1	Comparative population genomics in two sympatric species of Strophostyles (Fabaceae) with contrasting
2	life histories
3	
4	Sterling A. Herron ^{1,3} , Zachary N. Harris ¹ , Matthew J. Rubin ² , Allison J. Miller ^{1,2,3}
5	
6	¹ Saint Louis University, Department of Biology, 3507 Laclede Avenue, St. Louis, MO 63103, USA
7	² Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132, USA
8	³ Authors for correspondence (email: <u>amiller@danforthcenter.org; sterling.herron@slu.edu</u>); phone: +1-
9	314-587-1232
10	
11	Manuscript received; revision accepted
12	
13	Running head: Population genomics of Strophostyles
14	
15	ABSTRACT
16	
17	PREMISE OF THE STUDY: Life history is an important predictor of population genetic variation,
18	although this link remains unexplored in numerous important plant lineages. One such lineage is the
19	legume genus Strophostyles, which contains both annual and herbaceous perennial vines native to eastern
20	North America. Specifically, it remains to be determined whether Strophostyles species with different life
21	histories show different patterns of genetic differentiation and diversity, as well as if these species
22	hybridize across their range.
23	
24	METHODS: Here we sampled the perennial Strophostyles helvola and annual S. leiosperma in five sites
25	across a latitudinal transect in the central United States, including three sites where the species occur in

26	sympatry. Using genotyping-by-sequencing, we identified 5556 polymorphic SNPs across 166
27	individuals.
28	
29	KEY RESULTS: There is no evidence that Strophostyles helvola and S. leiosperma hybridize in the
30	populations examined. Within species, Strophostyles helvola (perennial) displays admixture among
31	populations, while S. leiosperma (annual) does not, although both species show more genetic diversity
32	among rather than within populations. Patterns of genetic diversity are varied across populations of both
33	species, with both heterozygote excess and deficiency.
34	
35	CONCLUSIONS: The complex patterns of genetic differentiation and diversity warrant further
36	investigation of life history and population dynamics in Strophostyles, particularly mating system and
37	modes of gene flow. This study exemplifies the diversity of population genetic patterns even within a
38	small genus, and it reinforces the need to characterize such diversity in non-model systems to gain a more
39	complete understanding of how life history contributes to population genetics.
40	
41	Keywords: crop wild relative; GBS; genotyping-by-sequencing; legume; Leguminosae; life history; life
42	span; Phaseoleae; population genetics; Strophostyles leiosperma
43	
44	Life history strategy has long been recognized as an important predictor of population genetic variation
45	(Loveless and Hamrick, 1984). In general, annual species are expected to have greater population genetic
46	differentiation (F_{ST} or G_{ST}) and lower within-population genetic diversity (H_S), compared to perennial
47	species (Loveless and Hamrick, 1984; Morishima and Barbier, 1990; Austerlitz et al., 2000). However,
48	these genetic associations with life span may be more directly related to other life history traits which are
49	often associated with life span, particularly mating system (selfing, mixed-mating, or outcrossing;
50	Balfourier et al., 1998; Duminil et al., 2007; Duminil et al., 2009). Selfing or mixed-mating species tend
51	to have greater among-population genetic differentiation and lower within-population genetic diversity as

3

52 compared to outcrossing species (Loveless and Hamrick, 1984; Hamrick and Godt, 1996; Duminil et al., 53 2007; Gamba and Muchhala, 2020). Often annuals are selfing and perennials are outcrossing, although 54 this pattern is not universal, particularly in herbaceous species (Barrett et al., 1996; Barrett and Harder, 55 2017). Considering variability over geographic space is also particularly important as a species' life 56 history may change with differing climates or habitats (Peterson et al., 2016), which can in turn change 57 patterns of population genetic structure (Vest, 2019). Overall, life span alone is not likely to consistently 58 predict population genetic differentiation and diversity, and a broader perspective including other life 59 history traits, the native ecology, and the evolutionary history of the study species and its populations is 60 imperative. 61 62 The legume family (Fabaceae Lindl.) is one of the most economically important and widespread groups

63 of plants, containing ca. 19,500 species, and likewise a striking array of life history diversity (Lewis et al., 64 2005; Azani et al., 2017). Within Fabaceae, subtribe Phaseolinae Bronn (tribe Phaseoleae Bronn ex DC.) 65 stands out, containing the economically important genera Phaseolus L. (common bean) and Vigna Savi 66 (cowpea), in addition to 25 other wild genera spread throughout Africa, Asia, Australia, and the Americas 67 (Delgado-Salinas et al., 2011). Despite the economic interest of the subtribe, numerous species, 68 particularly those outside genera containing major crops, remain uncharacterized regarding life history 69 and genetic diversity. Assessment of this diversity will be beneficial in understanding the evolutionary 70 history of these lineages and the potential range of genetic variation in crop wild relatives.

71

Strophostyles Elliott (fuzzybean) is a monophyletic legume genus within Phaseolinae, consisting of three
species of herbaceous vine: *S. helvola* (L.) Elliott, *S. leiosperma* (Torr. & A. Gray) Piper, and *S. umbellata* (Muhl. ex Willd.) Britton (Riley-Hulting et al., 2004; Delgado-Salinas et al., 2011). Their
native range is centered in the eastern United States, extending from Texas east to Florida, north to the
Great Lakes and eastern Canada (USDA, 2018; Pelotto and del Pero Martinez, 1998; Riley-Hulting et al.,
2004). *S. helvola* is widely distributed across the central and eastern United States, *S. leiosperma* has the

4

78 westernmost distribution and is primarily restricted to a central band from Minnesota south to Texas, and 79 S. umbellata is distributed more in the southeastern portion of the U.S. (Riley-Hulting et al., 2004). S. 80 helvola is known to occur in sympatry with S. leiosperma in its western range and S. umbellata in its 81 eastern range, but S. leiosperma and S. umbellata are not known to co-occur (Riley-Hulting et al., 2004). 82 All *Strophostyles* species inhabit mesic environments, including freshwater swamps and flood basins, 83 coastal saltwater areas, sand prairies, and anthropogenically disturbed sites such as ditches and ponds 84 (Riley-Hulting et al., 2004). S. leiosperma is however distinct in that it occurs in relatively more open, 85 drier environments (Riley-Hulting et al., 2004). Strophostyles is also one of the few Phaseolinae clades 86 that has a broad temperate distribution, and it is the only genus in Phaseolinae to have a distribution 87 centered in the United States (Riley-Hulting et al., 2004). Strophostyles is sister to the genus Dolichopsis 88 Hassl., which is native to the Gran Chaco in South America, an area that also undergoes freezing 89 temperatures, and its other closest genera, Macroptilium (Benth.) Urb., Mysanthus G.P. Lewis & A. 90 Delgado, and Oryxis A. Delgado & G.P. Lewis, are also native to the neotropics (Riley-Hulting et al., 91 2004). Strophostyles and Dolichopsis share keel morphology, where the keel gradually curves to the right 92 of the flower as opposed to a sharp curling of the keel as in many other New World Phaseolinae, and the 93 keel in both genera is also distinctly gibbous (Riley-Hulting et al., 2004). Strophostyles species are 94 morphologically distinguished from closely related Phaseolinae genera by their cellular seed coating 95 (which lends buoyancy), divergent stipules, a calyx consisting of four lobes that are attenuate to acute, 96 and persistent floral bracts on the pedicels (Riley-Hulting et al., 2004; Delgado-Salinas et al., 2011). 97 Within *Strophostyles*, species are primarily diagnosed by their flower's keel morphology, although S. 98 *leiosperma* in particular possesses other unique characteristics, including distinctly sericeous leaves and 99 pods, and usually smooth seeds (Riley-Hulting et al., 2004). All three Strophostyles species are diploid 100 (2n=22; Lackey, 1980; Riley-Hulting et al., 2004; Yatskievych, 2013).

102	Strophostyles species also have potential in agricultural applications. S. helvola and S. leiosperma have
103	been targeted as a sustainable, native forage and hay supplement for livestock and wildlife in the southern
104	Great Plains region (Muir et al., 2005; Foster et al., 2008), with cultivars of S. leiosperma being
105	developed specifically for that purpose (Butler and Muir, 2010). In the wild, Strophostyles herbage and
106	seeds are known to be an important food source for wildlife (Bird and Bird, 1931; Wiseman, 1977;
107	Immel, 2001; Gee et al., 2011). Unlike many cultivated Phaseolinae species, S. helvola in particular is
108	known for its salinity tolerance in coastal populations (Tsang and Maun, 1999; Zhang et al., 2018;
109	Zuelsdorf, 2018). Strophostyles seeds and roots were also historically consumed by indigenous American
110	peoples, highlighting their human palatability (Parker, 1991; Immel, 2001).
111	
112	Despite its potential utility and botanical interest, various aspects of Strophostyles life history remain
113	unclear. Reported life span of Strophostyles species is variable in the literature: Strophostyles helvola and
114	S. leiosperma have both been reported as either annual or perennial (McGregor et al., 1986; Stubbendieck
115	and Conard, 1989; Isely, 1998; Diggs et al., 1999; Yatskievych, 2013). Nevertheless, the most thorough
116	taxonomic and morphological treatment of the genus to date describes Strophostyles helvola as a
117	perennial with a large taproot, and S. leiosperma as an annual to short-lived perennial with a small
118	taproot, where the taproot functions as the persisting perennial organ after the annual shoot dies back
119	during the winter (Riley-Hulting et al., 2004; Delgado-Salinas, pers. comm. 2021). Balancing immediate
120	reproduction vs. survival (vegetative allocation) is a major trade-off concept of plant life history theory, is
121	a correlate of plant life span, and is likely to vary by environment (Charnov and Schaffer, 1973;
122	Friedman, 2020; Lundgren and Des Marais, 2020). Specifically, intraspecific variation in life span is
123	associated with environmental disturbance, with annual forms associating with seasonally disturbed sites
124	(often drought) where adult survival is unlikely across seasons or disturbance events, and perennial forms
125	are associated with relatively stable sites where adult survival is likely across seasons (Hall and Willis,
126	2006; Peterson et al., 2016; Monroe et al., 2019).

