
i
i

“output” — 2021/6/9 — 18:19 — page 1 — #1 i
i

i
i

i
i

Under submission
DOI

Advance Access Publication Date: Day Month Year
Manuscript Category

Sequence analysis

NanoSpring: reference-free lossless compression
of nanopore sequencing reads using an
approximate assembly approach
Qingxi Meng †,∗, Shubham Chandak †,∗, Yifan Zhu ∗ and Tsachy Weissman

Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA

†To whom correspondence should be addressed.

Associate Editor: XXXXXXX

Received on XXXXX; revised on XXXXX; accepted on XXXXX

Abstract

Motivation: The amount of data produced by genome sequencing experiments has been growing rapidly
over the past several years, making compression important for efficient storage, transfer and analysis of
the data. In recent years, nanopore sequencing technologies have seen increasing adoption since they
are portable, real-time and provide long reads. However, there has been limited progress on compression
of nanopore sequencing reads obtained in FASTQ files. Previous work ENANO focuses mostly on quality
score compression and does not achieve significant gains for the compression of read sequences over
general-purpose compressors. RENANO achieves significantly better compression for read sequences
but is limited to aligned data with a reference available.
Results: We present NanoSpring, a reference-free compressor for nanopore sequencing reads, relying
on an approximate assembly approach. We evaluate NanoSpring on a variety of datasets including
bacterial, metagenomic, plant, animal, and human whole genome data. For recently basecalled high
quality nanopore datasets, NanoSpring achieves close to 3x improvement in compression over state-of-
the-art reference-free compressors. The computational requirements of NanoSpring are practical, although
it uses more time and memory during compression than previous tools to achieve the compression gains.
Availability: NanoSpring is available on GitHub at https://github.com/qm2/NanoSpring.
Contact: qingxi@stanford.edu, schandak@stanford.edu
Supplementary information: Supplementary data are available on BioRxiv.

1 Introduction
The rapid decrease in the cost of genome sequencing has led to an explosion
in the amount of data produced by these experiments, with the raw data
usually requiring the most space for storage. The raw sequencing data is
obtained in the form of reads with sequencing depth/coverage often being
30x or higher. A typical human whole genome sequencing experiment can
produce 100s of GBs of data in FASTQ files. Given the high sequencing
depth, there is much redundancy to be exploited in the reads, and several
specialized compressors like SPRING (Chandak et al., 2019) and PgRC
(Kowalski and Grabowski, 2019) have been developed for this data. The
typical approach used by these compressors is to efficiently build an

*These authors contributed equally to the work.

approximate assembly using the reads and then store this assembly along
with the encoding of the reads with respect to the assembly.

While the existing compressors have been mostly built for short-
read sequencers such as Illumina, in recent years, nanopore sequencing,
specifically using Oxford Nanopore Technologies (ONT) sequencers (Jain
et al., 2018), has seen increasing adoption since it is portable, real-time
and provides long reads. However, there has been limited progress on
compression of nanopore sequencing reads. Most existing works like
SPRING and PgRC operate under the assumption that the reads are short
(∼100s of bases) and low-error (with most errors being substitutions). On
the other hand, nanopore reads are much longer (often over hundreds of
thousands of bases long), and have a much higher error rate, including
substitution, insertion, and deletion errors from the basecalling process
that converts the raw current signal to the read sequences (Wick et al.,
2019). However, the error rate has fallen dramatically in the recent years

1

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 10, 2021. ; https://doi.org/10.1101/2021.06.09.447198doi: bioRxiv preprint 

https://github.com/qm2/NanoSpring
qingxi@stanford.edu
schandak@stanford.edu
https://doi.org/10.1101/2021.06.09.447198
http://creativecommons.org/licenses/by/4.0/


i
i

“output” — 2021/6/9 — 18:19 — page 2 — #2 i
i

i
i

i
i

2 Meng et al.

with the advent of deep learning based basecallers which achieve median
error rate close to 5% or better (Chandak et al., 2020), suggesting that
a similar approximate assembly approach with some adaptations can be
applied to nanopore sequencing reads.

There have been a couple of works on compression of nanopore
FASTQ data. ENANO (Dufort y Álvarez et al., 2020) focuses mostly
on quality score compression, and uses a context-based model followed
by arithmetic coding for read sequences. Note that while quality scores
occupy a significant amount of space even after compression, we focus on
read sequences due to the lack of research in this area, and since quality
scores are often ignored by downstream tools like minimap2 (Li, 2018)
and have been compressed lossily for previous technologies without an
impact on the downstream performance (Yu et al., 2015; Ochoa et al.,
2016). RENANO (Dufort y Álvarez et al., 2021) is a recent reference-
based compressor that achieves significantly better compression for read
sequences, but is limited to aligned data with a reference available.

