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AD/ADRD = Alzheimer’s disease and Alzheimer's disease related dementias; AMP-AD = 

Accelerating Medicines Project for Alzheimer’s Disease; BM = Brodmann area; CDR = 

clinical dementia rating; CER = cerebellum; CERAD = Consortium to Establish a Registry 

for Alzheimer’s Disease; CPM = counts per million reads; DEG = differentially expressed 

gene; DLPFC = dorsolateral prefrontal cortex; FP = frontal pole; IFG = inferior frontal gyrus; 

LOAD = late-onset Alzheimer’s disease; MCI = mild cognitive impairment; MSBB = Mount 

Sinai Brain Bank; NIA = National Institute on Aging; PCA = principal components analysis; 

PHG = parahippocampal gyrus; PMI = post-mortem interval; PVE = proportion of variance 

explained; RADC = Rush Alzheimer's Disease Center; RIN = RNA integrity number; 

ROSMAP = Religious Orders Memory and Aging Project Studies; SD = standard deviation; 

SI = severity index; STG = superior temporal gyrus; TCX = temporal cortex; UMAP = 

Uniform Manifold Approximation and Projection. 
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Abstract: 

Brain tissue gene expression from donors with and without Alzheimer’s disease (AD) have 

been used to help inform the molecular changes associated with the development and 

potential treatment of this disorder. Here, we use a deep learning method to analyze RNA-seq 

data from 1,114 brain donors from the AMP-AD consortium to characterize post-mortem 

brain transcriptome signatures associated with amyloid-β plaque, tau neurofibrillary tangles, 

and clinical severity in multiple AD dementia populations. Starting from the cross-sectional 

data in the ROSMAP cohort (n = 634), a deep learning framework was built to obtain a 

trajectory that mirrors AD progression. A severity index (SI) was defined to quantitatively 

measure the progression based on the trajectory. Network analysis was then carried out to 

identify key gene (index gene) modules present in the model underlying the progression. 

Within this dataset, SIs were found to be very closely correlated with all AD neuropathology 

biomarkers (R ~ 0.5, p < 1e-11) and global cognitive function (R = -0.68, p < 2.2e-16). We 

then applied the model to additional transcriptomic datasets from different brain regions 

(MAYO, n = 266; MSBB, n = 214), and observed that the model remained significantly 

predictive (p < 1e-3) of neuropathology and clinical severity. The index genes that 

significantly contributed to the model were integrated with AD co-expression regulatory 

networks, resolving four discrete gene modules that are implicated in vascular and metabolic 

dysfunction in different cell types respectively. Our work demonstrates the generalizability of 

this signature to frontal and temporal cortex measurements and additional brain donors with 

AD, other age-related neurological disorders and controls; and revealed the transcriptomic 

network modules contribute to neuropathological and clinical disease severity. This study 

illustrates the promise of using deep learning methods to analyze heterogeneous omics data 

and discover potentially targetable molecular networks that can inform the development, 

treatment and prevention of neurodegenerative diseases like AD.  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 12, 2021. ; https://doi.org/10.1101/2021.06.08.447615doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.08.447615


Introduction 

As the age of the global population advances, dementia, with late-onset Alzheimer’s disease 

(LOAD) as the most prevalent form, has become a formidable public health threat. Despite 

numerous recent scientific advances in illuminating the pathophysiology of LOAD, no 

disease modifying treatments are currently available. This fact underscores the complicated 

molecular etiology driving the disease and the urgent need to broaden our search for effective 

therapeutics beyond the conventional amyloid cascade hypothesis.1  

 

For a highly heterogeneous, multifactorial disease such as LOAD, integrated and large-scale 

genomic data analyses have been carried out to disentangle and capture the diverse gene 

regulatory interactions.2 Most of these studies focus on the exploration of the molecular 

mechanism of AD pathology by employing a case-control study design or modeling it as 

discrete stages, usually excluding the study subjects with other dementia pathologies, or 

omitting the mild cognitive impairment (MCI) stage and its role in the disease progression, 

even in the studies aiming to reveal the transcriptional dysregulation involving the 

progression of AD.3 Difficulties in sampling brain tissue throughout life coupled with 

globally limited access to diagnostic neuroimaging necessitates that a definitive diagnosis of 

AD is only made following postmortem neuropathological assessment. This further 

exacerbates the challenge we face in studying LOAD, or dementia in general as a continuous 

spectrum to find novel biomarker and drug targets. Recent efforts have begun to model AD 

progression as a continuous trajectory using cross-sectional transcriptomic data,4,5 by 

leveraging the methods developed in single-cell genomics6,7 and machine learning.8 Iturria-

Medina et al.4 adopted an unsupervised machine learning algorithm applied to gene 

expression microarray data and discovered a contrastive trajectory in multiple cohorts 

respectively. The trajectory has been demonstrated to strongly predict neuropathological 
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severity in AD in each dataset. Mukherjee et al.5 applied a manifold learning method to 

RNA-seq data to define ordering across samples based on gene expression similarity and 

estimate the disease pseudotime for each sample. Disease pseudotime was strongly correlated 

with the burden of Aβ, tau, and cognitive dementia within subjects with LOAD. Although 

these unsupervised machine learning methods have been shown to be highly predictive for 

well-known pathological biomarkers within a dataset, it would be desirable to have a 

generalized, universally predictive model for AD neuropathology and cognitive impairment 

across distinct cohorts and brain tissues, which helps decipher common AD etiology at 

molecular level. In addition, their broader application in peripheral tissues to identify novel 

biomarkers would greatly facilitate early diagnosis and progression monitoring of AD. 

