microbial growth during many 15

infections [6]. Iron is particularly relevant to the pathogenesis of aspergillosis [7]. The 16

iron sequestration feature of the innate immune response involves several intertwined 17

processes that unfold across spatial and temporal scales. This makes it challenging to 18

assess the effect of perturbations of individual mechanisms on infection dynamics. A 19

computational model that captures the key mechanisms, broadly reflects the underlying 20

immune biology, and is well-validated, can play an essential role in hypothesis 21

generation and the discovery of emergent properties of the immune response. 22

Several models related to respiratory Aspergillus infections and their pathology have 23

been previously published. For example, agent-based models have shown the necessity 24

of chemotactic signals for proper fungal clearance [8, 9]. Our own work includes a model 25

of the innate immune response to A. fumigatus, showing that a key determinant of 26

infection is the range at which macrophages can detect the fungus [10], and an 27

intracellular regulatory network linking iron metabolism to oxidative stress in a fungal 28

cell [11]. The model is parametrized entirely with information from the literature, 29

rather than through data fitting, and is validated by showing that it can recapitulate a 30

wide range of experimental data reported in the literature that were not used in its 31

construction, as well as experimental data generated for this purpose. An extensive and 32

detailed sensitivity analysis of model parameters was performed to identify key 33

mechanisms that control the pathogenesis of the infection. 34

Materials and methods 35

A computational model of invasive aspergillosis 36

The model is an agent-based model of invasive pulmonary aspergillosis scaled to a 37

mouse lung, the experimental system used in this study, focusing on the “battle over 38

iron” between host and fungus. It integrates the critical players in the early immune 39

response and the known mechanisms that govern their behavior and interactions, and is 40

divided into seven conceptual components: space and time, molecules, cells, interactions 41

between different cells and cells and molecules, movement, recruitment, and iron 42

metabolism, as briefly described here. 43

Space and time 44

A three-dimensional space representing a small portion of a mouse lung is divided into a 45

discrete grid of one thousand voxels (10 voxels in each of 3 dimensions), representing a 46

total volume of 6.4⇥ 10�2
µL. Each voxel has an edge length of 40 µm (6.4⇥ 10�5

µL). 47
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Fig 1. Figure showing the three general types of interactions: cell-cell,
molecule-molecule, and cell-molecule. There are three kinds of cell-molecule interactions
in turn: secretion (secretion is considered an interaction), molecule uptake, and
activation (receptor activation). Receptor activation consists of a molecule activating a
cell receptor, thereby changing the cell’s internal state.

Cells and molecules have no space coordinate other than the voxel in which they are 48

located at a given time. This approach is similar to that used in the general immune 49

modeling platform C-IMMSIM [12]. The space has periodic boundary conditions, and 50

simulated time progresses in discrete steps of two minutes. 51

Interactions 52

The interactions between different cells and molecules in the infection process comprise 53

one of the model’s critical aspects. They are divided into three types: 54

molecule-molecule, cell-molecule, and cell-cell. Cell-molecule interactions, in turn, can 55

be further divided into three types. Figure 1 depicts the interaction hierarchy. 56

An interaction between two cells of any type can only happen if the cells are located 57

in the same voxel. These interactions are probabilistic events that lead to a possible 58

change in internal states of both cells involved in the interaction. A molecular species is 59

represented by a state variable that takes on continuous values (concentrations) and can 60

interact with other model entities, either cells or molecules, in all voxels. 61

Cell-molecule interactions can consist of either secretion of the molecule by the cell, 62

uptake of the molecule by the cell, or activation of a receptor on the cell surface. 63

Receptor activation is a probabilistic event that can lead to a change of the internal 64

state of the cell. The higher the concentration of the molecule in the voxel that a cell is 65

located in the more likely it is to “activate” the cell. 66

Finally, molecule-molecule interactions comprise reactions between molecules, and 67

these are modeled with Michaelian kinetics (Equation 1). Upon reaction, the reactants 68

(S1 and S2) are consumed, and the product is formed. The parameter Kcat is forced to 69

be equal to 1; this way, one avoids the reaction rate to be larger than the reactants’ 70

concentration: 71

v =
Kcat ⇥ S1⇥ S2

KM + S1
(1)
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Molecules 72

The model includes sixteen different molecular species: TNF, IL-6, IL-10, CCL4, 73

CXCL2, TGF-�, hepcidin, Tf (transferrin), TfFe (transferrin bound to one iron atom), 74

TfFe2 (transferrin bound to two iron atoms), Lf (lactoferrin), LfFe (lactoferrin 75

bound to one iron atom), LfFe2 (Lactoferrin bound to two iron atoms), TAFC 76

(triacetylfusarinine C), TAFCBI (triacetylfusarinine C bound to iron), and iron. To 77

reproduce an experiment with anti-TNF, the anti-TNF antibody is also included. Iron 78

(free iron) acts as a temporary buffer for the transference between cells and carrier 79

molecules (i.e., transferrin, lactoferrin, and siderophore - TAFC). In other words, iron is 80

always bound to a carrier in this model. 81

For each molecule, the model has a local concentration, referring to a given voxel, a 82

global one, referring to the entire simulated space, and a systemic concentration, 83

including the entire body. 84

All these molecules, except iron, diffuse through space, modeled using the 85

Alternating Direction Implicit (ADI) method with a periodic boundary condition to 86

implement diffusion [13]. The rationale for periodic boundary conditions is that the 87

simulation covers a small area amid a large infected area. Therefore, the concentration 88

of molecules across the boundaries should be similar. The level of cytokines and 89

chemokines (TNF, IL-6, IL-10, CCL4, CXCL2, TGF-�) decay with a half-life of one 90

hour [14–20]. Hepcidin and transferrin (Tf , TfFe, and TfFe2) levels are dynamically 91

calculated based on the global levels of IL-6; this is described in detail below, as part of 92

the description of iron metabolism. 93

The exchange of molecules between the serum and the simulated volume is modeled 94

using Equation 2. In this equation, xsystem is the molecule’s systemic concentration (see 95

terminology above), x is the local concentration, kturn is the turnover rate, and t is the 96

time-step length (2 min). If xsystem > x the molecule flows from the serum into the 97

simulated volume, while, if xsystem < x, it flows from the simulated volume to the 98

serum, increasing the molecule’s decay: 99

y = (x� xsystem)⇥ e
�kturn⇥t � xsystem. (2)

For the cytokines, chemokines, siderophores (TAFC and TAFCBI), and lactoferrin 100

(Lf , LfFe, LfFe2), xsystem is zero; therefore, these molecules are always flowing out of 101

the simulated volume. For transferrin (Tf , TfFe, and TfFe2) and hepcidin, xsystem is 102

calculated dynamically according to the global levels of IL-6 (more on this below). 103

When an anti-TNF injection is modeled, the initial level (xsystem) for anti-TNF is set, 104

and then decays with a half-life of five days [21]. In that case, the systemic levels of 105

anti-TNF determine the global and local levels of this antibody. 106

Cells 107

The most important host cells in the model are recruited mononuclear phagocytes, 108

hereafter referred to as macrophages. Figure 2 offers a description of macrophage 109

interactions and state changes. The default state of macrophages is resting. They get 110

activated upon contact with hyphae, swelling conidia, or TNF. It should be noted that 111

in Figure 2, there is an intermediate state between resting and active. That state, 112

‘activating,’ accounts for the time it takes for the activation process to be completed, 113

likewise for ‘inactivating.’ 114

Active macrophages secrete TNF, IL-6, and IL-10 [22–24], and are able to kill 115

hyphae [25], but do not secrete chemokines. Only after extra priming with TNF do they 116

become chemokine secretors [26–28]. When macrophages interact with apoptotic 117

neutrophils, IL-10, or TGF-�, they become inactive, sometimes referred to as M2c 118

macrophages [29], and begin to secrete TGF-�. Neither resting nor inactive 119
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Fig 2. Figure showing macrophage state changes. By default, macrophages are resting.
Swelling conidia, hyphae, or TNF cause them to transition to an activating
(intermediate) state and then to the active state. Active macrophages secrete TNF,
IL-6, and IL-10. Extra priming with TNF makes macrophages secrete chemokines as
well (CCL4 and CXCL2). Apoptotic neutrophils, IL-10, or TGF-�, cause macrophages
(including activated macrophages) to transition to an inactive TGF-�-secreting state.
Active macrophages (blue and purple) can kill hyphae while resting, whereas inactive
ones cannot. All macrophages return to a resting state after 6 hours (180 iterations) in
the absence of a continuous stimulus.
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macrophages can kill hyphae. In the absence of continuous stimuli, active and inactive 120

macrophages eventually return to the resting state. See Table S1 in the supplementary 121

materials for the numerical values of all model parameters. 122

Pneumocytes (type II pneumocytes) and neutrophils are intially in a resting state 123

and get activated just like macrophages, but they do not have an inactive phenotype 124

