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AD/ADRD = Alzheimer’'s disease and Alzheimer's disease related dementias; AMP-AD =
Accelerating Medicines Project for Alzheimer’'s Disease; BM = Brodmann area; CDR =
clinical dementia rating; CER = cerebellum; CERAD = Consortium to Establish a Registry
for Alzheimer’'s Disease; CPM = counts per million reads;, DEG = differentially expressed
gene; DLPFC = dorsolateral prefrontal cortex; FP = frontal pole; IFG = inferior frontal gyrus,
LOAD = late-onset Alzheimer’s disease; MCI = mild cognitive impairment; MSBB = Mount
Sinal Brain Bank; NIA = National Institute on Aging; PCA = principal components analysis;
PHG = parahippocampal gyrus; PMI = post-mortem interval; PVE = proportion of variance
explained; RADC = Rush Alzheimer's Disease Center; RIN = RNA integrity number;
ROSMAP = Religious Orders Memory and Aging Project Studies; SD = standard deviation;
Sl = severity index; STG = superior temporal gyrus, TCX = tempora cortex; UMAP =

Uniform Manifold Approximation and Projection.
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Abstract:

Brain tissue gene expression from donors with and without Alzheimer’s disease (AD) have
been used to help inform the molecular changes associated with the development and
potential treatment of this disorder. Here, we use adeep learning method to analyze RNA-seq
data from 1,114 brain donors from the AMP-AD consortium to characterize post-mortem
brain transcriptome signatures associated with amyloid-$ plague, tau neurofibrillary tangles,
and clinical severity in multiple AD dementia populations. Starting from the cross-sectional
data in the ROSMAP cohort (n = 634), a deep learning framework was built to obtain a
trajectory that mirrors AD progression. A severity index (Sl) was defined to quantitatively
measure the progression based on the trgjectory. Network analysis was then carried out to
identify key gene (index gene) modules present in the model underlying the progression.
Within this dataset, Sls were found to be very closely correlated with all AD neuropathology
biomarkers (R ~ 0.5, p < 1e-11) and global cognitive function (R = -0.68, p < 2.2e-16). We
then applied the model to additional transcriptomic datasets from different brain regions
(MAYO, n = 266; MSBB, n = 214), and observed that the model remained significantly
predictive (p < 1e-3) of neuropathology and clinical severity. The index genes that
significantly contributed to the model were integrated with AD co-expression regulatory
networks, resolving four discrete gene modules that are implicated in vascular and metabolic
dysfunction in different cell types respectively. Our work demonstrates the generalizability of
this signature to frontal and temporal cortex measurements and additional brain donors with
AD, other age-related neurological disorders and controls; and revealed the transcriptomic
network modules contribute to neuropathological and clinical disease severity. This study
illustrates the promise of using deep learning methods to analyze heterogeneous omics data
and discover potentially targetable molecular networks that can inform the development,

treatment and prevention of neurodegenerative diseases like AD.
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| ntroduction

As the age of the global population advances, dementia, with late-onset Alzheimer’s disease
(LOAD) as the most prevalent form, has become a formidable public health threat. Despite
numerous recent scientific advances in illuminating the pathophysiology of LOAD, no
disease modifying treatments are currently available. This fact underscores the complicated
molecular etiology driving the disease and the urgent need to broaden our search for effective

therapeutics beyond the conventional amyloid cascade hypothesis.®

For a highly heterogeneous, multifactorial disease such as LOAD, integrated and large-scale
genomic data analyses have been carried out to disentangle and capture the diverse gene
regulatory interactions.> Most of these studies focus on the exploration of the molecular
mechanism of AD pathology by employing a case-control study design or modeling it as
discrete stages, usualy excluding the study subjects with other dementia pathologies, or
omitting the mild cognitive impairment (MCI) stage and its role in the disease progression,
even in the studies aming to revea the transcriptional dysregulation involving the
progression of AD.? Difficulties in sampling brain tissue throughout life coupled with
globally limited access to diagnostic neuroimaging necessitates that a definitive diagnosis of
AD is only made following postmortem neuropathological assessment. This further
exacerbates the challenge we face in studying LOAD, or dementiain general as a continuous
spectrum to find novel biomarker and drug targets. Recent efforts have begun to model AD
progression as a continuous trajectory using cross-sectional transcriptomic data,*® by
leveraging the methods developed in single-cell genomics®’ and machine learning.? Iturria-
Medina et al.* adopted an unsupervised machine learning algorithm applied to gene
expresson microarray data and discovered a contrastive trgjectory in multiple cohorts

respectively. The trgjectory has been demonstrated to strongly predict neuropathological
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severity in AD in each dataset. Mukherjee et al.” applied a manifold learning method to
RNA-seq data to define ordering across samples based on gene expression similarity and
estimate the disease pseudotime for each sample. Disease pseudotime was strongly correlated
with the burden of AB, tau, and cognitive dementia within subjects with LOAD. Although
these unsupervised machine learning methods have been shown to be highly predictive for
well-known pathological biomarkers within a dataset, it would be desirable to have a
generalized, universally predictive model for AD neuropathology and cognitive impairment
across distinct cohorts and brain tissues, which helps decipher common AD etiology at
molecular level. In addition, their broader application in peripheral tissues to identify novel

biomarkers would greatly facilitate early diagnosis and progression monitoring of AD.