6

128 Mating system is another aspect of life history likely to be an important predictor of genetic diversity 129 patterns in Strophostyles. All Strophostyles species have overlapping flowering times and attract a range 130 of generalist bee pollinators (particularly Megachile; Robertson, 1890; Krombein et al., 1979; Riley-131 Hulting et al., 2004). S. helvola specifically has an observed keel mechanism which serves to retrieve 132 foreign pollen from the floral visitors while also depositing its own pollen on the visitor's thorax via a 133 style-brush, encouraging outcrossing (Foerste, 1885; Robertson, 1890). The pollen deposition mechanism 134 of the other two species is unclear, but this combined with pollinator observations point to at least a 135 partially outcrossing mating system in *Strophostyles* species. S. leiosperma is also hypothesized to have at 136 least a partially selfing mating system, based on the observation that closed flowers still produce viable 137 seeds; reproductive assurance through selfing would also be consistent with the annual life span (Riley-138 Hulting et al., 2004). 139 140 Some phylogenetic and transcriptomic studies have targeted *Strophostyles* and its close relatives, but

141 extensive genomic information is lacking for the genus. Riley-Hulting et al. (2004) used chloroplast and 142 ITS markers in a phylogenetic study to confirm all three *Strophostyles* species as a monophyletic clade, as 143 well as to confirm its phylogenetic placement among a number of neotropical Phaseolinae genera. More 144 recently, Zhang et al. (2018) sequenced the transcriptome of S. helvola in order to discover upregulated 145 genes associated with salinity tolerance. However, a whole genome population-level approach has yet to 146 be implemented in *Strophostyles*, which leaves a number of open questions. Specifically, while there is 147 little evidence to date for putative hybridization between species in the genus (Riley-Hulting et al., 2004), 148 this has not been directly investigated in sympatric populations of *Strophostyles* species. Also, while there 149 is preliminary evidence for broad differences in genetic diversity across the range of *Strophostyles* (Riley-150 Hulting et al., 2004), this has not been shown among multiple individuals within multiple populations. 151 Characterization of population genomics may further reveal signatures of mating system and how patterns 152 of dispersal contribute to gene flow among populations of each *Strophostyles* species.

154	Here we focus on the sympatric species Strophostyles helvola and S. leiosperma, in the context of their
155	different life history strategies, in populations across a latitudinal transect from northern Iowa to central
156	Arkansas, USA. We ask the following questions: (1) are Strophostyles helvola and S. leiosperma
157	genetically distinct, or is there evidence of hybridization between these species when they occur in
158	sympatry; (2) is there genetic differentiation among populations within each species, or is there evidence
159	of admixture among populations; and (3) what are the patterns of genetic diversity within and among
160	populations for each species?
161	
162	MATERIALS AND METHODS
163	
164	Sample collection—This study focused on two of the three Strophostyles species: S. helvola and
165	S. leiosperma, due to their close relationship and sympatric distribution in the Midwest United States
166	(Riley-Hulting et al., 2004). We collected samples from five sites along a latitudinal transect ranging from
167	northern Iowa to central Arkansas, USA (Fig. 1; Table 1; Appendix S1; see Supplemental Data with this
168	article). Collection sites were targeted based on occurrence records for the species (Global Biodiversity
169	Information Facility; <u>www.gbif.org</u>) and by contacting regional botanists. Strophostyles umbellata was
170	not collected due to its rarity in the sites sampled (it has not been observed in this region by the authors);
171	while it is reported to occur in this range, it does not appear to occur sympatrically with <i>S. helvola</i> and <i>S.</i>
172	leiosperma at least in the populations observed. In general, S. umbellata is known to have more scattered
173	individuals and populations of low density, and thus the likelihood of finding substantial populations is
174	lower (Riley-Hulting et al., 2004).
175	
176	From north to south, sites sampled included the Cedar Hills Sand Prairie (Cedar Falls, Iowa, USA; site
177	"IA"), Frost Island Conservation Area and Iliniwek Village State Historic Site (Wayland, Missouri, USA;
178	site "IV-MO"), Shaw Nature Reserve (Gray Summit, Missouri, USA site "SNR-MO"), Sand Pond
179	Conservation Area (Neelyville, Missouri, USA; site "SP-MO"), and Burns Park (North Little Rock,

8

180 Arkansas, USA; site "AR") (Fig. 1; Table 1; Appendix S1). Habitat types were generally open prairie, 181 open grassland/shrubland, and forest edges, or the edge of ponds (SNR-MO) and along a riverbank (AR) 182 (Appendix S1). It was confirmed with site managers that *Strophostyles helvola* and *S. leiosperma* were 183 not known to be intentionally seeded at any site (Appendix S1). Linear distance between nearest 184 collection sites ranged from 219 to 256 km, and mean altitude at each site ranged from 76 to 284 meters 185 above sea level (Fig. 1; Table 1). Plant populations at each site were defined as a group of 15 or more 186 individuals of one species within the same 10 square km area. Strophostyles helvola and S. leiosperma co-187 occurred in the three northernmost sites (IA, IV-MO, and SNR-MO), while only S. helvola was present at 188 SP-MO and AR. At each site, we sampled 17-29 individual plants per species, and in total, we sampled 189 110 individuals of S. helvola and 56 individuals of S. leiosperma (Table 1). We collected fresh, young 190 leaf tissue and stored it in paper envelopes, which were sealed in a ziploc bag filled with dry silica for 191 desiccation. Individuals of the same species were collected at least ~3 m apart. Species were generally 192 identified by their distinct papilionoid flower morphology: S. helvola exhibits a prominent and distinctly 193 curved keel, while S. leiosperma exhibits a small, only slightly curved keel that is mostly hidden by the 194 wing petals (Fig. 1; Riley-Hulting et al., 2004). In the absence of flowers (rare), these species can also be 195 distinguished on leaf and pod morphology. S. helvola has ovate, sparsely haired, often lobed leaflets, 196 while S. leiosperma has lanceolate, sericeous, unlobed leaflets (rarely having shallow lobes; Riley-197 Hulting et al., 2004). S. helvola also has large, sparsely haired pods (30-96 mm long) and seeds with an 198 accessory cellular coating, while S. leiosperma has smaller, distinctly sericeous pods (12-41 mm long) 199 with smaller, usually smooth seeds (Riley-Hulting et al., 2004). For each plant collected, we recorded the 200 latitude, longitude, and elevation, and photographed most plants to document identifying features. For 201 each population, we also collected two herbarium voucher specimens per species, including the entire 202 aboveground and most of the belowground portion of the plant when possible. We deposited the vouchers 203 at the Missouri Botanical Garden (St. Louis, Missouri, USA; Table 1). The map of population sampling 204 was created using the R packages 'ggmap' and 'ggplot2' (Kahle and Wickham, 2013; Wickham, 2016; R 205 Core Team, 2021).

207	Genomic DNA extraction—We extracted genomic DNA from the leaves of 166 plants collected
208	in the field (Appendix S1). When available, 55-60 mg of dried leaf tissue per sample was ground into
209	powder using liquid nitrogen and a mortar and pestle, or by freezing the tissue in a tube with liquid
210	nitrogen, inserting 0.9-3.175 mm steel ball bearings, and oscillating using a Rech Mixer Mill 400 at 30 Hz
211	for 2 min, or until a powder. DNA was extracted using an E.Z.N.A. [®] Plant DNA Kit (Omega Bio-tek,
212	Norcross, Georgia, USA) according to the product label, with a few modifications: the initial incubation
213	in P1 buffer was increased to 45-60 min during which samples tubes were vortexed (instead of inverting),
214	and the centrifuge speed and sometimes duration was increased to allow better tissue and DNA pelleting
215	as well as movement of liquid through the DNA mini column. DNA concentration was quantified using a
216	Qubit [®] dsDNA BR Assay Kit and an Invitrogen TM Qubit TM 3 Fluorometer (Thermo Fisher Scientific,
217	Waltham, Massachusetts, USA). To increase concentration of some samples, we vacufuged them at 30°C
218	and re-eluted them. We retained samples with $> 10 \text{ ng/}\mu L \text{ DNA}$ concentration for sequencing. Eluted
219	DNA was stored at 4°C until shipped for genomic processing (with dry ice).
219 220	DNA was stored at 4°C until shipped for genomic processing (with dry ice).
	DNA was stored at 4°C until shipped for genomic processing (with dry ice). Sequencing —We submitted all samples to the University of Minnesota Genomics Center
220	
220 221	Sequencing—We submitted all samples to the University of Minnesota Genomics Center
220 221 222	<i>Sequencing</i> —We submitted all samples to the University of Minnesota Genomics Center (Minneapolis, Minnesota, USA), where they were sequenced using genotyping-by-sequencing (GBS), a
220 221 222 223	<i>Sequencing</i> —We submitted all samples to the University of Minnesota Genomics Center (Minneapolis, Minnesota, USA), where they were sequenced using genotyping-by-sequencing (GBS), a reduced-representation whole genome method (Elshire et al., 2011; Poland et al., 2012). Dual-indexed
220 221 222 223 224	<i>Sequencing</i> —We submitted all samples to the University of Minnesota Genomics Center (Minneapolis, Minnesota, USA), where they were sequenced using genotyping-by-sequencing (GBS), a reduced-representation whole genome method (Elshire et al., 2011; Poland et al., 2012). Dual-indexed GBS libraries were created using a double digest with the two enzymes MspI and PstI on 100 ng of DNA.
220 221 222 223 224 225	<i>Sequencing</i> —We submitted all samples to the University of Minnesota Genomics Center (Minneapolis, Minnesota, USA), where they were sequenced using genotyping-by-sequencing (GBS), a reduced-representation whole genome method (Elshire et al., 2011; Poland et al., 2012). Dual-indexed GBS libraries were created using a double digest with the two enzymes MspI and PstI on 100 ng of DNA. Samples were treated with T4 ligase and phased adaptors with TGCA and CG overhangs. Libraries were
220 221 222 223 224 225 226	Sequencing—We submitted all samples to the University of Minnesota Genomics Center (Minneapolis, Minnesota, USA), where they were sequenced using genotyping-by-sequencing (GBS), a reduced-representation whole genome method (Elshire et al., 2011; Poland et al., 2012). Dual-indexed GBS libraries were created using a double digest with the two enzymes MspI and PstI on 100 ng of DNA. Samples were treated with T4 ligase and phased adaptors with TGCA and CG overhangs. Libraries were pooled and size selected for 300-744 bp segments, and the pool was diluted to 1.5 nM and sequenced on a
220 221 222 223 224 225 226 227	<i>Sequencing</i> —We submitted all samples to the University of Minnesota Genomics Center (Minneapolis, Minnesota, USA), where they were sequenced using genotyping-by-sequencing (GBS), a reduced-representation whole genome method (Elshire et al., 2011; Poland et al., 2012). Dual-indexed GBS libraries were created using a double digest with the two enzymes MspI and PstI on 100 ng of DNA. Samples were treated with T4 ligase and phased adaptors with TGCA and CG overhangs. Libraries were pooled and size selected for 300-744 bp segments, and the pool was diluted to 1.5 nM and sequenced on a half-lane of an Illumina NovaSeq 6000 FlowCell with single-end 1x100-bp reads. This generated 54,142