 

Deep learning methodologies are a rapidly evolving class of machine learning algorithms that 

have demonstrated superior performance over traditional machine learning approaches in 

identifying intricate structures in complex high-dimensional data, across diverse domains 

including computer vision, pattern recognition and bioinformatics.9 Specific to genomic data, 

it has been demonstrated that “big data” in many human diseases can be exploited by deep 

learning methods for early detection,10 disease classification,11,12 and biomarker 

identification,8,13 mostly in the cancer research field. More recent efforts have begun to apply 

similar methods towards research questions within the neuroscience research field,14 

including the study of neurodegenerative disease,15 though the potential for these methods to 

contribute to novel insights in AD research remains underexplored. 

 

In this work, we are leveraging the multi-dimensional, well characterized and high quality 

genomic, neuropathological and clinical data from the Accelerating Medicines Project for 

Alzheimer’s Disease (AMP-AD) program16 and applying the latest deep learning framework 
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to identity pseudo-temporal trajectories in transcriptomic space and the underlying gene 

signatures for AD progression. As a major component of the AMP-AD program, the Target 

Discovery and Preclinical Validation Project brings together different organizations to collect 

and analyze multidimensional molecular data (genomic, transcriptomic, epigenomic, 

proteomic) from more than 2,000 human brains and peripheral tissues from multiple AD 

cohorts.17 Using the RNA-seq data from  dorsolateral prefrontal cortex (DLPFC) region in 

the Religious Orders Study and Memory and Aging Project (ROSMAP) cohort,18,19 we first 

trained a deep learning model to perform supervised classification between the two termini of 

the disease continuum (AD and control diagnosis group). The goal is to achieve the 

maximum separation of neuropathologically confirmed cases and controls. The model was 

subsequently applied to all the subjects within the cohort, and the intermediate layer of the 

obtained manifold for all subjects was further dimensionality reduced by Uniform Manifold 

Approximation and Projection (UMAP)20 to obtain a trajectory in three dimensional (3D) 

space for AD progression. We then derived an index to assess the stage of the progression, 

namely the severity index (SI) along the trajectory. We observed that the SI was significantly 

correlated with all the neuropathological biomarkers and achieved excellent model metrics 

aligned with global cognitive function score. When the deep learning model trained on the 

ROSMAP cohort was applied to two independent AMP-AD datasets, the MAYO RNA-seq 

study cohort21 and The Mount Sinai Brain Bank (MSBB) study cohort,22 similar trajectories 

and sample distribution following a generalized pattern were observed and the estimated SI 

values remain to be strongly correlated to pathological biomarkers and clinical severity. The 

model identified 593 genes (“index genes”) playing significant roles for the severity of AD-

related neuropathology and cognitive impairment in the disease continuum. Network analysis 

suggests that these genes are clustered in six gene co-expression modules, four of which are 

strongly associated with neuropathology and clinical severity. One of the four modules shows 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 12, 2021. ; https://doi.org/10.1101/2021.06.08.447615doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.08.447615


especially high correlation with all the neuropathological biomarkers and clinical cognitive 

functions and the genes are associated with metabolic and vascular dysfunction in 

oligodendrocytes. The other three modules are also found to be associated with the 

pathological and clinical severity significantly in neurons, astrocytes, and endothelial cells 

respectively. Our results collectively demonstrate that a deep learning approach can reveal 

novel genomic information from complex, high dimensional gene expression data in a 

manner that can elucidate the molecular mechanisms of AD. The model can be readily 

applied to additional gene expression datasets to predict AD severity, thus indicating its 

potentially broad utility for AD diagnosis and staging. The approach also provides a general 

framework for studying multi-omics data to capture underlying molecular signatures towards 

novel biomarkers and drug targets of neurogenerative diseases.  

 

Materials and methods 

RNA-seq datasets from AMP-AD consortium 

All the RNA-seq data were obtained from the AMP-AD data portal through Synapse 

(https://www.synapse.org/). Demographic information for each of the cohort (ROSMAP, 

MAYO and MSBB) sampled in the RNA-seq study is reported in supplementary Table S1. 

The processed, normalized data were obtained for each cohort respectively, from the 

harmonized, uniformly processed RNA-seq dataset across the three largest AMP-AD 

contributed studies (syn17115987). In ROSMAP cohort, all the brain tissue samples were 

collected from dorsolateral prefrontal cortex (DLPFC, n = 639, syn8456629).18,19 In Mayo 

RNA-seq study (syn8466812), brain tissue samples were collected from cerebellum (CER, n 

= 275) and temporal cortex (TCX, n = 276).21 The MSBB study (syn8484987) has 1,096 

samples from the Mount Sinai/JJ Peters VA Medical Center Brain Bank, which were 
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sequenced from 315 subjects from four brain regions including frontal pole (FP, Brodmann 

area 10), inferior frontal gyrus (IFG, Brodmann area 44), superior temporal gyrus (STG, 

Brodmann area 22), and parahippocampal gyrus (PHG, Brodmann area 36) respectively.22 

The harmonized processing of each study from three cohorts was previously performed using 

a consensus set of tools with only library type-specific parameters varying between pipelines 

(https://github.com/Sage-Bionetworks/ampad-DiffExp).23 The logCPM values from each 

dataset were used in all the subsequent analyses. 