Deep learning methodologies are arapidly evolving class of machine learning algorithms that
have demonstrated superior performance over traditional machine learning approaches in
identifying intricate structures in complex high-dimensional data, across diverse domains
including computer vision, pattern recognition and biocinformatics.? Specific to genomic data,
it has been demonstrated that “big data’ in many human diseases can be exploited by deep

1112 and  biomarker

learning methods for early detection,® disease classification,
identification,®*® mostly in the cancer research field. More recent efforts have begun to apply
similar methods towards research questions within the neuroscience research field,*

including the study of neurodegenerative disease,’® though the potential for these methods to

contribute to novel insightsin AD research remains underexplored.

In this work, we are leveraging the multi-dimensional, well characterized and high quality
genomic, neuropathological and clinical data from the Accelerating Medicines Project for

Alzheimer's Disease (AMP-AD) program®® and applying the latest deep learning framework
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to identity pseudo-temporal trajectories in transcriptomic space and the underlying gene
signatures for AD progression. As a mgjor component of the AMP-AD program, the Target
Discovery and Preclinical Validation Project brings together different organizations to collect
and analyze multidimensional molecular data (genomic, transcriptomic, epigenomic,
proteomic) from more than 2,000 human brains and peripheral tissues from multiple AD
cohorts.”” Using the RNA-seq data from dorsolateral prefrontal cortex (DLPFC) region in
the Religious Orders Study and Memory and Aging Project (ROSMAP) cohort,*®*° we first
trained a deep learning model to perform supervised classification between the two termini of
the disease continuum (AD and control diagnosis group). The goal is to achieve the
maximum separation of neuropathologically confirmed cases and controls. The model was
subsequently applied to all the subjects within the cohort, and the intermediate layer of the
obtained manifold for all subjects was further dimensionality reduced by Uniform Manifold
Approximation and Projection (UMAP)® to obtain a trajectory in three dimensional (3D)
space for AD progression. We then derived an index to assess the stage of the progression,
namely the severity index (Sl) along the tragjectory. We observed that the SI was significantly
correlated with all the neuropathological biomarkers and achieved excellent model metrics
aligned with global cognitive function score. When the deep learning model trained on the
ROSMAP cohort was applied to two independent AMP-AD datasets, the MAY O RNA-seq
study cohort®* and The Mount Sinai Brain Bank (MSBB) study cohort,? similar trajectories
and sample distribution following a generalized pattern were observed and the estimated S|
values remain to be strongly correlated to pathological biomarkers and clinical severity. The
model identified 593 genes (“index genes’) playing significant roles for the severity of AD-
related neuropathology and cognitive impairment in the disease continuum. Network analysis
suggests that these genes are clustered in six gene co-expression modules, four of which are

strongly associated with neuropathology and clinical severity. One of the four modules shows
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especially high correlation with al the neuropathological biomarkers and clinical cognitive
functions and the genes are associated with metabolic and vascular dysfunction in
oligodendrocytes. The other three modules are also found to be associated with the
pathological and clinical severity significantly in neurons, astrocytes, and endothelia cells
respectively. Our results collectively demonstrate that a deep learning approach can revea
novel genomic information from complex, high dimensiona gene expression data in a
manner that can elucidate the molecular mechanisms of AD. The model can be readily
applied to additional gene expression datasets to predict AD severity, thus indicating its
potentially broad utility for AD diagnosis and staging. The approach also provides a general
framework for studying multi-omics data to capture underlying molecular signatures towards

novel biomarkers and drug targets of neurogenerative diseases.

M aterials and methods

RNA-seq datasets from AMP-AD consortium

All the RNA-seq data were obtained from the AMP-AD data portal through Synapse

(https://www.synapse.org/). Demographic information for each of the cohort (ROSMAP,
MAYO and MSBB) sampled in the RNA-seq study is reported in supplementary Table S1.
The processed, normalized data were obtained for each cohort respectively, from the
harmonized, uniformly processed RNA-seq dataset across the three largest AMP-AD
contributed studies (syn17115987). In ROSMAP cohort, all the brain tissue samples were
collected from dorsolateral prefrontal cortex (DLPFC, n = 639, syn8456629).*° |n Mayo
RNA-seq study (syn8466812), brain tissue samples were collected from cerebellum (CER, n
= 275) and temporal cortex (TCX, n = 276).21 The MSBB study (syn8484987) has 1,096

samples from the Mount Snai/JJ Peters VA Medica Center Brain Bank, which were
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sequenced from 315 subjects from four brain regions including frontal pole (FP, Brodmann
area 10), inferior frontal gyrus (IFG, Brodmann area 44), superior temporal gyrus (STG,
Brodmann area 22), and parahippocampal gyrus (PHG, Brodmann area 36) respectively.?
The harmonized processing of each study from three cohorts was previously performed using
a consensus set of tools with only library type-specific parameters varying between pipelines

(https://github.com/Sage-Bionetworks/ampad-DiffExp).2 The logCPM values from each

dataset were used in all the subsequent analyses.