In this work, we present NanoSpring, which is a lossless reference-
free compressor for nanopore sequencing reads. NanoSpring uses an
approximate assembly approach partly inspired by existing assembly
algorithms but adapted for significantly better performance, especially
for the recent higher quality datasets. On recent human whole genome
datasets, NanoSpring achieves close to 3x improvement in compression
as compared to ENANO. NanoSpring is competitive in terms of
decompression time but requires higher compression time and memory
to obtain the benefits in compression ratio. NanoSpring is available as
an open-source tool on GitHub, requires only a FASTQ file as input for
compression, and does not compress read identifiers or quality values.

2 Methods
In this section, we describe the NanoSpring algorithm which is a lossless
compressor for nanopore read sequences and does not require an external
reference for compression. NanoSpring relies on an approximate-assembly
approach, where we first assemble the reads into contigs, obtain the
consensus sequence for each contig, and finally store the consensus
sequence and encode the reads with respect to the consensus sequence.
Parts of the algorithm were inspired by the MinHash-based assembler
presented in Berlin et al. (2015), with suitable adjustments to the
parameters to achieve orders of magnitude speedup over the assembler
while still obtaining a sufficiently accurate assembly for compression
purposes.

We first give a high-level overview of the algorithm before describing
the various stages and parameters in more detail. NanoSpring first loads the
reads into memory using an efficient 2 bits/base representation (ignoring
read identifiers and quality values in the FASTQ file). Next, NanoSpring
indexes the reads using MinHash which enables efficient lookup of reads
overlapping a given sequence, effectively handling substitution, insertion,
and deletion errors. Once the index is constructed, NanoSpring attempts to
build contigs consisting of overlapping reads. The contigs are represented
using consensus graphs with each read corresponding to a path on the
graph. The contig is built by greedily searching the MinHash index for
reads that overlap with the current consensus sequence of the graph,
and adding the candidate reads to the graph using minimap2 (Li, 2018)
alignment. Finally, the consensus sequence and the errors in the reads
with respect to the consensus sequence are written to separate streams and
compressed using general-purpose compressors.

The decompression process is quite simple: the decompressor first
obtains the consensus sequence and error streams using the general-
purpose decompressor. Then it applies the errors to the appropriate parts
of the consensus sequence to obtain the reads.

2.1 MinHash indexing

We use MinHash (Broder, 1997) for indexing the reads allowing for
efficient lookup of reads overlapping with any given sequence. During the
construction of the index, we first extract substrings of length k (k-mers)
from a read and compute n pseudorandom hash functions of the k-mers
(the MinHash sketch of the read). For each hash function, we find thek-mer
with the minimum hash value, referred to as the MinHash of the read. The
basic theoretical property underlying MinHash is that the fraction of shared
MinHash values (out of n) between two sequences is a good estimator for
the fraction of shared k-mers between the sequences, and the estimator
accuracy increases with increasing n. Since we can expect overlapping
sequences, potentially with substitution/insertion/deletion errors, to have
common k-mers (for sufficiently small k), MinHash provides us a way
to efficiently estimate the similarity of sequences and to rapidly look up
overlapping reads (as described next).

The MinHash index consists of n tables, one for each pseudorandom
hash function. Each table maps MinHash values for the corresponding
hash function to the list of reads with that MinHash value. During lookup,
we are given a sequence and first compute the n MinHash values for
that sequence (the MinHash sketch). Then we use the index to find and
return reads matching the sketch for at least t out of n hash functions,
where t is a threshold parameter. In our implementation, the k-mers (with
k ≤ 32) and hash values are represented as 64-bit integers, and the
pseudorandom hash functions are simply computed as hash(kmer⊕ ri)

where hash is a standard hash function, and ri for i = 1, . . . , n are
pseudorandom integers. To minimize the memory usage, the hash tables
are built using BBHash (Limasset et al., 2017) which is a specialized data
structure designed for hash tables that are not modified after construction,
which applies in our case.

There are three key parameters for MinHash indexing, the k-mer
length (k), the number of hash functions (n) and the threshold for lookup
(t). Increasing n improves the accuracy of MinHash and allows for
more reliable estimation of sequence similarity but leads to increased
computational overhead. The ratio t/n determines the threshold for
similarity of reads during lookup. Higher values of this ratio can lead
to missed potentially matching reads, whereas smaller values can increase
the number of false positives and hence the computational overhead. In
addition, very small values can lead to low quality matches which can
adversely affect the compression. Finally, the value of k should be chosen
depending on the genome size, the error rate, and the computational
requirements. At higher values of k, the k-mer is more likely to have
an error and finding exact matches becomes unlikely. If k is too small,
then we can get many spurious matches for large genomes leading to poor
computational performance. By default, we set k = 23, n = 60, t = 6

(see Section 3.1.3 for a detailed analysis). We note that the parameters
chosen in this work are different from the parameters used in the assembler
from Berlin et al. (2015). Specifically, we tuned the parameters for
better performance since we only require an approximate assembly in
our application. We also take into account the fact that the nanopore error
rates have reduced significantly over the past years making the use of these
parameters reasonable.

2.2 Construction of contigs

NanoSpring uses the following pseudocode for constructing contigs of
overlapping reads:

1. Initialization: Pick an arbitrary read not yet added to a contig, and
construct the consensus graph with a single read.