 

Phenotypic data 

All the clinical and pathological data for the ROSMAP cohort were obtained from the Rush 

Alzheimer's Disease Center (RADC) Research Resource Sharing Hub 

(https://www.radc.rush.edu/home.htm), upon approval of data usage agreement. The 

following phenotypical measurements were used in the study: cogdx = final consensus 

cognitive diagnosis; age_death =  age at death; educ = years of education; msex = sex; race7 

= racial group; apoe4 = apoe4 allele count; PMI = postmortem interval; r_pd = clinical 

Parkinson's disease; r_stroke = stroke diagnosis; dlbdx = pathologic diagnosis of Lewy body 

diseases; hspath_typ = hippocampal sclerosis; arteriol_scler = arteriolosclerosis; braaksc = 

Braak stage; ceradsc = CERAD score; gpath = global AD pathology burden; niareagansc = 

NIA-Reagan diagnosis of AD; amyloid = overall amyloid level; plaq_d = diffuse plaque 

burden; plaq_n = neuritic plaque burden; nft = neurofibrillary tangle burden; tangles = tangle 

density; cogn_global = global cognitive function. All the clinical diagnosis data were from 

the last visit, except for cogn_global, which was from the last available test. Their detailed 

definitions, together with possible values are reported in Supplementary Table S2. Among 

them, cogdx, braaksc and ceradsc values were used to define the class label for AD, control 

(CN) and OTHER groups (see below, methods for deep learning). 
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For MAYO and MSBB cohorts, subject clinical and pathological data were obtained from 

Synapse (syn3817650 for Mayo temporal cortex samples, syn5223705 for Mayo cerebellum 

samples, and syn6101474 for all the MSBB samples). For MAYO cohort, the following 

phenotypical data were used in the linear regression: age_death = age at death; gender = sex; 

apoe4 = apoe4 allele count; RIN = RNA integrity number; PMI = postmortem interval; Braak 

= Braak stage; Thal = Thal amyloid stage. For MSBB cohort, the following phenotypical data 

were used in the linear regression: age = age at death; sex = sex; race = racial group; apoe4 = 

apoe4 allele count; RIN = RNA integrity number; PMI = postmortem interval; Braak = Braak 

stage; PlaqueMean = mean plaque burden; CDR = clinical dementia rating; CERAD = 

CERAD score. The original CERAD score in the MSBB cohort was defined as: 1=Normal, 

2=Definite AD, 3=Probable AD, 4=Possible AD. They were recoded to be semiquantitative 

as follows: 1=Definite AD, 2=Probable AD, 3=Possible AD, and 4=Normal, to be consistent 

with the notion used in the ROSMAP cohort. 

 

Deep learning of the transcriptome from DLPFC tissues in 

ROSMAP cohort 

The whole machine learning framework consists of two major components, supervised 

classification (deep learning) and unsupervised dimension reduction. The deep learning 

method was built wholly based on the approach implemented in the previous implementation 

DeepType (https://github.com/runpuchen/DeepType).11 The detailed algorithm could be 

found in the reference. The method has been demonstrated to achieve superior performance 

on independent datasets and is very robust against label noise in classifying genomic data 

from complex human diseases such as cancer.24 In this work, we incorporated the method 

into our model (supervised classification) and applied it to the normalized logCPM data from 
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ROSMAP cohort, which consists of the expression profile of 634 subjects with various AD 

pathology for 15,582 genes, and further applied an unsupervised dimension reduction method 

to obtain the pseudo-temporary trajectory for AD progression. The whole framework is 

illustrated in Figure 1. 

 

For the deep learning step, we used neuropathologically confirmed AD patients and normal 

controls, the two termini of the AD continuum, to train the model and identify 

transcriptomics signatures that differentiate the two groups. Interpretation of the diagnosis 

was as following:  

AD (156 samples): cogdx = 4, braaksc >= 4 and ceradsc <= 2;  

CN (control, 87 samples): cogdx = 1, braaksc <= 3 and ceradsc >= 3;  

OTHER (391 samples): All the other samples.  

This was consistent with the criteria used in the previous differential expression analysis 

(syn8456629).23 Genes were first sorted in a descending order by variance of logCPM values 

for the whole dataset. The deep learning model was first built for the 243 samples from AD 

and control diagnosis groups. Data were randomly partitioned into training and test datasets, 

containing 80% (195) and 20% (48) of the samples with balanced distribution from each 

group. The logCPM values in the training set were first converted to Z score, followed by 

scaling those in the test set to the same scale. A three-layer neural network was trained, with 

the number of the nodes in the input layer, the intermediate layer, and the output layer set to 

15,582, 128, and 1, respectively. In DeepType, the Adam method25 was employed to tune the 

parameters of the model, and a semi-supervised approach was adopted to train three hyper-

parameters: the number of clusters K, the trade-off parameter α and the regularization 

parameter λ. The learning rate was set to 1e-4, the number of training epochs for model 

initialization and the joint supervised and unsupervised training were set to 1,500 and 5,000, 
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respectively, and the batch size was set to 256. The model was trained by 5-fold internal 

cross-validation for the training set and the optimal K, α and λ were determined by the cross-

validation to be 2, 2 and 0.004, respectively. Training and validation losses in the training 

process were tracked to avoid over-fitting. 

 

After the training process was accomplished, a manifold representation of the intermediate 

layer was obtained for all the 634 samples in the whole cohort by forward pass using the 

trained network. Prior to that, data was scaled to the Z score using the same mean and 

standard deviation (SD) as the training set. The equation, as implemented in DeepType in 

MATLAB language, is as follows (eq 1-3): 

������_��	�
 �

 
��������1� �  �����_���� �  
�������1�, �1, 
���������_����, 2� ��; (1) 

������_��	�
 �  ����������_��	�
 , 1 " 1� " 9�; (2) 

������_��	�
 �  ��$�������_��	�
 , 1� " 9�; (3) 

where W1 is the first-layer weighting matrix and B1 the first-layer bias vector obtained from 

the model. The hidden layer was bounded between (0, 1). Input_data was the expression 

matrix with data scaled and sorted in the same order as in the training set.  