Phenotypic data

All the clinical and pathological data for the ROSMAP cohort were obtained from the Rush
Alzheimer's Disease Center (RADC) Research  Resource  Sharing  Hub

(https://www.radc.rush.edu/home.htm), upon approval of data usage agreement. The

following phenotypical measurements were used in the study: cogdx = final consensus
cognitive diagnosis, age_death = age at death; educ = years of education; msex = sex; race7
= racia group; apoed = apoed alele count; PMI = postmortem interval; r_pd = clinical
Parkinson's disease; r_stroke = stroke diagnosis; dibdx = pathologic diagnosis of Lewy body
diseases; hspath_typ = hippocampal sclerosis; arteriol_scler = arteriolosclerosis; braaksc =

Braak stage; ceradsc = CERAD score; gpath = global AD pathology burden; niareagansc =
NIA-Reagan diagnosis of AD; amyloid = overall amyloid level; plaq d = diffuse plague
burden; plag_n = neuritic plaque burden; nft = neurofibrillary tangle burden; tangles = tangle
density; cogn_global = global cognitive function. All the clinical diagnosis data were from
the last visit, except for cogn_global, which was from the last available test. Their detailed
definitions, together with possible values are reported in Supplementary Table S2. Among
them, cogdx, braaksc and ceradsc values were used to define the class label for AD, control

(CN) and OTHER groups (see below, methods for deep learning).
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For MAYO and MSBB cohorts, subject clinical and pathological data were obtained from
Synapse (syn3817650 for Mayo temporal cortex samples, syn5223705 for Mayo cerebellum
samples, and syn6101474 for all the MSBB samples). For MAYO cohort, the following
phenotypical data were used in the linear regression: age_death = age at death; gender = sex;
apoed = gpoed alele count; RIN = RNA integrity number; PMI = postmortem interval; Braak
= Braak stage; Thal = Thal amyloid stage. For MSBB cohort, the following phenotypical data
were used in the linear regression: age = age at death; sex = sex; race = racial group; apoe4 =
apoed alele count; RIN = RNA integrity number; PMI = postmortem interval; Braak = Braak
stage; PlagueMean = mean plaque burden; CDR = clinical dementia rating; CERAD =
CERAD score. The original CERAD score in the MSBB cohort was defined as: 1=Normal,
2=Definite AD, 3=Probable AD, 4=Possible AD. They were recoded to be semiquantitative
as follows: 1=Definite AD, 2=Probable AD, 3=Possible AD, and 4=Normal, to be consistent

with the notion used in the ROSMAP cohort.

Deep learning of the transcriptome from DLPFC tissues in

ROSM AP cohort

The whole machine learning framework consists of two major components, supervised
classification (deep learning) and unsupervised dimension reduction. The deep learning
method was built wholly based on the approach implemented in the previous implementation

DeepType (https://github.com/runpuchen/DeepType).** The detailed agorithm could be

found in the reference. The method has been demonstrated to achieve superior performance
on independent datasets and is very robust against label noise in classifying genomic data
from complex human diseases such as cancer.?* In this work, we incorporated the method

into our model (supervised classification) and applied it to the normalized logCPM data from
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ROSMAP cohort, which consists of the expression profile of 634 subjects with various AD
pathology for 15,582 genes, and further applied an unsupervised dimension reduction method
to obtain the pseudo-temporary tragjectory for AD progression. The whole framework is

illustrated in Figure 1.

For the deep learning step, we used neuropathologically confirmed AD patients and normal
controls, the two termini of the AD continuum, to train the model and identify
transcriptomics signatures that differentiate the two groups. Interpretation of the diagnosis
was as following:

AD (156 samples): cogdx = 4, braaksc >= 4 and ceradsc <= 2;

CN (control, 87 samples): cogdx = 1, braaksc <= 3 and ceradsc >= 3;

OTHER (391 samples): All the other samples.
This was consistent with the criteria used in the previous differential expression analysis
(syn8456629).* Genes were first sorted in a descending order by variance of logCPM values
for the whole dataset. The deep learning model was first built for the 243 samples from AD
and control diagnosis groups. Data were randomly partitioned into training and test datasets,
containing 80% (195) and 20% (48) of the samples with balanced distribution from each
group. The logCPM values in the training set were first converted to Z score, followed by
scaling those in the test set to the same scale. A three-layer neural network was trained, with
the number of the nodes in the input layer, the intermediate layer, and the output layer set to
15,582, 128, and 1, respectively. In DeepType, the Adam method® was employed to tune the
parameters of the model, and a semi-supervised approach was adopted to train three hyper-
parameters: the number of clusters K, the trade-off parameter oo and the regularization
parameter A. The learning rate was set to 1e-4, the number of training epochs for model

initialization and the joint supervised and unsupervised training were set to 1,500 and 5,000,
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respectively, and the batch size was set to 256. The model was trained by 5-fold interna
cross-validation for the training set and the optimal K, o. and A were determined by the cross-
validation to be 2, 2 and 0.004, respectively. Training and validation losses in the training

process were tracked to avoid over-fitting.

After the training process was accomplished, a manifold representation of the intermediate
layer was obtained for all the 634 samples in the whole cohort by forward pass using the
trained network. Prior to that, data was scaled to the Z score using the same mean and
standard deviation (SD) as the training set. The equation, as implemented in DeepType in
MATLAB language, is asfollows (eq 1-3):
hidden_layer =
sigmoid(W1' = input_data + repmat(B1’,[1,size(input_data, 2)])); (1)
hidden_layer = min(hidden_layer,1— 1le —9); (2)
hidden_layer = max(hidden_layer ,1le —9); (3)

where WL is the first-layer weighting matrix and B1 the first-layer bias vector obtained from
the model. The hidden layer was bounded between (0, 1). Input_data was the expression

matrix with data scaled and sorted in the same order asin the training set.