10

231	Alignment and SNP calling—Both ends of sequence reads were trimmed for quality at a
232	minimum Phred score of 30 using bbduk (Bushnell, 2014; qtrim=rl, trimq=30). We aligned quality-
233	filtered reads to the Phaseolus vulgaris Andean landrace 'G19833' v.2.1 reference genome
234	(https://phytozome-next.jgi.doe.gov/info/Pvulgaris_v2_1), which was downloaded from the Ensembl
235	Genomes website (https://ensemblgenomes.org/; Yates et al., 2020; accessed Feb 26, 2020), using
236	Burrows-Wheeler Alignment (BWA MEM) with default settings (bwa v0.7.17-r1188; Li and Durbin,
237	2009). In the absence of a Strophostyles genome, the Phaseolus vulgaris genome was used as a reference
238	genome due to its long history of improvement and high coverage of the genome. Variant calling used
239	bcftools v1.9, with default settings, and genotypes were filtered at a minimum read depth of 10 with
240	vcftools v0.1.16 (minDP 10; Danecek et al., 2011; all sites passed this filter). Biallelic SNPs were called
241	with PLINK v1.90b4 (Chang et al., 2015). After evaluating different minor allele frequencies and missing
242	genotype rates, a conservative approach was applied: we filtered at a minor allele frequency of 0.025 and
243	a maximum missing genotype rate per SNP of 10% (biallelic-onlysnps-onlymaf 0.025geno 0.1).
244	Less conservative filtering approaches increased the number of SNPs retained but did not change the
245	broad genetic structure trends or the conclusions. Ultimately, 1,584,797 SNPs were called in total. 5556
246	SNPs and all 166 samples were retained following filtering.
247	
248	Population genetic differentiation and diversity—We implemented fastSTRUCTURE (Raj et al.,
249	2014) to characterize the population genetic structure of all samples, testing values of K clusters ranging
250	from 1 to 8 (total population number considering both species). We then used the chooseK.py function in
251	fastSTRUCTURE to determine the optimal K value based on two criteria: (1) model complexity which
252	maximized marginal likelihood, and (2) the number of model components used to explain structure in the
253	data. K=6 clusters was optimal based on the number of model components, while K=7 was optimal based
254	on maximized marginal likelihood. The seventh cluster group for the K=7 model has an extremely rare

255 representation such that effectively only 6 clusters emerge, so we defer to the original K=6 model for

256 further discussion. Population structure plots were generated using the R packages 'ggplot2' and

11

257 'pophelper' (Francis, 2017). We also implemented principal component analysis (PCA) of genetic 258 variation using PLINK (--pca 166) and visualized the PCA using 'ggplot2' with the EIGENVEC output 259 from PLINK.

260

261 For calculations of population statistics, our filtered SNP variant call format file was converted to a 262 GENEPOP text file using PGDSpider2 (Lischer and Excoffier, 2012), which was then converted to a 263 GENIND object in R (package 'adegenet'; Jombart, 2008) and reformatted to a GENEPOP object 264 ('graph4lg' package; Savary, 2020) usable in Genodive v.3.04 (Meirmans, 2020), with the modification 265 of changing missing values to '0000' in order to be interpreted by Genodive as diploid. All further 266 analyses were completed in Genodive. Pairwise $F_{\rm ST}$ values between all populations within species were 267 calculated and P-values generated from 1000 permutations. Isolation by distance was also tested for each 268 species using a Mantel test. Briefly, the test assesses correlation between the geographic distance matrix 269 (based on the average of all sample coordinates for each population of each species, respectively) and the 270 pairwise genetic distance matrix $[F_{ST}/(1-F_{ST})]$ between populations within a species, with 1000 271 permutations. Genetic diversity metrics were also calculated per population for each species, including 272 the observed heterozygosity (H_{Ω}) , within-population expected heterozygosity $(H_{S};$ Nei's gene diversity; 273 Nei, 1987), and inbreeding coefficient (F_{1S}). The deviation of genotype frequencies within each 274 population from the expectation under Hardy-Weinberg equilibrium (random mating) was calculated 275 using the least squares method (from analysis of molecular variance, AMOVA; Excoffier et al., 1992) 276 with 1000 permutations. An AMOVA was also calculated using the Infinite Allele Model with 1000 277 permutations, in order to dissect the percentage of genetic variance within individuals, among individuals 278 nested within populations, among populations nested within species, and among species. 279 280

281

RESULTS

12

282	Strophostyles helvola and S. leiosperma are distinct lineages—Strophostyles helvola and S.
283	leiosperma were found to be genetically distinct from each other within and across collection sites.
284	Strophostyles helvola and S. leiosperma separated distinctly with K=2 genetic clusters (Fig. 2). Principal
285	component analysis also supported the species separation: PC1, which separates S. helvola and S.
286	leiosperma, explained 45% of the total genetic variation (Fig. 3A). Lastly, the analysis of molecular
287	variance (AMOVA) corroborated this pattern, in that a significant percentage of genetic variation was
288	attributed to among-species variation (62.4%; $F_{CT} = 0.642$, $P = 0.001$; Table 2).
289	
290	Within-species population genetic structure differs for Strophostyles helvola and S.
291	leiosperma—There were unique patterns of genetic clustering within each species, with Strophostyles
292	helvola showing evidence of admixture among some populations and S. leiosperma showing genetically
293	distinct clusters. For K=6 (optimal K value that explained structure in the data, based on the number of
294	model components), individuals of S. helvola assigned to one or more of four clusters, and individuals of
295	S. leiosperma assigned to two other distinct clusters (Fig. 2). Within S. helvola, individuals from
296	populations IV-MO and SNR-MO showed the strongest population differentiation from other clusters
297	(Fig. 2). SNR-MO was the only population of <i>S. helvola</i> with no evidence of admixture, while two
298	individuals of <i>S. helvola</i> population IV-MO showed only slight admixture with the IA population (Fig. 2).
299	In contrast, S. helvola populations IA, SP-MO, and AR showed more evidence of admixture (Fig. 2). For
300	S. helvola population IA, 14/20 individuals' genetic composition assigned only to its own unique genetic
301	cluster, while 6/20 individuals showed admixture, primarily with population IV-MO, but also with SNR-
302	MO and SP-MO/AR (Fig. 2). Most S. helvola individuals from population SP-MO and AR have genetic
303	ancestry that assigned predominantly to the same genetic cluster, while the admixture present in both
304	populations assigned primarily to IV-MO (Fig. 2). For population SP-MO specifically, 11/19 individuals
305	assigned only to their own genetic cluster, while the other 8/19 individuals showed signs of admixture,
306	primarily with population IV-MO but also with SNR-MO (Fig. 2). For population AR, 18/29 individuals
307	assigned solely to their own genetic cluster (the same as SP-MO), with the remaining 11/29 again

308	showing admixture mainly with population IV-MO but also IA and SNR-MO (Fig. 2). For S. leiosperma,
309	only two genetic clusters emerged and there was a distinct lack of admixture. Both the IA and IV-MO
310	populations assigned to the same genetic cluster, with no substantial evidence of shared ancestry with
311	other clusters (Fig. 2). All 37 individuals of the S. leiosperma IA and IV-MO populations assigned
312	predominately to their own genetic cluster (Fig. 2). For S. leiosperma population SNR-MO, 18/19
313	individuals assigned solely to their own genetic cluster, with only one individual showing slight
314	admixture with the other S. leiosperma cluster (Fig. 2). Considering intermediate K values between K=2
315	and K=6, K=3 through K=5 illustrated the stepwise separation of north and south S. helvola populations,
316	the two clusters of <i>S. leiosperma</i> , and potential mixed ancestry in population IV-MO (Appendix S2). K=7
317	cluster structure (see Methods) was similar to the K=6 pattern, with the main deviations being that S.
318	helvola populations IV-MO and SP-MO primarily assigned to the same genetic cluster, and that
319	population AR primarily assigned to a different genetic cluster than SP-MO (Appendix S2).
320	
320 321	Fixation index results largely supported the fastSTRUCTURE patterns. Strophostyles helvola population
	Fixation index results largely supported the fastSTRUCTURE patterns. <i>Strophostyles helvola</i> population SNR-MO showed some of the highest pairwise F_{ST} values with the other <i>S. helvola</i> populations (0.359 -
321	
321 322	SNR-MO showed some of the highest pairwise F_{ST} values with the other S. helvola populations (0.359 -
321 322 323	SNR-MO showed some of the highest pairwise F_{ST} values with the other <i>S. helvola</i> populations (0.359 - 0.468) (Table 3). The strong admixture signal of <i>S. helvola</i> population IV-MO with IA, SP-MO, and AR
321 322 323 324	SNR-MO showed some of the highest pairwise F_{ST} values with the other <i>S. helvola</i> populations (0.359 - 0.468) (Table 3). The strong admixture signal of <i>S. helvola</i> population IV-MO with IA, SP-MO, and AR was reflected by its lower F_{ST} values when these populations were paired (0.260-0.284) (Table 3). The
321 322 323 324 325	SNR-MO showed some of the highest pairwise F_{ST} values with the other <i>S. helvola</i> populations (0.359 - 0.468) (Table 3). The strong admixture signal of <i>S. helvola</i> population IV-MO with IA, SP-MO, and AR was reflected by its lower F_{ST} values when these populations were paired (0.260-0.284) (Table 3). The same predominant genetic cluster assignment of <i>S. helvola</i> populations SP-MO and AR was also reflected
321 322 323 324 325 326	SNR-MO showed some of the highest pairwise F_{ST} values with the other <i>S. helvola</i> populations (0.359 - 0.468) (Table 3). The strong admixture signal of <i>S. helvola</i> population IV-MO with IA, SP-MO, and AR was reflected by its lower F_{ST} values when these populations were paired (0.260-0.284) (Table 3). The same predominant genetic cluster assignment of <i>S. helvola</i> populations SP-MO and AR was also reflected by their low pairwise F_{ST} (0.294) (Table 3). Consistent with its low levels of admixture, <i>S. helvola</i>
321 322 323 324 325 326 327	SNR-MO showed some of the highest pairwise F_{ST} values with the other <i>S. helvola</i> populations (0.359 - 0.468) (Table 3). The strong admixture signal of <i>S. helvola</i> population IV-MO with IA, SP-MO, and AR was reflected by its lower F_{ST} values when these populations were paired (0.260-0.284) (Table 3). The same predominant genetic cluster assignment of <i>S. helvola</i> populations SP-MO and AR was also reflected by their low pairwise F_{ST} (0.294) (Table 3). Consistent with its low levels of admixture, <i>S. helvola</i> population IA showed high F_{ST} values paired with SP-MO (0.383) and AR (0.405) (Table 3).
 321 322 323 324 325 326 327 328 	SNR-MO showed some of the highest pairwise F_{ST} values with the other <i>S. helvola</i> populations (0.359 - 0.468) (Table 3). The strong admixture signal of <i>S. helvola</i> population IV-MO with IA, SP-MO, and AR was reflected by its lower F_{ST} values when these populations were paired (0.260-0.284) (Table 3). The same predominant genetic cluster assignment of <i>S. helvola</i> populations SP-MO and AR was also reflected by their low pairwise F_{ST} (0.294) (Table 3). Consistent with its low levels of admixture, <i>S. helvola</i> population IA showed high F_{ST} values paired with SP-MO (0.383) and AR (0.405) (Table 3). Additionally, <i>Strophostyles leiosperma</i> cluster separation was reflected in F_{ST} values, where populations
321 322 323 324 325 326 327 328 329	SNR-MO showed some of the highest pairwise F_{ST} values with the other <i>S. helvola</i> populations (0.359 - 0.468) (Table 3). The strong admixture signal of <i>S. helvola</i> population IV-MO with IA, SP-MO, and AR was reflected by its lower F_{ST} values when these populations were paired (0.260-0.284) (Table 3). The same predominant genetic cluster assignment of <i>S. helvola</i> populations SP-MO and AR was also reflected by their low pairwise F_{ST} (0.294) (Table 3). Consistent with its low levels of admixture, <i>S. helvola</i> population IA showed high F_{ST} values paired with SP-MO (0.383) and AR (0.405) (Table 3). Additionally, <i>Strophostyles leiosperma</i> cluster separation was reflected in F_{ST} values, where populations IA and IV-MO had a low pairwise F_{ST} of 0.251, while the F_{ST} of <i>S. leiosperma</i> population SNR-MO with