 

The resulting representation of the hidden_layer was further dimensionality reduced, first to 

50 dimensions, by efficient computation of a truncated principal components analysis (PCA) 

using an implicitly restarted Lanczos method as implemented in the R package Monocle3,26 

using the function preprocess_cds, without normalization or scaling. It was further reduced to 

the first three dimensions, by the Uniform Manifold Approximation and Projection 

(UMAP)20 method as implemented in the R package uwot 

(https://github.com/jlmelville/uwot). To ensure reproducibility, the following parameters 
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were set: n_components = 3, nn_method="annoy", n_neighbors = 15L, metric = "cosine", 

min_dist = 0.1, fast_sgd = F, ret_model = T, with random seed set to 2016. 

 

Severity index calculation and correlation with phenotypic data in 

ROSMAP cohort 

Severity index (SI) for AD progression was derived for each sample, based on the 3D UMAP 

trajectory obtained earlier, by applying the method of inferring pseudotimes for single-cell 

transcriptomics from the function “slingPseudotime” as implemented in the R package 

Slingshot.27 SIs were then linearly correlated with all the AD clinical and pathological 

biomarkers individually, including the covariates r_pd, r_stroke, dlbdx, hspath_typ, 

arteriol_scler, PMI, RIN, apoe4, age_death, educ, msex, and race7 (detailed definitions can 

be found in Table S2, and data collection is reported in28), using the following linear 

regression model: 

%����
&�
 ~ () � ���_����� � ���* � �
�$ � 
�*� � ����4 � ,)- � ./) � 
_�� �


_
�
�&� � ��%�$ � �
����_�	� � �
��
���_
*��
 (4) 

The pathological biomarkers and AD clinical measures used as dependent variables in the 

model are braaksc, ceradsc, niareagansc, gpath, amyloid, plaq_d, plaq_n, nft, tangles, and 

cogn_global. All the neuropathological measurements (gpath, amyloid, plaq_d, plaq_n, nft, 

tangles) were log transformed in the correlation analysis. All the semi-quantitative and 

quantitative measurements were treated as numerical; diagnosis of Lewy Body diseases, 

gender, and race were treated as categorical. Correlation coefficients were obtained by the 

“lm” function in R. Proportion of variance explained (PVE) for each predictor was obtained 

from the incremental sums of squares table by the “anova” function in R on the model, using 

the above order. 
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Applying the deep learning model to external datasets (MAYO, 

MSBB) 

The harmonized, uniformly processed RNA-seq datasets were first sorted by the same gene 

order as the input dataset of ROSMAP. Batch effects were then removed by the ComBat 

function29 in the R package sva.30 The input expression matrix subsequently was transformed 

to Z score by scaling to the training set in the deep learning model. A manifold representation 

was obtained for all the samples in each cohort by forward pass of the trained network, using 

eq 1-3) and reduced again to 50 dimensions by PCA. Trajectories were obtained by carrying 

out the UMAP transformation of the existing embedding model from ROSMAP DLPFC data, 

by the “umap_transform” function in R package uwot. SI for each sample was again derived 

from “slingPseudotime” function in Slingshot.27 Linear correlation of the SIs with all the 

pathological and clinical biomarkers were carried out by the “lm” function in R, using other 

non-AD pathology related variables as covariates when available (age, sex, race, PMI, RIN, 

apoe4 allele counts), by the following linear regression model: 

%����
&�
 ~ () � ���_����� � 
�$ � 
�*� � ����4 � ,)- � ./) (5) 

 

Network and cell type analysis of the significant genes underlying 

AD progression 

The hidden layer of the deep learning model returned a weight vector for each of the 15,582 

genes in the input dataset. The root sum squares (RSS) of the weight vector for each gene 

was calculated, normalized to the maximal RSS and taken as the weight for each gene in the 

deep learning model. The weights from all genes were put into histogram in logarithm scale 

and a cut was made to separate the bimodal distribution. The genes in the higher weight 

groups were identified as significant genes contributing to AD progression (index genes). 
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Unsigned co-expression networks were built for these genes’ expression profile using the 

unscaled logCPM values. Network modules were identified using the cutreeDynamic 

function in the R package WGCNA,31 setting the minimum module size to 30. The power of 

4 was chosen using the scale-free topology criterion. Correlation of 0.35, or height cut of 0.35 

with deepSplit = 4 was used to merge modules whose genes are highly co-expressed.  

 

Functional enrichment analysis was performed using Metascape,32 which uses a 

hypergeometric test and Benjamini-Hochberg p value correction to identify ontology terms 

that contain a statistically greater number of genes in common with an input list than 

expected by chance, using the whole transcriptome as background. Statistically significant 

enriched terms based on Gene Ontology,33 KEGG,34 Reactome,35 MSigDB36 were clustered 

based on Kappa-statistical similarities among their gene memberships. A 0.3 kappa score was 

applied as a threshold to identify enriched terms.  

 

Fisher’s exact test was used to test enrichment of the gene set from each module with the 

gene sets generated for the ROSMAP samples from the meta-analysis of AD co-expression 

modules,23 or other curated AD gene sets (supplemental materials). Resulting p values were 

corrected using Bonferroni method for multiple test correction. Cell type enrichments were 

also done using Fisher’s exact test of gene set overlap with cell type specific gene sets from 

human reference single-cell RNA-seq data37 and the unique marker genes present in the 

single-cell RNA-seq data (with log2FC > 1) from the prefrontal cortical samples of AD 

patients and normal control subjects.38 

 

Cell type marker gene expression signatures along SI were obtained by first smoothing each 

gene’s expression as a function of SI using a smoothing spline of degree of freedom = 3. The 
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weighted mean of the marker genes was obtained and normalized to lie in [0,1]. The 

smoothed and normalized expression of marker genes for each cell type was plotted as a 

function of SI. 