(“M2c”) nor do they secrete IL-10. Pneumocytes can only interact with conidia and 125

hyphae without killing them, while neutrophils can kill both, independent of their 126

activation status. Active neutrophils secrete lactoferrin and small amounts of cytokines. 127

In the model, Aspergillus fumigatus has three life stages: resting conidia, swelling 128

conidia, and hyphae. The hyphae are more or less continuous structures divided by 129

septae [30]. Each of these subdivisions is a multinucleated cell-like structure, referred to 130

as hyphal cells for simplicity. 131

In previous work, a dynamic gene regulatory network of iron uptake by Aspergillus 132

fumigatus was developed [11], that is used here as a component model, with minor 133

adjustments. 134

In simulations, Aspergillus fumigatus starts out as resting conidia; after 4 hours they 135

start swelling with a half-life of 6 hours (see Table S1) - that is, half the conidia swell 136

after 6h. Beyond that, it takes 2 hours until they become able to grow into hyphal cells. 137

However, even after 2 hours, they will only grow if iron levels are adequate, as measured 138

by the Boolean labile iron pool node LIP in the model; that is, growth is limited by iron. 139

Although hyphal growth is a continuous process, the model uses a discrete 140

approximation. A tip cell can produce another tip cell (elongation), while a sub-tip cell 141

can form a 45-degree branch (subapical branch) [30, 31] with 25% probability. Other 142

cells cannot originate new cells unless their neighbors are killed, and they become tip or 143

sub-tip cells again. The interaction of swelling conidia with a macrophage or neutrophil 144

leads to their phagocytosis and subsequent death. Both events have a certain 145

probability of happening; see Table S1. The interaction of these leukocytes with a 146

hyphal cell leads to its death with some probability (see Table S1). Resting conidia do 147

not interact with immune cells. 148

Cell Movement 149

Cell movement can be divided into two modes: magnitude and direction. Magnitude is 150

the number of voxels the cell will move. A Poisson random number generator is used to 151

decide how many voxels it will move, based on its movement rate. In the absence of 152

chemokines, cells drift randomly. When chemokines are present, each voxel receives a 153

weight according to Equation 3: 154

wi = 1� e
� xi

kd . (3)

where xi is the chemokine concentration in neighboring voxel i, wi is the corresponding 155

weight of this voxel, and kd is the chemokine dissociation constant. 156

The cell will then move to a neighboring voxel (vi) with probability proportional to 157

the voxel weight (pi / wi). Only macrophages and neutrophils move. The former are 158

attracted by CCL4 and the latter by CXCL2. 159

Recruitment of cells 160

As with movement, only macrophages and neutrophils are recruited by CCL4 and 161

CXCL2, respectively. Equation 4 is used to compute the average number of cells that 162

will be recruited in the next iteration: 163

n =
kr ⇥X

kd
⇥ (1� N

K
), (4)
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where N is the current number of cells in the simulator, K is the carrying capacity, kr is 164

the global recruitment rate, kd is the dissociation constant of the chemokine, X is the 165

global amount of the chemokine, and the real number n is the average number of cells 166

to be recruited. This number is used by a Poisson random number generator to decide 167

how many cells will be recruited. Macrophages and neutrophils have half-lives of 24 and 168

6 hours, respectively [32, 33]. The quantity of cells in the simulator is a balance between 169

the number of cells recruited according to Equation 4 and the number of cells that die. 170

Iron metabolism 171

As mentioned before, the systemic levels of hepcidin and transferrin are computed 172

dynamically, using the global level of IL-6. Equation 5 is used to compute how the 173

systemic level of hepcidin change according to the global level of IL-6: 174

Log10(Hepcidinsystemic) = hepint + hepslope ⇥ Log10(
IL6global

2
). (5)

This equation is based on data from Tabbah S et al. 2018 [34], correlating systemic 175

levels of IL-6 to systemic levels of hepcidin. A reasonable estimate of the systemic levels 176

of IL-6 is approximately 1/2 of the global level [35]. Therefore, one needs to divide 177

IL6global by 2 in Equation 5. The hepint and hepslope in Equation 5 are parameters 178

(intercept and slope). Equation 5 is only evaluated if IL6global > 1.37⇥ 10�10
M . To 179

explain these thresholds, it should be noted that Equation 6 computes the systemic 180

concentration of transferrin. Like the previous equation, this one is also 181

“data-driven” [36]. The increase/decrease in systemic transferrin in Equation 6 refers to 182

total transferrin. The proportions of Tf , TfFe, and TfFe2 are unaffected, based on 183

work that reports a low correlation between hepcidin and transferrin saturation [37]. 184

See Table S1 for the proportions of Tf , TfFe, and TfFe2. 185

Tfsystemic = Tfint + Tfslope ⇥ Log10(Hepcidinsystemic) (6)

In Equation 6, Tfint and Tfslope are parameters (intercept and slope). Like with the 186

previous equation, this equation is only evaluated if Hepcidinsystemic > 10�8
M . This 187

threshold is consistent with the previous one used to evaluate Equation 5. The rationale 188

for these thresholds is that these values generate a physiologic concentration of 189

transferrin [38]. If the equation is evaluated below these values, transferrin may have an 190

unrealistic concentration before and after infection. 191

Once systemic levels of hepcidin and transferrin are settled, their local concentrations 192

tend asymptotically to these levels through Equation 2. Figure 3 describes the “battle 193

over iron.” TAFC and lactoferrin chelate iron bound to transferrin, decreasing the local 194

levels of transferrin bound to iron (TfFe and TfFe2). TAFC is unable to “steal” iron 195

from lactoferrin [39, 40]. In parallel, hepcidin decreases transferrin levels, and it also 196

acts on macrophages. The transfer of iron between molecules (TAFC, transferrin, and 197

lactoferrin) is modeled by Michaelian kinetics (Equation 1). Both iron-binding sites in 198

transferrin and lactoferrin are considered to have the same affinity, for simplicity, since 199

cooperativity is not considered. The reaction is considered as unidirectional. Iron moves 200

from transferrin to TAFC or lactoferrin, but not in the other direction. 201

Macrophages are continuously importing and exporting iron, maintaining a 202

steady-state concentration under given physiological concentrations of transferrin. 203

However, upon activation (contact with A. fumigatus or TNF) or hepcidin priming, 204

macrophages lose their ability to export iron [41,42]. This loss, much like activation, is 205

temporary, and in the absence of continuous stimuli, macrophages recover the ability to 206

export iron. 207
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Fig 3. Figure showing the “battle over iron.” Aspergillus fumigatus needs iron to
survive and grow. It secretes siderophores (TAFC) that chelate iron from transferrin
bound to iron (TfBI = TfFe+ TfFe2). Macrophages are continuously importing and
exporting iron. Upon activation by A. fumigatus, they secrete IL-6. This cytokine
induces the secretion of hepcidin by the liver. Hepcidin reduces transferrin levels (both
free and bound to iron) and inhibits macrophage iron export. In parallel, upon contact
with A. fumigatus, neutrophils secrete lactoferrin, which competes with TAFC for iron.
Lactoferrin has 300 times more affinity for iron than transferrin. In the figure, Tf
stands for transferrin, TfBI for transferrin bound to iron (TfFe and TfFe2), Lf for
lactoferrin, LfBI lactoferrin bound to iron (LfFe and LfFe2), TAFC is the
siderophore and TAFCBI the siderophore bound to iron.
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Scaling from the simulated space to the whole lung 208

A pair of mouse lungs is assumed to have a volume of 1mL [43], containing 2.3⇥ 105 209

macrophages in the alveolar lumen [44] and 1⇥ 107 type-II alveolar epithelial cells [45]. 210

The simulated space is 6.4⇥ 10�2
µL, thus containing 15 macrophages and 640 type-II 211

epithelial cells initially. A high dose inoculum (107) is used for initialization. However, 212

according to Pritchard, JN et al. 1985 [46], inoculated material distributes unevenly, 213

with ⇡ 1/3 of the lung infected and the remainder clear. Since only one of the infected 214

areas is simulated, the simulated space should have 1920 conidia. To scale neutrophils, 215

one can also use the fact that infection is limited to ⇡ 1/3 of the lung. In other words, 216

to convert the number of neutrophils and Aspergillus in the simulated space to the 217

number in the whole lung (pair of lungs), one needs to multiply by 5028. 218

Calibration of the model 219

The strategy for model calibration is to obtain all the model parameters a priori 220

(Supplementary Material) and then validate it using de novo experimental data. To 221

capture some parameters, certain assumptions and surrogate mathematical models are 222

needed (see the TAFC secretion rate in the supplementary material for an example). 223

