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Abstract 
 
Mammalian embryogenesis is characterized by rapid cellular proliferation and diversification. Within a 
few weeks, a single cell zygote gives rise to millions of cells expressing a panoply of molecular programs, 
including much of the diversity that will subsequently be present in adult tissues. Although intensively 
studied, a comprehensive delineation of the major cellular trajectories that comprise mammalian 
development in vivo remains elusive. Here we set out to integrate several single cell RNA-seq datasets 
(scRNA-seq) that collectively span mouse gastrulation and organogenesis. We define cell states at each 
of 19 successive stages spanning E3.5 to E13.5, heuristically connect them with their pseudo-ancestors 
and pseudo-descendants, and for a subset of stages, deconvolve their approximate spatial distributions. 
Despite being constructed through automated procedures, the resulting trajectories of mammalian 
embryogenesis (TOME) are largely consistent with our contemporary understanding of mammalian 
development. We leverage TOME to nominate transcription factors (TF) and TF motifs as key regulators 
of each branch point at which a new cell type emerges. Finally, to facilitate comparisons across 
vertebrates, we apply the same procedures to single cell datasets of zebrafish and frog embryogenesis, 
and nominate “cell type homologs” based on shared regulators and transcriptional states.   
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Introduction 
 
A fundamental goal of developmental biology is to understand the relationships of cell types to one 
another during embryogenesis, as well as the molecular programs that underlie each cell type’s 
emergence. In principle, developmental programs can be comprehensively described, e.g. Sulston and 
colleagues’ reconstruction of the complete embryonic lineage of the roundworm C. elegans through visual 
observation (Sulston et al. 1983). However, C. elegans -- small, translucent, and developmentally 
invariant -- remains the only model organism for which such a complete description has been realized.  
 
Over the past four years, we and others have developed and applied new technologies for single cell 
molecular profiling to developing model organisms at the “whole animal” scale, including the worm, fly, 
zebrafish, frog, and mouse (Pijuan-Sala et al. 2019; Cao et al. 2019; Wagner et al. 2018; Briggs et al. 
2018; Farrell et al. 2018; Cao et al. 2017). Such studies lay the foundations for global views of metazoan 
development, including, for example, populating the Sulston lineage with the gene expression programs 
of each cell type (Cao et al. 2017; Packer et al. 2019).  
 
For mouse embryogenesis in particular, we and others have performed single cell or single nucleus RNA-
seq data (scRNA-seq) during implantation (Cheng et al. 2019; Mohammed et al. 2017), gastrulation 
(Pijuan-Sala et al. 2019) and organogenesis (Cao et al. 2019). Collectively, these four studies span the 
development of the mouse embryo from dozens of cells of a few types (E3.5) to millions of cells of 
hundreds of types (E13.5). However, the data associated with these studies has yet to be systematically 
integrated in a manner that permits their robust exploration. Such integration is challenging, both for 
technical reasons (e.g. different studies, different technologies, batch effects, etc.) as well as because of 
the sheer complexity of mouse development.  
 
Here we set out to systematically reconstruct the major cellular trajectories of mammalian embryogenesis 
from E3.5 to E13.5. Our primary strategy is inspired by Briggs and colleagues (Briggs et al. 2018) and 
makes several assumptions: 1) Although mouse development is variable, key patterns will be invariant 
across wild-type animals; 2) “Omnis cellula e cellula” also applies to cell states, i.e. cell states observed 
at a given timepoint must have arisen from cell states present at the preceding timepoint; 3) We are 
sampling frequently and deeply enough that newly detected cell states will not arise from antecedent cell 
states that were undetected at the preceding timepoint; 4) Provided that the delta in time is small enough, 
transcriptional similarity is an effective means of linking related cell states observed at adjacent 
timepoints. 
 
A caution is that in contrast to the Sulston’s seminal map of C. elegans, we focus here on reconstructing 
cellular trajectories (Trapnell et al. 2014), a concept related, but by no means equivalent, to cell lineage. 
Although it is a reasonable expectation that closely related cells (e.g. siblings) will be transcriptionally 
similar (Packer et al. 2019), the converse is not necessarily true. For example, molecular states can be 
insufficiently divergent, or even convergent, both of which obscure lineage relationships (Wagner and 
Klein 2020). Furthermore, even the expectation that lineally closely related cells will be transcriptionally 
similar is not always met, as rapidly changing molecular states can lead to “gaps” in trajectories (Packer 
et al. 2019). In sum, our goal here is a continuous, navigable roadmap of the molecular states of cell 
types during mouse development. Such a roadmap may constrain the potential lineage relationships 
amongst constituent cell types, but it does not explicitly specify them. 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted June 9, 2021. ; https://doi.org/10.1101/2021.06.08.447626doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.08.447626


 

3 

Systematic reconstruction of the cellular trajectories of mouse embryogenesis 
 
The datasets used here are derived from 468 samples (where each sample is an individual embryo or 
small pool of mouse embryos) from 19 timepoints or stages spanning E3.5 to E13.5, with successive 
stages separated by as few as 6 hours but no more than 1 day (Supplementary Table 1). The number 
of profiled cells totalled 1,443,099, and ranged from 99 to 449,621 per stage (Supplementary Fig. 1a-
b). For each stage, we performed pre-processing followed by Louvain clustering and manual annotation 
of individual clusters based on marker gene expression (Supplementary Table 2). Here we use “cell 
state” to mean an annotated cluster at a given stage. Altogether, we identified 413 cell states across the 
19 timepoints, each of which received one of 84 cell type annotations. 
 
For each pair of adjacent stages, we projected cells into a shared embedding space (Stuart et al. 2019). 
Relative to (Briggs et al. 2018), a technical challenge here is that both within and between some stages, 
data was generated by different groups using different scRNA-seq technologies. To address this, we 
performed anchor-based batch correction prior to integration, which proved quite effective, including 
across platforms as well as across cells vs. nuclei (Supplementary Fig. 1c-e) (Stuart et al. 2019). After 
co-embedding, we applied a k-nearest neighbor (k-NN) based heuristic to connect cell states between 
adjacent stages. Briefly, for each cell state at the later timepoint, we identified the 5 closest cells from the 
antecedent timepoint in the co-embedding. Bootstrapping to obtain a robust estimate (500 iterations with 
80% subsampling), we then calculated the median proportion of such neighbors derived from each 
potential antecedent cell state, and treated this as the weight of the corresponding edge.  
 
As a simple example, clustering and annotation of scRNA-seq data from two adjacent timepoints, E6.25 
and E6.5, identified 5 and 6 cell states, respectively (Fig. 1a). If we co-embed these data and follow the 
aforedescribed procedure, we strongly link 5 cell states at E6.5 to 5 cell states bearing the same 
annotations at E6.25. The new cell state at E6.5, which corresponds to the primitive streak, is strongly 
linked to E6.25 epiblast, which we assign as its pseudo-ancestor (Fig. 1a). Upon applying this procedure 
to E6.5 → E6.75 and E6.75 → E7.0, the primitive streak is further assigned as the pseudo-ancestor of 
the nascent mesoderm, anterior primitive streak and primordial germ cells (Supplementary Fig. 2). 
 
We applied this approach across each of the 18 pairs of adjacent timepoints (Supplementary Fig. 3). 
Although the resultant edge weights were bimodally distributed, a cutoff of 0.2 was selected towards 
being more inclusive of weaker relationships as well as to ensure connectivity of the overall graph (Fig. 
1b). Of note, we introduced 4 “dummy nodes”, corresponding to the morula at E3.0 (as a root for the 
trophectoderm and inner cell mass), trophectoderm at E3.5 and E4.5 (which had been removed at these 
timepoints by immunosurgery (Mohammed et al. 2017)) and parietal endoderm at E6.75 (undetected, 
likely due to undersampling). The resulting representation is a directed acyclic graph with 417 nodes and 
468 edges that captures trajectories of mammalian embryogenesis (TOME) (Fig 1c).  
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Figure 1. Systematic reconstruction of the cellular trajectories of mouse embryogenesis. a, Overview of 
approach. Cells from each pair of adjacent stages were projected into the same embedding space (Stuart et al. 
2019). UMAP visualizations of co-embedded cells from E6.25 and E6.5 are shown separately (middle column) or 
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together (top right). A k-NN heuristic was applied to infer one or several pseudo-ancestors for each of the cell states 
observed at the later time point (bottom right). ExE: extraembryonic. EmVE: embryonic visceral endoderm. ExVE: 
extraembryonic visceral endoderm. b, Histogram of all calculated edge weights. The y-axis is on a log2 scale. Edges 
with weights above 0.2 (red line) were retained. “Top edges” are those with the highest weight amongst all potential 
antecedents of each cell state. c, Directed acyclic graph showing inferred relationships between cell states across 
early mouse development. Each row corresponds to one of 84 cell type annotations, columns to developmental 
stages spanning E3.5 to E13.5, nodes to cell states, and node colors to germ layers.  All edges with weights above 
0.2 are shown in grey scale. Of note, placental tissues were not actively retained during the isolation of embryos 
from later timepoints (Cao et al. 2019). ExE: extraembryonic. PNS: peripheral nervous system. MHB: midbrain-
hindbrain boundary.  
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Do molecular trajectories recapitulate cellular phylogenies? 
 