Data availability  

All the datasets from AMP-AD consortium used in this study are available at the AD 

knowledge portal (https://adknowledgeportal.synapse.org/), with synapse identifiers provided 

in the text. The machine learning framework, including the trained model, SIs for each 

cohort, and the codes to apply the trained neural network, map to the DLPFC 3D UMAP 

space, and obtain the SI will be uploaded to synapse upon publication of this work. The 

source code with synapse data withheld is available at 

https://github.com/qwang178/DeepBrain. 

 

Results 

Deep learning identified a pseudo-temporal trajectory for AD 

progression 

We designed a three-layer deep learning model to dissect the gene expression data from 

DLPFC tissues across the AD spectrum. This simple scheme consists of inputting the two 

termini of the spectrum (i.e. pathologically confirmed AD and control groups) to obtain a 

learned representation encoded by the intermediate layer. We set the number of output 

clusters K at 2 throughout the learning process (i.e. we are not interested in any subcluster 

within the two termini). The regularization parameter λ and the trade-off parameter α were 

estimated to be 0.004 and 2, respectively (Supplementary Figure S1a, b). The training and 

validation losses in the training process were tracked and no sign of over-fitting was observed 
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(Supplementary Figure S1c). The training and validation accuracy was observed to be stable 

at ~97% and ~90% respectively (Supplementary Figure S1d). 

 

After the intermediate layer was mapped into 3D UMAP space, a prominent progressive 

trajectory, with two distinct clusters at both termini could be observed (Figure 2a). Mapping 

of the other samples into the same space clearly indicated a continuous disease spectrum as 

well as a progression course along the trajectory (Figure 2b). SI was calculated as the 

traveling distance along the trajectory by setting the starting point at the control terminus to 

zero, which reflects the disease progression of the subjects. When correlating with 

pathological biomarkers, the SI showed strong correlations with all the measurements (p <= 

3.2e-6), with the weakest correlation observed for diffuse plaque, which was still highly 

significant (p = 3.2e-6) (Figure 2c). In addition, it indicated that APOE4 allele counts also 

contributed to all the biomarkers with various degrees of significance (p = 1.24e-04 to 1.47e-

09), confirming it as a major genetic risk determinant for AD. Most strikingly, the model 

explained the greatest amount of variance for global cognitive function (R = -0.68) (Figure 

2d), with SI contributing to the largest proportion of variance explained (PVE = 0.35, p < 2e-

16, table S3). It also indicated that global cognitive function in this cohort was positively 

correlated with education (PVE = 0.0020, p = 5.57e-3), inversely correlated with APOE4 

allele count (PVE = 0.035, p = 5.00e-6), a diagnosis of Parkinson’s disease (PVE = 0.042, p 

= 7.49e-7), neocortical Lewy Body disease (PVE = 0.016, p = 5.49e-4), hippocampal 

sclerosis (PVE = 0.014, p = 1.03e-3), and marginally age (PVE = 0.0047, p = 9.89e-2). When 

the two termini which were used in the training process were excluded from linear regression 

model, we still observed strong correlations between SI and all neuropathology biomarkers 

and clinical severity (p < 0.1), especially for global cognitive function (PVE = 0.15, p = 3.5e-
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7 for SI, R = -0.55 for the model, Table S3, S4, Figure S4), demonstrating the generality of 

the model outside the training data.    

 

Model achieved comparably strong performance in 

MAYO/MSBB cohorts 

The model was applied to the harmonized transcriptomic data from both the MAYO and 

MSBB cohorts. Data from the MAYO cohort came from two different brain regions: 

temporal cortex (TCX) and cerebellum (CER). After projecting into the same 3D UMAP 

space, the subject distributions along the trajectories in the two different brain regions 

showed different patterns (Figure 3a, b). For TCX, it showed the distributions of different 

locations for AD vs control subjects along the trajectory similar to those from ROSMAP data, 

while this was not observed for CER as one would expect. It was also confirmed by the 

results obtained from linear regression of the SI vs pathological biomarkers (Braak and Thal 

scores, Figure 3c). Only in the TCX samples were the SIs found to be significantly correlated 

with both Braak (p = 4.88e-5) and Thal scores (p = 1.56e-3). Again the model explained a 

large amount of variance overall for both biomarkers, with R = 0.68. For MSBB cohort, the 

same model was applied to the gene expression profile of all four sampled regions (FP 

(BM10), STG (BM22), PHG (BM36), and IFG (BM44)), and all regions show similar albeit 

slightly different trajectories, with the SI consistently significantly correlated with all the 

neuropathological and clinical biomarkers (Braak score, PlaqueMean, CDR scale, and 

CERAD score, Figure 4). 

 

Network analysis identified four major gene modules for disease 

progression 
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A clear bimodal distribution on the logarithm scale was observed in the weight distribution 

for the 15,582 genes in the deep learning model (Figure S2a). The cutoff was set at 1.6e-4, 

which generated 593 genes as the significant genes (index genes) associated with AD 

progression (Table S7). The distribution of these genes showed some, though not complete 

overlap with those differentially expressed genes (DEGs) identified in previous work for 

ROSMAP cohort alone (syn8456629, Figure S2b), or from the AMP-AD meta-analysis 

(syn11914606, Figure S2c), as unlike DEGs, some of these index genes may have smaller 

fold change (log2FC), or not pass the significant p value cutoff in comparison between AD vs 

control. Based on network analysis for these 593 genes’ expression profile, six co-expression 

modules were identified, with four of them showing significant correlation with multiple 

phenotypes (Figure 5a). Among them, the green module (n = 41) is significantly correlated 

with all the neuropathological and clinical biomarkers, while the turquoise module (n = 308) 

was found to be especially significantly correlated with tangles, and the brown module (n = 

61) with amyloid. Notably, the turquoise module’s directions of correlations with the 

pathological traits were reversed with the other three, although all showed significant 

contributions to cognitive functions. The yellow module (n = 53) was only significantly 

correlated with the diagnosis of Parkinson’s disease and amyloid, while the grey module (n = 

63) showed little correlation with any of the pathological phenotypes as expected. We also 

decomposed the contributions of each module to the SI and found that the SIs derived for 

turquoise and green modules showed strongest concordance with all the biomarkers and 

cognitive function score (Figure S3, Table S8).  