The model is calibrated to reproduce the dynamics at the alveolar lumen. That is, it 224

was fit to the number of leukocytes (macrophages/monocytes and neutrophils) using 225

data from bronchoalveolar lavage (BAL) [44]. 226

Experimental methods 227

Neutrophil depletion and induction of aspergillosis. 228

All experiments were performed in accordance with the National Institutes of Health 229

and Institutional Animal Care and Use Guidelines and were approved by the Animal 230

Care and Use Committee of the University of Florida. Eight week-old male and female 231

C57Bl/6 mice were purchased from the Jackson Laboratory and housed under specific 232

pathogen-free conditions in the animal facilities of the University of Florida, and 233

infected with Aspergillus as previously described by us [47]. Briefly, neutrophils were 234

transiently depleted with an intraperitoneal injection of 400µg of anti-Ly6G antibody 235

(clone 1A8, BioXcell) in 0.5ml saline. A cohort of mice received an equivalent amount of 236

isotype control antibody (rat IgG2a, Clone 2A3, BioXcell), a day prior to intratracheal 237

inoculation with Aspergillus conidia. 238

Flow Cytometry 239

Mouse lung flow cytometry was performed as described in [48]. Briefly, lungs were 240

digested in a mixture of 200 µg/mL DNaseI and 25 µg/mL Liberase TM for 30 mins at 241

370 �
C. The digested lungs were serially passed through 70 and 40 µm filters to collect 242

the single-cell suspension. After red blood cell lysis, cells were counted, and 1.5⇥ 106 243

cells were stained with a fixable APC Cy-7 conjugated live dead stain (Thermo Fisher) 244

in PBS for 20 mins. After washing with FAC buffer, cells were incubated with 245

anti-CD16/32 (Fc block, clone 93; eBioscience, San Diego, CA) and stained with 246

PerCP-conjugated anti-CD45 (30-F11), FITC-conjugated anti-CD11b (M1/70), 247

PE-conjugated CD64 (X54-5/7.1), PECy7-conjugated anti-CD11c (N418), 248

V450-conjugated anti-MHCII (I-A/I-E), APC-conjugated anti-CD24 (M1/69), 249

BV605-conjugated anti-Ly6g (1A8), BV711-conjugated Ly6c (HK 1.4), Texas Red 250

-conjugated Siglec F (E50-2440). Flow cytometry data were acquired using 14 color BD 251

Fortessa (BD Biosciences, San Jose, CA). 500,000 events /samples were acquired and 252

analyzed with FlowJo software 9.0 (Tree Star Inc., Ashland, OR). 253
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Bronchoalveolar lavage fluid cytokine measurement 254

BALF IL-6 and CXCL2 levels were measured using commercial ELISA kits (Invitrogen), 255

as per manufacturers’ instructions. 256

Results 257

This model was completely parameterized with data from the literature (supplementary 258

material). For model validation, a set of papers is used that report time-series of critical 259

variables present in the model, such as curves of neutrophils, TNF, IL6, and 260

colony-forming units (CFU). These values are compared with those predicted by model 261

simulation. These data are used to see if the model can reproduce the reported levels of 262

the different variables and, most importantly, their timing. None of the papers selected 263

for validation were used to calibrate the model. 264

A B

C D

Fig 4. Figure showing the comparison of simulated data with data reported in the
literature. To produce this figure, 36 simulations were performed, starting with an
average of 1920 conidia, 15 macrophages, and 640 epithelial cells. Figure 4A: simulated
time series of neutrophils and a time series reported by Bhatia, S et al. 2011 [49].
Figure 4B: simulated time series of conidia and time series reported by Brieland, JK et
al. 2001 [50] and Doung, M et al. 1998 [51]. Figure 4C: simulated time series of TNF
and time series reported by Brieland, JK et al. 2001 [50]. Figure 4D: simulated time
series of IL-6 and time series reported by Doung, M et al. 1998 [51].

Figure 4 shows the comparison of simulation results with literature data. The 265
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simulator reproduces the correct levels of cells and cytokines and, most importantly, 266

their timing. Figure 5 compares model outcomes with data generated by us. This figure 267

shows a 72h time course of IL-6 and CXCL2 measured in BAL fluid and neutrophils 268

and macrophages in lung homogenate. The model shows good agreement with the 269

timing of these cells and molecules. As expected, whole lung cell suspensions contained 270

greater numbers of leukocytes as compared to BAL [52,53], for which the model was 271

calibrated. However, the simulator captures both the timing and the relative numbers of 272

macrophages and neutrophils. 273

A B

C D

Fig 5. Figures showing the comparison of simulated data’s timing with our
experimental data. To produce this figure, 36 simulations were performed, starting with
an average of 1920 conidia, 15 macrophages, and 640 epithelial cells. Figure 5A:
comparison of simulated time series of CXCL2 with experimental data measured in
BAL. Figure 5B: comparison of simulated time series of IL-6 with experimental data
measured in BAL. Figure 5C: Comparing the number of neutrophils in simulated space
with the number of neutrophils in lung homogenate. Figure 5D: Comparing the number
of macrophages/monocytes in simulated space with the number of
macrophages/monocytes in lung homogenate. Experimental data refer to mice infected
with 7⇥ 106 conidia.

Biological data display a large degree of variability (see Figure 4D and 5B)), An 274

extensive literature search was performed to compare the model to the available data. 275

Table 1 present data from mice infected with 107 Aspergillus fumigatus conidia, 276

measured 24h post-infection in BAL. This table includes neutrophils, CFU, IL-6, and 277

TNF. The measures’ average was computed, as well as the mean-squared error (MSE), 278
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Fig 6. Figure showing the comparison of simulated data with data reported by Mehrad,
B et al. 1999 [54]. Mice were injected serum or antibody (anti-TNF) concentration of
2⇥ 10�8 M, reaction rate 1.43⇥ 106 M ⇤ s�1 (1/Km), and half-life of 5 days, 24 before
infection. To produce this figure, 36 simulations were performed, starting with an
average of 1920 conidia, 15 macrophages, and 640 epithelial cells.

and the MSE between model prediction and data. The MSE standard deviation was 279

calculated with bootstrap. It is noticeable that the model predictions are close to the 280

measurement average (within one standard deviation), and the MSE’s are also close 281

(within one standard deviation). That means that the variability between simulated 282

data and literature-reported data is within the variability among literature-reported 283

data. 284

It is shown (Figure 4) that the model qualitatively reproduces cell numbers and 285

cytokine concentrations over time reported in the literature. In particular, the fact that 286

the model matches the temporal dynamics of these quantities is remarkable, given that 287

it is a stochastic rule-based model, evolving in discrete time steps. Likewise, Figure 6 288

shows that the model correctly reproduces the drop in CXCL2 after an injection of 289

anti-TNF antibody. In Figures 4 and 6, model predictions are only compared with a 290

handful of published results. To show that this agreement is not due to a “selection 291

bias,” a larger collection of published data was incorporated, see Table 1, covering 292

different experimental conditions, and cell numbers and cytokine levels 24 hours 293

post-infection were compared with model predictions. The outcome is that the degree of 294

disagreement between the model and the literature is similar to the disagreement among 295

the different data sets in the literature that were considered. When comparing the 296

model predictions with experimental data generated by us, it was found that it 297

reproduces well the timing of IL-6 and CXCL2 (Figure 5A-B). It is worth pointing out 298

in particular that the level of IL-6 measured in Figure 5 is within the range reported in 299
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Table 1. Table showing validation with extended literature. All the papers in this table
report data in BAL upon 24 hours post-infection and inoculate mice with ⇡ 107 conidia.
Column 1 shows the reference; column 2 reported measurements of TNF; column 3 IL-6;
column 4 neutrophils; and column 5 log10 of CFU. To calculate the mean-squared-error
(MSE), data were normalized using average and standard deviation in line 9 so that
different dimensions had the same weight. Simulated vs. literature MSE was calculated
against the whole reported data (lines 1-8) and not against the average (line 9).
Within-literature MSE was calculated comparing the average (line 9) with the reported
data (lines 1-8). MSE standard deviation was calculated with bootstrap.