To reiterate, the graph shown in Fig. 1c (TOME) does not reflect cell lineage but rather relationships 
between cell states that were inferred on the basis of transcriptional similarity. Nonetheless, under the 
supposition that lineally related cell states diverge from one another through a succession of continuous 
molecular states, we can ask whether or not established lineage relationships are respected by TOME. 
Of the 468 edges with weights greater than 0.2, 328 (70%) are between cell states bearing the same 
annotation, while 140 (30%) are between cell states bearing different annotations. In Supplementary 
Table 3, we show all edge weights and comment on inferred transitions. Several observations merit 
emphasis.  
 
First, the graph largely respects germ layers, which are indicated by node colors in Fig. 1c. There are no 
edges between extraembryonic and embryonic cell states, and relatively few edges between embryonic 
cell states of different germ layers. Among the strongest edges that cross between germ layers 
“boundaries” are two edges that connect E8.5 neural crest (PNS glia) to two subtypes of E9.5 osteoblast 
progenitors, presumably corresponding to the well-established neural crest contribution to bones (Tani 
et al. 2020); another edge between E8.5 intermediate mesoderm and E9.5 renal epithelium, also an 
established contribution across germ layers (Bouchard 2004); and another edge between caudal lateral 
epiblast and a subset of paraxial mesoderm at E7.5-E8.0, also previously described (Albors, Halley, and 
Storey 2018) 
 
Second, 80% of cell types are strongly linked (edge weight greater than 0.7) to a single pseudo-ancestor 
when they first appear. These strong edges generally respect established lineage relationships, e.g. 
parietal and visceral endoderm arising from hypoblast (Rivera-Pérez and Hadjantonakis 2014), notochord 
and definitive endoderm arising from the anterior primitive streak (Balmer, Nowotschin, and 
Hadjantonakis 2016; Wells and Melton 1999), cardiomyocytes arising from splanchnic mesoderm 
(Ivanovitch, Temiño, and Torres 2017), and many others. 
 
Third, apparent convergences — instances wherein we assign more than one pseudo-ancestor to a cell 
state — sometimes correspond to a given cell type persisting and “contributing” to another cell type over 
several consecutive timepoints (e.g. hemoendothelial progenitors are recurrently assigned as pseudo-
ancestors of endothelial cells at E7.75-E8.25). In other cases, apparent convergences may reflect 
incomplete separation between highly related cell types, rather than ongoing differentiation (e.g. the 
several edges between notochord and definitive endoderm; recurring edges between different subtypes 
of mesoderm). However, yet other cases reflect bonafide convergence of transcriptional states, i.e. where 
a cell type has multiple origins. For example and as also noted above, the two subtypes of E9.5 osteoblast 
progenitors have edges back to both E8.5 neural crest and E8.5 paraxial mesoderm, consistent with the 
literature (Tani et al. 2020), while a subtype of paraxial mesoderm has edges back to nascent mesoderm 
and caudal lateral epiblast (Albors, Halley, and Storey 2018). Of note, not all established convergences 
are captured, e.g. the known contribution of embryonic visceral endoderm to the gut at E7.5-E7.75 
(Nowotschin and Hadjantonakis 2020) is detected at E7.5-E7.75, but falls just short of the 0.2 edge weight 
threshold (Supplementary Table 3). 
 
Fourth, an important limitation of this heuristic approach, made apparent by a few clear inaccuracies in 
the graph, is that true lineage relationships for a given cell state can be obscured by the presence of a 
highly similar cell state at the preceding timepoint. For example, E9.5 neuron progenitor cells are 
assigned as the pseudo-ancestor of multiple neuronal subtypes that appear at E10.5, but we do not 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted June 9, 2021. ; https://doi.org/10.1101/2021.06.08.447626doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.08.447626


 

7 

observe these same relationships to recur at subsequent timepoints, although neuronal differentiation is 
surely ongoing. This is probably because at timepoints subsequent to E10.5, each derivative neuronal 
subtype is most similar to itself at the preceding timepoint, such that it fails to be linked back to the 
persisting neuron progenitors. This same phenomenon probably explains another error, wherein when 
definitive erythroid cells first appear at E10.5, they are linked to E9.5 primitive erythroid cells, rather than 
to blood progenitors. For a more exhaustive consideration of the ways in which trajectory-based inference 
can be misleading about cell lineage histories, see (Wagner and Klein 2020). Of note, at least some of 
the inaccuracies noted above are resolvable by focused analyses that leverage the distinction between 
nascent and spliced transcripts, i.e. RNA velocity (La Manno et al. 2018). For example, if we reanalyze 
these problematic subsets of TOME with scVelo (Bergen et al. 2020), the heterogeneity and ongoing 
contributions of neuron progenitors is much more evident (Sagner et al., n.d.) (Fig. 2a), and primitive and 
definitive hematopoiesis are much more clearly separated (Fig. 2b). A third inaccuracy, also potentially 
explained by the same phenomenon, is lack of a relationship between neural crest neurons and glia. 
However, once again, if we reanalyze these subsets on their own, their shared origin is much more 
apparent, as are the multiple waves of sensory neurogenesis (Pavan and Raible 2012) (Fig. 2c).  
 
Fifth, a further limitation is that our reliance on discrete entities, i.e. cell states, obscures aspects of 
developmental biology that are inherently continuous. For example, spatial transcriptional heterogeneity, 
which often manifests as continuous gradients, is obscured by cell type or cell state discretization. Here, 
we have represented aspects of spatial heterogeneity in a limited way through distinct nodes (e.g. 
fore/mid/hindbrain; paraxial mesoderm A/B/C), but this is far from ideal.  
 
In summary, molecular trajectories often recapitulate well-documented cellular phylogenies, but there are 
clear limitations. Nonetheless, the graph is largely consistent with our contemporary understanding of 
mammalian development, despite being constructed through automated procedures. To facilitate its 
exploration, we created an interactive website in which the nodes and edges shown in Fig. 1c can be 
navigated (https://chengxiangqiu.github.io/tome/). 
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Figure 2. RNA velocity clarifies relationships between cell types during neuronal differentiation, 
hematopoiesis and neural crest development. a, RNA velocity was estimated on the basis of the proportion of 
reads mapping to exonic vs. intronic portions of genes using scVelo (Bergen et al. 2020). Cells corresponding to 
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noradrenergic neurons, motor neurons, intermediate progenitor cells, inhibitory interneurons, inhibitory neuron 
progenitors, inhibitory neurons, excitatory neuron progenitors, excitatory neurons, and neuron progenitor cells from 
E9.5 and E13.5 were included in this analysis, after downsampling each cell state to 5,000 cells. UMAP visualization 
of co-embedded cells and cell state transition trends (arrows) are shown. Smaller panels show the same UMAP 
visualization but with coloring of cells from individual timepoints. b, Same as panel a, but for cells corresponding to 
blood progenitors, white blood cells, megakaryocytes, definitive erythroid cells and primitive erythroid cells from 
E9.5 and E13.5. c, Same as panel a, but for cells corresponding to neural crest (PNS glia), neural crest (PNS 
neurons), roof plate, noradrenergic neurons from E9.5-E13.5, as well as stromal cells and osteoblast progenitors A 
& B from E9.5 only. 
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Inference of the approximate spatial locations of cell states during mouse gastrulation 
 
Spatial relationships amongst cells are a crucial aspect of development, but this information is lost while 
profiling disaggregated cells or nuclei. Towards addressing this in part, several groups have developed 
in silico methods for integrating scRNA-seq data with spatially resolved gene expression profiles obtained 
by fluorescence in situ hybridization (FISH) or other means (Satija et al. 2015; Karaiskos et al. 2017). 
Here we sought to leverage data recently generated by Peng and colleagues, who applied cryosectioning 
and bulk RNA-seq (GEO-seq) to obtain spatially resolved transcriptomes for precise territories of the 
mouse embryo from E5.5 to E7.5 (Peng et al. 2019). Inspired by an analysis by Peng et al. estimating 
the regionalization of endodermal subclusters across E7.0 GEO-seq territories, we leveraged TOME to 
estimate the abundance of individual cell types within each GEO-seq territory (Fig. 3a; Supplementary 
Fig. 4; Supplementary Table 4) (Newman et al. 2019). For many cell types and territories, this approach 
appeared to work quite well. For example, the GEO-seq territories inferred to be composed of rostral and 
caudal neuroectoderm, caudal lateral epiblast, and surface ectoderm are clearly distinguishable at E7.5, 
in a pattern consistent with expectation (Fig. 3b) (Tam and Behringer 1997). Also at E7.5, what we had 
annotated prior to this analysis as different subsets of paraxial mesoderm (A & B) are also regionalized 
to the anterior and posterior embryo, respectively (Fig. 3c). Finally, we observe the anticipated 
convergence of embryonic visceral endoderm and definitive endoderm cells during gut development 
(Nowotschin and Hadjantonakis 2020)  (Fig. 3d).  
 
Inferring the molecular histories of individual cell types 
 
We next sought to infer continuous expression levels for individual genes over the course of each cellular 
trajectory, focusing on derivatives of the epiblast from E6.25 onwards. First, we leveraged the fact that 
individual embryos do not correspond precisely to their intended timepoints. Using pseudotime, we 
ordered the pseudobulk expression profiles of individual embryos (or pools of embryos comprising each 
sample, in the case of (Pijuan-Sala et al. 2019)). The resulting ordering, which was robust to 
downsampling, corresponds well with developmental age but may additionally distinguish earlier vs. later 
individuals/pools at each intended timepoint (Supplementary Fig. 5a-b).  
 