 

Functional enrichment of the genes present in the four key modules showed that they were 

implicated in different processes. For the turquoise module, the enriched terms were related 

to metabolism and hormone activities; for the brown module, they were related to vascular 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 12, 2021. ; https://doi.org/10.1101/2021.06.08.447615doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.08.447615


dysfunctions (Figure 5b). Green and blue modules were implicated in metabolic 

abnormalities. Interestingly, the four modules were found to overlap mostly with the 

consensus cluster A (for blue), cluster B (for brown), cluster D (for green) and cluster C and 

E (for turquoise) respectively from the meta-analysis of the AD human brain transcriptome23 

(Figure 5c) and concordantly, the three upregulated modules  were each enriched for 

astrocytes (blue), oligodendrocytes (green), and endothelial cells (brown), and the 

downregulated turquoise module was enriched in neurons (Figure 5d). Their overlaps with 

the curated AD gene sets from known databases and the gene sets from individual cohort 

study in the AMP-AD consortium confirmed this observation (Figure S5).  

 

The change of cell type markers as a function of SI along disease progression (Figure 5e) 

recapitulates known cellular changes such as neurodegeneration and gliosis. In addition, it 

suggests that microgliosis and astrogliosis happen earlier in the disease, while 

oligodendrocytes and endothelial cells are activated at a faster pace at the late stage. 

Interestingly, marker genes in microglia don’t express monotonically in the process, which is 

especially prominent in males (Figure S7).    

 

Discussions 

It is increasingly accepted that AD and Alzheimer's Disease Related Dementias (AD/ADRD) 

are a spectrum of related diseases that have similar clinical and neuropathological 

manifestations.39 The progressive nature and relatively long deteriorating course warrant the 

study of the disease as a continuum instead of discrete states. However, the lack of 

longitudinal data from brain tissues of the same individuals prompts recent studies to model 

the gene expression dynamics of AD as pseudo-temporal trajectories, using data collected 

from postmortem brain tissues in large cohorts, with various degrees of neurodegeneration 
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and dementia severity. These unsupervised machine learning approaches provide novel 

insights into the progressive nature of AD and demonstrate that population level cross-

sectional transcriptomic data could be capitalized to capture the evolution of multiple AD-

related neuropathology or cognitive impairment. In this work, we present a deep-learning 

framework, which includes supervised classification and unsupervised dimension reduction 

of transcriptomic data to derive a trajectory that strongly mirrors AD specific severity, since 

we have used the neuropathologically confirmed AD and control as the two termini to train 

the model. The SI defined by the distance along a trajectory could be utilized as a metric to 

evaluate the progression and staging of AD. The transcriptomic signature identified by the 

model sheds new light on the evolution of the gene expression profile across the disease 

course and illustrates the utility of deep learning approaches for the investigation of 

neurodegenerative diseases such as AD.  

 

Notably, the deep learning component in our framework consists of a neural network of only 

three layers. There are two reasons we chose such a network. Firstly, the learning datasets 

from ROSMAP composed of only 243 neuropathologically confirmed AD and control 

subjects. Although this is one of the largest postmortem brain transcriptomic datasets of 

LOAD cohorts publicly available to date, more learning layers on this scale of data don’t 

necessarily produce better results, as 4 or more layers in the current model didn’t improve the 

model’s performance by our tests. Conversely, a single hidden layer in the model enables a 

straightforward interpretation of the embedding of the input gene features, which facilities the 

identification of index genes for downstream analysis. With the rapidly accelerating 

generation of multi-omic data for AD, this current framework could be easily extended to 

include additional layers for exploiting larger datasets, with both more samples or genomic 

features, and other phenotypic data types.     
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The original trajectory derived for the DLPFC tissues from the ROSMAP cohort suggests 

that the course of AD may be characterized by the multidimensional, nonlinear nature of 

transcriptome dynamics in the neurodegenerative process. The neuropathologically 

confirmed AD and control subjects were mostly clustered in two corners, with relatively few 

subjects located between the two clusters along the trajectory. When other samples with 

various neuropathology and/or clinical diagnosis were mapped to the same space, they were 

distributed widely along the trajectory, with a considerable portion in-between the two 

clusters. SI still significantly predicted cognitive function (p = 3.5e-7) and neuropathology (p 

< 7e-2) for the other samples after excluding the AD/control termini used in the training 

process, demonstrating the validity of the model for the general dementia population. This 

was further demonstrated by the application of the model to the external datasets in the AMP-

AD consortium, the MAYO and MSBB RNA-seq profiles. For all the brain regions known to 

be susceptible to AD related pathology (TCX, FP/PHG/IFG/STG), the trajectories showed 

differentiating clusters of AD and control subjects. In stark contrast, for the transcriptome in 

cerebellum (CER), which possesses a distinct cellular architecture and is comparatively 

spared by AD neuropathology, the subjects’ locations are randomly distributed along the 

trajectory. Quantitively, SIs derived from the trajectories confirmed the observation, with all 

of them correlating with the biomarkers closely except those for CER. Notably, thanks to the 

detailed neuropathological and clinical characterizations in the ROSMAP cohort enabling a 

covariate analysis in the linear regression model of SI against global cognitive function 

(Figure 2c, Table S3), cognitive impairment in the general dementia population is also 

partially attributable to multiple other comorbidities such as Parkinson’s and neocortical 

Lewy body disease, as well as hippocampal sclerosis and arteriolosclerosis. This underscores 

the heterogeneity of the broad dementia spectrum and the urgent need to dissect the spectrum 
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by distinguishing the AD specific pathology and those caused by other related diseases for 

precision dementia diagnosis and treatment. 