Reference TNF IL-6 Neutrophils Log10(CFU)

Bhatia, S et al. 2011 [49] 9.60 ± 0.14 ⇥ 10
5

Brieland, JK et al. 2001 [50] 3027 ± 194pg/mL 5.56 ± 0.10
Cenci, E et al. 2001 [55] 1602 ± 297pg/mL 348 ± 52pg/mL
Dubourdeau, M et al. [56] 923 ± 174pg/mL 64 ± 18pg/mL
Doung, M et al. 1998 [51] 460 ± 8pg/mL 6.24 ± 0.16

Gresnigt, MS et al. 2016 [57] 364 ± 47pg/mL 5.42 ± 1.64 ⇥ 10
5

Hohl, TM et al. 2005 [58] 2.30 ± 0.92 ⇥ 10
6

Teschner, D et al. 2019 [59] 592 ± 48pg/mL 1964 ± 313 4.04 ± 1.25 ⇥ 10
5

4.38 ± 0.38

Average ± std-dev 1536 ±
1079 pg/mL

676 ± 748 pg/mL 1.05 ± 0.87 ⇥ 10
6 5.39 ± 0.94

Simulator ± std-dev 2189 ±
118 pg/mL

666 ± 36 pg/mL 1.70 ± 0.08 ⇥ 10
6 6.26 ± 0.04

MSE within-literature: 0.83 ± 0.18 literature vs. simu-

lator:

1.09 ± 0.28

Table 1. 300

Figure 6 compares the predicted levels of CXCL2 in mice that received an injection 301

of anti-TNF antibody 24h before infection. These computational experiments are based 302

on an estimate of the concentration and the anti-TNF-TNF reaction rate as well as its 303

half-life [21,60,61](supplemental material). As can be seen, the model correctly captures 304

the fall in CXCL2 following anti-TNF injection. 305

Sensitivity analysis 306

An important aspect of modeling is the ability to measure the impact of parameter 307

changes on model dynamics, thereby elucidating mechanisms. This can be achieved by a 308

sensitivity analysis (SA), a method that starts by sampling the parameters, typically 309

using Latin Hypercube sampling (LHS) to obtain a matrix of N samples by M 310

parameters where each column (parameter) is entirely independent of the others. Next, 311

a target output value is chosen to correlate the parameters. After running one 312

simulation one constructs a new N (simulations) by M+1 (M parameters plus the 313

output value) matrix and the Partial Ranking Correlation Coefficient between the 314

parameters and the output variable. 315

The mean number of Aspergillus (conidia and hyphal cells) was used as the output 316

parameter. Simulations are run for 48h or are stopped if the number of Aspergillus cells 317

(conidia and hyphal cells) exceeds 1⇥ 105. If the number of conidia exceeds this value, 318

it is safe to assume that it would monotonically increase. If that is the case, measuring 319

the average number of Aspergillus through the simulation and performing ranking 320

correlation is equivalent to measuring the area under the Aspergillus curve and 321

performing ranking correlation. Therefore, parameters are correlated with fungal 322

burden. A set of parameters is chosen to test, aiming to minimize redundancy. For 323

example, cytokine secretion rates and cytokine kd, that control the cytokines affinity, 324

play similar roles in the model. Therefore, only the kd is selected. 325

As can be seen in Table 2, the model is sensitive to parameters related to leukocytes, 326

particularly neutrophils (CXCL2 kd, TNF kd, neutrophil half-life, and probability of 327

neutrophils killing hyphae). On the fungus side, the time to grow (inverse of growth 328

rate) has a large negative correlation, which is expected. Interestingly, the probability of 329

swelling also has a strong negative correlation. Swelling is the first step for germination 330

but is also the time when fungal cells become visible to the immune system. Leukocyte 331
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Table 2. Table showing the Sensitivity Analysis (SA) of critical model parameters.
Latin Hypercube Sampling (LHS) and Partial Ranking Correlation Coefficient (PRCC)
were used to produce this analysis. The number of samples is adjusted according to the
number of parameters being evaluated. Column 1 contains the parameter, Column 2 its
description, and Column 3 the PRCC (mean±standard error). To calculate the PRCC
in Column 3, 485 samples with simulated immunocompetent mice were performed. The
range of parameter variation is one order of magnitude, with the default in the center.
That is, min=1/3 default; max=3.333 default. In bold are the parameters that are more
than 1.96 standard deviations away from 0.

Parameter Description PRCC

D Diffusion rate �0.0030 ± 0.0484
PR SWELL Probability of resting conidia to swell -0.8130 ± 0.0168

ITER CHANGE Iterations for cells to change state 0.5745 ± 0.0337
ITER REST Iterations cells stay active -0.1707 ± 0.0488
ITER GROW Iiterations to grow a new septae -0.3212 ± 0.0458
PR BRANCH Branch probability �0.0041 ± 0.0452

TURNOV ER RATE Turnover rate 0.0103 ± 0.0488
LAC QTTY Lactoferrin secretion rate -0.1063 ± 0.0437
TAFC UP TAFC uptake rate 0.1495 ± 0.0442

MOL HALF LIFE Cytokines and chemokines half-lives �0.0273 ± 0.0468
KdIL6 kd of IL6 �0.0567 ± 0.0472
KdIL10 kd of IL10 0.0948 ± 0.0495
KdCCL4 kd of CCL4 0.1089 ± 0.0464

KdCXCL2 kd of CXCL2 0.4325 ± 0.0402
KdTNF kd of TNF-↵ 0.2570 ± 0.0467
KdTGF kd of TGF-� �0.0528 ± 0.0522
KdHep kd of Hepcidin �0.0254 ± 0.0460
KdLIP A. fumigatus sensibility to iron 0.0067 ± 0.0445

IRON EXP RATE Macrophage iron export rate 0.0093 ± 0.0488
MOV E RATE Leukocytes movement rate -0.6655 ± 0.0301
PR MA PHAG Macrophage phagocytosis probability �0.0552 ± 0.0504
PR N PHAG Neutrophil phagocytosis probability �0.0402 ± 0.0502
PR P INT Aspergillus to interaction probability �0.0841 ± 0.0503

PR N HY PHAE Neutrophils probability to kill hyphae -0.2473 ± 0.0466
PR MA HY PHAE Macrophages probability to kill hyphae �0.0226 ± 0.0481

PR KILL Probability to kill internalized conidia -0.2142 ± 0.0458
K M TAFC Tf-TAFC Michaelis constant �0.0244 ± 0.0471
K M LAC Tf-Lactoferrin Michaelis constant �0.0326 ± 0.0483

N HALF LIFE Probability of neutrophil to die 0.2646 ± 0.0432
MA HALF LIFE Probability of macrophage to die 0.0233 ± 0.0418

HEP SLOPE Slope of the function IL6-Hepcidin 0.0473 ± 0.0497
TF SLOPE Hepcidin-Transferrin function’s slope �0.0763 ± 0.0472

movement rates were also strongly correlated with infection control. The faster 332

leukocytes move, the faster they can reach fungal cells. The TAFC uptake rate and 333

lactoferrin secretion showed a small but significant inverse correlation. The sensitivity 334

analysis results agree broadly with the body of knowledge about this infection. That 335

includes the importance of neutrophils and TNF, siderophores, and lactoferrin. 336

Discussion 337

Understanding the innate immune response to pathogens is of the utmost importance 338

for designing effective therapeutic interventions. With increasing resistance of 339

pathogens to anti-microbial drugs, it is imperative to explore host-centric therapeutics. 340

This is the motivation for the work presented here. The goal was to understand some of 341

the primary components of the innate immune response to fungal pathogens. In order 342

to limit the immense complexity of mechanisms involved the model is focused on an 343

essential component of nutritional immunity, the “battle over iron” between the host 344

and the fungus in the context of a respiratory infection. The component of the immune 345

response considered here involves many players, ranging from immune and fungal cells 346

to molecular species such as cytokines, iron, and chemokines. It integrates events at the 347

intracellular, tissue, organ, and system levels, and is governed by several intertwined 348

feedback loops that create complex dynamics. 349

Without a computational model that captures relevant biology and is parameterized 350

in a way that makes it more broadly valid and credible, it would be challenging to 351

understand the interplay between the different components and make predictions about 352

the effect of various perturbations. This paper describes a model that satisfies these 353

criteria and can serve as the basis for future investigations. It is one of the most 354
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comprehensive models of this infection, parameterized entirely with information from 355

the literature, and is validated using experimental data specifically generated for this 356

purpose. It is also shown that it is broadly valid by verifying that it reproduces a wide 357

range of experimental data reported in the literature (and not used for model 358

calibration). This approach is different from the commonly used method of fitting the 359

model parameters to one or more time courses of experimental data. 360

As a further validation step, a sensitivity analysis was performed to investigate the 361

effect of individual parameters on model dynamics. Table 2 shows that the model agrees 362

with a wide range of known facts about this infection. The sensitivity of model 363

dynamics to neutrophil levels agrees with that reported in the extensive literature on 364

the subject; see, e.g., [44,52,54,62]. The same is true for the sensitivity to TNF [54] and 365

CXCL cytokines (CXCL2, in the case of our model) [52]. The positive effect of TAFC 366

was also expected, since Schrettl, M et al. 2004 [63] reported that the TAFC knockout 367

A. fumigatus has its virulence completely attenuated. Likewise, lactoferrin’s protective 368

effect agrees with in vitro studies that show this molecule’s fungistatic effect [39, 64]. 369