2. Repeat the following until no matching reads are found:
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Fig. 1: (a) Consensus graph for a contig showing the consensus sequence (path shown in red) and two reads. The read with the path shown in green has
index 41 in the FASTQ file, and has a substitution compared to the consensus sequence. The read with the path shown in blue has index 123 in the FASTQ
file, is reverse complemented with respect to the consensus sequence, and has a deletion and an insertion. (b) The encoding of the contig into multiple
streams. Note that the error position is 0-indexed and delta coded, and the error base needs to be stored only for insertions and substitutions.

a. Obtain substring of the current consensus sequence (explained
below).

b. Find overlapping reads to the substring using MinHash index.
c. For each potential read from previous step (that has not yet been

added to a contig):

(1) Align read to current consensus sequence using minimap2.
(2) If alignment succeeds, add read to the consensus graph and

recalculate the consensus sequence (explained below).

As described in the pseudocode, the contig construction maintains
a consensus graph (also referred to as an assembly graph) and greedily
adds reads to the graph. The graph is directed and acyclic with the nodes
representing the bases and the edges storing the information about the reads
passing through that edge. The weight of an edge is the number of reads
passing through the edge. Initially the graph is just a line graph consisting of
a single read. As reads get added to the graph, these reads lead to branching
out from the line graph due to presence of errors. The consensus sequence
represents the path with the highest weight (where the weight of a path
is the sum of weights of the edges on the path). Figure 1a illustrates the
consensus graph with the reads and the consensus sequence, and Figure 2
shows the overall contig generation procedure. In our implementation, we
use a greedy algorithm for computing the consensus path: starting at the
leftmost node and picking the highest weight edge at every step. We use
the greedy algorithm instead of the optimal dynamic programming-based
algorithm due to its simplicity and similar performance in practice.

At every step in the contig generation algorithm, we first pick a
substring of the consensus sequence, which is used to search for matching
reads using the MinHash index. The substring has length equal to the
average read length of the dataset or the length of the consensus sequence,
whichever is smaller. After each iteration, we obtain a shifted substring
by changing the start position by a quarter of the average read length
(shift length chosen based on experiments). We first shift the substring
to the right until we reach the end, and then shift it left till we reach the
beginning. This allows us to capture reads overlapping with any section
of the consensus sequence. Note that the consensus sequence itself is
constantly updated, and hence we maintain the position of the first read
on the consensus sequence as a reference zero coordinate for tracking the
substring location. We work with the consensus sequence at the current
iteration (instead of an individual read) for MinHash lookup and alignment
since we expect the consensus sequence to have a lower error rate leading
to a more efficient and accurate process. To handle reverse complemented
reads, we search for overlapping reads to both the substring and its reverse

Consensus Sequence
Obtain substring

̅"
#"
4

Lookup in MinHash index

Align to consensus 
sequence using 

minimap2

If success, update
graph and consensus 

sequence

…… 
…… 

Matching reads

Fig. 2: Contig generation process. A substring of the current consensus
sequence is used to find matching reads from the MinHash index. Each
potential match is aligned to the consensus sequence using minimap2 and
added to the graph if the alignment succeeds. The substring has length l̄

(average read length) and is shifted along the consensus sequence at each
step to capture all potential matches.

complement in step 2b and store a flag denoting reverse complemented
reads.

For each potentially matching read obtained using MinHash, we
attempt to align it to the consensus sequence using the minimap2 aligner
(Li, 2018). We found that previous works on assembly like Berlin et al.
(2015) used their own implementation of the optimal Myers aligner
(Myers, 1986), but we found that the widely used minimap2 aligner
was simpler to use and significantly faster. The minimap2 aligner first
indexes the reference sequence (the consensus sequence in our case) based
on minimizers (lexicographically smallest k-mers) of length k in each
window of length w. Then it attempts to locate these minimizers in the
query string (the reads returned by MinHash), followed by more accurate
alignment in the regions between these minimizers. When alignment
succeeds, minimap2 returns the CIGAR string consisting of the errors in
the query string with respect to the reference (we restrict ourselves to the
top-scoring alignment returned by minimap2). We use this information to
add the read to the graph, with soft clips treated as a sequence of insertions
at the beginning or end of the read. We modified the default parameters for
minimap2 in order to improve the computational performance, setting
k = 20, w = 50 and reducing the max-chain-iter parameter
controlling the complexity of the chaining step in minimap2 to 400 from
the default value of 5000. See Section 3.1.4 for more discussion on the
impact of these parameters.
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2.3 Encoding and compression of streams

The reads in each contig are encoded into multiple streams after the contig
generation is done. We store the consensus sequence of the contig and
then store the representation of each read with respect to the consensus.
Specifically, we store the start position of the read on the consensus
sequence, the errors in the read, the reverse complement flag, and the
read index representing the index of the read in the original FASTQ file.
The errors are themselves represented using three streams: (i) the error type
(insertion/deletion/substitution), (ii) the error position on the read (delta
coded), and (iii) the erroneous base (for insertions and substitutions). These
streams are illustrated in Figure 1b. We observed that in many cases, we
get multiple insertions at the beginning and end of the reads possibly due
to adapter sequences (soft clipped in the alignment). For such cases, we
simply encode the number of insertions and the inserted bases rather than
encoding each insertion separately. The current implementation combines
the start position and error position streams since they share the same
datatype and the start position stream is typically a negligible contributor
to the total size.