14

333	S. leiosperma (R^2 =0.184; P=0.495). This is consistent with the nonlinear pattern of genetic similarity
334	across geographic space observed in our fastSTRUCTURE and F_{ST} results (Fig. 2; Table 3).
335	
336	Principal component analysis also largely supported the intraspecific genetic patterns observed in
337	fastSTRUCTURE and F_{ST} values. PC2, which separated the two clusters of S. leiosperma, explained 17%
338	of the total genetic variation (Fig. 3A). S. helvola populations remained tightly clustered on both PC1 and

339 PC2, with intraspecific variation only emerging in PC3 and PC4 (Fig. 3B). S. helvola individuals with

340 admixture from the AR / SP-MO and IV-MO clusters were intermediate to the non-admixed individuals

341 from these clusters in PC3 and PC4 (Fig. 3B). There was also some overlap of the *S. helvola* SNR-MO

342 cluster with the S. helvola AR / SP-MO cluster on PC4 alone, reflecting the slight admixture of SNR-MO

in those populations (Fig. 3B). The S. helvola IA cluster remained relatively isolated on PC3 and PC4,

344 with the exception of a few admixed individuals approaching the S. helvola IV-MO cluster, representing

345 the admixture between those populations (Fig. 3B). *S. leiosperma* clusters all lacked genetic variation on

346 PC3 (F_1 =3.11; P=0.08) and PC4 (F_1 =1.61; P=0.21) and thus were omitted from Fig. 3B in order to better

- 347 visualize variation in *S. helvola*.
- 348

The AMOVA further confirmed that, in addition to genetic variation between species, there was a significant level of variation among populations within species (17.7%; F_{SC} =0.471; P=0.001), but a lack of significant variation among individuals within populations (-0.1%; F_{IS} =-0.003; P=0.937; Table 2; slight negative deviations of F statistics from 0 can be interpreted as a lack of genetic structure among members of that group, i.e., F_{IS} ≈0; Schneider et al., 2000; Meirmans, 2006).

354

355 *Population genetic diversity patterns are varied*—Both species showed mixed patterns of genetic 356 diversity among their populations. The genotype frequencies of all populations deviated significantly 357 from Hardy-Weinberg equilibrium (P = 0.001-0.003) with the exception of *S. leiosperma* population 358 SNR-MO (P = 0.487), both due to heterozygote excess and deficiency as determined by F_{1S} (Table 4). The

15

359	greatest observed heterozygosity (H_0) was observed in the S. helvola IA population (0.109) and the
360	lowest in the S. helvola SNR-MO population (0.087; Table 3). S. leiosperma had more consistently high
361	H ₀ across its populations (0.100-0.108) than S. helvola (Table 4). In contrast, S. helvola populations had
362	more consistently high within-population gene diversity (H_s ; expected heterozygosity; Nei, 1987), with
363	the highest value in population IV-MO (0.125), and the lowest value again in population SNR-MO
364	(0.086; Table 4). S. leiosperma populations IA and IV-MO had the lowest overall H_s at 0.078 and 0.076
365	respectively, while S. leiosperma population SNR-MO was higher at 0.101 (Table 4). Negative values for
366	the inbreeding coefficient (F_{IS}) were observed in S. helvola populations IA (-0.133) and SNR-MO (-
367	0.019), and S. leiosperma populations IA (-0.387) and IV-MO (-0.310), indicating heterozygote excess
368	(Table 4). F _{IS} was highest in S. helvola IV-MO, SP-MO, and AR (0.111-0.250), indicating heterozygote
369	deficiency and possibly higher levels of inbreeding in these populations (Table 4). S. leiosperma
370	population SNR-MO had an F_{IS} value of 0, indicating neither heterozygote deficiency nor excess, and
371	thus approximate Hardy-Weinberg equilibrium (Table 4).
372	
373	DISCUSSION
374	
375	We present the first population genetics study of Strophostyles, which supports the genetic separation of
376	S. helvola and S. leiosperma and highlights unique patterns of genetic structuring and diversity among
377	populations within each species.
378	
379	Separation of species—This study provides clear evidence for the genetic differentiation of
380	Strophostyles helvola and S. leiosperma, at least in the range studied here. While these two species are
381	sympatric across much of the central United States, there does not appear to be gene flow between them.
382	This finding is consistent with the clear morphological distinction of S. leiosperma from the other two
383	Strophostyles species, as well as genetic evidence from chloroplast and ITS markers (Riley-Hulting et al.,

2004). This is in spite of similar pollen morphology across Strophostyles species, overlapping flowering

16

385 times, generalist pollinators, and S. helvola and S. leiosperma being sister species (Krombein et al., 1979; 386 Riley-Hulting et al., 2004; own observation). This clear genetic separation in spite of opportunity for 387 hybridization indicates an as yet undetermined reproductive barrier between S. helvola and S. leiosperma. 388 One possibility is interspecific pollen-rejection during pollen-pistil interaction (Bedinger et al., 2017); 389 however, demonstrating this will require testing under controlled conditions. 390 391 **Population genetic structure within species**—Population genetic structure was found to differ for 392 Strophostyles helvola and S. leiosperma. Strophostyles helvola is a putatively outcrossing species with 393 large, showy flowers and which is particularly common in mesic sites, while S. leiosperma is a putatively 394 selfing species with small flowers and which tends to inhabit relatively more open, xeric sites; 395 nevertheless, there is considerable overlap between their distributions (Fig. 1; Riley-Hulting et al., 2004). 396 In S. helvola, we found four distinct genetic clusters among the five populations collected, with the two 397 southernmost populations (SP-MO and AR) primarily assigning to the same cluster (Fig. 2). In S. 398 *leiosperma*, we found only two genetic clusters, with the two northernmost populations assigning to the 399 same cluster (Fig. 2). 400 401 Evidence of admixture was discovered primarily in three populations of *Strophostyles helvola*: IA, SP-402 MO, and AR, while the structure patterns of the other genetic clusters were largely unmixed. Given the 403 great distances between collection sites (>200 km) and likely either selfing and/or insect-mediated 404 pollination, it is unlikely that direct pollen flow is occurring across the populations studied (Hamrick, 405 1982; Riley-Hulting et al., 2004). Genetic admixture here could be from migration via seed dispersal and 406 shared ancestry. Similar to the pattern in S. helvola, a study in Capsella found that in a selfing species,

- 407 while there was genetic structure between populations, there were also several individuals in most
- 408 populations with mixed genetic ancestry, which they attribute to the colonization of a few propagules
- 409 from distant populations and subsequent genetic integration (St. Onge et al., 2011). However, there are
- 410 also likely several populations of *S. helvola* and *S. leiosperma* interspersed between these localities,

411	which may allow indirect gene flow between the populations studied here. Sampling from such
412	interspersed populations at a finer geographic scale could reveal a genetic gradient of admixture produced
413	by gene flow across these more proximate populations, which may thus function as metapopulations.
414	Populations lacking admixture, such as S. helvola populations IV-MO and SNR-MO, may indicate that
415	these populations are relatively isolated from such potential gene flow.
416	
417	Strophostyles helvola may often be water-dispersed, as this species' seeds are known to have a cellular
418	coating which lends them buoyancy in water (Riley-Hulting et al., 2004). The seeds of Strophostyles
419	umbellata, which have the same coating as S. helvola, have been observed to be buoyant in water for
420	three weeks (Erickson and Young, 1995). The most proximate potential route of dispersal in our study
421	region may therefore be the Mississippi River and its tributaries. However, while most of our sites are
422	near tributaries of the Mississippi River, none of them lie directly downstream of sites at higher latitudes.
423	Specifically, population IA is closest to the Cedar River (~5 km); IV-MO is closest to the Des Moines
424	River (~3 km); SNR-MO is adjacent to the Meramec River (~3 km); and AR is immediately adjacent to
425	the Arkansas River. Population SP-MO is unique in that it is more than 16 km from the nearest river
426	(Current River).
427	
428	In contrast, Strophostyles leiosperma shows some population differentiation, but no substantive evidence
429	of admixture (Fig. 2). The S. leiosperma population SNR-MO showed very high F_{ST} differentiation from
430	S. leiosperma populations IA and IV-MO (Table 3). However, S. leiosperma samples from SNR-MO did
431	not show qualitatively distinct floral or vegetative morphology compared to that of the other two
432	populations. One explanation is that IA and IV-MO originated from the same ancestral source population
433	or were connected via some route of migration. While F_{IS} in S. leiosperma population SNR-MO is 0, the
434	reduced heterozygosity compared to the other two S. leiosperma populations may be due to a genetic
435	bottleneck if the population was colonized by only a few founder individuals (Table 4). Unlike S. helvola,
436	S. leiosperma seeds are generally smooth and not thought to be commonly water dispersed (Riley-Hulting