Next, for each epiblast-derived cell type that was detectable at E13.5, we calculated a smoothed 
expression profile along its inferred history, as illustrated in Supplementary Fig. 5c for selected genes 
in one cell type from each germ layer. Despite including the data source as a covariate, these inferred 
trajectories remained modestly confounded by batch effects across E8.5 → E9.5, i.e. the switch from 
cell-based 10X Genomics data to nucleus-based sci-RNA-seq3 data (Supplementary Fig. 6). 
Nonetheless, at least anecdotally, key transcription factors (TFs) were often sharply upregulated in 
association with a cell type’s first appearance (Supplementary Fig. 5c, columns 1 & 2), while other 
genes exhibited more gradual patterns of change in relation to pseudotime (Supplementary Fig. 5c, 
columns 3 & 4). 
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Figure 3. Inference of the approximate spatial locations of cell states during mouse gastrulation. a, Inference 
of cell type contributors to each spatial territory of the gastrulating mouse embryo based on the application of 
CIBERSORTx to GEO-seq data (Newman et al. 2019; Peng et al. 2019). GEO-seq yields bulk RNA-seq data from 
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small numbers of cells dissected from precise anatomic regions of the gastrulating embryo (Peng et al. 2019). For 
each timepoint for which GEO-seq data was available (E5.5, E6.0, E6.5, E7.0, and E7.5), we estimated a gene 
expression signature for each cell state from scRNA-seq data, downsampling to 50 cells per state. As E6.0 scRNA-
seq data was not available, we instead used data from E6.25 for that timepoint. We then estimated the proportional 
contribution of each cell state to each GEO-seq sample using CIBERSORTx (Newman et al. 2019). ExE: 
extraembryonic. EmVE: embryonic visceral endoderm. ExVE: extraembryonic visceral endoderm. b, Corn plots 
(Peng et al. 2019) showing the spatial pattern of inferred contributions of various ectodermal cell types at E7.5. c, 
Corn plots showing the spatial pattern of inferred contributions of various mesodermal cell types at E7.5. d, Corn 
plots showing the spatial pattern of inferred contributions of various endodermal cell types at E7.5, as well as 
notochord. In each corn plot, each circle or diamond refers to a GEO-seq sample, and its weighted color to the 
estimated cell type composition. Corn plot nomenclature from (Peng et al. 2019). A, anterior; P, posterior; L, left 
lateral; R, right lateral; L1, anterior left lateral; R1, anterior right lateral; L2, posterior left lateral; R2, posterior right 
lateral; Epi1 and Epi2, divided epiblast; M, whole mesoderm; MA, anterior mesoderm; MP, posterior mesoderm; 
En1 and En2, divided endoderm; EA, anterior endoderm; EP, posterior endoderm.  
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Systematic nomination of key transcription factors for cell type specification 
 
Inspired by these anecdotal examples, we next sought to leverage TOME to systematically identify TFs 
that are strong candidates for specifying each newly emerging cell type throughout early mammalian 
development (Lambert et al. 2018; Niwa 2018). First, we identified 1,391 mouse proteins that are putative 
TFs, based on orthology with a curated list of human TFs (Supplementary Table 5) (“The Human 
Transcription Factors” n.d.). Then, for each branchpoint in TOME at which a given cell type first emerged, 
we heuristically defined key TF candidates as those: 1) significantly upregulated in the newly emerged 
cell type, relative to the pseudo-ancestor; 2) detected in at least 10% of cells in the newly emerged cell 
type; and 3) not significantly upregulated at any “sister” edges, relative to the newly emerged cell type 
(Fig. 4a). For each such key TF candidate, we calculated a normalized score based on the fold-difference 
of its expression between the new cell type and its ancestor/sister(s).  
 
Altogether, we identified 531 candidate key TFs associated with the emergence of one or more of 82 cell 
types (24 +/- 15 per cell type; Fig. 4b; Supplementary Table 6). Most candidate key TFs were specific 
to one or a few cell types (52% associated with only 1 or 2 cell types). For example, Gsc (goosecoid) was 
identified as a candidate key TF for the emergence of the anterior primitive streak, but no other cell type, 
and Srf for cardiomyocytes, but no other cell type (Blum et al. 1992; Nelson et al. 2005; Miano et al. 
2004). On the other hand, a few TFs, such as Meis2 and Pbx1, were associated with the emergence of 
dozens of cell types (Fig. 4c). In Fig. 4d, we show the top scoring candidate key TFs for selected 
trajectories. Despite our automated approach that relied on a handful of datasets, many of these TFs are 
established as playing critical roles in the emergence of the corresponding cell types. For example, for 
cardiomyocytes, the top three TFs identified are Nkx2-5, Mef2c, and Gata5 (Harvey 1996; Materna et al. 
2019; Singh et al. 2010); for notochord, Foxj1, Tbxt (Brachyury), and Noto (Beckers et al. 2007; Herrmann 
and Kispert 1994; Zizic Mitrecic et al. 2010); for neural crest (PNS glia), Sox9, Msx1, and Msx2 (Cheung 
and Briscoe 2003; Ishii et al. 2005; Tribulo et al. 2003); and for hematoendothelial progenitors, Etv2, 
Tal1, and Gata2 (Garry 2016; Elcheva et al. 2014; de Pater et al. 2013).  
 
Multilineage priming (MLP) has extensively been documented in hematopoietic lineages and more 
recently in C. elegans (Packer et al. 2019; Laslo et al. 2006). As one form of MLP, we also sought to 
identify TFs whose reduced expression was associated with cell type emergence, which we defined as 
those: 1) detected in at least 10% of cells in the pseudo-ancestor; 2) significantly downregulated in the 
newly emerged cell type, relative to the pseudo-ancestor; and 3) both detected in at least 10% of cells 
and not significantly downregulated at any “sister” edges, relative to the newly emerged cell type. 
Altogether, we identified 339 candidate key TF whose reduced expression is associated with the 
emergence of one or more of 76 cell types (13 +/- 12 per cell type; Supplementary Table 7). For 
example, at the split from inner cell mass to epiblast and hypoblast at E4.5, Gata6 and Nanog are 
identified solely as decreasing in the respective emergence of the epiblast and hypoblast, consistent with 
the literature (Mitsui et al. 2003; Schrode et al. 2014). Also, Pou5f1 (Oct4) is identified as a key TF with 
reduced expression in association with 19 cell types, but increased expression with only 1, consistent 
with its established role in stemness (Supplementary Fig. 7a) (Nichols et al. 1998; Pan et al. 2002). In 
sharp contrast, Nfia and Nfib (nuclear factors I/a and I/b) are nominated as key TFs at the emergence of 
15 and 14 cell types, respectively, but in all cases upregulated, consistent with broad roles in lineage 
progression (Chen et al. 2017; Chaudhry, Lyons, and Gronostajski 1997). 
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Figure 4. Systematic nomination of candidate key transcription factors for cell type specification. a, We 
heuristically defined candidate key TFs as those that are expressed in the pseudo-ancestral cell state, are 
significantly upregulated in the newly emerged cell type, are not significantly upregulated at any sister edges. b, 
Histogram of the number of candidate key TFs for each cell type at the timepoint of its first emergence. c, The 
histogram of the number of cell types in which each TF was nominated as a candidate key TF. d, Diagram illustrating 
selected cellular trajectories from TOME, decorated with the top 5 scoring candidate key TFs for each edge. EmVE: 
embryonic visceral endoderm. ExVE: extraembryonic visceral endoderm. PNS: peripheral nervous system. MHB: 
midbrain-hindbrain boundary. Style inspired by (Morris et al. 2014).  
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Identification of cis-regulatory motifs involved in in vivo cell type specification 
 
Although single cell chromatin accessibility profiling (e.g. sc-ATAC-seq) is increasingly enabling the 
ascertainment of cis-regulatory programs in embryonic and fetal tissues (Domcke et al. 2020; Cusanovich 
et al. 2018; Pijuan-Sala et al. 2020), such data is not yet available for a dense timecourse of early 
development for any of the three species considered here. As a step forward with sc-RNA-seq data alone, 
we sought to identify DNA sequence motifs that are enriched in the core promoters of developmentally 
regulated genes in TOME. First, we extended the approach described above to nominate key TFs whose 
upregulation or downregulation is associated with the emergence of each cell type, to all genes. 
Altogether, this yielded 7,318 key genes associated with the emergence of one or more of 82 cell types 
(345 +/- 246 per cell type; Supplementary Fig. 7b; Supplementary Table 8). Second, for each cell type, 
we applied HOMER (Heinz et al. 2010) to discover DNA sequence motifs that are specifically enriched 
in the core promoters of key genes (-300 to +50 bp of annotated TSSs). Finally, we estimated q-values 
for discovered motifs by data label permutation. At an FDR of 10%, we implicated 77 de novo promoter 
motifs in the emergence of 41 mouse cell types (Supplementary Table 9), as well as an additional 100 
previously documented promoter motifs (some overlapping with the de novo set) in the emergence of 30 
mouse cell types (Supplementary Table 10). 
 