The faster leukocytes move, the more conidia and hyphae they can reach. The 370

sensitivity analysis shows that this parameter is the second most important one for 371

infection control. Previously published models have shown that the ability to locate 372

fungal cells is critical to fighting the disease. Pollmacher, J & Figge, MT 2014 [8] has 373

shown that an unknown chemotactic signal is crucial for directing macrophages to the 374

infection site and control the early infection phase. Simultaneously, a past model from 375

our group has shown that the distance at which macrophages can detect fungal cells is a 376

critical parameter determining infection outcome [10]. Like movement rate, the higher 377

the sensing distance, the more fungal cells can be reached by macrophages. It is 378

consequently not a surprise that sensitivity analysis identifies the most important model 379

parameters as directly related to the visibility of the fungus to the immune system. 380

Swelling of conidia is the first step to germination, but it is also the time when the 381

immune system mounts its attack on the fungus, based on literature that reports little 382

reaction of macrophages upon contact with resting conidia [22, 65]. 383

The model has several limitations. It does not currently incorporate an explicit 384

physiological rendering of the lung tissue covered by the model, and several of the 385

model features are not sufficiently mechanistic for the purpose of studying spatial events 386

like hemorrhage, an important process affecting infection outcome. 387

In summary, the model described here has two important characteristics: (1) broad 388

validity due to calibration with experimentally derived parameters rather than data 389

fitting, and (2) extensive validation showing that the model can reproduce a wide range 390

of results reported in the literature, covering different experimental conditions, in 391

addition to reproducing data collected through dedicated experiments. The two 392

characteristics establish the model as a credible tool to serve as a virtual laboratory for 393

the study of the innate immune response to Aspergillus fumigatus infection, and as a 394

base model that can be expanded by adding additional features of the immune response 395

to respiratory infections by fungi and other pathogens. 396

Conclusion 397

Without dynamic computational models as a key technology for a systems view of 398

complex biological processes governing human health, it is difficult or impossible to 399

rigorously design control interventions that mitigate disease. Data-driven models are 400

challenging to build and validate because available data are sparse in most cases, 401

compared to what is needed to obtain meaningful such models. Mechanistic models are 402

particularly useful for this purpose, if they are validated across a broad range of 403

experimental conditions. Often, models are calibrated by fitting to one or several 404
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experimentally measured time courses. For models with many parameters, this limits 405

their validity across a range of initial conditions. 406

The model described in this paper captures many mechanisms of the immune 407

response to fungal infections. By necessity, this requires a large number of variables and 408

parameters. Data from several longitudinal experiments are available that could have 409

been used for data fitting. Instead, literature mining was used to obtain values for all 410

the parameters in the model, or data from which those values can be derived. Time 411

courses of experimental data are then used for model validation instead. As a result, the 412

models can recapitulate a wide range of data and conditions reported in the literature. 413

Experiments specifically designed for model validation were carried out as well. Going 414

forward, this model can now be used as a virtual laboratory for hypothesis generation, 415

and can also form the basis for a more comprehensive expanded model that can also be 416

used for other respiratory diseases involving the immune system. 417

Supporting information 418

S1 File. Contains supplementary information on many aspects of the model, model 419

parameters, and simulation. 420
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S1 The Parameters

Table S1: Table with the model parameters. Parameters 1-14 were obtained in a unified manner as described in the manuscript. As

mentioned in the manuscript, “macrophage” should be interpreted as “macrophage/monocyte.” Probabilities of phagocytosis, killing, and

interaction refer to the likelihood of an event succeeding in one iteration if the appropriate conditions apply. The maximum number of cells

and the average number of epithelial cells refer to the cells’ quantity in the whole simulated space.

Id Parameter Description Value Reference
1 MA IL6 QTTY Macrophage/monocyte

IL6 secretion rate.
1.46⇥ 10�20 mol ⇤ cell�1 ⇤ h�1

[1, 2, 3,
4, 5, 6, 7,
8, 9, 10,
11, 12,
13, 14,
15, 16,
17, 18,
19, 20,
21, 22,
23, 24,
25, 26,
27, 28,
29, 30]

2 MA CCL4 QTTY Macrophage/monocyte
CCL4 secretion rate

1.79⇥ 10�20 mol ⇤ cell�1 ⇤ h�1

3 MA CXCL2 QTTY Macrophage/monocyte
CXCL2 secretion rate.

1.11⇥ 10�19 mol ⇤ cell�1 ⇤ h�1

4 MA IL10 QTTY Macrophage/monocyte
IL10 secretion rate.

6.97⇥ 10�22 mol ⇤ cell�1 ⇤ h�1

5 MA TNF QTTY Macrophage/monocyte
TNF secretion rate.

3.22⇥ 10�20 mol ⇤ cell�1 ⇤ h�1

6 MA TGF QTTY Macrophage/monocyte
TGF � � secretion rate.

1.01⇥ 10�21 mol ⇤ cell�1 ⇤ h�1

7 N IL6 QTTY Neutrophil IL6 secretion
rate.

8.59⇥ 10�23 mol ⇤ cell�1 ⇤ h�1

8 N CXCL2 QTTY Neutrophil CXCL2 secre-
tion rate.

6.50⇥ 10�22 mol ⇤ cell�1 ⇤ h�1

9 N TNF QTTY Neutrophil TNF secretion
rate.

1.89⇥ 10�22 mol ⇤ cell�1 ⇤ h�1

10 E IL6 QTTY Epithelial cells IL6 secre-
tion rate.

1.46⇥ 10�20 mol ⇤ cell�1 ⇤ h�1

11 E CCL4 QTTY Epithelial cells CCL4 se-
cretion rate

1.79⇥ 10�20 mol ⇤ cell�1 ⇤ h�1

12 E CXCL2 QTTY Epithelial cells CXCL2 se-
cretion rate.

1.11⇥ 10�19 mol ⇤ cell�1 ⇤ h�1

13 E TNF QTTY Epithelial cells TNF secre-
tion rate.

3.22⇥ 10�20 mol ⇤ cell�1 ⇤ h�1

14 LAC QTTY Lactoferrin secretion rate
(Neutrophils)

4.37⇥ 10�17 mol ⇤ cell�1 ⇤ h�1 [31]

15 kd IL6 IL-6 kd 330 pM [32, 33, 34]
16 kd CCL4 CCL4 kd 180 pM [35]
17 kd CXCL2 CXCL2 kd 91.667 pM [36, 37]
18 kd IL10 IL-10 kd 140 pM [38, 39, 40,

41]
19 kd TNF TNF kd 326 pM [42, 43, 44,

45, 46, 47,
48, 49]

20 kd TGF � � TGF � � kd 26.5 pM [50, 51, 52]
21 kd HEP Hepcidin kd 855 nM [53]
22 D Di↵usion rate 850 µm2/min [54, 55]
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23 � Cytokines/chemokines
half-life

1h [56, 57, 58,
59, 60, 61,
62]

24 �ab antibody half-life (Anti-
TNF)

5 days [63]

25 HEP INT Hepcidin intercept (IL6-
hepcidin model)

-0.3141 [64]

26 HEP SLOPE Hepcidin slope (IL6-
hepcidin model)

0.78 [64]

27 Tf INT Transferrin intercept (Tf-
hepcidin model)

�1.194⇥ 10�5 [65]

28 Tf SLOPE Transferrin slope (Tf-
hepcidin model)

�5.523⇥ 10�6 [65]

29 Def TF CON . Default Tf concentration 32.25 µM [66, 64, 65]
30 APO Tf REL CON Apo-Tf relative concen-

tration
40%

31 TfFe REL CON Monoferric Transferrin
relative concentration

16.57%

32 TfFe2 REL CON Diferric Transferrin rela-
tive concentration

43.43%

[66, 67]

33 MA IRON EXP Macrophage iron export
rate

2.13⇥ 1013 [68]

34 MA IRON IMP Macrophage iron uptake
rate

0.083 L ⇤ cell�1 ⇤ h�1 [68]

35 MA INT IRON Macrophage initial inter-
nal iron quantity

1.0086⇥ 10�14mol [66]

36 TAFC QTTY TAFC secretion rate. 1.0⇥ 10�15 mol ⇤ cell�1 ⇤ h�1 [69]
37 TAFCBI UPTAKE TAFCBI (Bound to Iron)

uptake rate
0.0156 L ⇤ cell�1 ⇤ h�1 [70, 71]

38 kd Af IRON A. fumigatus iron sensibil-
ity

79.05 µM [72]

39 KM TAFC KM TAFC-Tf 2.514 mM [69, 67]
40 KM LAC KM Lactoferrin-Tf. 2.505 mM [31]
41 KM AB KM Antibody-Antigen 0.697 µM [73]
42 AB CON Antibody systemic con-

centration upon injection
0.2 nM [74]

43 r A. fumigatus growth rate 40 µm/h [75, 76, 77,
78]

44 MOV E RATE Leukocytes move rate 1.44 µm/min [79]
45 N H KILL Neutrophils-hyphae

killing probability
22.71%. [80, 81, 82,

83]
46 MA H KILL Macrophage hyphal

killing probability.
9.85% [84, 85]