437	et al., 2004). There are no currently recognized infraspecific taxa for S. leiosperma, although Riley-
438	Hulting et al. (2004) did find a slight genetic difference (ITS region) between S. leiosperma samples from
439	the northernmost / southwestern-most range and samples from Missouri and Arkansas.
440	
441	Overall, the greatest amount of genetic variation for both species was found among rather than within
442	populations (Table 2). However, this pattern could be primarily due to the large geographic distances
443	between populations more so than a biological cause, as increasing distance between populations is
444	known to decrease genetic diversity detected within populations and inflate diversity detected among
445	populations (Reisch and Bernhardt-Römermann, 2014). Similarly, the great distances between
446	populations may explain the lack of clear isolation by distance; at the scale of this study, local dispersal
447	and gene flow may not be the predominant drivers of genetic differentiation (Twyford et al., 2020).
448	
449	Human-mediated dispersal may also influence Strophostyles population dynamics, as evidenced by many
450	herbarium records collected from anthropogenically disturbed sites, such as near railroads and ditches
451	(Riley-Hulting et al., 2004). Riley-Hulting et al. (2004) specifically suggest Strophostyles seed dispersal
452	via movement of ballast (gravel/sand track base) during the construction of railways (Riley-Hulting et al.,
453	2004). Strophostyles helvola and S. leiosperma have repeatedly been observed in railroad ballast in the
454	Midwest (Pepoon, 1927; Gilly and McDonald, 1936; Deam, 1940), likely due to their proclivity for sandy
455	soil. Indeed, the municipalities of the sites SP-MO (Neelyville, Missouri) and AR (Little Rock, Arkansas)
456	were directly connected by the St. Louis, Iron Mountain and Southern Railway as early as the 1870s (St.
457	Louis, 1878; Stepenoff, 1993). In the absence of clear water routes, this may have been a conduit of
458	shared ancestry in S. helvola between sites SP-MO and AR. Colonization of railway habitats has been
459	observed in numerous plant species, particularly annual, ruderal species (Mühlenbach, 1979; Arnold,
460	1981; Austin, 2003; Hill and Blaney, 2009). The extent to which water and human dispersal has
461	influenced population structure in Strophostyles could be more directly tested by sampling sites along

19

462 major rivers and historic railroads. Rapid human dispersal could also contribute to nonlinear relationship463 between geographic and genetic distance.

464

465 Population genetic diversity within species—Varied patterns of genetic diversity were also found 466 within each species, which warrants further investigation. Heterozygote excess (negative F_{IS}) was found 467 in both Strophostyles helvola and S. leiosperma. High heterozygosity in S. leiosperma (IA and IV-MO; 468 Table 4) is in contrast to the lack of heterozygosity found by Riley-Hulting et al. (2004) and the 469 hypothesis that S. leiosperma is a primarily selfing species. However, Riley-Hulting et al. (2004) only 470 sequenced two markers (trnK and ITS) and not from multiple individuals within populations, so they may 471 have missed this signature of heterozygosity. Two populations of *Strophostyles helvola* also showed 472 heterozygote excess (IA and SNR-MO; Table 4). Heterozygote excess can occur due to self-473 incompatibility, asexual reproduction, or selection for heterozygous individuals due to inbreeding 474 depression (Stoeckel et al., 2006). This often occurs in longer-lived woody and clonal species (Stilwell et 475 al., 2003; Ge et al., 2005; Stoeckel et al., 2006), although clonality and woodiness is not known to occur 476 in *Strophostyles* (Riley-Hulting et al., 2004). On the other hand, there was also significant heterozygote 477 deficiency among the other S. helvola populations IV-MO, SP-MO, and AR, which suggests some degree 478 of inbreeding in these populations (Table 4). Mating system is known to be quite variable within plant 479 species in general and can even vary among conspecific individuals within the same population (Hamrick, 480 1982; Ma et al., 2020). Such mating system variability may help explain the mixed patterns in genetic 481 diversity in *Strophostyles*; testing outcrossing rate and self-compatibility across multiple populations will 482 be needed to confirm this.

483

484 Unique genetic patterns in population SNR-MO—At the Shaw Nature Reserve (SNR-MO), both
485 Strophostyles helvola and S. leiosperma displayed unique patterns of genetic differentiation and diversity.
486 Both species had distinctly differentiated genetic clusters for SNR-MO, with a lack of admixture with
487 other populations (Fig. 2, 3), and SNR-MO consistently displayed the highest pairwise F_{ST} values with

20

488 other populations (Table 3). Lastly, F_{IS} was close to 0 (Hardy-Weinberg equilibrium) in SNR-MO for 489 both species (Table 4). All of this points to unique population dynamics occurring at SNR-MO, which 490 could be related to the species' unique history of establishment at this site. While no intentional 491 introduction of Strophostyles is known at SNR-MO (James Trager, pers. comm. 2021), it is nevertheless 492 possible that an undocumented or unintentional introduction occurred. Such an introduction may have 493 involved only a small number of seeds, which could have induced a genetic bottleneck for both species. 494 The lack of admixture with other populations also suggests that few if any further dispersal events 495 occurred to introduce new genetic variation into this population, leaving it isolated. This possible founder 496 effect is further suggested by the relatively lower level of heterozygosity for S. leiosperma in SNR-MO 497 $(F_{IS} = 0)$ compared to the other two populations $(F_{IS} = -0.387 \text{ to } -0.310; \text{ Table 4})$. The geographic origin 498 of the propagules which colonized SNR-MO remains unknown, although the slight representation of the 499 S. helvola SNR-MO genetic cluster in the southernmost populations SP-MO and AR suggest a potential 500 origin from the southern range of the species (Fig. 2). Taken together, population SNR-MO serves as an 501 interesting case study of the potential for both species to become isolated and genetically differentiate in 502 certain disconnected populations. This warrants further investigation into the mechanisms responsible for 503 genetic differentiation in this and other isolated populations, as well as whether differentiation was 504 primarily produced by genetic drift or if there is an adaptive component.

505

506 Future directions—Our study is limited in that a large portion of the range of both S. helvola and 507 S. leiosperma could not be sampled. Strophostyles leiosperma extends across much of the central Great 508 Plains region, and S. helvola also has a broad distribution across the coastal eastern U.S. (Riley-Hulting et 509 al., 2004); novel genetic diversity likely remains to be discovered in those areas. Thus, it remains to be 510 seen if our patterns of genetic differentiation and diversity apply to a broader sampling of both species, or 511 if they are unique to the region studied here. Significantly high population differentiation found even at 512 this scale suggests considerable genetic variation across the range of *Strophostyles* species. On the other 513 hand, sampling from sites which are more geographically proximate will also be beneficial, in order to

514	reveal further evidence of admixture if short-distance pollen transfer and seed dispersal are in fact
515	important mechanisms for gene flow in these species. Ideally, future studies will examine Strophostyles
516	genetic diversity across multiple geographic and biological scales. The alignment of both species to the
517	Phaseolus vulgaris reference genome will also inherently constrain the amount of genetic variation that
518	can be detected, which can be improved by constructing a de novo genome within the Strophostyles
519	genus. Future work should also include the third species in the genus, Strophostyles umbellata, which has
520	a separate distribution from the sampling in this study and is known to be strongly perennial (Riley-
521	Hulting et al., 2004). There is also some morphological evidence for hybridization between S. helvola and
522	S. umbellata (Riley-Hulting et al., 2004).
523	
524	Overall, this study reinforces the need to further investigate multiple aspects of Strophostyles life history
525	and population biology, particularly life span, mating system, and modes of dispersal, particularly
526	whether these traits differ among populations studied and the ecological correlates of these differences. A
527	precise study on the floral biology of Strophostyles species is also warranted, particularly on self-
528	compatibility, interspecific pollen compatibility, anatomical differences in flower morphology, and
529	pollinator interactions, which may all contribute to the observed patterns of genetic diversity and
530	admixture.
531	
532	CONCLUSIONS
533	
534	These data show for the first time the genomic diversity of <i>Strophostyles</i> species at the population level.
535	From this, we were able to confirm the genetic separation of S. helvola and S. leiosperma within the range
536	of this study, and we found complex patterns of genetic structure and diversity within both species. Mixed
537	patterns of admixture and heterozygosity call for a detailed assessment of the life history and reproductive
538	biology of both species, particularly mating system variation, as well as more fine-scale sampling
539	allowing for clarification of local population dynamics. Information gained here demonstrates that there is

22

540 an abundance of genetic diversity across the range of both S. helvola and S. leiosperma, and much of the 541 distribution of these species remains to be explored. Acquiring genetic information from non-model taxa 542 such as *Strophostyles* species will be critical in discovering novel genetic diversity related to 543 environmental tolerances and other adaptive features that can inform plant evolutionary ecology and crop 544 breeding. 545 546 **ACKNOWLEDGMENTS** 547 548 This research was funded by the Perennial Agriculture Project (Malone Family Land Preservation 549 Foundation and The Land Institute). S.A.H. was supported by a graduate research assistantship from the 550 Saint Louis University Department of Biology. M.J.R. was supported by the Donald Danforth Plant 551 Science Center and the Perennial Agriculture Project. We are grateful to the Department of Energy Joint 552 Genome Institute and collaborators for pre-publication access to the *Phaseolus vulgaris* v.2.1 genome. 553 We thank the following for their assistance in planning population sampling: Claudia Ciotir, Laura Klein, 554 and Joel Swift. We are grateful to the following who assisted in locating collection sites: Steven Cannon, 555 Laura Jackson, Justin Meissen, and Robert S. Wallace. For assistance with permitting and site 556 information, we are indebted to Malissa Briggler, Christopher Crabtree, Ian Hope, Steve Paes, Daryl 557 Smith, and James Trager. For assistance preparing samples and extracting DNA, we thank Niyati Bhakta, 558 Claudia Ciotir, Emma Frawley, Nathan Held, Aidan Leckie-Harre, and Lisa Millar. We thank Donna 559 Herrera at the Missouri Botanical Garden for assistance in depositing voucher specimens. We are grateful

to the Carrington, Eveland, Nusinow, Slotkin, and Topp labs (Donald Danforth Plant Science Center) for

providing necessary equipment and expertise in processing samples. We also wish to acknowledge the