 

Deep learning methods have been demonstrated recently to be able to capture complex, non-

linear transcriptomic features that are not learned using conventional gene expression data 

analysis methods in AD cohorts.40 In our model, it searches the data for correlated features 

and combines them by amplifying the underlying signals with adjustable weights and the 

sigmoid function, so it can extract the genomic features most pertinent to the questions we 

are asking, i.e. the coordinated transcriptomic signature differentiating definitive AD and 

control. The model is completely portable and applicable to any gene expression data, and the 

reproducible significant results in external datasets from pathologically affected tissues 

manifest that the index genes indeed play significant roles in the progression of LOAD.  

 

The index genes identified by the deep learning model have unique implications, in our 

understanding of AD etiology, as well as pursuit of novel therapeutics. They have some 

overlap, but considerably differ from those DEGs identified by differential expression (DE) 

analysis. Recently it has been demonstrated that certain gene expression profiles from RNA-

seq experiments are generic, with a high probability of DE across a wide variety of biological 

conditions, so their specificity related to disease mechanisms have been challenged.41 

Additionally, DEGs are those passing certain statistical cutoffs systematically for both fold 

change and p values selected as the “hit list” for further interpretation and validation. The 

cutoffs are arbitrarily set following a convention (e.g. fdr < 0.05, |log2FC| > 0.263 in the DEG 

analysis for ROSMAP dataset (syn8456629)), so it might not be able to capture subtle, 

intrinsic, and coordinated gene expression signatures due to disease pathology in the high 

dimensional data, especially from bulk tissues.40,42 This is further demonstrated by the fact 
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that neither DEGs identified by ROSMAP dataset alone (syn8456629) nor those from the 

AMP-AD meta-analysis (syn11914606) could fully reproduce the progressive trajectory in 

any of the three transcriptomic datasets, especially the external datasets when applied with 

the model (results not shown).  

 

Among the six co-expression modules from the index genes, blue, brown, green, and 

turquoise modules are significantly correlated with AD phenotypical hallmarks, with the first 

three upregulated in the progression, while turquoise genes downregulated. Together with the 

cell type enrichment analysis showing the three modules are enriched in astrocytes, 

oligodendrocytes, and endothelial cells respectively, and turquoise module enriched in 

neurons, this is consistent with the results obtained by the recent work of neurodegeneration 

pseudotime estimation5 and cellular composition deconvolution,42 which shows a reduction in 

the neuronal populations as AD progresses, and an increase in expression associated with 

activation of endothelial and glial cells, as also demonstrated by the change of mean 

expression for the marker genes of each cell type along AD progression. Interestingly, the 

transcriptomic signatures obtained from our study show high similarity with the signatures 

obtained from a recent single-nucleus transcriptome analysis from the prefrontal cortical 

samples of AD patients and normal control subjects,38 where higher proportion of endothelial 

nuclei were sampled and dysregulated pathways are associated with blood vessel 

morphogenesis, angiogenesis and antigen presentation. Notably, these functions are also 

implicated in the top common blood-brain functional pathways relevant for LOAD 

progression in the recent study of gene expression trajectories in AD.5 In addition, the 

enriched functions of proton transport implicated in mitochondrial functions and cell 

signaling pathway in the turquoise module were also found to be associated with the 

overlapped DEGs in neurons from two independent single nuclei transcriptomic studies from 
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AD patients.38,43 Strikingly, although the brown module is mostly overlapped with the 

consensus module cluster B from the AMP-AD transcriptome meta-analysis23 (Figure 5c), it 

is not enriched in microglia but endothelial cells (Figure 5d). It is most likely a submodule in 

the cluster which represents the signatures from endothelial cells. Likewise, the turquoise 

module as a subset of the consensus module cluster E, shows comparatively poor enrichment 

for cell-type expression signatures and were not well annotated or represented among curated 

AD pathways (Figure S5). These results collectively suggest that the transcriptomic 

signatures identified by the deep learning framework constitute intrinsic molecular changes at 

cellular level associated with AD’s progression. Whether the changes are the drivers of the 

progression or just physiological responses accompanying the progression awaits further 

examination. With the identification of the four modules each enriched in a specific cell type 

and strongly associated with AD severity, the future work will be a scrutiny of these genes 

for their roles in AD’s progression.  

 

It is more and more evident that sexual dimorphism plays an important role in AD’s 

development and progression.44 In the recent work by Mukherjee et al.5 where unsupervised 

learning methods were applied to the ROSMAP transcriptome data, predictive pseudotimes 

were only observed for female samples, highlighting great diversity of the gene expression 

profiles between the sexes. While we didn’t explicitly include sex as a feature node in the 

deep learning model, our analysis showed that sex effect has been modeled through the 

expression levels of sex markers such as XIST.45 When we compare SI with the pseudotime 

obtained by unsupervised learning on the same subjects as reported in the work of Mukherjee 

et al., higher degree of concordance is obtained for the female samples than the male (Figure 

S6a). SI were found to be significantly associated with the neuropathological and clinical 

biomarkers in both sexes, by both linear and logistic regressions (Figure S6b, c). In the plots 
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stratified by sex of mean marker gene expression as a function of SI, we observe not only 

consistent overall patterns in both sexes, but also distinct curves for some cell types, e.g. 

neuron and microglia (Figure S7b, c). Neuronal degeneration occurs earlier and faster in 

female, although eventually both sexes converge at a similar total loss. For microglia, the 

change is not monotonic, especially in male. These observations highlight important cell type 

specific contributions to AD progression in different sexes, which has drawn considerable 

research efforts in recent years.46,47 Lastly, sex has also been considered as a covariate in the 

linear regression of SI against all the neuropathological and clinical biomarkers in all three 

cohorts. They are all not significant except in the IFG region from the MSBB cohort (Figure 

4e, Table S6), where female sex is associated with higher clinical and pathological severity. 