In our experiments, we found that the contig generation led to several
contigs with only a single read due to the greedy procedure and the variation
in read quality (with high error reads missed by MinHash). For such
contigs, we directly write the read sequence to a separate stream for these
lone reads.

Finally, these streams are compressed with general-purpose
compressors and combined into a single file using the tar utility on UNIX.
We use two general-purpose compressors which provide improvements
over Gzip while being computationally efficient. For compressing
the stream with the erroneous bases, we use LZMA2 (https://
github.com/conor42/fast-lzma2) which relies on Lempel-Ziv
compression (Ziv and Lempel, 1977) and arithmetic coding (Witten et al.,
1987). For the remaining streams we use BSC (https://github.
com/IlyaGrebnov/libbsc) which relies on the Burrows-Wheeler
transform (BWT, Burrows and Wheeler (1994)) and arithmetic coding. As
discussed in Section 3.1.5, we found this combination of compressors led
to the best compression ratios.

2.4 Additional implementation details

We made some modifications to the procedure presented above to improve
the performance on real datasets.

• The MinHash indexing, contig generation, stream compression,
and the decompression are parallelized to improve the wall-clock
performance. During contig generation, different threads work on
different contigs, and we ensure that there are no conflicts using locks.
The impact of multithreading is discussed in Section 3.1.6.

• We found that for certain human datasets, minimap2 took a very long
time for aligning highly repetitive sequences, usually with tandem
repeats (such as GTGTGT . . . ). Therefore, we check the reads for
short tandem repeats before the contig generation stage and repetitive
reads are directly written to the lone read stream. We also write reads
with length ≤ 32 directly to the lone read stream since they have too
few k-mers to obtain matches using MinHash.

• To limit the memory usage of the consensus graphs during contig
generation, especially when working with multiple threads, we impose
a limit on the number of edges in the graph. Beyond this limit, the
contig generation is stopped and we proceed with a new contig. We
found that this simple strategy drastically reduces the peak memory
consumption while having minimal impact on the compression ratio
(see Section 3.1.7). We also use other low-level optimizations such as
periodically calling malloc_trim() to further reduce the memory
usage.

3 Results and discussion
We tested Nanospring on several real datasets that cover a variety of
organisms with different genome lengths sequenced at varying depths
of coverage. We compare NanoSpring to the current state-of-the-art
reference-free compressor for nanopore FASTQ files, ENANO (Dufort y
Álvarez et al., 2020) and to pigz (https://zlib.net/pigz/) which
is a multithreaded version of the general-purpose compressor Gzip. While
ENANO compresses the entire FASTQ file including the read sequences,
quality values and read identifiers, we only focus on the compressed size for
the read sequences. We note that ENANO supports multiple compression
levels, and we use the default one since it is significantly faster than the
maximum compression level with minimal difference in read sequence
compression (. 1%). All experiments were run on an Ubuntu 18.04.5
server with 40 Intel Xeon processors (2.2 GHz) and 260 GB RAM. The
tools were run with 20 threads unless specified otherwise. Details on
installing and running the various tools are provided in Supplementary
data.

Datasets
The datasets used for experiments are listed in Table 1. These include
bacterial, metagenomic, animal, plant, and human datasets. Further details
on obtaining these datasets are provided in the Supplementary data. We
included some standard datasets including the NA12878 dataset (hs1) and
the Zymo microbial standard on R10.3 pore (zymo), but we largely focused
on datasets basecalled with more recent tools that provided much higher
quality and better scope for compression. To further test the impact of
the basecaller on the compression rate, we basecalled the S. aureus dataset
using three modes and compare the results in Section 3.1.8. We also looked
into the impact of coverage on the compression ratio for the M. acuminata
(banana) and CHM13 datasets (hs3, hs4) which were available at a high
initial coverage. The complete results for the different subsampled versions
are shown in Section 3.1.2.

Compression results
Table 2 shows the compression results for Gzip, ENANO and NanoSpring
on the datasets. We observe that Gzip and ENANO perform consistently
across the datasets, achieving around 2.2 and 1.9 bits/base, respectively
(with ∼2 bits/base being achievable with a fixed-length encoding).
NanoSpring provides much better compression, getting below 0.7 bits/base
for the human datasets (hs2, hs3, hs4), which is around 3x better than Gzip
and ENANO. In absolute terms, NanoSpring compresses the 84 GB hs2
dataset to less than 7 GB. For most other datasets, NanoSpring achieves
close to 2x improvement over the other tools. Note that the compression
results for the hs1 dataset are significantly worse, although NanoSpring
still outperforms Gzip and ENANO. This can be explained by the fact that
this dataset was obtained using an older basecaller with appreciably higher
error rates. Given the steady improvement in basecaller quality over the
years (Wick et al., 2019), we can expect the performance of NanoSpring
to improve further in the future (cf. Section 3.1.8).

