
Herrmann et al.

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

55 55

RESEARCH

Thermodynamic genome-scale metabolic
modeling of metallodrug resistance in colorectal
cancer
Helena A. Herrmann1†, Mate Rusz1,2†, Dina Baier2, Michael A. Jakupec2,3, Bernhard K. Keppler2,3,
Walter Berger3,4, Gunda Koellensperger1,5,6 and Jürgen Zanghellini1*

Abstract

Background: Mass spectrometry-based
metabolomics approaches provide an immense
opportunity to enhance our understanding of the
mechanisms that underpin the cellular
reprogramming of cancers. Accurate comparative
metabolic profiling of heterogeneous conditions,
however, is still a challenge.

Methods: Measuring both intracellular and
extracellular metabolite concentrations, we
constrain four instances of a thermodynamic
genome-scale metabolic model of the HCT116
colorectal carcinoma cell line to compare the
metabolic flux profiles of cells that are either
sensitive or resistant to ruthenium- or
platinum-based treatments with
BOLD-100/KP1339 and oxaliplatin, respectively.

Results: Normalizing according to growth rate and
normalizing resistant cells according to their
respective sensitive controls, we are able to dissect
metabolic responses specific to the drug and to the
resistance states. We find the normalization steps
to be crucial in the interpretation of the
metabolomics data and show that the metabolic
reprogramming in resistant cells is limited to a
select number of pathways.

Conclusions: Here we elucidate the key
importance of normalization steps in the
interpretation of metabolomics data, allowing us to
uncover drug-specific metabolic reprogramming
during acquired metal-drug resistance.

Keywords: omics data integration;
constraint-based modeling; data normalization

Background
A reprogramming of metabolism is a hallmark of mul-
tiple diseases, including cancer [1]. Changes in glu-
cose, amino acid, lipid, and cholesterol metabolism,
for example, have all been associated with aberrant
metabolic phenotypes observed in cancers [2]. Result-
ing differences in metabolism between healthy and can-
cerous cells hold the potential for selectively target-
ing cancerous cells through pharmacological and di-
etary interventions. As such, understanding the extent
to which metabolic reprogramming occurs in different
cancer cells is a fundamental requirement for better
treatment options. However, not only malignant trans-
formation, but also therapy response on drug resis-
tance acquisition might be paralleled or even driven by
metabolic changes in the malignant cells [3, 4]. Espe-
cially, in case of acquired therapy resistance, dissection
of the respective metabolic alterations and mechanism
on a larger scale are only at the beginning.

In silico methods have the potential to integrate
existing experimental data and to generate new hy-
potheses about the underlying mechanisms associ-
ated with metabolic reprogramming. Genome-scale
metabolic models (GSMMs), which capture the known
biochemical reactions of a given system, have previ-
ously been applied in various cancer studies [5, 6] and
have led to the discovery of new drug targets and
biomarkers [7, 8, 9, 10, 11]. There are, however, ar-
eas of cancer research, where GSMMs have not yet
been applied due to a lack of available experimental
data. For example, GSMMs have not yet been used
extensively to study acquired drug resistance against
different drug classes in different cancer cell types. Ac-
quired therapy resistance is considered a major ob-
stacle for curative systemic cancer treatment at pro-
gressed stages and also affects the success of anitcancer
metal drugs. [12, 13, 14, 15].
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Metal-based drug treatments involving oxaliplatin
are a standard therapy for colorectal cancer, the third
most commonly diagnosed cancer [16, 17, 18, 19]. Drug
resistance, however, has been reported to develop in
nearly all patients with colorectal cancer; even when
using modern targeted and immunotherapy options,
chemotherapy remains a major part of the colorec-
tal cancer treatment regimen [13, 14]. Platinum-based
drugs are still prescribed in different lines of sys-
temic cancer treatment in diverse tumor types and pa-
tient cohorts [20]. Although platinum-based anticancer
drugs like oxaliplatin are widely-used, intrinsic and ac-
quired resistances remain a crucial impediment in the
treatment of colorectal cancer.