We then asked whether the sequence motifs identified in the core promoters of developmentally 
regulated genes correspond to the binding sites of candidate key TFs for the same cell types, which 
would provide a plausible confirmation of their role. We identify 20 such instances, 15 of which are 
positive correlations (i.e. consistent directionality between TF expression and target gene expression) 
and 5 of which are negative correlations (Supplementary Table 11). For example, the transcriptional 
activator Rfx3 is sharply upregulated at the emergence of the notochord at E7.25, and its cognate motif 
is strongly enriched at the promoters of key genes upregulated in these same cells (Supplementary Fig. 
8a-c) (Beckers et al. 2007; Bonnafe et al. 2004). In contrast, the transcriptional repressor Snail, encoded 
by Snai1, is upregulated at the emergence of nascent mesoderm at E6.75, but its cognate motif strongly 
enriched in the promoters of downregulated key genes (Supplementary Fig. 8d-f) (Hemavathy, Ashraf, 
and Ip 2000; Carver et al. 2001). Of note, RFX3 motifs are very strongly enriched near the TSSs of 
notochord-upregulated genes, while SNAIL1 motifs are more diffusely enriched across the promoters of 
nascent mesoderm-downregulated genes (Supplementary Fig. 8b, e).   
 
A limitation of these analyses is that we restricted our search for enriched sequence motifs to the core 
promoters of up- or down-regulated key genes. As single cell, genome-wide chromatin accessibility 
datasets spanning mammalian embryogenesis become available, such analyses can be extended to 
enhancer-mediated regulation.  
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Systematic comparison of the cellular trajectories of mouse, zebrafish and frog embryogenesis 
 
The origins and evolution of vertebrate cell types are fascinating topics on which the single cell profiling 
of embryogenesis may shed much needed light (Arendt et al. 2016). However, even if we adopt an 
evolutionary definition of cell types, it remains unclear how best to identify “cell type homologs” across 
vast evolutionary distances. To facilitate the systematic alignment of cell types across vertebrates, we 
applied the same strategy used for TOME to zebrafish (D. rerio) and frog (X. tropicalis) embryogenesis, 
again relying on publicly available single cell RNA-seq datasets. For zebrafish, we integrated data from 
two studies that used different technologies but together included 15 developmental stages, beginning at 
the high stage (hpf 3.3) and ending at the early pharyngula stage (hpf 24), essentially spanning epiboly 
and segmentation (Fig. 5a; Supplementary Table 1) (Wagner et al. 2018; Farrell et al. 2018). The 
resulting graph contains 221 nodes, each assigned one of 63 cell type annotations, and 257 edges with 
weights greater than 0.2 (Fig. 5b). Marker genes used to annotate cell types are provided in 
Supplementary Table 12, and all edge weights in Supplementary Table 13. We also nominated key 
upregulated and downregulated TFs using the same approach described for mouse development above 
(Supplementary Tables 14-15).  
 
For frog, we re-analyzed one dataset spanning 10 developmental stages, from S8 and S22 (Briggs et al. 
2018), spanning gastrulation and neurulation (Fig. 5a; Supplementary Table 1). The resulting graph 
contains 192 nodes, each assigned one of 60 cell type annotations, and 221 edges with weights greater 
than 0.2 (Fig. 5c). Marker genes used to annotate cell types are provided in Supplementary Table 16, 
all edge weights in Supplementary Table 17, and candidate key TFs in Supplementary Tables 18-19.  
 
We next sought to systematically align cell types from each species to their “cell type homologs” in the 
other two species. Because M. musculus is separated from D. rerio and X. tropicalis by ~450 million and 
~360 million years of evolution, respectively, these alignments proved much more challenging than 
integrating data from more closely related species such as mouse and human (Cao et al. 2020; Yu et al. 
2019). We attempted three strategies.  
 
As a first strategy, treating cells of each state from each timepoint as a “pseudo-cell”, we integrated data 
from all three species with anchor-based batch correction (Stuart et al. 2019). Within the resulting UMAP 
co-embedding of 765 pseudo-cells, we could identify 15 major groups — epiblast, early gastrulation, 
neuroectoderm, surface ectoderm, mesoderm, floor plate & roof plate, gut, placodal area, neural crest, 
epithelium, brain, neurons, endothelium, myocytes, and blood — each containing cell states from all three 
species (Supplementary Fig. 9). However, within each such major group, the homology between 
specific cell types generally remained ambiguous.  
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Figure 5. Reconstruction of the cellular trajectories of zebrafish and frog embryogenesis. a, Comparative 
developmental timelines for mouse, zebrafish, and frog, spread over two time scales, and approximate (as may 
depend on temperature, particularly for frog). "Gastrulation" and “Somitogenesis” refer to the timing of onset of 
these processes (Afonin et al. 2006). “Pharyngula” refers to the timing of onset of pharyngeal arch formation (Irie 
and Kuratani 2011). Black dots refer to timepoints sampled across seven studies. Grey rounded rectangles indicate 
developmental windows covered by cellular trajectory reconstructions. b, Directed acyclic graph showing inferred 
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relationships between cell states across early zebrafish development. Each row corresponds to one of 63 cell type 
annotations, and columns to developmental stages spanning hpf3.3 to hpf24. Nodes denote cell states, and node 
colors denote germ layers. All edge weights greater than 0.2 are shown in grey-scale. c, Directed acyclic graph 
showing inferred relationships between cell states across early frog development. Each row corresponds to one of 
60 cell type annotations, columns to developmental stages spanning S8 (hpf5, 23C) to S22 (hpf24, 23C), nodes to 
cell states, and node colors to germ layers. All edge weights greater than 0.2 are shown in grey-scale. DEL: deep 
cell layer. EVL: enveloping layer. 
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As a second strategy, we performed all possible pairwise comparisons between the transcriptomes of 
cell types of each pair of species, excluding extraembryonic lineages (Fukazawa et al. 2010). First, we 
performed cell type correlation analysis (Cao et al. 2019), which uses a regression framework to ask, 
between each pair of species, which cell types are the best reciprocal best matches to one another 
(Supplementary Fig. 10; Supplementary Table 20; Methods). We then manually reviewed the highest 
ranking cell type pairings for biological plausibility. For mouse vs. zebrafish, out of 4,543 pairings tested, 
147 were highly ranked, of which we selected 44 as the most biologically plausible (Supplementary 
Table 21). Exclusion criteria included the cell types arising from different germ layers or major groups 
(as defined in Supplementary Fig. 9), arising at very different temporal stages, or if a cell type was 
exclusive to  one species. In cases where multiple related matches were observed, we generally selected 
the match with the highest β score. Applying this same approach to mouse vs. frog and zebrafish vs. 
frog, we identified 20 and 47 plausible cell type homologs pairings, respectively (Supplementary Fig. 
11a; Supplementary Table 21).  
 
As a third strategy, we focused on overlaps between the candidate key TFs associated with the 
emergence of each cell type in each species. For each possible interspecies pairing of cell types, we 
identified orthologous TFs that were nominated in both, and then adopted a permutation approach to 
identify instances in which an excess of orthologous candidate key TFs were shared between the cell 
types. For mouse vs. zebrafish, out of 4,312 pairings tested, 88 exhibited more sharing than >99% of 
permutations, of which we retained 26 as the most biologically plausible (Supplementary Table 22). 
Applying this same approach to mouse vs. frog and zebrafish vs. frog, we identified 19 and 19 plausible 
cell type homolog pairings, respectively (Supplementary Fig. 11b; Supplementary Table 22).  
 
Some candidate cell type homologs overlapped between these second and third strategies (Fig. 6a; 
Supplementary Table 23). Overall, we were able to assign at least one cell type homolog to 48 of 77 
embryonic mouse cell states, 52 of 59 zebrafish embryonic cell states, and 44 of 60 frog embryonic cell 
states. Some loosely annotated cell types were resolved through homology. For example, zebrafish 
eomesa+ and dlx1a+ differentiating neurons were homologous to mouse intermediate progenitor cells 
and inhibitory interneurons, respectively. In certain cases, we observed “three way” pairwise homology 
and nominated regulators (Fig. 6b). For example, Gsc, a canonical TF of the Spemann organizer (De 
Roberts et al. 1992), was nominated as a key regulator of the anterior primitive streak (mouse), dorsal 
margin involuted (zebrafish), and dorsal marginal zone (frog), cell types that were also identified as 
homologs of one another. Other such “three way” nominated TF regulators and associated cell types 
include Sox7 for haemogenic endothelium (Costa et al. 2012), Tbx2 for the otic placode (Takabatake, 
Takabatake, and Takeshima 2000; Barrionuevo et al. 2008) and Gata3 for surface ectoderm (Fig. 6b).  
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Figure 6. The union of candidate cell type homologs identified between three species (mouse, zebrafish, 
frog) by two strategies. a, Candidate cell type homologs were identified either by comparison of transcriptomes 
via non-negative least squares (“nnls”) regression or by examining overlap between upregulated candidate key TFs 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted June 9, 2021. ; https://doi.org/10.1101/2021.06.08.447626doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.08.447626


 

21 

(“key TF”). Nominated pairings were manually reviewed, and a subset retained based on biological plausibility. 
Colors of nodes indicate the species of a given cell type, and colors of edges indicate which approach(es) identified 
the pairing. Sets of connected candidate cell type homologs are further grouped by germ layer or developmental 
system. PNS: peripheral nervous system. DEL: deep cell layer. b, Selected examples of “three way” pairwise cell 
type homology from different germ layers in the above network. Upregulated candidate key TFs shared by each 
pair of species are listed, with the subset shared by all three species in red font.  
  