Time and memory usage
Table 3 shows the time and peak memory usage for the compression
and decompression using the three tools, all running on 20 threads. We
note that ENANO does not provide a mode for compressing only the
read sequences, and so the time and memory usage numbers include the
compression of quality scores and read identifiers. Despite this, we see that
ENANO significantly outperforms NanoSpring in terms of compression
time/memory and decompression memory. Gzip also uses much less
time and memory than NanoSpring. We note that NanoSpring is quite
competitive in decompression speed, requiring less than 10 minutes for a
26x human dataset (hs2).
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Dataset
Species Sample

Genome Size
Coverage

Number of Reads Average Read N50 Uncompressed Size
Source

Name (Mbp) (M) Length (Kb) (Kb) (GB)
sa S. aureus CAS28_02 2.9 84x 0.01 21.99 24.8 0.24 Wick et al. (2019)

zymo Metagenomic Zymo (R10.3) - - 1.16 3.99 25.2 4.6 Nicholls et al. (2019)
snail C. squamiferum SAMN10963494 356 139x 7.45 6.65 7.3 49.5 Sun et al. (2021)

banana M. acuminata SAMEA6104609 523 177x 5.19 17.9 31.6 92.7 Belser et al. (2021)
hs1 H. sapiens NA12878 3,200 42x 15.7 8.48 13.6 132.9 Jain et al. (2018)
hs2 H. sapiens GM24385 3,200 26x 3.44 24.5 46.5 84.2 See caption
hs3 H. sapiens CHM13 3,200 23x 5.90 12.6 58.7 74.2 Nurk et al. (2021)
hs4 H. sapiens CHM13 3,200 46x 11.8 12.6 58.8 148.4 Nurk et al. (2021)

Table 1. Datasets used for experiments. The uncompressed size refers to the file size obtained by removing the quality scores and sequence identifiers from the
FASTQ files. N50 is a robust measure for read lengths, with the reads with length above the N50 metric capturing 50% of the data. The hs2 dataset was obtained
from https://labs.epi2me.io/gm24385_2020.09/ provided as part of ONT Open Datasets.

Dataset Name Coverage
Uncompressed size Compressed size in bits/base Improvement

(GB) Gzip ENANO NanoSpring over ENANO
sa 84x 0.24 2.29 1.89 0.50 3.78x

zymo - 4.6 2.32 1.96 0.84 2.33x
snail 139x 49.5 2.14 1.80 1.05 1.71x

banana 177x 92.7 2.28 1.93 1.06 1.82x
hs1 42x 132.9 2.24 1.89 1.45 1.30x
hs2 26x 84.2 2.20 1.87 0.66 2.83x
hs3 23x 74.2 2.18 1.86 0.68 2.74x
hs4 46x 148.4 2.18 1.86 0.60 3.10x

Table 2. Compression results for read sequences using Gzip, ENANO and NanoSpring.

The high resource usage for NanoSpring during compression is
due to the approximate assembly process which provides the gains in
compression, and is on a similar scale as previous works following this
approach for short reads (Chandak et al., 2019; Kowalski and Grabowski,
2019). The memory usage consists of the reads, the MinHash index and the
consensus graph. We typically observed that the time and memory usage
scaled linearly with the dataset size, although there is some variability in
the contig generation stage. For the 26x human dataset hs2, NanoSpring
requires ∼3 hours (∼70 CPU hours) and 39 GB memory, which is an
order of magnitude smaller than the requirements for genome assembly.
For example, wtdbg2 (Ruan and Li, 2020), a recent efficient assembler
requires over 1000 CPU hours and 200 GB memory for nanopore human
datasets with ∼35x coverage. Finally, the high decompression memory
usage for NanoSpring is an artifact of the current implementation that
decodes the reads out of order and loads them in memory before writing
them to disk in the correct order. We believe that this can be reduced
by modifying the encoded streams to enable a streaming decompression
process, and we plan to implement this as part of future work.

3.1 Parameter analysis and discussion

To provide further insight into the NanoSpring algorithm, we discuss
various parameters, experiments and related observations. While testing
the individual parameters, we keep all other parameters constant. We note
that the time measurements show some experimental variation due to I/O
and multithreading. Therefore, we focus on the overall trend rather than
these minor variations. More details on these experiments are available in
the Supplementary data and on GitHub.