Acquired resistance against platinum drugs is thought
to be mainly based on elevated DNA-repair mech-
anisms, detoxification, evading apoptosis and au-
tophagy [21]. However, there is an increasing amount
of evidence that metabolic alterations might play a
pivotal role as well [22]. The clinically-investigated
ruthenium-based anticancer drug BOLD-100/KP1339
has shown promising results with regards to colorec-
tal cancer treatment [23]. BOLD-100/KP1339 (sodium
trans-[tetrachloridobis (1H-indazole) ruthenate(III)])
is a prodrug [24] displaying preferential activation by
reduction in the hypoxic milieu of solid tumors and
does not primarily target DNA [25] and metabolic al-
terations are expected to be relevant. Unlike BOLD-
100/KP1339, which is still under investigation for
clinical applications, oxaliplatin is an already widely-
applied, clinical cancer treatment. As a result, the
body of literature addressing oxaliplatin resistance is
notably larger than that of BOLD-100/KP1339 resis-
tance. Nonetheless, the extent to which metallodrug
resistance results in an altered metabolic profile re-
mains poorly understood for both drug treatments
and has not yet been compared. As such, it is not
yet known whether metabolic reprogramming during
resistance development against anticancer compounds
with differenct metal centers and activity parameters
are comparable or drug-specific.

Metabolomics aims to directly measure metabolite
abundance from a global and unbiased perspective
and has the potential to not only detect metabolic
alterations but to discover diagnostic and prognostic
markers and to generate hypotheses that can be val-
idated with genetic experiments [26]. Recent progress
in targeted and untargeted metabolomics approaches
have resulted in a wide-ranging toolkit for study-
ing metabolic phenotypes in terms of cellular concen-
trations. Mass spectrometry-based metabolomics ap-
proaches can be used for the metabolic profiling of
drug-treatment responses in cancer cell lines [27, 28].

While metabolomics studies provide an effective in-
terrogation window for the cellular changes that oc-
cur in response to a change in conditions, they do
not necessarily provide mechanistic insights into the
reprogramming of metabolism. Metabolite pools do
not inform about pathway activity, ergo correspond-
ing metabolic fluxes are sometimes measured. Measur-
ing metabolic fluxes, however, also suffers from several
practical limitations. For example, a prolonged time
for peripheral pathways to reach isotopic steady-state,
the fact that simple linear pathways can only be inves-
tigated with non-stationary labelling or an increased
number of samples, and the complex data analyses re-
quired for nonstationary labelling experiments often
hinder a successful and comprehensive application of
isotopic labelling methods[29].

Recent trends in metabolomics have shown, it is al-
ways possible to measure more metabolites at more
time points and to analyse the obtained results in com-
bination with other ‘omics data sets [30, 31, 32, 33].
While multi-omics have allowed for the identifica-
tion of numerous regulatory mechanisms in cancer
[34, 35], their integration with fluxomics is required
to gain a holistic understanding of metabolic repro-
gramming. To understand the mechanisms that under-
pin a potential reprogramming of metabolism during
resistance development, observed changes in metabo-
lite concentrations need to be placed in the context
of changes in metabolic flux. GSMMs provide a plat-
form for doing so [36]. Multiple techniques for integrat-
ing omics data sets into GSMMs have been developed
[10, 37, 38, 39, 40]. While expression data sets are of-
ten used to generate system-specific models [41, 7],
metabolomics and proteomics data sets are used to
constrain the solution space of the generated models
[37, 40].