562 work of REU student Marissa C. Sandoval, for her additional studies on *Strophostyles* germination and

563 herbarium morphological studies. Lastly, we appreciated the time and thoughtful feedback on previous

versions of this manuscript from the Miller Lab and from researchers Wendy Applequist, Peter Bernhardt,

565 Gerardo Camilo, Elizabeth Kellogg, Jason Knouft, and Chris Topp.

-	-
\mathbf{a}	2
L	Э

566	
567	AUTHOR CONTRIBUTIONS
568	
569	S.A.H. and A.J.M. designed the study, and S.A.H. implemented the research and wrote the manuscript.
570	Z.N.H. and M.J.R. assisted in the computational analysis of genomic data and contributed to the writing
571	of the manuscript.
572	
573	DATA AVAILABILITY
574	
575	All genomic data are deposited in the Sequence Read Archive, and R code is available at the following
576	GitHub page. [Data is in preparation for submission to these permanent archives].
577	
578	SUPPORTING INFORMATION
579	
580	Additional supporting information may be found online in the Supporting Information section at the end
581	of the article.
582	
583	APPENDIX S1. Excel spreadsheet containing metadata for all samples collected, including location
584	coordinates and details, and genetic quality metrics.
585	
586	APPENDIX S2. Genetic structure plots with K=2 to K=7 clusters for <i>Strophostyles helvola</i> and <i>S</i> .
587	leiosperma.
588	
589	LITERATURE CITED
590	

Arnold, R. M. 1981. Population dynamics and seed dispersal of Chaenorrhinum minus on railroad cinder

24

592	ballast. American Midland Naturalist 106: 80–91.
593	
594	Austerlitz, F., S. Mariette, N. Machon, P. H. Gouyon, and B. Godelle. 2000. Effects of colonization
595	processes on genetic diversity: differences between annual plants and tree species. Genetics 154: 1309-
596	1321.
597	
598	Austin, K. C. 2003. Botanical processes in urban derelict spaces. Ph.D. dissertation, University of
599	Birmingham, Birmingham, UK.
600	
601	Azani, N., M. Babineau, C. D. Bailey, H. Banks, A. R. Barbosa, B. Pinto, J. S. Boatwright, et al. 2017. A
602	new subfamily classification of the Leguminosae based on a taxonomically comprehensive phylogeny.
603	<i>Taxon</i> 66: 44–77.
604	
605	Balfourier, F., G. Charmet, and C. Ravel. 1998. Genetic differentiation within and between natural
606	populations of perennial and annual ryegrass (Lolium perenne and L. rigidum). Heredity 81: 100-110.
607	
608	Barrett, S. C. H., L. D. Harder, and A. C. Worley. 1996. The comparative biology of pollination and
609	mating in flowering plants. Philosophical Transactions of the Royal Society of London B: Biological
610	Sciences 351: 1271–1280.
611	
612	Barrett, S. C. H., and L. D. Harder. 2017. The ecology of mating and its evolutionary consequences in
613	seed plants. Annual Review of Ecology, Evolution, and Systematics 48: 135–157.
614	
615	Bedinger, P. A., A. K. Broz, A. Tovar-Mendez, and B. McClure. 2017. Pollen-pistil interactions and their

616 role in mate selection. *Plant Physiology* 173: 79–90.

61	7
----	---

- 618 Bird, L. G., and R. D. Bird. 1931. Winter food of Oklahoma quail. *Wilson Bulletin* 43: 293–305.
- 619
- 620 Bushnell, B. 2014. BBMap: a fast, accurate, splice-aware aligner. No. LBNL-7065E. Lawrence Berkeley
- 621 National Lab, Berkeley, California, USA.
- 622
- 623 Butler, T. J., and J. P. Muir. 2010. 'Rio Rojo' smooth-seeded wild bean, a native annual forage legume.
- 624 *Journal of Plant Registrations* 4: 103–105.
- 625
- 626 Chang, C. C., C. C. Chow, L. C. Tellier, S. Vattikuti, S. M. Purcell, and J. J. Lee, 2015. Second-
- 627 generation PLINK: rising to the challenge of larger and richer datasets. *Gigascience* 4: s13742-015.
- 628
- 629 Charnov, E. L., and W. M. Schaffer. 1973. Life-history consequences of natural selection: Cole's result
 630 revisited. *American Naturalist* 107: 791–793.
- 631
- 632 Danecek P., A. Auton, G. Abecasis, C. A. Albers, E. Banks, M. A. DePristo, R. Handsaker, et al. 2011.
- 633 The variant call format and VCFtools. *Bioinformatics* 27: 2156–2158.
- 634
- 635 Deam, C. C. 1940. Flora of Indiana. Wm. B. Burford Printing Co., Indianapolis, Indiana, USA. Also at
 636 website https://swbiodiversity.org/.
- 637
- 638 Delgado-Salinas, A., M. Thulin, R. Pasquet, N. F. Weeden, and M. Lavin. 2011. Vigna (Leguminosae)
- 639 sensu lato: the names and identities of the American segregate genera. *American Journal of Botany* 98:
- **640** 1694–1715.
- 641

642	Diggs, G. M., B. L. Lipscomb, and R. J. O'Kennon. 1999. Shinners & Mahler illustrated flora of North
643	Central Texas. Botanical Research Institute of Texas, Fort Worth, Texas, USA.
644	
645	Duminil, J., S. Fineschi, A. Hampe, P. Jordano, D. Salvini, G. G. Vendramin, and R. J. Petit. 2007. Can
646	population genetic structure be predicted from life-history traits? American Naturalist 169: 662-672.
647	
648	Duminil, J., O. J. Hardy, and R. J. Petit. 2009. Plant traits correlated with generation time directly affect
649	inbreeding depression and mating system and indirectly genetic structure. BMC Evolutionary Biology 9:
650	177.
651	
652	Elshire, R. J., J. C. Glaubitz, Q. Sun, J. A. Poland, K. Kawamoto, E. S. Buckler, and S. E. Mitchell. 2011.
653	A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6:
654	e19379.
655	
656	Erickson, D. L., and D. R. Young. 1995. Salinity response, distribution, and possible dispersal of a barrier
657	island strand glycophyte, Strophostyles umbellata (Fabaceae). Bulletin of the Torrey Botanical Club 122:
658	95–100.
659	
660	Excoffier, L., P. E. Smouse, and J. M. Quattro. 1992. Analysis of molecular variance inferred from metric
661	distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics
662	131: 479–491.
663	

- Foerste, A. F. 1885. The fertilization of the wild bean (*Phaseolus diversifolius*). *American Naturalist* 19:
 887–888.
- 666

27

- 667 Foster, J. L., J. P. Muir, W. C. Ellis, and B. D. Lambert. 2008. Nutritive evaluation of two legumes
- 668 (Strophostyles) supplemented to goats fed a high quality coastal bermudagrass (Cynodon dactylon) hay
- diet. *Texas Journal of Agriculture and Natural Resources* 21: 73–81.
- 670
- 671 Francis, R. M. 2017. pophelper: an R package and web app to analyse and visualize population structure.
- 672 *Molecular Ecology Resources* 17: 27–32.

673

- 674 Friedman, J. 2020. The evolution of annual and perennial plant life histories: ecological correlates and
- 675 genetic mechanisms. *Annual Review of Ecology, Evolution, and Systematics* 51: 461–481.

676

- 677 Gamba, D., and N. Muchhala. 2020. Global patterns of population genetic differentiation in seed plants.
- 678 *Molecular Ecology* 29: 3413–3428.
- 679
- 680 Ge, X. J., M. H. Liu, W. K. Wang, B. A. Schaal, and T. Y. Chiang. 2005. Population structure of wild
- bananas, *Musa balbisiana*, in China determined by SSR fingerprinting and cpDNA PCR-RFLP.
- 682 *Molecular Ecology* 14: 933–944.

683

Gee, K. L., M. D. Porter, S. Demarais, F. C. Bryant, and G. van Vreede. 2011. White-tailed deer: their
foods and management, 3rd ed. Samuel Roberts Noble Foundation, Ardmore, Oklahoma, USA.

686

687 Gilly, C., and McDonald, M. 1936. Rare and unusual plants from southeastern Iowa. *Proceedings of the*688 *Iowa Academy of Science* 43: 143–149.

689

- Hall, M. C., and J. H. Willis. 2006. Divergent selection on flowering time contributes to local adaptation
- 691 in *Mimulus guttatus* populations. *Evolution* 60: 2466.