The resulting representation of the hidden layer was further dimensionality reduced, first to
50 dimensions, by efficient computation of a truncated principal components analysis (PCA)
using an implicitly restarted Lanczos method as implemented in the R package Monocle3,%
using the function preprocess_cds, without normalization or scaling. It was further reduced to
the first three dimensions, by the Uniform Manifold Approximation and Projection
(UMAP®  method as implemented in the R  package  uwot

(https://github.com/jimelville/uwot). To ensure reproducibility, the following parameters
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were set: n_components = 3, nn_method="annoy", n_neighbors = 15L, metric = "cosine",

min_dist = 0.1, fast_sgd = F, ret_model = T, with random seed set to 2016.

Severity index calculation and correlation with phenotypic datain

ROSM AP cohort

Severity index (SI) for AD progression was derived for each sample, based on the 3D UMAP
trajectory obtained earlier, by applying the method of inferring pseudotimes for single-cell
transcriptomics from the function “slingPseudotime’ as implemented in the R package
Slingshot.?” Sls were then linearly correlated with all the AD clinical and pathological
biomarkers individualy, including the covariates r_pd, r_stroke, dibdx, hspath typ,
arteriol_scler, PMI, RIN, apoe4, age_death, educ, msex, and race7 (detailed definitions can
be found in Table S2, and data collection is reported in®), using the following linear
regression model:

biomarker ~ SI + age_death + educ + msex + race + apoe4 + RIN + PMI + r_pd +

r_stroke + dlbdx + hspath_typ + arteriol_scler (4)

The pathological biomarkers and AD clinical measures used as dependent variables in the
model are braaksc, ceradsc, niareagansc, gpath, amyloid, plag d, plag n, nft, tangles, and
cogn_global. All the neuropathological measurements (gpath, amyloid, plag_d, plag n, nft,
tangles) were log transformed in the correlation analysis. All the semi-quantitative and
guantitative measurements were treated as numerical; diagnosis of Lewy Body diseases,
gender, and race were treated as categorical. Correlation coefficients were obtained by the
“Im” function in R. Proportion of variance explained (PVE) for each predictor was obtained
from the incremental sums of squares table by the “anova’ function in R on the model, using

the above order.
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Applying the deep learning mode to external datasets (MAYO,

M SBB)

The harmonized, uniformly processed RNA-seq datasets were first sorted by the same gene
order as the input dataset of ROSMAP. Batch effects were then removed by the ComBat
function® in the R package sva*® The input expression matrix subsequently was transformed
to Z score by scaling to the training set in the deep learning model. A manifold representation
was obtained for all the samples in each cohort by forward pass of the trained network, using
eq 1-3) and reduced again to 50 dimensions by PCA. Trajectories were obtained by carrying
out the UMAP transformation of the existing embedding model from ROSMAP DLPFC data,
by the “umap_transform” function in R package uwot. Sl for each sample was again derived
from “slingPseudotime” function in Slingshot.?’ Linear correlation of the Sis with all the
pathological and clinical biomarkers were carried out by the “Im” function in R, using other
non-AD pathology related variables as covariates when available (age, sex, race, PMI, RIN,
apoe4 allele counts), by the following linear regression mode!:

biomarker ~ SI + age_death + sex + race + apoe4 + RIN + PMI (5)

Network and cdll type analysis of the significant genes underlying
AD progression

The hidden layer of the deep learning model returned a weight vector for each of the 15,582
genes in the input dataset. The root sum squares (RSS) of the weight vector for each gene
was calculated, normalized to the maximal RSS and taken as the weight for each gene in the
deep learning model. The weights from all genes were put into histogram in logarithm scale

and a cut was made to separate the bimodal distribution. The genes in the higher weight

groups were identified as significant genes contributing to AD progression (index genes).
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Unsigned co-expression networks were built for these genes' expression profile using the
unscaled logCPM values. Network modules were identified using the cutreeDynamic
function in the R package WGCNA ,* setting the minimum module size to 30. The power of
4 was chosen using the scale-free topology criterion. Correlation of 0.35, or height cut of 0.35

with deepSplit = 4 was used to merge modules whaose genes are highly co-expressed.

Functional enrichment analysis was performed using Metascape,® which uses a
hypergeometric test and Benjamini-Hochberg p value correction to identify ontology terms
that contain a statisticaly greater number of genes in common with an input list than
expected by chance, using the whole transcriptome as background. Statistically significant
enriched terms based on Gene Ontology,® KEGG,* Reactome,® MSigDB*® were clustered
based on Kappa-statistical similarities among their gene memberships. A 0.3 kappa score was

applied as athreshold to identify enriched terms.

Fisher's exact test was used to test enrichment of the gene set from each module with the
gene sets generated for the ROSMAP samples from the meta-analysis of AD co-expression
modules,”® or other curated AD gene sets (supplemental materials). Resulting p values were
corrected using Bonferroni method for multiple test correction. Cell type enrichments were
also done using Fisher’s exact test of gene set overlap with cell type specific gene sets from
human reference single-cell RNA-seq data® and the unique marker genes present in the
single-cell RNA-seq data (with log,FC > 1) from the prefrontal cortical samples of AD

patients and normal control subjects.®

Cell type marker gene expression signatures along Sl were obtained by first smoothing each

gene's expression as a function of Sl using a smoothing spline of degree of freedom = 3. The
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weighted mean of the marker genes was obtained and normalized to lie in [0,1]. The
smoothed and normalized expression of marker genes for each cell type was plotted as a

function of Sl.

Data availability

All the datasets from AMP-AD consortium used in this study are available at the AD

knowledge portal (https.//adknowledgeportal .synapse.org/), with synapse identifiers provided

in the text. The machine learning framework, including the trained model, Sls for each
cohort, and the codes to apply the trained neura network, map to the DLPFC 3D UMAP
space, and obtain the SI will be uploaded to synapse upon publication of this work. The
source code with synapse data withheld is available a

https://github.com/qwang178/DeepBrain.