3.1.1 Contribution of streams to compressed size
Figure 3 shows the contribution of the various streams to the total
compressed size for the datasets from Table 1. We focus on the consensus
sequence, the error streams (position, type, erroneous base) and the lone
reads (i.e., reads for which no matches were found). The remaining streams
contribute less than 1% to the total size and are omitted here for clarity.
We first note that the error streams take up close to 0.5 bits/base for most
datasets, while the contribution of the consensus sequence is smaller. The
contribution of the lone read stream varies a lot between datasets and
is quite high for the snail, banana and hs1 datasets where NanoSpring

Dataset Name
Compression time Peak compression memory (GB) Decompression time Peak decompression memory (GB)

Gzip ENANO∗ NanoSpring Gzip ENANO∗ NanoSpring Gzip ENANO∗ NanoSpring Gzip ENANO∗ NanoSpring
sa 2.2s 5.9s 28.4s 0.015 0.39 7.09 0.9s 7.4s 1.3s 0.0026 0.43 0.37

zymo 38.5s 38.5s 12m23s 0.015 0.43 16.5 16.3s 58.9s 24.1s 0.0026 0.55 3.00
snail 6m48s 5m25s 2h12m 0.015 0.43 33.7 3m15s 10m04s 5m33s 0.0026 0.54 26.7

banana 14m29s 18m27s 3h19m 0.015 0.43 43.7 6m52s 22m54s 11m16s 0.0025 0.54 25.5
hs1 19m17s 26m06s 5h07m 0.015 0.46 60.3 10m56s 36m10s 22m15s 0.0025 0.56 36.6
hs2 12m 10m45s 3h19m 0.015 0.43 39 7m05s 22m25s 6m57s 0.0026 0.55 22.4
hs3 10m08s 7m24s 3h32m 0.015 0.37 39 5m50s 13m55s 6m45s 0.0025 0.49 20.2
hs4 20m06s 25m21s 7h53m 0.015 0.37 97.7 12m48s 29m57s 15m03s 0.0025 0.49 39.1

Table 3. Time and peak memory requirements for compression and decompression. ∗ENANO figures include the time/memory usage to compress/decompress the
entire FASTQ file including read sequences, quality values and read identifiers, while Gzip and NanoSpring only compressed the read sequences.
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Fig. 3: Contribution of consensus sequence, errors and lone reads to the
compressed size across datasets.

has relatively worse compression performance. We believe that this is
associated with the data quality since we see a drastic reduction in the lone
reads for datasets basecalled with the latest basecallers (sa, hs2, hs3 and
hs4). Finally, we note that datasets with higher coverage have a smaller
contribution from the consensus sequence (e.g., compare hs3 and hs4).
This is expected theoretically since the genome size is a fixed constant
while the error streams grow linearly as we get more reads.
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Fig. 4: Compressed size (bits/base) vs. coverage for subsampled banana
and CHM13 datasets.

3.1.2 Coverage
To understand the impact of sequencing coverage on the performance of
NanoSpring, we tested it on two datasets subsampled to multiple coverage
values. We used the banana dataset with 177x coverage, and the CHM13
dataset (used to obtain hs3, hs4 in Table 1) with 126x coverage. The
compressed sizes are shown in Figure 4, where we see that the compression
improves with coverage for both datasets even though the two datasets
have significantly different compression levels (likely due to the differing
basecalling qualities). This is expected since higher coverage datasets have
more redundancy. For the CHM13 dataset, we get compressed sizes of
0.83, 0.68, 0.60, 0.60 and 0.56 bits/base for coverage values of 12x, 23x,
46x, 69x and 126x, respectively, with diminishing returns as the coverage
increases (note that slight deviations from the trend can be explained by
the random subsampling process and experimental variation). We observe
that even at the low coverage of 12x, NanoSpring achieves more than two
times better compression ratio than ENANO or Gzip for the high quality
CHM13 dataset.

k
Compressed size Compression time Peak memory usage
hs2 zymo hs2 zymo hs2 zymo

10 - 0.782 - 33m03s - 16.4
12 0.827 0.780 4h06m 23m51s 39.2 16.1
15 0.674 0.794 3h16m 13m33s 38.4 16.3
18 0.654 0.808 2h54m 13m08s 39.0 17.0
20 0.663 0.816 2h46m 12m54s 39.0 17.6
23 0.656 0.830 2h44m 12m02s 39.1 17.5
25 0.660 0.842 2h31m 11m36s 38.9 15.6
30 0.685 0.876 2h18m 10m58s 38.6 15.8

Table 4. Performance of NanoSpring with different MinHashk-mer sizes for the
hs2 and zymo datasets. Compressed size is in bits/base and the peak memory
usage is in GB. The hs2 dataset was tested with k = 10.

n t t/n
Compressed size Compression time Peak memory usage
hs2 zymo hs2 zymo hs2 zymo

50 4 0.08 0.680 0.821 3h05m 14m19s 38.3 16.7
50 5 0.10 0.664 0.835 2h52m 12m21s 38.2 15.9
60 6 0.10 0.669 0.832 2h50m 12m34s 38.8 15.3
70 7 0.10 0.662 0.830 2h47m 11m52s 39.2 15.9
50 6 0.12 0.688 0.847 2h32m 10m59s 38.3 16.2

Table 5. Performance of NanoSpring with varying MinHash t and n parameters
for the hs2 and zymo datasets. Compressed size is in bits/base and the peak
memory usage is in GB.