Typically, constraint-based modelling (CBM) is em-
ployed to study GSMMs and to explore metabolic phe-
notypes in the form of steady-state fluxes [42, 43]. Flux
balance analysis (FBA), for example, uses linear opti-
mization techniques to model the fluxome of GSMMs
[see Orth et al [44] for a review]. FBA, however, can
lead to the prediction of thermodynamically infeasi-
ble flux solutions. Thermodynamic flux analysis (TFA)
imposes additional constraints on stoichiometric mod-
els to ensure thermodynamically valid fluxes and pro-
vides a framework for integrating metabolomics data
into GSMMs [45, 46]; extracellular metabolite data are
used to constraint the directionality of exchange reac-
tions of the model and intracellular metabolite data
can be used to constraint reactions in the model. Both
intra- and extracellular metabolite data have previ-
ously been integrated into system-specific metabolic
models to draw physiological conclusions about can-
cerous and healthy cells [47, 48, 49, 50].
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In this work, we integrate experimentally deter-
mined absolute concentrations of intracellular metabo-
lites and medium-based metabolites and growth rates
of the colorectal cancer cell-line HCT116 into a cell-
line specific, thermodynamic, genome-scale metabolic
model (GSMM). We consider two different models of
acquired resistance in colon cancer: oxaliplatin resis-
tant (OxR) and BOLD-100/KP1339 resistant (RuR)
HCT116 cells as well as their sensitive controls to gen-
erate four model instances. To identify metabolic dif-
ferences between resistant and sensitive cells, we nor-
malize the calculated flux values by their representa-
tive growth rates. As oxaliplatin and BOLD-100 are
prepared in different solvents (water versus dimethyl-
sulfoxid (DMSO)), OxR and RuR cells were grown in
the same media, but RuR and its respective control
were exposed to a low DMSO background equivalent
to the drugs’ stock solution solvent. To account for
metabolic difference that are the results of a differ-
ence in solvent, we further normalized the results ob-
tained for the resistant cells by their sensitive controls.
Eliminating both differences in growth rate and solvent
background, we are able to draw drug-specific conclu-
sions about the metabolic changes that occur upon
resistance. As a result, we are able to identify specific
changes in flux that are the direct result of an acquired
resistance to either OxR or RuR treatment.

Materials and Methods
Cell Culture
HCT116 colon cancer cells were generously provided
by Dr. Vogelstein from John Hopkins University,
Baltimore. Cells were cultured in McCoy’s medium
(Sigma Aldrich) supplemented with 10% fetal calf
serum (FCS; PAA, Linz, Austria) and 2 mm glutamine
(Sigma Aldrich). Cells were selected for acquired
drug resistance over several months via exposure to
increasing concentrations of oxaliplatin or BOLD-
100/KP1339 followed by drug-free recovery phases.
Finally, the oxaliplatin-resistant HCT116 (OxR) cells
were selected with 5 µm of oxaliplatin [51, 52] for 24 h
and BOLD-100/KP1339-resistant (RuR) cells with
200 µm of BOLD-100/KP1339 for 72 h in two-week-
intervals. All cultures were grown under standard cell
culture conditions and checked for Mycoplasma con-
tamination.

Cell viability assay
Cells were seeded at densities of 3.5 × 104 cells/well
cells in 96-well microtiter plates and allowed to adhere
overnight. Cells were exposed to indicated concentra-
tions of the respective drugs for 72 h. Cell viability
was determined using the 3-(4,5-dimethylthiazol-2-yl)-
2,5-diphenyltetrazolium bromide (MTT) assay (EZ4U,
Biomedica, Vienna, Austria) following the manufac-
turer’s recommendations.

Metabolomics experiment
HCT116 cells, HCT116 cells with acquired oxaliplatin
resistance, and HCT116 cells with acquired BOLD-
100/KP1339 resistance were seeded as 2×105 cells/well
in 12-well plate formate in 1 mL McCoy’s medium
(Sigma Aldrich) supplemented with 2 mm glutamine
and 10% FCS. After overnight growth, wells were sup-
plemented with 1 mL fresh medium each. HCT116
with acquired BOLD-100/KP1339 resistance and its
sensitive control contained the same medium with
0.5% dimethyl sulfoxide (DMSO) used as BOLD-
100 solvent. 24 h after supplementing with additional
medium, cells are still not confluent. At this point, the
medium was removed and cells were washed 3-times
with 2 mL PBS (37 °C) and snap frozen with liquid
nitrogen.

Metabolomics sample preparation
The samples were randomized at the stages of the ex-
periment including seeding, sample preparation and
extraction as well as LC-MS measurement sequence.
Extraction and measurement of the metabolites were
based on a protocol described elsewhere [53]. Shortly,
the protocol comprised cell scraping and extraction
with 180 µL cold 80% methanol containing 5 mm
N-ethylmaleimide (dissolved in 10 mm ammonium-
formate at pH 7) with 20 µL fully 13C-labeled internal
standard, ISOtopic solutions (Vienna, Austria). Af-
ter a centrifugation step (14,000 rcf, 4 °C, 10 min) cell
extracts were directly measured with high-resolution
OrbiTrap mass spectrometer.