Results

Deep learning identified a pseudo-temporal trajectory for AD
progression

We designed a three-layer deep learning model to dissect the gene expression data from
DLPFC tissues across the AD spectrum. This simple scheme consists of inputting the two
termini of the spectrum (i.e. pathologically confirmed AD and control groups) to obtain a
learned representation encoded by the intermediate layer. We set the number of output
clusters K at 2 throughout the learning process (i.e. we are not interested in any subcluster
within the two termini). The regularization parameter A and the trade-off parameter oo were

estimated to be 0.004 and 2, respectively (Supplementary Figure Sla, b). The training and

validation losses in the training process were tracked and no sign of over-fitting was observed
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(Supplementary Figure S1c). The training and validation accuracy was observed to be stable

at ~97% and ~90% respectively (Supplementary Figure S1d).

After the intermediate layer was mapped into 3D UMAP space, a prominent progressive
tragjectory, with two distinct clusters at both termini could be observed (Figure 2a). Mapping
of the other samples into the same space clearly indicated a continuous disease spectrum as
well as a progression course along the trgectory (Figure 2b). Sl was calculated as the
traveling distance along the trajectory by setting the starting point at the control terminus to
zero, which reflects the disease progression of the subjects. When correlating with
pathological biomarkers, the SI showed strong correlations with al the measurements (p <=
3.2e-6), with the weakest correlation observed for diffuse plaque, which was still highly
significant (p = 3.2e-6) (Figure 2c¢). In addition, it indicated that APOE4 allele counts also
contributed to all the biomarkers with various degrees of significance (p = 1.24e-04 to 1.47e-
09), confirming it as a major genetic risk determinant for AD. Most strikingly, the model
explained the greatest amount of variance for global cognitive function (R = -0.68) (Figure
2d), with SI contributing to the largest proportion of variance explained (PVE = 0.35, p < 2e-
16, table S3). It aso indicated that global cognitive function in this cohort was positively
correlated with education (PVE = 0.0020, p = 5.57e-3), inversely correlated with APOE4
alele count (PVE = 0.035, p = 5.00e-6), a diagnosis of Parkinson’s disease (PVE = 0.042, p
= 7.49e-7), neocortical Lewy Body disease (PVE = 0.016, p = 5.49e-4), hippocampal
sclerosis (PVE = 0.014, p = 1.03e-3), and marginally age (PVE = 0.0047, p = 9.89-2). When
the two termini which were used in the training process were excluded from linear regression
model, we still observed strong correlations between Sl and all neuropathology biomarkers

and clinical severity (p < 0.1), especidly for global cognitive function (PVE = 0.15, p = 3.5e-
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7 for SI, R = -0.55 for the model, Table S3, $4, Figure $4), demonstrating the generality of

the model outside the training data.

Modd  achieved comparably strong performance in

MAY O/M SBB cohorts

The model was applied to the harmonized transcriptomic data from both the MAYO and
MSBB cohorts. Data from the MAYO cohort came from two different brain regions:
temporal cortex (TCX) and cerebellum (CER). After projecting into the same 3D UMAP
space, the subject distributions aong the tragjectories in the two different brain regions
showed different patterns (Figure 3a, b). For TCX, it showed the distributions of different
locations for AD vs control subjects aong the trgjectory similar to those from ROSMAP data,
while this was not observed for CER as one would expect. It was aso confirmed by the
results obtained from linear regression of the Sl vs pathological biomarkers (Braak and Thal
scores, Figure 3c). Only in the TCX samples were the Sls found to be significantly correlated
with both Braak (p = 4.88e-5) and Thal scores (p = 1.56e-3). Again the model explained a
large amount of variance overall for both biomarkers, with R = 0.68. For MSBB cohort, the
same model was applied to the gene expression profile of al four sampled regions (FP
(BM10), STG (BM22), PHG (BM36), and IFG (BM44)), and all regions show similar albeit
dlightly different tragjectories, with the Sl consistently significantly correlated with all the
neuropathological and clinical biomarkers (Braak score, PlaqueMean, CDR scale, and

CERAD score, Figure 4).

Network analysis identified four major gene modules for disease

progression
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A clear bimodal distribution on the logarithm scale was observed in the weight distribution
for the 15,582 genes in the deep learning model (Figure S2a). The cutoff was set at 1.6e-4,
which generated 593 genes as the significant genes (index genes) associated with AD
progression (Table S7). The distribution of these genes showed some, though not complete
overlap with those differentially expressed genes (DEGSs) identified in previous work for
ROSMAP cohort alone (syn8456629, Figure S2b), or from the AMP-AD meta-anaysis
(syn11914606, Figure S2c), as unlike DEGs, some of these index genes may have smaller
fold change (log.FC), or not pass the significant p value cutoff in comparison between AD vs
control. Based on network analysis for these 593 genes’ expression profile, six co-expression
modules were identified, with four of them showing significant correlation with multiple
phenotypes (Figure 5a). Among them, the green module (n = 41) is significantly correlated
with all the neuropathological and clinical biomarkers, while the turquoise module (n = 308)
was found to be especially significantly correlated with tangles, and the brown module (n =
61) with amyloid. Notably, the turquoise module's directions of correlations with the
pathological traits were reversed with the other three, although all showed significant
contributions to cognitive functions. The yellow module (n = 53) was only significantly
correlated with the diagnosis of Parkinson’s disease and amyloid, while the grey module (n =
63) showed little correlation with any of the pathological phenotypes as expected. We aso
decomposed the contributions of each module to the SI and found that the Sls derived for
turquoise and green modules showed strongest concordance with all the biomarkers and

cognitive function score (Figure S3, Table S8).