47 MA PHAG Macrophage phagocytosis
probability

90.55% [86, 87]

48 N PHAG Neutrophils phagocytosis
probability

14.73% [83]

49 MA MAX CONIDIA Max ingested conidia by
macrophage

18 [87]

50 N MAX CONIDIA Max ingested conidia by
neutrophils

3 [87, 88]

51 E INT Resting Epithelial cell-
Aspergillus interaction
probability

4.49% [89]

52 PHAG KILL Probability to kill inter-
nalized conidia (Leuko-
cytes)

1.28% [90]

53 MA HALF LIFE Macrophage/monocytes
half-life

24h [91]

54 N HALF LIFE Neutrophils half-life 6h [92]
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55 SEPTAE r septae radius 2.65 µm [93, 94, 95]
56 SEPTAE L septae length 40 µm [95, 96]
57 T SWELL Time to start swelling 4h [97]
58 PR SWELL swelling probability 0.39% [77, 98]
59 T GERM Time until germinating

(after swelling)
2h [97]

60 T CHANGE Iterations to cells change
state

60 [99]

61 T REST Iterations to active cells
return to resting

180 [99]

62 H V OL Hyphae volume 1.06 pL [93, 94, 95,
96]

63 MA VOL Macrophages volume 4.85 pL [100]
64 CONIDIA V OL Conidia volume 0.0484 pL [94]
65 PR BRANCH probability of branching

(A. fumigatus)
25% [101, 75]

66 TURNOV ER RATE Molecule exchange rate
between lung and whole
body serum.

0.1823 h�1 [102]

67 MAX N Maximum number of neu-
trophils

522 [103]

68 MIN N Minimum number of neu-
trophils

0 [104]

69 MAX MA Maximum number of
macrophages

209 [103]

70 MIN MA Minimum number of
macrophages

15 [104]

71 AV G E Average number of epithe-
lial cells

640 [105]

74 REC RATE Global recruitment rate 2 [104]
75 Af INIT IRON A. fumigatus initial iron. 3.83⇥ 10�18mol [94, 72]

S2 Parameter Acquisition

The model parameters are described in Table S1. In some cases, acquiring these values involved modeling,
simplification, and some assumptions. In some cases, use was made of the MATLAB App Grabit. With this
App, one can extract values directly from graphs and pictures. In cases, where more than one measurement is
available, the value reported is the median.

S2.1 Cytokine and chemokine secretion rate

The selection of these rates was done using a collection of papers that report the secretion of cytokines in
response to � � glucan, A. fumigatus, and, in some cases, LPS as a positive control. Each of these papers
reports levels of two or more cytokines after monocyte or macrophage exposure with the respective stimulus.
Because only papers that reported at least two cytokines were used, it was possible to construct a network of
relative secretion rates. For instance, notice that across experimental procedures, the level of IL-6 is about 45%
the level of TNF, while the level of IL-10 is about 4.7% of the level of IL-6, and so on.

This procedure was adopted because not all papers, notably those with �-glucan, can be quantified. In other
words, a response against �-glucan is qualitatively similar to a response against live A. fumigatus. However, it is
not known which concentration of �-glucan corresponds to which dose of fungus. With this procedure, however,
one can use any piece of data with the implication that one has to fit this network to the actual secretion rate.
However, having the actual secretion rate for only a few or even one cytokine is enough.

For this purpose, some papers for neutrophils and epithelial cells were used that compare cytokine secretion
in these cells with macrophages. Therefore, in the model, these cells are scaled versions of macrophages.
Neutrophils secrete 5.9% of what macrophages secret, and epithelial cells secrete the same as macrophages.
However, none of these cells secrete IL-10 and TGF-�.

The lactoferrin parameter was acquired independently, and it is a rough approximation based on the amount
of the protein a neutrophil carries.
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S2.2 TAFC secretion and uptake rates

To calculate the TAFC secretion rate, Equation S2.1 was used to model the experiment of Hissen, AHT et al.
2004 [69]. This equation is a surrogate model for our simulator. It models conidia swelling and then secreting
TAFC:

d2[TAFC]

dt2
+ � ⇤ d[TAFC]

dt
= � ⇤ � ⇤ C0. (S2.1)

In Equation S2.1, � is the swelling rate, C0 is the concentration of conidia in the experiment, and � is the
TAFC secretion rate, the parameter to be estimated. The value of � is known from the model (Table S1) and
C0 from the paper itself. The initial condition is such that TAFC(4) = 0. That is, TAFC is zero at four hours,
which comes from Table S1, to be interpreted as conidia starting to swell at four hours. Figure S1 shows the
fitting of Eq S2.1 to the experimental data of Hissen, AHT et al. 2004 [69]. It should be noted that only �
is being fitted, and it should also be noted that the best one can obtain from this experiment is an apparent
secretion rate.

Figure S1: Figure showing the fitting of Eq S2.1. Experimental data from Hissen, AHT et al. 2004 [69] (represented as dots in the graph);

computed with Eq S2.1 (solid line); computed with the data model (dashed line). Eq S2.1 was computed only from 4h onwards. Before

that, we considered no swelling conidia and, therefore, no TAFC production (Table S1). The fact that the full simulator agrees with the

surrogate model (Eq S2.1) shows that our procedure was appropriate.

To get the TAFC uptake rate, Raymond-Bouchard, I et al. 2012 [70] was used, who reports the TAFC
uptake rate as OD600, and Yap, PY et al. 2019 [71] reports a curve of OD600 by yeast cell per mL. Supposing
that A. fumigatus conidia OD600 is similar to that for yeast, one can calculate the TAFC uptake rate per
Aspergillus cell.

As an approximation, it was assumed that a resting conidia contains one kd (Section S2.6) of iron, therefore
the Aspergillus initial amount of iron is kd Af IRON ⇥ CONIDIA V OL (Table S1).

S2.3 Cytokine and chemokine kd

The kd of cytokines/chemokines is divided into two distinct sets of data: the kd of cytokine/chemokine receptors
and dose-response curves for these molecules. As an example of a dose-response curve, consider the level of
activation of NF � B vs. concentration of TNF. It was found that these two approaches are remarkably
consistent; that is, activation of a cell by a molecule seems to depend, at least in general, only on the receptor
a�nity. To model dose-response curves, Equation 2 (Material & Methods) was used.
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S2.4 Iron dynamics

The IL-6-hepcidin and hepcidin-Tf curves were obtained from the literature. While the macrophage iron im-
port rate was also obtained from the literature, the export rate was assumed to be equal to the import rate.
Homeostasis is assumed under normal conditions. Equality of iron import and export are interpreted to mean
that the fluxes are equal, not the equations’ constants. Iron import depends on external iron levels while export
depends on internal iron levels.

Values for the internal concentration of macrophage iron, transferrin, and saturation are taken from Parmar,
JH et al. 2019 [66].

S2.5 Phagocytosis, interaction, and killing rates

A simple law of mass action between leukocytes and conidia is assumed and used to derive an equation, (Eq S2.2).
Given time and leukocyte concentration, this equation returns the probability of phagocytosing a conidium. The
phagocytosis probability in Table S1 is an extrapolation of Eq S2.2 for a voxel’s local concentration and one
time step:

p = 1� e�k⇤[L]⇤t (S2.2)

In Eq. S2.2, p is the probability of phagocytosis or interaction, 4[L]4 is the leukocyte concentration, and t is
time, taken to be two minutes in the simulator (one time-step). Note that this extrapolation assumes that the
limiting factor in the phagocytosis is the direct interaction between leukocyte and conidia and not the spread
rate. According to Hoang, AN et al. 2013 [106], the leukocyte movement rate can be quite fast.

The hyphae killing rate is determined similarly. In contrast, the internalized conidia killing rate was ac-
quired based on the percentage of internalized conidia killed by macrophages after 12h. Maximum conidia per
macrophage is the apparent maximum reported by Gresnigt, MS et al. 2018 [87], and for neutrophils, it is a
scaling of this number based on the relative size of a neutrophil.

S2.6 Aspergillus iron sensitivity

Aspergillus iron sensitivity (kd Af IRON in Table S1) is a critical parameter in the model. This value measures
the concentration of iron needed to turn on/o↵ the sreA gene. This gene, in turn, controls the secretion and
uptake of TAFC [107]. As a simplification, this value is also used to control Aspergillus growth. Schrettl, M et
al. 2008 [72] grew WT and sreA KO Aspergillus in the presence of TAFCBI (TAFC bound to iron) and then
measured the content of iron as µ mol per gram of dry weight (DW) in the colonies.

The first thing to notice is that it is safe to assume that both colonies grew to approximately equal size
based on Schrettl, M et al. 2008, and others. As mentioned, the paper measures iron in µmol/g (DW). To
convert this to molar, one can first convert DW into wet weight using data from Bakken, LR, 1983 [93]; this
paper also gives the fungal density. With that one is able to calculate molarity.