3.1.3 MinHash parameters
NanoSpring uses MinHash to index the reads and find overlapping reads
during contig generation, with parameters k (MinHash k-mer length),
n (number of hash functions) and t (threshold number of matches for
successful lookup). In Table 4, we look at the performance for the hs2
and zymo datasets with varying k (default is k = 23). The impact of k
is dependent on the genome size since for a larger genome we expect to
get more false positive matches as k decreases. For the hs2 dataset, we
see that the compression time increases as k decreases. The compression
first improves with decreasing k since smaller k-mers are less likely to
have errors leading to fewer missed matches. But as k decreases further,
the compression worsens due to increasing false positive matches. For the
zymo dataset which consists of bacterial and yeast genomes, we see that
the compression improves until k = 12. Thus, the value of k should be
chosen based on the genome size and error rate, with the default value of
k = 23 chosen to give a reasonable tradeoff for most human datasets.

Table 5 shows the performance for the same two datasets as the
parameters n and t are varied (default values n = 60, t = 6). As the
ratio t/n increases, we miss more and more matches, while very small
values lead to false positive matches and increased computation time for
minimap2 alignment. While the best value of this ratio depends on the
dataset and the error rate, we found the ratio of 0.10 to work consistently
well. For a fixed ratio t/n, we expect higher n to give better results (Berlin
et al., 2015) at the cost of more computation. In practice we found that the
dependence of compression ratio on n was not significant within a range
of values, and we chose n = 60 based on experiments across datasets.
Finally, we note that the memory usage stays roughly constant with the
three MinHash parameters.

3.1.4 Minimap2 parameters
NanoSpring uses the minimap2 aligner (Li, 2018) to align candidate
reads to the consensus sequence and add them to the graph during contig
generation. We tuned the default minimap2 parameters to improve the
performance of the algorithm, focusing on three main parameters: the
minimizer k-mer size, the minimizer window size w and the maximum
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k w mci
Compressed size Compression time Peak memory usage
hs2 hs3 hs2 hs3 hs2 hs3

15 10 5000 0.646 0.670 6h18m 12h45m 38.7 55.3
15 10 400 0.661 0.686 4h01m 5h16m 39.3 57.4
20 50 5000 0.649 0.688 2h54m 5h39m 38.6 46.2
20 50 400 0.665 0.662 2h59m 3h38m 39.9 38.7

Table 6. Performance of NanoSpring with varying minimap2 k, w and mci

(max-chain-iter) parameters for the hs2 and hs3 datasets. Compressed
size is in bits/base and the peak memory usage is in GB.

number of iterations during the chaining step (max-chain-iter or
mci). We changed the default minimap2 setting of (k = 15, w =

10,mci = 5000) to (k = 20, w = 50,mci = 400) in order to get
the best tradeoff between compressed size and compression time. Table 6
shows the results for four parameter settings for the hs2 and hs3 datasets.
We observe that the parameters have a significant effect on compression
time, while the impact on compressed size is much smaller. The choice of
the appropriate parameters was especially crucial for the hs3 dataset, which
requires 3 times more time with the default minimap2 setting as compared
to the setting used in NanoSpring (the memory usage also improves for the
chosen parameters). Based on some tests, we believe that this effect is due
to the presence of more repetitive sequences in the hs3 dataset which leads
to extremely slow alignment unless the max-chain-iter parameter is
reduced.

Compressor Compressed size (bits/base)
Gzip 0.873
BSC 0.685

LZMA2 0.683
BSC+LZMA2 0.658

Table 7. Effect of stream compressor on compressed size for the hs2 dataset.
In the last row which corresponds to the default setting for NanoSpring, the
stream of erroneous bases is compressed using LZMA2 and the other streams
are compressed using BSC.

3.1.5 Stream compressor
Table 7 shows the effect of the stream compressor on the overall
compression ratio. NanoSpring uses LZMA2 for compressing the stream
of erroneous bases and BSC for the other streams. We see that Gzip
performs around 30% worse than the default setting. But NanoSpring
with Gzip still has 2x better compression than ENANO suggesting that
the advantage of NanoSpring is mostly due to the approximate assembly
process. Between BSC and LZMA2, we found that BSC was better for
most streams, but LZMA2 was around 10% better for the erroneous base
stream which is a major contributor to the overall compressed size for
certain datasets. Thus, we use a combination of the two for best results.
We note that the computational requirements for stream compression are
relatively small as compared to the approximate assembly process and
were not a major factor in the choice of the compressor.

3.1.6 Threads
Table 8 shows the compression performance of NanoSpring with different
number of threads on the hs2 dataset (where we used 20 threads by default
for the main experiments). The time required for compression reduces as
we use more threads, while the peak memory usage increases because
the threads work simultaneously on different contigs. We observe that
the compressed size is roughly constant with the increasing thread count,
apart from minor experimental variation. For very high number of threads,

Number of Compressed size Compression Peak memory
threads (bits/base) time usage (GB)

5 0.651 8h34m 28.2
10 0.653 4h59m 31.8
20 0.658 3h19m 39.0
40 0.646 2h12m 51.2

Table 8. Performance of NanoSpring with different number of threads for the
hs2 dataset.

the disk I/O and memory allocations become the bottleneck leading to
diminishing returns.