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted June 9, 2021. ; https://doi.org/10.1101/2021.06.08.447626doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.08.447626


 

22 

Discussion 
 
Nearly forty years ago, Sulston and colleagues painstakingly mapped out the entirety of the invariant 
embryonic cell lineage of C. elegans, comprising 671 cells (Sulston et al. 1983). The Sulston map 
provided a foundational scaffold for the integration of future experimental results, as well as a precise 
nomenclature for the discussion of specific subsets of cells within the developing worm. Recently, Packer 
and colleagues intersected the Sulston lineage with the mRNA profiles of the same cells, shedding fresh 
light on the relationship between cell states and fates (Packer et al. 2019).  
 
Can equivalently global views of development be achieved for the developing mouse? For reasons 
including scale, complexity, variance and accessibility, this is an extraordinary challenge and one that 
may take decades to fully come to fruition, if indeed it ever does. However, given the pace at which 
relevant technologies are emerging and evolving, it feels increasingly tractable to make meaningful 
progress.  
 
Here, towards a scaffold for such an undertaking, we sought to leverage recently published single cell 
RNA-seq data to construct a “roadmap” of molecular trajectories that cells traverse during the peri-
implantation, gastrulation and organogenesis stages of mouse development (Fig. 1). Our approach — 
constructing a directed acyclic graph wherein each node corresponds to a group of related cells at a 
given timepoint, and each edge to similarity between groups observed at adjacent timepoints — is highly 
reductionist. However, we believe that this framing provides a useful entry point for analyses that benefit 
from a global view of developmental processes. For example, in addition to systematically nominating 
specific TFs as key regulators of the initial emergence of each cell type, we are able to assess which TFs 
and genes appear to have relatively specific vs. general roles in development (Fig. 4; Supplementary 
Fig. 7). Furthermore, by constructing developmental graphs for additional vertebrate species through the 
same method, we can identify “cell type homologs” through approaches that consider all cell types in 
each pair of species, analogous to the comparison of genomes (Figs. 5, 6).  
 
Although “cell type” is a useful concept, a limitation of this terminology is that it obscures continuous 
aspects of heterogeneity — e.g. as might be expected for spatial gradients or during the maturation of a 
cell type. This framing also forces us to make decisions about the level of resolution at which to define 
cell types. Although we have made some progress in relating TOME to spatial information (Fig. 3), new 
nomenclature that facilitates the discussion of precise subsets of cells within spatially or otherwise 
heterogeneous cell types is sorely needed.  
 
As discussed above, molecular trajectories are not equivalent to cellular phylogenies, but are likely to 
constrain them. Indeed, the cell type relationships inferred here on the basis of gene expression are 
largely consistent with our understanding of the bona fide ancestors and descendants of cell types in 
mouse development. Exceptions and ambiguities may represent errors that can be clarified through 
deeper analysis (Fig. 2), or potentially novel relationships that require validation. To that end, in vivo, 
organism-scale lineage recording, originally developed in zebrafish, has recently been adapted to the 
mouse (McKenna et al. 2016; Bowling et al. 2020; Kalhor et al. 2018; Chan et al. 2019). Although such 
methods remain very far from delivering anything approaching the resolution of the Sulston lineage, they 
can likely be applied in their current form to support or reject potential lineage relationships suggested 
here. Additionally, even within cell states, such lineage data might shed light on the patterns of cell 
division that underlie the differentiation and proliferation of each cell type.  
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TOME provides a scaffold onto which additional single cell gene expression datasets from mouse 
development can be layered. In this vein, the remarkable consistency and robustness of in vivo mouse 
development is a terrific feature, and contrasts with in vitro differentiation time courses, which may vary 
by lab, operator, cell line, etc. In terms of additional data generation, near-term goals that we are pursuing 
include consistent sampling throughout mouse development at 6 hour intervals, better integration across 
the E8.5-E9.5 “technology switch”, and extending whole embryo scRNA-seq datasets out to P0. We also 
anticipate additional single cell data types (e.g. chromatin accessibility, methylation, histone 
modifications, transcription factor binding, etc.) can be generated by independent groups and/or 
technologies and layered onto TOME as well. We are particularly excited about the possibility of linking 
the temporal unfolding of combinatorial TF expression to enhancer accessibility, and then enhancer 
accessibility to the expression of cis-regulated genes.  
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Methods 
 
Systematic reconstruction of the cellular trajectories of mouse embryogenesis 
 
Single cell or single nucleus RNA-seq data were collected from four studies spanning 19 timepoints 
between E3.5 and E13.5 of mouse embryogenesis, collectively 1,443,229 cells from 468 samples, where 
each sample consists of either a single mouse embryo or a small pool of embryos from the same 
timepoint (Mohammed et al. 2017; Cheng et al. 2019; Pijuan-Sala et al. 2019; Cao et al. 2019). The 
details are summarized in Supplementary Table 1. For each dataset, we took the unique molecular 
identifiers (UMI) count matrix (feature ✕ cell) from the data source and separated cells by timepoint. For 
each timepoint, we performed conventional single-cell RNA-seq data processing using Seurat/v3: 1) 
normalizing the UMI counts by the total count per cell followed by log-transformation; 2) selecting the 
2,500 most highly variable genes and scaling the expression of each to zero mean and unit variance; 3) 
applying PCA and then using the top 30 PCs to create a k-NN graph, followed by Louvain clustering 
(resolution = 1); 4) performing UMAP visualization in 2D space (dims = 1:30, min. dist = 0.75) (Stuart et 
al. 2019). For some timepoints, we observed obvious batch effects with respect to either study or sample 
identity. We therefore performed an additional batch correction before the PCA, following the standard 
pipeline for dataset integration in Seurat/v3 (https://satijalab.org/seurat/v3.2/integration.html), using 
either the study or sample identity to split datasets, followed by identifying “anchors” between pairs of 
post-splitting subsets of the datasets (features = 2500, k.filter = 200, dims = 1:30) (Supplementary Fig. 
1c-d). 
 
For cell clustering, we manually adjusted the resolution parameter towards modest overclustering, and 
then manually merged adjacent clusters if they had a limited number of differentially expressed genes 
(DEGs) relative to one another (for this purpose, DEGs were defined as genes expressed at mean >0.5 
UMIs per cell across the pair of clusters with a >4-fold difference between the clusters) or if they both 
highly expressed the same literature-nominated marker genes. Subsequently, we annotated individual 
cell clusters using 2-5 literature-nominated marker genes per cell type label (Supplementary Table 2). 
Most of the cell type labels and associated marker genes were obtained from the four studies that 
generated the data. However, we double-checked each cell type assignment, often with additional marker 
genes. Importantly, we revisited and revised some of the cell type or trajectory annotations of (Cao et al. 
2019), e.g. “Ependymal cell” → “Roof plate”; “Isthmic organizer cells” → “Mesencephalon/MHB”. A full 
list of these annotation revisions is provided in Supplementary Table 24. 
 
To connect each cell state observed at a given timepoint with its “pseudo-ancestors”, we first merged all 
cells from that timepoint and the preceding timepoint using Seurat/v3. Integration and batch correction 
were performed as described above, except that we also split based on timepoint identity (features = 
2500, k.filter = 200, dims = 1:30). Because of the very large number of cells, we used a reciprocal PCA-
based space (Stuart et al. 2019) to find anchors for pairs of timepoints that included data from (Cao et al. 
2019). After integration, we performed PCA and then used the top 30 PCs to co-embed cells as a 3D 
UMAP (min. dist = 0.75), from which we calculated Euclidean distances between individual cells from the 
earlier and later timepoints.  
 
We then determined edge weights between cell states of the successive timepoints using a bootstrapping 
strategy. For cells of each cell state at the later timepoint, we identified their five closest neighbor cells 
from the earlier timepoint and then calculated the proportion of these neighbors derived from each 
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potential antecedent cell state. We repeated these steps 500 times with 80% subsampling from the same 
embedding. We then took the median proportions as the set of weights for edges between a cell state 
and its potential antecedents. To evaluate the robustness of this approach to the choice of co-embedding 
space, we repeated it using Euclidean distances between cells in PCA space (dims = 30) instead of 
UMAP space (dims = 3). The resulting edge weights were highly correlated (Pearson correlation 
coefficient = 0.987). We evaluated the above approach with k parameters (for the k-NN) other than five, 
and found the resulting edge weights to be highly correlated with those obtained with k = 5 (Pearson 
correlation coefficients from 0.998 to 0.999 for k = 8, 10, 15, 20). Edge weights > 0.2 from the UMAP 
embedding were retained for the resulting acyclic directed graph shown in Fig. 1c.  
 
We repeated this strategy to generate similar graphs for zebrafish (D. rerio) and frog (X. tropicalis) 
embryogenesis, again relying on publicly available scRNA-seq datasets. For zebrafish, we integrated 
data from two studies that overlapped at three timepoints (hpf6, hpf8, hpf10); we excluded cells from hpf4 
because of excessive batch effects (Wagner et al. 2018; Farrell et al. 2018). For frog, we used cells from 
a single study (Briggs et al. 2018). Further details regarding data sources are available in Supplementary 
Table 1.  
 