All of the above work collectively demonstrates that our model captures generalized 

transcriptomic features present in both sexes for most AD affected brain regions like DLPFC, 

while in specific brain region like IFG, there are additional sex effects that await further 

investigation. 

 

From the trajectories derived for different AD affected brain regions and their model metrics 

(e.g. MSBB cohort, Figure 4, Table S6), it is evident that there are perceptible although 

subtle variations within their expression profiles, consistent with the observations from 

multiple analyses of transcriptomic data for the cohort.48,49 This highlights the necessity of 

analyzing tissue and region-specific datasets to better understand interactions between brain 

region and molecular disease states within AD. For instance, with preliminary validation in 

this work, a similar deep learning framework could be designed specifically to dissect 

transcriptomes from peripheral tissues such as blood of AD cohorts to seek highly sensitive 

and specific targets, to complement any biomarkers currently being actively pursued for early 

diagnosis of the devastating disease. Similarly, the application of such an approach has broad 
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utility for use with any high dimensional multi-omics data such as proteomics, metabolomics 

and epigenomics, thus opening another channel for the application of artificial intelligence in 

the genomics field for pursuing early diagnosis and effective treatment of neurodegenerative 

diseases.      
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Figure legends 

Figure 1 The deep learning framework employed in this work. Using the gene expression 

profiles from AD and control subjects and their diagnosis class as the input for supervised 

classification, the model was trained by a three-layer neural network. Then the response 

function from input layer to the hidden layer was applied to the profiles from the whole 

cohort. The resulting manifold was subject to unsupervised dimension reduction (PCA + 

UMAP) to obtain the pseudo-temporal trajectory and SI. SI was linearly correlated with 

phenotypic data for evaluation. 
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Figure 2 The pseudo-temporal trajectory from the trained deep learning model for the 

transcriptome from DLPFC tissues of ROSMAP cohort and the SI correlation with 

phenotypical data. Diagnosis class is defined in the main text. a) The trajectory with only 

AD and control (deep learning dataset) shown. b) The trajectory with all subjects (AD + CN 

+ OTHER) shown. c) The model metrics for the linear regression between SI, controlled 

covariates and all the neuropathological biomarkers and global cognitive function, with p 

values shown in cells with p < 0.05. Only covariates with significant association with at least 

one biomarker were shown. The descriptions for the definition of each parameter can be 

found in Table S2. Detailed model metrics stratified by diagnosis groups can be found in 

Table S3 and S4. d) The linear regression plot between SI and global cognitive function. 

Color legend for cogdx (final consensus cognitive diagnosis):1= No cognitive impairment 

(CI); 2 = MCI and no other cause of CI; 3 = MCI and another cause of CI; 4 = AD and NO 

other cause of CI; 5 = AD and another cause of CI; 6 = Other dementia.  
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Figure 3 The pseudo-temporal trajectory for the transcriptomes from two brain regions 

of MAYO cohort and the SI correlation with phenotypic data generated by applying the 

trained deep learning model and mapping to the same 3D space as ROSMAP. AD = 

Alzheimer’s disease; CN = control; PA = pathological aging; PSP = progressive 

supranuclear palsy. a) The trajectory for transcriptome from TCX. b) The trajectory for 

transcriptome from CER. c) The model metrics for the linear regression between SI and the 

neuropathological biomarkers by different brain regions, with p values shown in cells with p 

< 0.05. Detailed model metrics are reported in Table S5. 
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Figure 4 The pseudo-temporal trajectory from the transcriptomes of four brain regions 

of MSBB cohort and the SI correlation with phenotypic data by applying the trained 

deep learning model and mapping to the same 3D space as ROSMAP data. AD = 

Alzheimer’s disease (CDR >= 1 and Braak >= 4 and CERAD <=2); CN = control (CDR 

<= 0.5 and Braak <= 3 and CERAD >=3); OTHER = all other subjects. a-d) The 

trajectory for transcriptomes from regions BM10/20/36/44 respectively. e) The model metrics 

for the linear regression between SI and all the neuropathological and clinical biomarkers, by 

different brain regions with p values shown in cells with p < 0.05. Grey cells indicate no data. 

Detailed model metrics are reported in Table S6.  
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Figure 5 Network and gene set analysis of the index genes. a) Module trait relationship 

between the eigengenes of the six coexpression modules and individual traits. b) Functional 

enrichments for the index genes present in the four modules. c) The modules were examined 

for overlap (Fisher’s exact test) with the gene sets from the mega analysis of the AMP-AD 

consensus RNA-seq coexpression modules23. Overlaps were shown for those adjusted p 

(Bonferroni correction) < 0.001. d) Cell type enrichments using Fisher’s exact test of gene set 

overlap of the modules with cell type specific gene sets from human reference single-cell 

RNA-seq data37,38. Overlaps were shown for those adjusted p (Bonferroni correction) < 

0.001. Ast = astrocytes; End = endothelial cells; Mic = microglia; Neu = neurons; Oli = 

oligodendrocytes; Opc = oligodendrocyte progenitor cells; Per = pericytes. e) Cell type 

marker gene expression signatures as a function of SI. Mean expression of cell markers for 

astrocytes, neurons, microglia, oligodendrocytes, and endothelial cells were plotted and 

colored respectively. 
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