Edge Compressed size Compression Peak memory
threshold (bits/base) time usage (GB)

1M 0.692 2h11m 28.8
4M 0.665 2h59m 39.9
16M 0.651 3h12m 80.6
∞ 0.648 3h41m 113.8

Table 9. Performance of NanoSpring with different edge thresholds for the hs2

dataset.

3.1.7 Edge threshold
To reduce the peak memory usage during compression, NanoSpring
imposes a limit on the number of edges in a consensus graph during contig
generation (4 million by default). Table 9 shows the compression results for
the hs2 dataset for different values of the threshold. The last row shows the
result without any edge threshold, and we see the memory usage is more
than 100 GB as compared to roughly 40 GB for the default threshold.
In general, we see that decreasing the threshold significantly reduces the
memory usage and slightly reduces the time but leads to more fragmented
contigs and worse compression. We selected 4M as the default threshold
to achieve a practical tradeoff between these factors.

Basecaller Mean error Compressed size Compression Peak memory
mode rate (bits/base) time usage (GB)
fast 7.01% 0.698 27.5s 5.8
hac 4.59% 0.504 29.6s 6.2
sup 3.68% 0.415 29.3s 7.2

Table 10. Performance of NanoSpring for theS.aureus dataset under different
basecaller modes.

3.1.8 Impact of basecalling error rate
To understand the impact of the basecaller error rate on the performance
of NanoSpring, we basecalled the S. aureus dataset with three modes of
the Guppy basecaller (version 5.0.7) by ONT: fast, hac (high-accuracy)
and sup (super-accurate) (where we used the hac mode to obtain the sa
dataset in Table 1). As shown in the Table 10, there is significant impact
of the basecaller mode on the mean error rate and the compressed size.
The compression time stays roughly constant while the memory usage
increases for higher accuracies possibly because we get larger contigs in
that case. For the sup mode with mean error rate below 4%, the compressed
size is close to 0.4 bits/base, showing the potential for better compression
as the basecaller quality continues to improve in the near future.
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hs2 sa

RENANO NanoSpring RENANO NanoSpring
Compressed size 0.501 0.656 0.377 0.504
Alignment time 4h55m - 7.7s -

Alignment memory usage 25.7 - 1.7 -
Compression time 18m43s∗ 2h44m 6.3s∗ 29.6s

Compression memory usage 6.0∗ 39.1 0.4∗ 6.2

Table 11. Performance of NanoSpring and RENANO on hs2 and sa datasets.
Compressed size is in bits/base (only includes read sequences for RENANO)
and the alignment memory usage and compression memory usage are in GB.
∗RENANO time/memory figures include the time/memory to compress the
entire FASTQ file including read sequences, quality values and read identifiers.

3.1.9 Comparison with RENANO
To better understand the limits of nanopore read compression, we
compared NanoSpring with RENANO (Dufort y Álvarez et al., 2021).
RENANO is a recently released reference-based compressor for FASTQ
files, and for a fairer comparison we use the mode which produces a
self-contained compressed file that does not need the reference during
decompression. We evaluated RENANO on two datasets: hs2 (using the
GRCh38 reference) and sa (using a high quality assembly for the specific
sample, obtained from Wick et al. (2019)). For using RENANO, we
first aligned the FASTQ file to the reference and then ran RENANO
as recommended in their documentation. All tools were run with 20
threads. Table 11 shows the compressed size, as well as the time and
memory usage both for minimap2 alignment and compression. We see
that the compressed size for RENANO is around 25% smaller than that for
NanoSpring, suggesting scope for further improvement in the NanoSpring
algorithm. In terms of time and memory usage, we see that RENANO is
significantly less resource-intensive as compared to NanoSpring. However,
the overall process for RENANO is much slower for the human dataset
because of the minimap2 alignment. Overall, we see that the reference-free
NanoSpring is only around 20-30% worse in compression than the state-
of-the-art reference-based compressor while being competitive in terms of
overall time for processing and compression.

4 Conclusion
We present NanoSpring, a specialized reference-free compressor for
nanopore sequencing reads, relying on an approximate assembly
approach to achieve close to 3x improvement in compression over
previous compressors for recent high quality datasets. With rapidly
improving basecalling quality in the past few years, we can expect the
advantages of such an approach to grow further. NanoSpring offers
fast decompression and practical computational requirements during
compression, although it uses more computational resources than previous
compressors. NanoSpring is open-source and available on GitHub at
https://github.com/qm2/NanoSpring. Future work includes
improvement in the computational requirements and research on the
assembly algorithm to get closer to the limits. Another important direction
is to incorporate NanoSpring into a full-fledged FASTQ compressor

capable of handling quality scores and read identifiers, possibly by
combining the best aspects of ENANO and NanoSpring.
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