693	Hamrick, J. L. 1	1982. Plant pop	ulation genetics	and evolution. An	nerican Journal	of Botany 69): 1685–
-----	------------------	-----------------	------------------	-------------------	-----------------	--------------	----------

- **694** 1693.
- 695
- Hamrick, J. L., and M. J. W. Godt. 1996. Effects of life history traits on genetic diversity in plant species.
- 697 *Philosophical Transactions of the Royal Society B: Biological Sciences* 351: 1291–1298.
- 698
- Hill, N. M., and C. S. Blaney. 2009. Exotic and invasive vascular plants of the Atlantic maritime ecozone.
- 700 In D. F. McAlpine and I. M. Smith [eds.], Assessment of species diversity in the Atlantic maritime
- 701 ecozone, 1–18. NRC Research Press, Ottawa, Canada.
- 702
- 703 Immel, D. L. 2001. Trailing fuzzybean: Strophostyles helvula (L.) Ell. USDA NRCS Plant Guide.
- 704 Website https://plants.usda.gov/plantguide/pdf/cs_sthe4.pdf.
- 705
- 706 Isely, D. 1998. Native and naturalized Leguminosae of the USA. Brigham Young University, Utah, USA.707
- Jombart, T. 2008. adegenet: a R package for the multivariate analysis of genetic markers. *Bioinformatics*24: 1403–1405.
- 710
- Kahle, D., and H. Wickham. 2013. ggmap: spatial visualization with ggplot2. *R Journal* 5: 144-161.
- 713 Krombein, K., P. Hurd, D. Smith, and B. Burks. 1979. Catalog of Hymenoptera in America north of
- 714 Mexico, vol. 2. Smithsonian Institution Press, Washington, DC, USA.
- 715
- 716 Lackey, J. A. 1980. Chromosome numbers in the Phaseoleae (Fabaceae: Faboideae) and their relation to
- 717 taxonomy. American Journal of Botany 67: 595–602.
- 718

- 719 Lewis, G., B. Schrire, B. Mackinder, and M. Lock [eds.], 2005. Legumes of the world. Royal Botanic720 Gardens, Kew, UK.
- 721
- Li, H., and R. Durbin. 2009. Fast and accurate short read alignment with Burrows-Wheeler Transform.
- 723 *Bioinformatics* 25:1754–1760.
- 724
- T25 Lischer, H. E. L., and L. Excoffier. 2012. PGDSpider: an automated data conversion tool for connecting
- population genetics and genomics programs. *Bioinformatics* 28: 298–299.
- 727
- 728 Loveless, M. D., and J. L. Hamrick. 1984. Ecological determinants of genetic structure in plant
- populations. *Annual Review of Ecology and Systematics* 15: 65–95.
- 730
- 731 Lundgren, M. R., and D. L. Des Marais. 2020. Life history variation as a model for understanding trade-
- 732 offs in plant–environment interactions. *Current Biology* 30: R180–R189.
- 733
- 734 Ma, Y., S. C. H. Barrett, F. Y. Wang, J. C. Deng, and W. N. Bai. 2020. Do annual and perennial
- populations of an insect-pollinated plant species differ in mating system? *Annals of Botany* mcaa178.
- 736
- 737 McGregor, R. L., T. M. Barkley, R. E. Brooks, and E. K. Schofield. 1986. Flora of the Great Plains.
- 738 University Press of Kansas, Lawrence, Kansas, USA.
- 739
- 740 Meirmans, P. G. 2006. Using the AMOVA framework to estimate a standardized genetic differentiation
 741 measure. *Evolution* 60: 2399–2402.
- 742
- 743 Meirmans, P. G. 2020. Genodive version 3.0: easy-to-use software for the analysis of genetic data of
- diploids and polyploids. *Molecular Ecology Resources* 20: 1126–1131.

\mathbf{a}	1	٦.
- 1	L	
J		,

745	7	4	5
-----	---	---	---

- Monroe, J. G., B. Gill, K. G. Turner, and J. K. McKay. 2019. Drought regimens predict life history
 strategies in *Heliophila*. *New Phytologist* 223: 2054–2062.
- 748
- 749 Morishima, H., and P. Barbier. 1990. Mating system and genetic structure of natural populations of wild
- rice *Oryza rufipogon*. *Plant Species Biology* 5: 31–39.

751

- 752 Muir, J. P., R. L. Reed, and D. P. Malinowski. 2005. Impact of defoliation on herbage and seed
- 753 production of *Strophostyles helvula* and *S. leiosperma*. *Native Plants Journal* 6: 123–130.

754

- 755 Mühlenbach, V. 1979. Contributions to the synanthropic (adventive) flora of the railroads in St. Louis,
- 756 Missouri, U.S.A. Annals of the Missouri Botanical Garden 66: 1–108.
- 757
- Nei, M. 1987. Molecular evolutionary genetics. Columbia University Press, New York, New York, USA.
- 760 Parker, K. E. 1991. Sponemann Phase archaeobotany. *In* A.C. Fortier, T.O. Maher, and J.A. Williams
- 761 [eds.], The Sponemann site: the formative emergent Mississippian Sponemann Phase occupations, 377–
- 762 419. University of Illinois Press, Urbana, Illinois, USA.
- 763
- 764 Pelotto, J. P., and M. A. del Pero Martinez. 1998. Flavonoids in *Strophostyles* species and the related
- 765 genus *Dolichopsis* (Phaseolinae, Fabaceae): distribution and phylogenetic significance. *Sida* 18: 213–222.
 766
- 767 Pepoon, H. S. 1927. Catalog of all plants native, naturalized and introduced of the fern and seed plants
- found growing spontaneously in the Chicago area. In An annotated flora of the Chicago area. Chicago
- 769 Academy of Science, Chicago, Illinois, USA.

31

771	Peterson.	M. L.,	K. M. Ka	v. and A. L.	Angert. 2016.	The scale of local	adaptation in <i>Mimulus</i>	guttatus:

- comparing life history races, ecotypes, and populations. *New Phytologist* 211: 345–356.
- 773
- 774 Poland, J. A., P. J. Brown, M. E. Sorrells, and J. Jannink. 2012. Development of high-density genetic
- maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. *PLoS ONE* 7:
- e32253.
- 777
- 778 R Core Team. 2021. R: a language and environment for statistical computing. R Foundation for Statistical
- 779 Computing, Vienna, Austria. Website https://www.R-project.org/.
- 780
- 781 Raj, A., M. Stephens, and J. K. Pritchard. 2014. fastSTRUCTURE: variational inference of population
- **782** structure in large SNP data sets. *Genetics* 197: 573–589.
- 783
- Reisch, C., and M. Bernhardt-Römermann. 2014. The impact of study design and life history traits on
- genetic variation of plants determined with AFLPs. *Plant Ecology* 215: 1493–1511.
- 786
- 787 Riley-Hulting, E. T., A. Delgado-Salinas, and M. Lavin. 2004. Phylogenetic systematics of Strophostyles
- 788 (Fabaceae): a North American temperate genus within a neotropical diversification. *Systematic Botany*
- **789** 29: 627–653.
- 790
- Robertson, C. 1890. Flowers and insects. V. University of Chicago Press 15: 199–204.

- Savary, P. 2020. graph4lg: build graphs for landscape genetics analysis. R package version 1.0.1. Website
 https://CRAN.R-project.org/package=graph4lg.
- 795

32

796	Schmutz, J., P. E. McClean, S. Mamidi, G. A. Wu, S. B. Cannon, J. Grimwood, J. Jenkins, et al. 2014. A
797	reference genome for common bean and genome-wide analysis of dual domestications. Nature Genetics
798	46: 707–713.

799

- 800 Schneider, S., D. Roessli, and L. Excoffier. 2000. ARLEQUIN, version 2.000. A software for population
- 801 genetics data analysis. FAQ list. Genetics and Biometry Laboratory, University of Geneva, Switzerland.
- 802 Website http://cmpg.unibe.ch/software/arlequin/software/2.000/doc/faq/faqlist.htm.
- 803
- 804 St. Louis, Iron Mountain, and Southern Railway Company. 1878. Map of the St. Louis, Iron Mountain
- 805 and Southern Railway and connections. University of North Texas Libraries, Denton, Texas, USA.
- 806 Website https://texashistory.unt.edu/ark:/67531/metapth220495/m1/1/.
- 807
- 808 St. Onge, K. R., T. Källman, T. Slotte, M. Lascoux, and A. E. Palmé. 2011. Contrasting demographic
- 809 history and population structure in *Capsella rubella* and *Capsella grandiflora*, two closely related species
- 810 with different mating systems. *Molecular Ecology* 20: 3306–3320.
- 811
- 812 Stepenoff, B. 1993. Butler County, Missouri historical and architectural survey. History and Archives
- 813 Consultants for Ozark Foothills Regional Planning Commission. Website
- 814 https://dnr.mo.gov/shpo/survey/BUAS002-R.pdf.
- 815
- 816 Stilwell, K. L., H. M. Wilbur, C. R. Werth, and D. R. Taylor. 2003. Heterozygote advantage in the
- 817 American chestnut, Castanea dentata (Fagaceae). American Journal of Botany 90: 207-213.
- 818
- 819 Stoeckel, S., J. Grange, J. F. Fernández-Manjarres, I. Bilger, N. Frascaria-Lacoste, and S. Mariette. 2006.
- 820 Heterozygote excess in a self-incompatible and partially clonal forest tree species - Prunus avium L.
- 821 Molecular Ecology 15: 2109–2118.

2	2
3	3

822	
823	Stubbendieck, J., and E. C. Conard. 1989. Common legumes of the Great Plains, 1st ed. University of
824	Nebraska Press, Lincoln, Nebraska, USA.
825	
826	Tsang, A., and M. A. Maun. 1999. Mycorrhizal fungi increase salt tolerance of Strophostyles helvola in
827	coastal foredunes. <i>Plant Ecology</i> 144: 159–166.
828	
829	Twyford, A. D., E. L. Y. Wong, and J. Friedman. 2020. Multi-level patterns of genetic structure and
830	isolation by distance in the widespread plant Mimulus guttatus. Heredity 125: 227-239.
831	
832	USDA-NRCS. 2018. The PLANTS Database. National Plant Data Team, Greensboro, North Carolina,
833	USA. Website http://plants.usda.gov.
834	
835	Vest, K. 2019. Diversity across a latitudinal cline: seasonal timing traits and a cryptic speciation event.
836	M.S. thesis. Binghamton University.
837	
838	Weir, B. S., and C. C. Cockerham. 1984. Estimating F-statistics for the analysis of population structure.
839	Evolution 38: 1358–1370.
840	
841	Wickham, H. 2016. ggplot2: elegant graphics for data analysis. Springer-Verlag, New York, New York,
842	USA. Website https://ggplot2.tidyverse.org.
843	
844	Wiseman, D. S. 1977. Food habits and weights of bobwhite from northeastern Oklahoma tall grass
845	prairie. Proceedings of the Oklahoma Academy of Science 57: 110–115.
846	

- 847 Wright, S. 1965. The interpretation of population structure by F-statistics with special regard to systems
- 848 of mating. *Evolution* 19: 395–420.
- 849
- 850 Yates, A. D., P. Achuthan, W. Akanni, J. Allen, J. Allen, J. Alvarez-Jarreta, M. R. Amode, et al. 2020.
- 851 Ensembl 2020. *Nucleic Acids Research* 48: D682–D688.
- 852
- Yatskievych, G. 2013. Steyermark's flora of Missouri, vol. 3. Missouri Botanical Garden Press, St. Louis,
 Missouri, USA.
- 855
- 856 Zhang, H., C. Zuelsdorf, D. Penneys, S. Fan, J. Kofsky, and B. H. Song. 2018. Transcriptome profiling of
- a beach-adapted wild legume for dissecting novel mechanisms of salinity tolerance. *Scientific Data* 5:
- 858 180290.
- 859
- 860 Zuelsdorf, C. 2018. Understanding salt adaptation in sand beans (Strophostyles helvola). M.S. thesis,
- 861 University of North Carolina Charlotte, Charlotte, North Carolina. USA.