RNA velocity analysis 
 
Two datasets were used for performing RNA velocity analysis (Mohammed et al. 2017; Cheng et al. 
2019; Pijuan-Sala et al. 2019; Cao et al. 2019). For the Pijuan-Sala et al. dataset, which was generated 
on the 10X Genomics platform, we downloaded the raw data (E-MTAB-6967) and processed it using kb-
python (Melsted et al. 2019). For the Cao et al. dataset, which was generated with sci-RNA-seq3, we 
processed the raw data using the basic sci-RNA-seq pipeline followed by extracting the spliced reads 
and unspliced reads for each cell using velocyto (La Manno et al. 2018; Cao et al. 2019). The RNA 
velocity analysis and UMAP visualization were performed with Scanpy/v.1.6.0 and scVelo (Bergen et al. 
2020; Wolf, Angerer, and Theis 2018). Briefly, genes with low expression were filtered out (min_counts 
= 5, min_counts_u = 5), and each cell’s counts were normalized towards the median UMI counts per cell 
by a scaling factor. The 3000 genes with the highest variance were selected, and the data was log-
transformed after adding a pseudocount. The spliced and unspliced count matrices were similarly filtered 
and normalized. We then applied scvelo.pp.memoments and scvelo.tl.velocity for velocity estimation 
(n_pcs = 30, n_neighbors = 30), followed by scvelo.tl.velocity_graph and scvelo.tl.umap for data 
visualization (min_dist = 0.75).  
 
Inferring the molecular histories of individual cell types 
 
For this particular analysis, because one dataset did not include the extraembryonic tissues (Cao et al. 
2019), we excluded cells annotated as derived from the extraembryonic lineages (embryonic visceral 
endoderm, extraembryonic visceral endoderm, parietal endoderm, and extraembryonic ectoderm). For 
E6.5, the sequencing depths were very different between datasets, so we only used cells from the Pijuan-
Sala et al. dataset. In addition, the Pijuan-Sala et al. dataset pooled multiple embryos per sample, so we 
used sample identity instead of embryo identity. In the end, four samples from the Cheng et al. dataset, 
34 samples from the Pijuan-Sala et al. dataset, and 61 samples from the Cao et al. dataset were used 
for the pseudobulk analysis. UMI counts mapping to each sample were aggregated to generate a 
pseudobulk RNA-seq profile for each sample. We then applied the fit_models function of Monocle/3 to 
identify genes that were highly correlated with the embryos’/samples’ staged age (model_formula_str = 
~stage + dataset). To mitigate major batch effects between cell vs. nucleus-derived subsets of the data, 
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we separately performed DEG analysis on the samples from before and including E8.5 (n = 38) vs. after 
E8.5 (n = 61), and then took the union of the top 3,000 genes with the lowest q values identified in each 
subset. We then filtered out genes that were significantly different between the pre- and post-E8.5 
subsets (p_value < 0.05). This left 865 genes, which were used to construct a pseudotime trajectory 
using DDRTree as implemented in Monocle/v2 (Qiu et al. 2017). Each embryo/sample was assigned a 
pseudotime value on the basis of its position along the trajectory. Of note, this ordering was highly robust 
to 80% subsampling (all Pearson correlation coefficients were >0.99 between pseudotimes derived from 
100 iterations of 80% subsampling vs. the full dataset).  
 
Deconvolution of cell composition of GEO-seq sample using CIBERSORTx 
 
This analysis was performed by running deconvolution on each GEO-seq sample using CIBERSORTx 
with default parameters (Newman et al. 2019; Peng et al. 2019). GEO-seq samples were collected from 
distinct spatial positions in the mouse embryo with mixed cell populations from E5.5, E6, E6.5, E7, and 
E7.5 (Peng et al. 2019). For each stage, we first learned a gene expression signature for each cell state 
at the corresponding timepoint by downsampling it to 50 cells and then summing these. We excluded 
ExE ectoderm from this set because the GEO-seq experiments only focused on the cell lineages derived 
from the inner cell mass. Also, because single cell profiles from E6 were missing from the scRNA-seq 
data integrated here, we used data from E6.25 instead.  
 
Systematic nomination of key transcription factors for cell type specification 
 
The list of 1,391 mouse proteins that are putatively TFs was based on liftover from a curated list of human 
transcription factors (http://humantfs.ccbr.utoronto.ca/) (Supplementary Table 5). The liftover was done 
with BioMart (Ensembl Genes 102) (Yates et al. 2020). For each edge in TOME at which a given cell 
type first emerged, we used three criteria to identify key TF candidates: 1) its expression significantly 
increased in the newly emerged cell type, relative to the pseudo-ancestral cell state (Seurat/v3; p_val_adj 
< 0.05, non-parametric Wilcoxon rank-sum test); 2) it was significantly more highly expressed in the newly 
emerged cell type, relative to its “sister” edges deriving from the same pseudo-ancestor (by the same 
test and threshold); 3) it was detected in at least 10% of cells of the newly emerged cell type. For each 
such candidate key TF, we scaled its log fold-change calculated by either criteria #1 or #2 to unit variance 
and zero mean (across the set of candidate key TF identified for a given newly emerged cell type) and 
then averaged these scaled fold-change values to determine a score intended to convey its importance 
relative to other candidate key TFs for the same cell type.  
 
To identify TFs whose reduced expression was associated with the emergence of each cell type, we 
looked for those that: 1) are detected in at least 10% of cells of the pseudo-ancestral cell type; 2) are 
significantly downregulated in the newly emerged cell type, relative to the pseudo-ancestor (Seurat/v3; 
p_val_adj < 0.05, non-parametric Wilcoxon rank-sum test); and 3) are both detected in at least 10% of 
cells and significantly more highly expressed at “sister” edges, relative to the newly emerged cell type 
(by the same test and threshold). 
 
The list of 1,183 zebrafish TFs and 1,014 frog TFs was based on liftover from a curated list of human 
transcription factors (Supplementary Table 5). The liftover for zebrafish TFs was done with BioMart 
(Ensembl Genes 102) (Yates et al. 2020). The liftover for frog TFs was done as part of the original study 
(Briggs et al. 2018). Candidate key TFs for each cell type emergence in these species were identified 
and scored as described above for mouse.  
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Co-embedding of cell states from three species 
 
We first created a list of homologous genes across the three species by liftover of all gene identities from 
the three species to the corresponding human gene identities, either based on BioMart (Ensembl Genes 
102) (Yates et al. 2020) or the original study in the case of frog (Briggs et al. 2018). A list of 23,489 genes 
was compiled, wherein each of the genes was homologous in at least two species. To create the 
transcriptional features of each cell state, we first averaged cell-state-specific UMI counts, normalized by 
the total count, multiplied by 100,000 and natural-log-transformed after adding a pseudocount. We then 
divided all the cell states from three species into four groups: the mouse single-cell group (n = 142), the 
mouse single-nucleus group (n = 226), the zebrafish group (n = 205), and the frog group (n = 192). We 
treated each cell state as a pseudo-cell, performing the anchor-based batch correction approach 
implemented by Seurat/v3 (nfeatures = 5,000, k.filter = 100, dims = 1:30, min.dist = 0.6) (Stuart et al. 
2019). For cell states spanning multiple timepoints, cells from each timepoint were treated as a separate 
pseudo-cell for the purposes of this analysis. 
 
Identification of interspecies correlated cell types using non-negative least-squared (NNLS) regression 
 
We first created a list of homologous genes between each pair of species (n = 13,448 for mm vs. zf, n = 
14,252 for mm vs. xp, and n = 13,326 for zf vs. xp), either based on BioMart (Ensembl Genes 102) (Yates 
et al. 2020) or the original study in the case of frog (Briggs et al. 2018). To identify correlated cell types 
between each pair of species, we first calculated an expression value for each gene in each cell type by 
averaging the log-transformed normalized UMI counts of all cells of that type across all timepoints at 
which the cell type appeared. Extraembryonic cell types (inner cell mass, hypoblast, parietal endoderm, 
extraembryonic ectoderm, visceral endoderm, embryonic visceral endoderm, and extraembryonic 
visceral endoderm for the mouse; blastomere, EVL, periderm, forerunner cells for the zebrafish) were 
excluded from this analysis. For mouse E6.5, we only used cells from a single study (Pijuan-Sala et al. 
2019). For each pair of species, we took homologous genes and applied non-negative least squares 
(NNLS) regression to predict gene expression in target cell type (Ta) in dataset A based on the gene 
expression of all cell types (Mb) in dataset B: Ta = β0a + β1aMb, based on the union of the 1,200 most 
highly expressed genes and 1,200 most highly specific genes in the target cell type. We then switched 
the roles of datasets A and B, i.e. predicting the gene expression of target cell type (Tb) in dataset B from 
the gene expression of all cell types (Ma) in dataset A: Tb = β0b + β1bMa. Finally, for each cell type a in 
dataset A and each cell type b in dataset B, we combined the two correlation coefficients: β = 2(βab + 
0.001)(βba + 0.001) to obtain a statistic for which high values reflect reciprocal, specific predictivity. 
 