Functional enrichment of the genes present in the four key modules showed that they were
implicated in different processes. For the turquoise module, the enriched terms were related

to metabolism and hormone activities; for the brown module, they were related to vascular
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dysfunctions (Figure 5b). Green and blue modules were implicated in metabolic
abnormalities. Interestingly, the four modules were found to overlap mostly with the
consensus cluster A (for blue), cluster B (for brown), cluster D (for green) and cluster C and
E (for turquoise) respectively from the meta-analysis of the AD human brain transcriptome®
(Figure 5c) and concordantly, the three upregulated modules were each enriched for
astrocytes (blue), oligodendrocytes (green), and endothelia cells (brown), and the
downregulated turquoise module was enriched in neurons (Figure 5d). Their overlaps with
the curated AD gene sets from known databases and the gene sets from individual cohort

study in the AMP-AD consortium confirmed this observation (Figure S5).

The change of cell type markers as a function of S| along disease progression (Figure 5e)
recapitulates known cellular changes such as neurodegeneration and gliosis. In addition, it
suggests that microgliosis and astrogliosis happen earlier in the disease, while
oligodendrocytes and endothelial cells are activated a a faster pace a the late stage.
Interestingly, marker genes in microglia don’t express monotonically in the process, which is

especially prominent in males (Figure S7).

Discussions

It isincreasingly accepted that AD and Alzheimer's Disease Related Dementias (AD/ADRD)
are a spectrum of related diseases that have similar clinica and neuropathological
manifestations.* The progressive nature and relatively long deteriorating course warrant the
study of the disease as a continuum instead of discrete states. However, the lack of
longitudinal data from brain tissues of the same individuals prompts recent studies to model
the gene expression dynamics of AD as pseudo-temporal trgectories, using data collected

from postmortem brain tissues in large cohorts, with various degrees of neurodegeneration
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and dementia severity. These unsupervised machine learning approaches provide novel
insights into the progressive nature of AD and demonstrate that population level cross-
sectional transcriptomic data could be capitalized to capture the evolution of multiple AD-
related neuropathology or cognitive impairment. In this work, we present a deep-learning
framework, which includes supervised classification and unsupervised dimension reduction
of transcriptomic data to derive a tragjectory that strongly mirrors AD specific severity, since
we have used the neuropathologically confirmed AD and control as the two termini to train
the model. The Sl defined by the distance along a trgectory could be utilized as a metric to
evaluate the progression and staging of AD. The transcriptomic signature identified by the
model sheds new light on the evolution of the gene expression profile across the disease
course and illustrates the utility of deep learning approaches for the investigation of

neurodegenerative diseases such as AD.

Notably, the deep learning component in our framework consists of a neural network of only
three layers. There are two reasons we chose such a network. Firstly, the learning datasets
from ROSMAP composed of only 243 neuropathologically confirmed AD and control
subjects. Although this is one of the largest postmortem brain transcriptomic datasets of
LOAD cohorts publicly available to date, more learning layers on this scale of data don’'t
necessarily produce better results, as 4 or more layers in the current model didn’t improve the
model’ s performance by our tests. Conversely, a single hidden layer in the model enables a
straightforward interpretation of the embedding of the input gene features, which facilities the
identification of index genes for downstream analysis. With the rapidly accelerating
generation of multi-omic data for AD, this current framework could be easily extended to
include additional layers for exploiting larger datasets, with both more samples or genomic

features, and other phenotypic data types.
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The origina trajectory derived for the DLPFC tissues from the ROSMAP cohort suggests
that the course of AD may be characterized by the multidimensional, nonlinear nature of
transcriptome dynamics in the neurodegenerative process. The neuropathologically
confirmed AD and control subjects were mostly clustered in two corners, with relatively few
subjects located between the two clusters along the trgectory. When other samples with
various neuropathology and/or clinical diagnosis were mapped to the same space, they were
distributed widely along the trgjectory, with a considerable portion in-between the two
clusters. Sl still significantly predicted cognitive function (p = 3.5e-7) and neuropathology (p
< 7e-2) for the other samples after excluding the AD/control termini used in the training
process, demonstrating the validity of the model for the general dementia population. This
was further demonstrated by the application of the model to the external datasetsin the AMP-
AD consortium, the MAY O and MSBB RNA-seq profiles. For all the brain regions known to
be susceptible to AD related pathology (TCX, FP/PHG/IFG/STG), the trgectories showed
differentiating clusters of AD and control subjects. In stark contrast, for the transcriptome in
cerebellum (CER), which possesses a distinct cellular architecture and is comparatively
spared by AD neuropathology, the subjects locations are randomly distributed along the
trajectory. Quantitively, Sls derived from the trajectories confirmed the observation, with all
of them correlating with the biomarkers closely except those for CER. Notably, thanks to the
detailed neuropathological and clinical characterizations in the ROSMAP cohort enabling a
covariate analysis in the linear regression model of Sl against global cognitive function
(Figure 2c, Table S3), cognitive impairment in the general dementia population is aso
partially attributable to multiple other comorbidities such as Parkinson's and neocortical
Lewy body disease, as well as hippocampal sclerosis and arteriolosclerosis. This underscores

the heterogeneity of the broad dementia spectrum and the urgent need to dissect the spectrum
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by distinguishing the AD specific pathology and those caused by other related diseases for

precision dementia diagnosis and treatment.