862 Table 1. Summary of population sampling for *Strophostyles helvola* and *S. leiosperma* across sites. *S. leiosperma* was not present at sites SP-MO
863 and AR. Sites are sorted by descending latitude. Lat/long coordinates are the approximate centroid of the primary area of sampling at each site
864 (average of coordinates of all samples), and the elevation is the rounded average among all samples in meters above sea level (masl). Individual
865 sample information is available in Appendix S1.

Location(s)	Site ID	Lat/long	Elevation	Species	Individuals	Voucher
			(masl)		sequenced	Collection No.
Cedar Hills Sand Prairie, Ceda	r IA	42.59764	284	Strophostyles helvola	20	SH 3.8; SH 3.28
Falls, Iowa, USA		-92.55197		Strophostyles leiosperma	20	SH 3.10; SH 3.25
Frost Island Conservation Area	a IV-MO ^a	40.42992	167	Strophostyles helvola	21	SH 2.7; SH 2.32
& Iliniwek Village State Histo	ric	-91.55692		Strophostyles leiosperma	17	SH 2.6; SH 2.31
Site, Wayland, Missouri, USA						
Shaw Nature Reserve, Gray	SNR-MO	38.48327	183	Strophostyles helvola	21	SH 1.30; SH 1.39
Summit, Missouri, USA		-90.81267		Strophostyles leiosperma	19	SH 1.28; SH 1.33
Sand Pond Conservation Area	SP-MO	36.50350	93	Strophostyles helvola	19	SH 4.20; SH 4.28
Neelyville, Missouri, USA		-90.59622				
Burns Park, North Little Rock,	AR ^b	34.79084	75	Strophostyles helvola	29	SH 7.21; SH 7.22
Arkansas, USA		-92.32575				

866	^a For IV-MO, the approximate centroid and elevation of sampling from Iliniwek Village State Historic Site was used for this table, since that is
867	where the majority of samples were collected from, while five samples were collected approximately 3 km from there at Frost Island Conservation
868	Area.
869	^b For AR, the approximate centroid and elevation of sampling from Burns Park was used for this table, since that is where the majority of samples
870	were collected from, while four samples were collected approximately 10 km from there in a gravel ditch in Little Rock, Arkansas.
871	
872	
873	
874	
875	
876	
877	
878	
879	
880	
881	
882	
883	

Table 2. Analysis of molecular variance (AMOVA) results from eight populations with 5556 total SNPS for both Strophostyles helvola and S. leiosperma. Here we decompose the genetic variation for individuals nested within populations, populations nested within species, among species, and among individuals. P-values are derived from 1000 permutations and thus have a lower threshold of 0.001. The unnested F_{TT} terms is not

interpretable and thus not assigned a *P*-value.

Source of variation	Nested in	% Variation	F-stat	<i>F</i> -value	<i>P</i> -value	
Among individuals	Population	-0.1 ^a	$F_{\rm IS}$	-0.003 ^a	0.937	
Among populations	Species	17.7	$F_{\rm SC}$	0.471	0.001	
Among species		62.4	F _{CT}	0.624	0.001	
Among individuals		19.9	$F_{ m IT}$	0.801		

^a Slightly negative values for percent variation and F statistics can occur due to a lack of significant genetic structure; since our results show a lack

of significance for this source of variation, we interpret these values as equivalent to zero (Schneider et al. 2000; Meirmans 2006).

Table 3. Pairwise F_{ST} values between all combinations of populations within species, including five populations of *Strophostyles helvola*, and three populations of *S. leiosperma*, based on 5556 biallelic SNPs. Populations are arranged from north to south latitudes, first with *S. helvola*, then *S. leiosperma*. F_{ST} values are shown below the diagonal, and the *P*-values for the pairwise F_{ST} are above the diagonal. *P*-

values are derived from 1000 permutations and thus have a lower threshold of 0.001.

Species	Population	IA	IV-MO	SNR-MO	SP-MO	AR	
Strophostyles helvola	IA		*0.001	*0.001	*0.001	*0.001	
	IV-MO	0.284		*0.001	*0.001	*0.001	
	SNR-MO	0.412	0.359		*0.001	*0.001	
	SP-MO	0.383	0.260	0.427		*0.001	
	AR	0.405	0.277	0.468	0.294		
Strophostyles leiosperma	IA		*0.001	*0.001			
	IV-MO	0.251		*0.001			
	SNR-MO	0.712	0.707				

900 * $\alpha < 0.0038$ significance after a Bonferroni correction for multiple tests (13).

901

902

903

905	Table 4. Diversity metrics for each population of <i>Strophostyles helvola</i> and <i>S. leiosperma</i> . H_0 is the observed heterozygosity, H_S is within-
906	population expected heterozygosity (Nei's gene diversity), F_{IS} is the inbreeding coefficient (from an AMOVA), and the HWE <i>P</i> -value is for
907	deviation of genotypes from Hardy-Weinberg equilibrium (random mating), where a significant value ($P < 0.05$) indicates significant deviation. P -
908	values are derived from 1000 permutations and thus have a lower threshold of 0.001.

Species	Population	Ho	$H_{ m S}$	F _{IS}	HWE <i>P</i> -value
Strophostyles helvola	IA	0.109	0.096	-0.133	0.001
	IV-MO	0.099	0.125	0.205	0.001
	SNR-MO	0.087	0.086	-0.019	0.003
	SP-MO	0.091	0.110	0.176	0.001
	AR	0.091	0.102	0.111	0.001
Strophostyles leiosperma	IA	0.108	0.078	-0.387	0.001
	IV-MO	0.100	0.076	-0.310	0.001
	SNR-MO	0.101	0.101	0.000	0.487

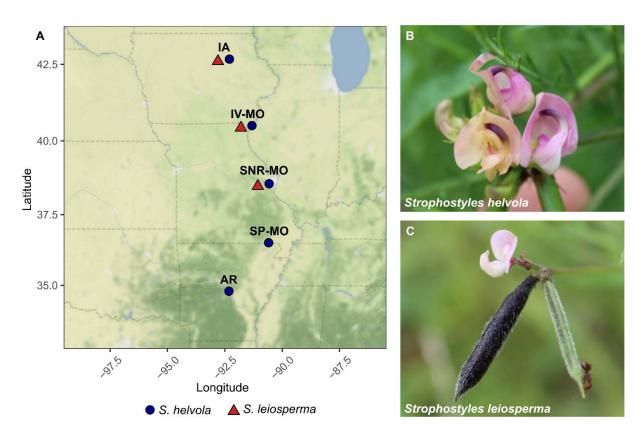
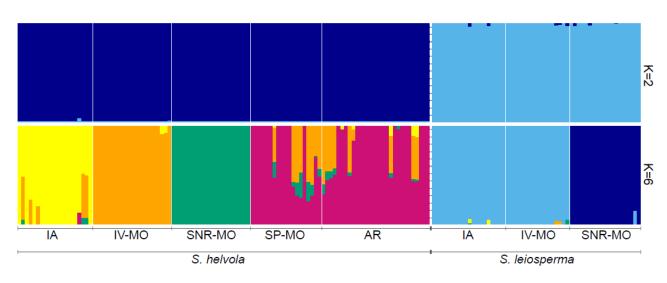
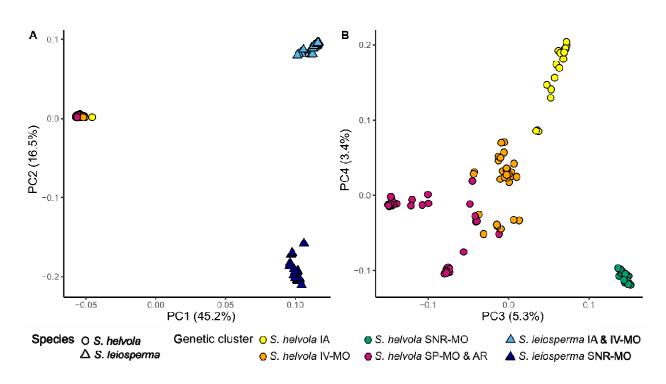



Figure 1. Diagram of population sampling and photographs of *Strophostyles helvola* and *S. leiosperma*. (A) Shows a map of populations sampled from sites across Iowa, Missouri, and Arkansas, USA. S. *helvola* populations are represented by a blue circle and *S. leiosperma* populations are represented by a red triangle. Where the species co-occur at the three northernmost sites, the points are spatially separated for visualization, although they occur at the same coordinates. (B) shows an inflorescence of S. helvola at population SNR-MO, and (C) shows an inflorescence of S. leiosperma with a flower, unripe pod, and ripe pod, at SNR-MO (not to scale). Note the difference in keel morphology and pubescence on the S. leiosperma pod. Photo credit: S.A.H.

Figure 2. Genetic structure plots with K=2 and K=6 clusters for *Strophostyles helvola* and *S. leiosperma*;

925 K=2 separated the species, and K=6 best explained overall genetic structure in the data. Populations,


labeled below the bars, are ordered north to south within species (left to right) and are separated by thin

927 white solid lines; species are separated by a thick white dashed line. Each vertical bar represents a single

928 individual from each population. Each color signifies a unique genetic cluster assignment, with multiple

- 929 colors within an individual signifying mixed ancestry.

0.0

Figure 3. Principal component analysis of SNP data for all populations of *Strophostyles helvola* and *S*.

leiosperma, where each point represents a single individual; point fill color matches the predominant

genetic cluster assignment from Fig. 2 and point shape corresponds to species. Displayed are (A) PC1 and

946 PC2 (both species), and (B) PC3 and PC4 (just *S. helvola*). *S. leiosperma* is omitted from panel (B) due to

- 947 nonsignificant genetic variation among populations for PC3 and PC4, and in order to better visualize *S*.
- *helvola* variation.