To identify candidate cell type homologs, we manually reviewed pairings with a β score > 1e-4 and that 
ranked highly from the perspective of both species, i.e. where cell type B was one of the top five matches 
for cell type A and vice versa. We next performed a manual selection based on the following criteria: 1) 
excluding pairs of cell types which derive from different germ layers or major groups (Supplementary 
Fig. 9) (e.g. blood progenitors (mm) vs. optic cup (zf)); 2) excluding pairs of cell types which emerged at 
very different temporal stages (e.g. rostral neuroectoderm (mm) vs. DEL (zf)); 3) excluding cell types only 
expected in one species or the other (e.g. hatching gland (zf) is not expected in mouse); 4) for cell types 
which were correlated with multiple cell types with ancestor-descendant relationships in the other 
species, we selected the one which was more ancestral (e.g. hindbrain (mm) was correlated with both 
hindbrain ventral (zf) and hindbrain (zf), and we assigned it to hindbrain (zf)); 5) for cell types which were 
correlated with multiple cell types in the other species that lacked a clear ancestor-descendant 
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relationship, we selected the pair with the highest β score. The details of manual selection are provided 
in Supplementary Table 21. 
 
Identification of correlated cell types between species based on overlapping key TF candidates 
 
For each possible interspecies pairing of cell types, we identified orthologous TFs that were nominated 
in both and then calculated, as an estimate of relative likelihood, the product of the frequencies in which 
each of these TFs were nominated as key in their respective species (to account for the fact that some 
TFs are nominated in many cell types and therefore more likely to overlap; Fig. 4c). To identify which 
such instances were potentially significant, we repeated these procedures after taking random samples 
of key TFs without replacement (10,000 times) and retained pairings with estimated relative likelihoods 
more extreme than 99% of permutations. We then performed a similar manual selection, details of which 
are provided in Supplementary Table 22. 
 
Identification of cis-regulatory motifs involved in in vivo cell type specification 
 
As a first step towards identifying cis-regulatory motifs involved in cell type identification, we extended to 
all genes the approach described above to nominate key TFs whose upregulation or downregulation is 
associated with the emergence of each cell type. For each edge in TOME at which a given cell type first 
emerged, we used three criteria to identify key gene candidates: 1) its expression significantly increased 
in the newly emerged cell type, relative to the pseudo-ancestral cell state (Seurat/v3; p_val_adj < 0.05, 
non-parametric Wilcoxon rank-sum test); 2) it was significantly more highly expressed in the newly 
emerged cell type, relative to its “sister” edges deriving from the same pseudo-ancestor (by the same 
test and threshold); 3) it was detected in at least 10% of cells of the newly emerged cell type. To identify 
genes whose reduced expression was associated with the emergence of each cell type, we looked for 
those that: 1) are detected in at least 10% of cells of the pseudo-ancestral cell type; 2) are significantly 
downregulated in the newly emerged cell type, relative to the pseudo-ancestor (Seurat/v3; p_val_adj < 
0.05, non-parametric Wilcoxon rank-sum test); and 3) are both detected in at least 10% of cells and 
significantly more highly expressed at “sister” edges, relative to the newly emerged cell type (by the same 
test and threshold). 
 
We used HOMER/v4.11 (Heinz et al. 2010) to discover DNA sequence motifs that are specifically 
enriched in the core promoters of key genes (-300 to +50 bp of annotated TSSs). Running the 
findMotifs.pl function with default parameters, each test set was defined as the core promoters of either 
upregulated or downregulated key genes at specific cell edges (excluding sets with fewer than 5 key 
genes), and the background as core promoters of key genes from all edges not in the test set. Motif 
quality was evaluated based on a q-value, which was calculated for each motif by 100 iterations of 
randomizing data labels and re-running HOMER. Motifs were aligned to known motif binding sequences 
based on the JASPAR and internal HOMER databases with default parameters as well (Khan et al. 2018). 
Mapping of specific motif positions around the TSS was assessed with the HOMER function 
annotatePeaks.pl using the following parameters: tss mm10 -hist 10 -ghist. 
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Supplementary Figure 1. Integration of datasets spanning E3.5 to E13.5 of mouse development. a, The 
number of cells per stage obtained from four studies that collectively span E3.5 to E13.5 of mouse development 
(Mohammed et al. 2017; Cheng et al. 2019; Pijuan-Sala et al. 2019; Cao et al. 2019). b, Box plot of log2(UMI 
counts) per cell across the stages and studies. c, As illustrated by a UMAP of co-embedded E6.5 cells, batch effects 
are observed between three studies and samples. d, UMAP of the same cells as in panel c with batch correction 
prior to integration (Stuart et al. 2019). The same UMAP is shown twice, colored by dataset (left, colors as in panel 
c) or cell type annotation (right).  ExE: extraembryonic. EmVE: embryonic visceral endoderm. ExVE: extraembryonic 
visceral endoderm. e, UMAP visualization of co-embedding of data from cells at E8.5 generated on the 10x 
Genomics platform (Pijuan-Sala et al. 2019) and nuclei at E9.5 generated using sci-RNA-seq3 (Cao et al. 2019), 
after batch correction (Stuart et al. 2019). The same UMAP is shown twice, with colors highlighting cell states from 
either E8.5 (left) or E9.5 (right).  
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Supplementary Figure 2. Inference of epiblast derivatives between E6.25 and E7.0. a, A portion of the UMAP 
corresponding to the epiblast and its inferred derivatives is shown for co-embeddings of E6.25 → E6.5 (left column), 
E6.5 → E6.75 (middle column) and E6.75 → E7.0 (right column). Within each column is the same UMAP 
visualization, but showing only cells from the earlier timepoint (top row), the later timepoint (middle row) or both 
timepoints (bottom row). b, Directed acyclic graph showing inferred relationships between cell states amongst early 
epiblast derivatives. All edges with weights above 0.2 are shown in grey scale. 
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Supplementary Figure 3. Heatmap of edge weights between cell states at each pair of adjacent timepoints. 
Each heatmap shows edge weights between all cell states at a given timepoint (rows) and potential pseudo-
ancestral cell states from the immediately preceding timepoint (columns). Edge weights were calculated based on 
a k-nearest neighbor (k-NN) based heuristic that was applied to a co-embedding of separately annotated cells from 
the adjacent timepoints. The edge weights range from 0 to 1, and edges with weights greater than 0.2 were carried 
forward. PNS: peripheral nervous system. MHB: midbrain-hindbrain boundary. 
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Supplementary Figure 4. Estimated cell type proportions for different regions of the gastrulating mouse 
embryo, arranged by inferred cell type relationships over time. As described in Fig. 3a, inference of cell type 
contributor(s) to each spatial territory of the gastrulating mouse embryo based on the application of CIBERSORTx 
to GEO-seq data (Newman et al. 2019; Peng et al. 2019). Extraembryonic ectoderm excluded here because GEO-
seq experiments only focused on the cell lineages derived from the inner cell mass (Peng et al. 2019). As scRNA-
seq data from E6.0 was unavailable, we used data from E6.25 instead. Black edges correspond to edges between 
cell states over time estimated by TOME (only edges with the largest weights are shown). In each corn plot, each 
circle or diamond refers to a GEO-seq sample, and its weighted color to the estimated cell type composition. Corn 
plot nomenclature from (Peng et al. 2019). A, anterior; P, posterior; L, left lateral; R, right lateral; L1, anterior left 
lateral; R1, anterior right lateral; L2, posterior left lateral; R2, posterior right lateral; Epi1 and Epi2, divided epiblast; 
M, whole mesoderm; MA, anterior mesoderm; MP, posterior mesoderm; En1 and En2, divided endoderm; EA, 
anterior endoderm; EP, posterior endoderm.  
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Supplementary Fig 5. Inferring continuous molecular histories of individual cell types. a, Pseudotime 
trajectory analysis of pseudobulk RNA-seq profiles of mouse embryos. Briefly, epiblast-derived cells from individual 
embryos (or pools of embryos comprising each sample, in the case of (Pijuan-Sala et al. 2019)) were aggregated 
to create 99 pseudobulk samples, on which we performed pseudotime trajectory analysis. Each point in the resulting 
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2D embedding corresponds to an embryo, and the curve to pseudotime trajectory. b, Pseudotime of embryos from 
staged timepoints between E6.25 and E13.5. c, Smoothed expression profiles for four selected genes for each of 
four selected cell types (rows; one from each germ layer), along their inferred trajectories (key at left). We selected 
linear paths corresponding to strongest pseudo-ancestor edges, working back from each E13.5 cell state to the 
E6.25 epiblast cell state. The first and second columns of plots correspond to key regulators or marker genes, and 
the third and fourth columns to the genes most positively and negatively correlated with pseudotime, respectively. 
Each plotted point corresponds to gene expression within a cell state for an individual embryo. Pseudotime values 
(x-axes) as in panel b. Gene expression (y-axes) calculated as aggregated UMI within cell state normalized to total 
UMI per individual, followed by natural-log transformation. The inferred trajectory for the neural crest (PNS glia) 
spanned epiblast (E6.25 → E7.5), rostral neuroectoderm (E7.5 → E8.25), and neural crest (PNS glia) (E8.25 → 
E13.5). The inferred trajectory for the otic epithelium spanned epiblast (E6.25), primitive streak and adjacent 
ectoderm (E6.5 → E7.5), surface ectoderm (E7.5 → E8.25), placodal area (E8.5), and otic epithelium (E9.5 → 
E13.5). The inferred trajectory for the gut and lung epithelium spanned epiblast (E6.25), primitive streak and 
adjacent ectoderm (E6.5 → E6.75), anterior primitive streak (E7 → E7.25), definitive endoderm (E7.25 → E7.5), 
gut (E7.25 → E7.5), and gut and lung epithelium (E9.5 → E13.5). The inferred trajectory for the cardiomyocytes 
spanned epiblast (E6.25), primitive streak and adjacent ectoderm (E6.5), nascent mesoderm (E6.75 → E7.25), 
splanchnic mesoderm (E7.5 → E7.75), cardiomyocytes (E7.75 → E13.5). PNS: peripheral nervous system. 
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Supplementary Figure 6. Gene dynamics across the inferred molecular trajectories of four selected cell 
types. a, 154 genes were identified as significantly associated with pseudotime of the neural crest (PNS glia) 
trajectory, based on linear regression with the origin of the data as a covariate. Genes with bonferroni-adjusted p-
value (on the variable of pseudotime) < 0.05, absolute value of beta coefficient (on the variable of pseudotime) > 
0.05, and absolute value of beta coefficient (on the variable of data identity) < 2 were retained and hierarchically 
clustered (y-axis of heatmap). The columns of the heatmap correspond to different embryos/samples, ordered by 
pseudotime (below) as shown in Supplementary Fig. 5a-b. b, 127 genes were identified as significantly associated 
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with pseudotime of the otic epithelium trajectory. c, 51 genes were identified as significantly associated with 
pseudotime of the gut and lung epithelium trajectory. d, 42 genes were identified as significantly associated with 
pseudotime of the cardiomyocytes trajectory. Axes as well as thresholds for identifying genes and modules in panels 
b-d as in panel a. The inferred trajectory of each cell type included the same cell states as described in 
Supplementary Fig. 5c, in each case starting from epiblast. PNS: peripheral nervous system.  
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Supplementary Figure 7. Recurrence of individual TFs or genes as candidate upregulated or downregulated 
key TFs or genes for mouse cell type specification. a, TFs that are most often nominated as downregulated key 
TFs, e.g. Pou5f1 (Oct4) are identified with red labels, while those most often nominated as upregulated key TFs, 
e.g. Zfhx4, are identified with green labels. Candidate key TFs frequently recurring in both sets are identified with 
black labels. The size of each dot corresponds to the number of TFs represented by it on a log2 scale. b, Genes 
that are most often nominated as downregulated key genes, e.g. Igfbp2, are identified with red labels, while those 
most often nominated as upregulated key genes, e.g. Meg3, are identified with green labels. Candidate key genes 
frequently recurring in both sets are identified with black labels. The size of each dot corresponds to the number of 
TFs represented by it on a log2 scale. 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted June 9, 2021. ; https://doi.org/10.1101/2021.06.08.447626doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.08.447626