Deep learning methods have been demonstrated recently to be able to capture complex, non-
linear transcriptomic features that are not learned using conventional gene expression data
analysis methods in AD cohorts.* In our model, it searches the data for correlated features
and combines them by amplifying the underlying signals with adjustable weights and the
sigmoid function, so it can extract the genomic features most pertinent to the questions we
are asking, i.e. the coordinated transcriptomic signature differentiating definitive AD and
control. The model is completely portable and applicable to any gene expression data, and the
reproducible significant results in external datasets from pathologically affected tissues

manifest that the index genes indeed play significant roles in the progression of LOAD.

The index genes identified by the deep learning model have unique implications, in our
understanding of AD etiology, as well as pursuit of novel thergpeutics. They have some
overlap, but considerably differ from those DEGs identified by differential expression (DE)
analysis. Recently it has been demonstrated that certain gene expression profiles from RNA-
seq experiments are generic, with a high probability of DE across a wide variety of biological
conditions, so their specificity related to disease mechanisms have been challenged.**
Additionally, DEGs are those passing certain statistical cutoffs systematically for both fold
change and p values selected as the “hit list” for further interpretation and validation. The
cutoffs are arbitrarily set following a convention (e.g. fdr < 0.05, [log.FC| > 0.263 in the DEG
analysis for ROSMAP dataset (syn8456629)), so it might not be able to capture subtle,
intrinsic, and coordinated gene expression signatures due to disease pathology in the high

dimensional data, especially from bulk tissues.”**? This is further demonstrated by the fact
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that neither DEGs identified by ROSMAP dataset alone (syn8456629) nor those from the
AMP-AD meta-analysis (syn11914606) could fully reproduce the progressive trgjectory in
any of the three transcriptomic datasets, especially the external datasets when applied with

the model (results not shown).

Among the six co-expression modules from the index genes, blue, brown, green, and
turquoise modules are significantly correlated with AD phenotypical hallmarks, with the first
three upregulated in the progression, while turquoise genes downregulated. Together with the
cell type enrichment analysis showing the three modules are enriched in astrocytes,
oligodendrocytes, and endothelial cells respectively, and turquoise module enriched in
neurons, this is consistent with the results obtained by the recent work of neurodegeneration
pseudotime estimation® and cellular composition deconvolution,* which shows areduction in
the neuronal populations as AD progresses, and an increase in expression associated with
activation of endothelia and glial cells, as also demonstrated by the change of mean
expression for the marker genes of each cell type along AD progression. Interestingly, the
transcriptomic signatures obtained from our study show high similarity with the signatures
obtained from a recent single-nucleus transcriptome analysis from the prefrontal cortical
samples of AD patients and normal control subjects,* where higher proportion of endothelial
nuclei were sampled and dysregulated pathways are associated with blood vessel
morphogenesis, angiogenesis and antigen presentation. Notably, these functions are also
implicated in the top common blood-brain functional pathways relevant for LOAD
progression in the recent study of gene expression trajectories in AD.> In addition, the
enriched functions of proton transport implicated in mitochondrial functions and cell
signaling pathway in the turquoise module were also found to be associated with the

overlapped DEGs in neurons from two independent single nuclei transcriptomic studies from
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AD patients.®* Strikingly, although the brown module is mostly overlapped with the
consensus module cluster B from the AMP-AD transcriptome meta-analysis® (Figure 5c), it
is not enriched in microglia but endothelial cells (Figure 5d). It is most likely a submodule in
the cluster which represents the signatures from endothelial cells. Likewise, the turquoise
module as a subset of the consensus module cluster E, shows comparatively poor enrichment
for cell-type expression signatures and were not well annotated or represented among curated
AD pathways (Figure S5). These results collectively suggest that the transcriptomic
signatures identified by the deep learning framework constitute intrinsic molecular changes at
cellular level associated with AD’s progression. Whether the changes are the drivers of the
progression or just physiological responses accompanying the progression awaits further
examination. With the identification of the four modules each enriched in a specific cell type
and strongly associated with AD severity, the future work will be a scrutiny of these genes

for their rolesin AD’s progression.

It is more and more evident that sexual dimorphism plays an important role in AD’s
development and progression.”* In the recent work by Mukherjee et al.” where unsupervised
learning methods were applied to the ROSMAP transcriptome data, predictive pseudotimes
were only observed for female samples, highlighting great diversity of the gene expression
profiles between the sexes. While we didn’t explicitly include sex as a feature node in the
deep learning model, our analysis showed that sex effect has been modeled through the
expression levels of sex markers such as XIST.* When we compare S| with the pseudotime
obtained by unsupervised learning on the same subjects as reported in the work of Mukherjee
et a., higher degree of concordance is obtained for the female samples than the male (Figure
S6a). SI were found to be significantly associated with the neuropathological and clinical

biomarkers in both sexes, by both linear and logistic regressions (Figure S6b, c). In the plots
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stratified by sex of mean marker gene expression as a function of Sl, we observe not only
consistent overall patterns in both sexes, but also distinct curves for some cell types, e.g.
neuron and microglia (Figure S7b, c). Neuronal degeneration occurs earlier and faster in
female, although eventually both sexes converge at a similar total loss. For microglia, the
change is not monotonic, especially in male. These observations highlight important cell type
specific contributions to AD progression in different sexes, which has drawn considerable
research efforts in recent years.”**’ Lastly, sex has also been considered as a covariate in the
linear regression of Sl against all the neuropathological and clinical biomarkers in al three
cohorts. They are al not significant except in the IFG region from the MSBB cohort (Figure
4e, Table S6), where female sex is associated with higher clinical and pathological severity.
All of the above work collectively demonstrates that our model captures generalized
transcriptomic features present in both sexes for most AD affected brain regions like DLPFC,
while in specific brain region like IFG, there are additional sex effects that await further

investigation.