The sreA KO cannot control the influx of TAFC. Therefore, one can assume, for simplicity, that the iron
acquisition in these colonies follows a quasi-linear equation (Eq S2.3):

d[FeKO]

dt
= kup ⇤ h(t) ⇤ [TAFC], (S2.3)

where kup is the apparent TAFC uptake rate, h(t) is the equation describing hyphal growth, and [TAFC] is the
amount of TAFC in the experiment. This is assumed to be constant, that is, the quantity taken up by hyphae
is small compared to the amount supplied. Integrating this equation, one gets:

[FeKO] = kup ⇤ [TAFC] ⇤
Z

h(t)dt (S2.4)

This equation gives the quantity of internal iron at the end of the experiment with the sreA KO Aspergillus.
For WT colonies, as iron concentration increases, sreA gets activated, which leads to the downregulation of the
TAFC receptor. Therefore, for WT, one has:

d[FeWT ]

dt
= kup ⇤ h(t) ⇤ [TAFC] ⇤ s([FeWT ]) (S2.5)

Here, s([FeWT ]) is the unknown sreA activation function, but again, one can employ a surrogate model,
namely Eq. 2 (Material & Methods) as a phenomenological model of sreA activation/inactivation. More
specifically, this function is used to activate the LIP node that then inactivates the sreA node (see Brandon, M
et al. 2015 [107]). The function s([FeWT ]) should be the complement of that; therefore, Eq S2.5 becomes:

d[FeWT ]

dt
= kup ⇤ h(t) ⇤ [TAFC] ⇤ e�

[FeWT ]
kd .
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Integrating this equation one obtains:
Z

e
[FeWT ]

kd d[FeWT ] = kup ⇤ [TAFC] ⇤
Z

h(t)dt = [FeKO] + C,

where C = kd. Making some algebraic rearrangements results in:

[FeWT ] = kd ⇤ ln(
[FeKO] + kd

kd
),

where [FeWT ] is the quantity of iron in the WT experiment, [FeKO] is the quantity of iron in the sreA KO
experiment, and kd is the value to be determined. The [TAFC] concentration is assumed to be high, compared
to the amount consumed and that h(t) is equal for sreA KO and WT.

S2.7 Transferrin Michaelis constant

For convenience, Michaelian kinetics is assumed. The TAFC-Tf kinetics is a complex mechanism described
by Hissen, AHT & Moore MM 2005 [67] For convenience, a simplified version is used that does not consider
cooperativity or di↵erence in transferrin sites. The reaction rate of lactoferrin is very elusive, not having been
studied extensively. Nevertheless, one study injected this protein in vivo and saw a 46% decrease in serum iron
upon 4h [31]. That evidence enables an educated guess of the reaction rate.

Notice that when integrating these equations over the ABM, a time step of 2 minutes is used. The Kcat
(Kcatapp) is assumed to be 1 h�1; therefore, one has to scale by 2/60 in the simulator. That is, in the simulator,
one needs to choose an integration step of 2/60.

S2.8 Fungal biology

Fungal dimensions are obtained from the papers cited in Table S1. In some cases, values can be obtained directly
from the photomicrograph reported in these papers using the MATLAB App Grabit. Growth rates come from
papers that report hyphal length over time, while branching probability was based on the hyphal growth unit
length. This gives an estimate of how many branches per septae there are.

A crucial parameter in the model is the swelling rate. Because swelling is quickly succeeded by germination,
the germination rate is used as a proxy for the swelling rate. White, LO 1977 [98] report the rate of germination
in vivo, and Gago, S et al. 2018 [77] report a very consistent value in vitro in the presence of bronchoepithelial
cells. From these papers, one can make a robust estimate of this value.

S2.9 Number of cells and lung size

Calculations were made by considering a pair of inflated lungs, which has a volume of 1mL [108]. We consider
that these pairs of lungs have around 3 million alveoli [109, 110], 230,000 resident macrophages [104], and ten
million type-II epithelial cells [105]. The maximum number of mono and polymorphonuclear cells come from
a paper reporting counts of these leukocytes per hundred alveoli in mice infected with Aspergillus [103]. The
global recruitment rate was adjusted to fit the curve of neutrophils in Bonett, CR et al. 2006 [104]. Note that
the numbers of macrophages and neutrophils reflect those of bronchoalveolar lavage fluid.

S2.10 Turnover rate

To calculate the turnover rate between the lung and the rest of the body, the following system of di↵erential
equations was used:

(
dB

dt
= b(t)� � ⇤B � k ⇤ (B � S)

dS

dt
= k ⇤ (B � S)� � ⇤ S,

where B is the concentration of the molecule in BAL, S is the concentration in serum, and � is the decay
rate. The function b(t) is the secretion rate, and k is the exchange rate, the value to be estimated. The ratio
of interest is B/S in the equilibrium. Notice that upon algebraic rearrangements, one finds that this ratio is
(k+ �)/k. But � is known from the literature (Table S1), and one can estimate k from an empirical B/S ratio
found in Gonçalves, SM et al. 2017 [102].
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S2.11 Leukocyte movement

This movement rate can be obtained from Khandoga, AG et al. 2009 [79]. The value, 1.44 µm/min, is
conservative compared to other sources. Pollmacher J, & Figge MT, 2014 [111] uses a movement rate of 2-6
µm/min, for instance. Nevertheless, the rate used here must be considered a phenomenological movement rate.
In the real lung, leukocytes may not move in a straight line but along the alveolar curved surface. That is the
case in the Pollmacher J, & Figge MT, 2014 [111] model.

S2.12 Antibody

Antibody parameters were not specific for TNF. The concentration is obtained based on a measurement of
IgG found in mice after an immunization assay. The value of Km resulted from the imposition of Michaelian
kinetics, and on data for a generic protein antigen, in this case, the lysosome. Half-life comes from Vieira, P,
and Rajewsky K 1988 [63].

S2.13 Other parameters

The time cells need to change status (T CHANGE and T REST) were based on in-vitro reports [99]. The half-
life of molecules is an average. Likewise, the di↵usion rate is an average of the values of the di↵erent molecules
in living tissue.

For macrophages/monocytes, the 24h value reported for monocytes [91] is used. Other literature sources
nevertheless report a longer half-life for macrophages. To calculate macrophages’ volume, they can be approxi-
mated by a sphere, and one can then use the dimensions reported by Krombach, F et al. 1997 [100].

References

[1] Werner JL, Metz AE, Horn D, Schoeb TR, Hewitt MM, Schwiebert LM, et al. Requisite Role for the
Dectin-1 b-Glucan Receptor in Pulmonary Defense against Aspergillus fumigatus. The Journal of Im-
munology. 2009;182(8):4938–4946. doi:10.4049/jimmunol.0804250.

[2] Taylor P, Tsoni S, Willment J, et al . Dectin-1 is required for �-glucan recognition and control of fungal
infection. Nat Immunol. 2007;8:31–38. doi:https://doi.org/10.1038/ni1408.

[3] Gersuk GM, Underhill DM, Zhu L, Marr KA. Dectin-1 and TLRs Permit Macrophages to Distinguish
between Di↵erent Aspergillus fumigatus Cellular States. The Journal of Immunology. 2006;176(6):3717–
3724. doi:10.4049/jimmunol.176.6.3717.

[4] Hohl T, Van Epps H, Rivera A, Morgan L, Chen P, et al . Aspergillus fumigatus Trig-
gers Inflammatory Responses by Stage-Specific b-Glucan Display. PLOS Pathogens. 2005;1(3):e30.
doi:https://doi.org/10.1371/journal.ppat.0010030.

[5] Chai L, Netea M, Sugui J, Vonk A, van de Sande W, Warris A, et al. Aspergillus fumi-
gatus conidial melanin modulates host cytokine response. Immunobiology. 2010;215(11):915–920.
doi:10.1016/j.imbio.2009.10.002.

[6] Mark BH, Anthony JK, Christine CW. Inside the Neutrophil Phagosome: Oxidants, Myeloperoxidase,
and Bacterial Killing. Blood. 1998;92(9):3007–3017. doi:https://doi.org/10.1182/blood.V92.9.3007.

[7] Celio GFdL, Xiao YQ, Shyra JG, Donna LB, William PS, Peter MH. Apoptotic Cells, through Transform-
ing Growth Factor-�, Coordinately Induce Anti-inflammatory and Suppress Pro-inflammatory Eicosanoid
and NO Synthesis in Murine Macrophages. J Biol Chem. 2006;281:38376–. doi:10.1074/jbc.M605146200.

[8] Fadok VA, Bratton DL, Konowal A, Freed PW, Westcott JY, Henson PM. Macrophages that have
ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine
mechanisms involving TGF-beta, PGE2, and PAF. The Journal of Clinical Investigation. 1998;101(2).
doi:10.1172/JCI1112.