 

44 

 
 
Supplementary Figure 8. Correlation between key TF expression and up- or down-regulation of putative 
targets of regulation. a, UMAP visualization of co-embedded cells from cell states including anterior primitive 
streak, definitive endoderm, gut, and notochord (mouse E7.25 → E7.5) colored by cell type (left), Rfx3 gene 
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expression (middle) or RFX3 motif score (right), respectively. The RFX3 motif score for each cell was calculated by 
averaging the gene expression of 135 key genes for notochord emergence bearing this motif in their core promoters, 
and then subtracting the mean expression of a reference set of randomly sampled genes, using the score_genes 
function of Scanpy (Wolf, Angerer, and Theis 2018). b, Positional bias of RFX3 binding motif along the core 
promoters of key genes for notochord emergence (right panel), an expanded region for key genes for notochord 
emergence (left top panel), or an expanded region for background (left bottom panel). The y-axes indicate the % of 
key genes or background genes with the RFX3 motif with 10 bp bins. c, The motif logo of the top de novo identified 
motif for notochord emergence and its two best alignments in the known motif database. d, UMAP visualization of 
co-embedded cells from cell states including primitive streak and nascent mesoderm (mouse E6.5 → E7.25) colored 
by cell types (left), Snai1 gene expression (middle) or SNAIL1 motif score (right), respectively. The SNAIL1 motif 
score was calculated as in panel a, based on 21 key genes for nascent mesoderm emergence bearing this motif in 
their core promoters. e, Positional bias of SNAI1 binding motif along the core promoters of key genes for nascent 
mesoderm emergence (right panel), an expanded region for key genes for nascent mesoderm emergence (left top 
panel), or an expanded region for background (left bottom panel). The y-axes indicate the % of key genes or 
background genes with the SNAIL1 motif with 10 bp bins. f, The known motif logo of SNAIL1. 
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Supplementary Fig 9. Co-embedding of 765 cell states from three species by integrating their 
transcriptional features. For cell states spanning multiple timepoints, cells from each timepoint were treated 
separately for the purposes of this analysis. To create the transcriptional feature of each cell state (i.e. a pseudo-
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cell), we first averaged cell-state-specific UMI counts, normalized by the total count, multiplied by 100,000 and 
natural-log-transformed after adding a pseudocount. We then divided all resulting 765 pseudo-cells from the three 
species into four groups: the mouse single-cell group (n = 142), the mouse single-nucleus group (n = 226), the 
zebrafish group (n = 205), and the frog group (n = 192), and performed the anchor-based batch correction (Stuart 
et al. 2019). UMAP visualization shows co-embedded pseudo-cells from the mouse (red), the zebrafish (blue), and 
the frog (green). Each circle corresponds to a pseudo-cell, and the numbers correspond to the cell state labels 
shown below. The grey dotted curves (manually added) highlight 15 major groups, each including representatives 
from all three species. Cell states from the extraembryonic lineages (Inner cell mass, hypoblast, parietal endoderm, 
extraembryonic ectoderm, visceral endoderm, embryonic visceral endoderm, and extraembryonic visceral 
endoderm for the mouse; blastomere, EVL, periderm, forerunner cells for the zebrafish) were excluded from this 
analysis. For E6.5 of mice, we only used cells from a single study (Pijuan-Sala et al. 2019). PNS: peripheral nervous 
system. MHB: midbrain-hindbrain boundary. DEL: deep cell layer. EVL: enveloping layer.  
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Supplementary Figure 10. Correlated cell types between species based on non-negative least-squares 
(NNLS) regression.  To identify correlated cell types between each pair of species, we averaged cell-type-specific 
UMI counts, normalized by the total count, multiplied by 100,000 and natural-log-transformed after adding a 
pseudocount. Extraembryonic cell types (inner cell mass, hypoblast, parietal endoderm, extraembryonic ectoderm, 
visceral endoderm, embryonic visceral endoderm, and extraembryonic visceral endoderm for the mouse; 
blastomere, EVL, periderm, forerunner cells for the zebrafish) were excluded from this analysis. For mouse E6.5, 
we only used cells from a single study (Pijuan-Sala et al. 2019). We then applied NNLS regression to predict the 
gene expression of target cell type (Ta) in dataset A with the gene expression of all cell types (Mb) in dataset B: Ta 
= β0a + β1aMb, based on the union of the 1,200 most highly expressed genes and 1,200 most highly specific genes 
in the target cell type. We then switched the roles of datasets A and B, i.e. predicting the gene expression of target 
cell type (Tb) in dataset B from the gene expression of all cell types (Ma) in dataset A: Tb = β0b + β1bMa. Finally, for 
each cell type a in dataset A and each cell type b in dataset B, we combined the two correlation coefficients: β = 
2(βab + 0.001)(βba + 0.001), a statistic for which high values reflect reciprocal, specific predictivity. The combined β 
value was normalized by dividing by the maximum value of each column (zf for mm vs. zf, xp for mm vs. xp, and xp 
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for zf vs. xp). Shown here is a heat map of the normalized β values between 77 cell types from the mouse, 59 cell 
types from the zebrafish, and 60 cell types from the frog. The order of cell types listed in the heat map is the same 
as each cellular trajectory plot (Fig. 1c; Fig. 5b-c). PNS: peripheral nervous system. MHB: midbrain-hindbrain 
boundary. DEL: deep cell layer.  
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Supplementary Figure 11. The log-scaled number of all possible pairs, highly ranked pairs, and biologically 
plausible pairs of cell types identified in pairwise comparisons of three species (mouse, zebrafish, frog) by 
two strategies. a, The log2-scaled number of all possible pairs, highly ranked pairs, and biologically plausible pairs 
of cell types evaluated by non-negative least-squared (NNLS) regression. "All possible pairs" refers to all potential 
cell type pairings considered; "highly ranked pairs'' refer to pairings with β > 1e-4 and that ranked highly from the 
perspective of both species; "plausible pairs" refer to pairings which were retained after manual review for biological 
plausibility (Supplementary Table 21). Actual numbers shown above each bar, with y-axis on log2-scale. b, The 
log2-scaled number of all possible pairs, highly ranked pairs, and biologically plausible pairs of cell types evaluated 
on the basis of overlapping, orthologous candidate key TFs. "All possible pairs" refers to all potential cell type 
pairings considered; "highly ranked pairs'' refer to pairings with estimated relative likelihoods more extreme than 
99% of permutations; "plausible pairs" refer to pairings which were retained after manual review for biological 
plausibility (Supplementary Table 22). Actual numbers shown above each bar, with y-axis on log2-scale. 
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