From the trajectories derived for different AD affected brain regions and their model metrics
(e.g. MSBB cohort, Figure 4, Table S6), it is evident that there are perceptible athough
subtle variations within their expression profiles, consistent with the observations from
multiple analyses of transcriptomic data for the cohort.®®*° This highlights the necessity of
analyzing tissue and region-specific datasets to better understand interactions between brain
region and molecular disease states within AD. For instance, with preliminary validation in
this work, a similar deep learning framework could be designed specifically to dissect
transcriptomes from peripheral tissues such as blood of AD cohorts to seek highly sensitive
and specific targets, to complement any biomarkers currently being actively pursued for early

diagnosis of the devastating disease. Similarly, the application of such an approach has broad
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utility for use with any high dimensional multi-omics data such as proteomics, metabolomics
and epigenomics, thus opening another channel for the application of artificial intelligence in
the genomics field for pursuing early diagnosis and effective treatment of neurodegenerative

diseases.
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Figure 1l The deep Iear..rl;ing framewor k employed in this work. Using the gene expression
profiles from AD and control subjects and their diagnosis class as the input for supervised
classification, the model was trained by a three-layer neural network. Then the response
function from input layer to the hidden layer was applied to the profiles from the whole
cohort. The resulting manifold was subject to unsupervised dimension reduction (PCA +
UMAP) to obtain the pseudo-temporal trgectory and Sl. SI was linearly correlated with

phenotypic data for evaluation.
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Figure 2 The pseudo-temporal trajectory from the trained deep learning mode for the
transcriptome from DLPFC tissues of ROSMAP cohort and the SI correlation with
phenotypical data. Diagnosis class is defined in the main text. a) The trgjectory with only
AD and control (deep learning dataset) shown. b) The trgectory with all subjects (AD + CN
+ OTHER) shown. ¢) The model metrics for the linear regression between SI, controlled
covariates and all the neuropathological biomarkers and globa cognitive function, with p
values shown in cells with p < 0.05. Only covariates with significant association with at |east
one biomarker were shown. The descriptions for the definition of each parameter can be
found in Table S2. Detailed model metrics stratified by diagnosis groups can be found in
Table S3 and $4. d) The linear regression plot between Sl and global cognitive function.
Color legend for cogdx (final consensus cognitive diagnosis):1= No cognitive impairment
(CI); 2 = MCI and no other cause of Cl; 3 = MCI and another cause of Cl; 4 = AD and NO

other cause of Cl; 5 = AD and another cause of Cl; 6 = Other dementia.
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Figure 3 The pseudo-temporal trajectory for the transcriptomes from two brain regions
of MAY O cohort and the SI correlation with phenotypic data generated by applying the
trained deep learning model and mapping to the same 3D space as ROSMAP. AD =
Alzheimer’s disease; CN = control; PA = pathological aging; PSP = progressive
supranuclear palsy. a) The trgectory for transcriptome from TCX. b) The trgectory for
transcriptome from CER. c¢) The model metrics for the linear regression between Sl and the
neuropathological biomarkers by different brain regions, with p values shown in cells with p

< 0.05. Detailed model metrics are reported in Table S5.
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Figure 4 The pseudo-temporal trajectory from the transcriptomes of four brain regions
of MSBB cohort and the SI correlation with phenotypic data by applying the trained
deep learning model and mapping to the same 3D space as ROSMAP data. AD =
Alzheimer’s disease (CDR >= 1 and Braak >= 4 and CERAD <=2); CN = control (CDR
<= 0.5 and Braak <= 3 and CERAD >=3); OTHER = all other subjects. a-d) The
tragjectory for transcriptomes from regions BM 10/20/36/44 respectively. €) The model metrics
for the linear regression between Sl and all the neuropathological and clinical biomarkers, by
different brain regions with p values shown in cells with p < 0.05. Grey cellsindicate no data.

Detailed model metrics are reported in Table S6.
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Figure 5 Network and gene set analysis of the index genes. a) Module trait relationship
between the eigengenes of the six coexpression modules and individual traits. b) Functional
enrichments for the index genes present in the four modules. ¢) The modules were examined
for overlap (Fisher’'s exact test) with the gene sets from the mega analysis of the AMP-AD
consensus RNA-seq coexpression modules™. Overlaps were shown for those adjusted p
(Bonferroni correction) < 0.001. d) Cell type enrichments using Fisher’s exact test of gene set
overlap of the modules with cell type specific gene sets from human reference single-cell
RNA-seq data®*. Overlaps were shown for those adjusted p (Bonferroni correction) <
0.001. Ast = astrocytes, End = endothelial cells; Mic = microglia; Neu = neurons; Oli =
oligodendrocytes; Opc = oligodendrocyte progenitor cells, Per = pericytes. €) Cell type
marker gene expression signatures as a function of Sl. Mean expression of cell markers for
astrocytes, neurons, microglia, oligodendrocytes, and endothelial cells were plotted and

colored respectively.
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