[9] Steele C, Rapaka R, Metz A, Pop S, Williams D, et al . The Beta-Glucan Receptor Dectin-
1 Recognizes Specific Morphologies of Aspergillus fumigatus. PLOS Pathogens. 2005;1(4):e42.
doi:doi.org/10.1371/journal.ppat.0010042.

[10] Adachi Y, Okazaki M, Ohno N, Yadomae T. Enhancement of cytokine production by macrophages
stimulated with (1–¿3)-beta-D-glucan, grifolan (GRN), isolated from Grifola frondosa. Biol Pharm Bull.
1994;17(12):1554–1560. doi:10.1248/bpb.17.1554.

S7

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 8, 2021. ; https://doi.org/10.1101/2021.06.08.447590doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.08.447590
http://creativecommons.org/licenses/by/4.0/


[11] Okazaki M, Adachi Y, Ohno N, Yadomae T. Structure-activity relationship of (1–¿3)-beta-D-glucans
in the induction of cytokine production from macrophages, in vitro. Biol Pharm Bull 1995 Oct;18.
10;18(10):1320–7. doi:10.1248/bpb.18.1320.

[12] Brummer E, Kamberi M, Stevens DA. Regulation by Granulocyte-Macrophage Colony-Stimulating Fac-
tor and/or Steroids Given In Vivo of Proinflammatory Cytokine and Chemokine Production by Bron-
choalveolar Macrophages in Response to Aspergillus Conidia. The Journal of Infectious Diseases,.
2003;187(4):705–709. doi:doi.org/10.1086/368383.

[13] Mihai GN, Warris A, Jos WMVdM, Matthew JF, Trees JGVJ, Liesbeth EHJ, et al. Aspergillus fumigatus
Evades Immune Recognition during Germination through Loss of Toll-Like Receptor-4-Mediated Signal
Transduction. The Journal of Infectious Diseases,. 2003;188(2):320–326. doi:doi.org/10.1086/376456.

[14] Marika K, Elmer B, Davidm AS. Regulation of Bronchoalveolar Macrophage Proinflammatory
Cytokine Production By Dexamethasone and Granulocyte-Macrophage Colony-Stimulating Factor
After Stimulation By Aspergillus Conidia Or Lipopolysaccharide. Cytokine,. 2002;19(1):14–20.
doi:doi.org/10.1006/cyto.2002.1049.

[15] Warris A, Netea M, Verweij P, Gaustad P, Kullberg B, Weemaes C, et al. Cytokine responses and
regulation of interferon-gamma release by human mononuclear cells to Aspergillus fumigatus and other
filamentous fungi. Med Mycol. 2005;43(7):613–21. doi:10.1080/13693780500088333.

[16] Fadok VA, Bratton DL, Guthrie L, Henson PM. Di↵erential E↵ects of Apoptotic Versus Lysed Cells
on Macrophage Production of Cytokines: Role of Proteases. J Immunol. 2001;166(11):6847–6854.
doi:10.4049/jimmunol.166.11.6847.

[17] Fujishima S, Ho↵man AR, Vu KJ T Kim, Zheng H, Daniel D, Kim W Y, et al. Regulation of neu-
trophil interleukin 8 gene expression and protein secretion by LPS, TNF-↵, and IL-1�. J Cell Physiol,.
1993;154:478–485. doi:10.1002/jcp.1041540305.

[18] Xing L, Remick D. Relative cytokine and cytokine inhibitor production by mononuclear cells and neu-
trophils. Shock. 2003;20(1):10–6. doi:10.1097/01.shk.0000065704.84144.a4.

[19] Altstaedt J, Kirchner H, Rink L. Cytokine production of neutrophils is limited to interleukin-8. Immunol-
ogy,. 1996;89:563–568. doi:10.1046/j.1365-2567.1996.d01-784.x.

[20] Bondeson J, Browne K, Brennan F, Foxwell B, Feldmann M. Selective regulation of cytokine induc-
tion by adenoviral gene transfer of IkappaBalpha into human macrophages: lipopolysaccharide-induced,
but not zymosan-induced, proinflammatory cytokines are inhibited, but IL-10 is nuclear factor-kappaB
independent. J Immunol. 1999;162(5):2939–45.

[21] Abe Y, Hashimoto S, Horie T. Curcumin inhibition of inflammatory cytokine production by
human peripheral blood monocytes and alveolar macrophages. Pharmacol Res. 1999;39(1):41–7.
doi:10.1006/phrs.1998.0404.

[22] Loe✏er J, Haddad Z, Bonin M, Romeike N, Mezger M, Schumacher U, et al. Interaction analyses of human
monocytes co-cultured with di↵erent forms of Aspergillus fumigatus. Journal of Medical Microbiology.
2009;58(1):49–58. doi:doi.org/10.1099/jmm.0.003293-0.

[23] Simitsopoulou M, Roilides E, Likartsis C, Ioannidis J, Orfanou A, Paliogianni F, et al. Expression of
Immunomodulatory Genes in Human Monocytes Induced by Voriconazole in the Presence of Aspergillus
fumigatus. Antimicrobial Agents and Chemotherapy. 2007;51(3):1048–1054. doi:10.1128/AAC.01095-06.

[24] Lord PC, Wilmoth LM, Mizel SB, McCall CE. Expression of interleukin-1 alpha and beta genes by
human blood polymorphonuclear leukocytes. The Journal of Clinical Investigation. 1991;87(4):1312–1321.
doi:10.1172/JCI115134.

[25] Cassatella M. The production of cytokines by polymorphonuclear neutrophils. Immunol Today.
1995;16(1):21–6. doi:10.1016/0167-5699(95)80066-2.

[26] Ciesielski C, Andreakos E, Foxwell B, Feldmann M. TNFa-induced macrophage chemokine secretion
is more dependent on NF-kB expression than lipopolysaccharides-induced macrophage chemokine se-
cretion. European Journal of Immunology. 2002;32(7):2037–2045. doi:https://doi.org/10.1002/1521-
4141(200207)32:7¡2037::AID-IMMU2037¿3.0.CO;2-I.

S8

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 8, 2021. ; https://doi.org/10.1101/2021.06.08.447590doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.08.447590
http://creativecommons.org/licenses/by/4.0/


[27] Palmberg L, Larsson B, Malmberg P, Larsson K. Induction of IL-8 production in human alveolar
macrophages and human bronchial epithelial cells in vitro by swine dust. Thorax. 1998;53(4):260–4.
doi:10.1136/thx.53.4.260.

[28] Jablonski H, Rekasi H, Jager M. The influence of calcitonin gene-related peptide on markers of bone
metabolism in MG-63 osteoblast-like cells co-cultured with THP-1 macrophage-like cells under virtually
osteolytic conditions. BMC Musculoskelet Disord. 2016;17(199.). doi:doi.org/10.1186/s12891-016-1044-5.

[29] Katsuo K, Bo-Ram O. Optofluidic cellular immunofunctional analysis by localized surface plasmon reso-
nance. Proc SPIE 9166, Biosensing and Nanomedicine VII, 91660R. 2014;doi:doi.org/10.1117/12.2062244.

[30] Thorley AJ, Ford PA, Giembycz MA, Goldstraw P, Young A, Tetley TD. Di↵erential Regulation of
Cytokine Release and Leukocyte Migration by Lipopolysaccharide-Stimulated Primary Human Lung
Alveolar Type II Epithelial Cells and Macrophages. The Journal of Immunology. 2007;178(1):463–473.
doi:10.4049/jimmunol.178.1.463.

[31] Jacques LvS, Pierre LM, Joseph FH. The Involvement Of Lactoferrin In The Hyposideremia Of Acute
Inflammation. J Exp Med. 1974;140(4):1068–1084. doi. doi:https://doi.org/10.1084/jem.140.4.1068.

[32] Taga T, Hibi M, Hirata Y, Yamasaki K, Yasukawa K, Matsuda T, et al. Interleukin-6 triggers the associ-
ation of its receptor with a possible signal transducer, gp130. Cell. 1989;58(3):573–81. doi:10.1016/0092-
8674(89)90438-8.

[33] Gaillard J, Pugnière M, Tresca J, Mani J, Klein B, Brochier J. Interleukin-6 receptor signaling. II.
Bio-availability of interleukin-6 in serum. Eur Cytokine Netw. 1999;10(3):337–44.
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[111] Pollmächer J, Figge MT. Agent-based model of human alveoli predicts chemotactic signaling by epithelial
cells during early Aspergillus fumigatus infection. PloS one. 2014;9(10):e111630.

S13

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 8, 2021. ; https://doi.org/10.1101/2021.06.08.447590doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.08.447590
http://creativecommons.org/licenses/by/4.0/