LC-MS analysis of metabolites
The quantification of metabolites was based on Schwaiger
et al. [54] and the LC-MS gradient was adapted and
shortened to suit metabolites as described elsewhere
[55]. Full mass scan data was acquired both in positive
and negative ion mode.

LC-MS analysis of coenzymes
The analysis of free coenzyme A (CoA), acetyl-
coenzyme A, palmitoyl-coenzyme A (malonyl-coenzyme
A below LOD) was carried out in an additional mea-
surement series of the same samples and on the same
instrumental setup but a with a dedicated LC-MS
method. The same separation was used with the
same gradient and eluents, but flushing of the column
started already at 6 min instead of 7 min min, shorten-
ing the total measurement time from 15 min to 14 min.
The OrbiTrap MS settings were changed with regards
to the mass range to 750-1100 m/z and the capillary
temperature was lowered from 280 °C to 200 °C to re-
duce in-source fragmentation and the S-lense RF-level
was increased from 30 to 60.
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Determination of total protein content
The applied extraction and centrifugation resulted in a
pellet containing the high-molecular fraction and non-
polar metabolites. This pellet was dissolved in 0.2m
NaOH overnight, diluted 1:10 in the same NaOH solu-
tion and determined for total protein content with the
Thermo Micro BCA kit, according to manufacturer’s
instructions.

Data analysis of metabolomics measurement
Targeted analysis of the data was done with Skyline
20.2 (MacCoss Lab Software) extracting the [M-H]−

and [M+H]+ ions with 5 ppm mass tolerance. The ab-
solute concentrations relied on the external calibra-
tion with internal standardization. The compounds
were standardized compound-specifically where pos-
sible and class-specifically when the U13C equivalent
was not reliably available or by U13C-glutamate if nei-
ther of the aforementioned were available.

Metabolites with technical repeatability (relative
standard deviation) above 30% were removed from
the dataset. This was based on the repeated injection
and measurement of a pooled quality control sample.
Furthermore, metabolites which had mean concentra-
tion below the determined lowest limit of quantifica-
tion (LOQ) according to the validation of the LC-MS
method described in [54] were removed.

Datasets were combined by joining the metabolite
data acquired in both positive and negative mode,
as well as coenzyme data in the negative acquisition
mode. A further calibration was measured in positive
mode for several carnitines (propionyl-carnitine, O-
acetyl-carnitine, propionyl-carnitine, palmitoyl-carnitine)
with the method for metabolites, since these com-
pounds were not contained in our original calibration
mixture. Also the calibration row for coenzymes was
prepared freshly in this mixture to avoid degradation
by storage. The external calibration of the different
coenzymes (coenzyme A, acetyl coenzyme A, malonyl
coenzyme A, palmitoyl coenzyme A) was measured in
negative mode. For all primary thiols in the dataset
(coenzyme-A, glutathione, cysteine etc.) its N-ethyl
maleimide adduct was used for quantification after it
was made sure that the conversion was quantitative.

Measurement of extracellular metabolite concentrations
105 HCT116 cells as well as HCT116 cells with ac-
quired oxaliplatin resistance and HCT116 cells with
BOLD-100/KP1339 resistance were seeded (N = 4 for
each respectively) into 12-well plate (StarLab) with
2 mL McCoy’s 5A medium (Sigma-Aldrich) contain-
ing 10% FCS (BioWest) and 4 mM glutamine. Also
in the case of the sensitive HCT116 cells and the
BOLD-100/KP1339-resistant cells the experiment was

run with and without 0.5% DMSO. 100 µL of was col-
lected from the starting medium at beginning of the
experiment, and directly from the wells after 24 h, 48 h
and 72 h after seeding. Also, a cell free experiment was
run to determine the contribution of abiotic glutamine
decay.

Determination of dry-weight for the cell lines
Measurements were carried out as described by Széliová
et al. [56]

HCT116-specific genome-scale metabolic model
Robinson et al. [57] provide the latest consensus
GSMM of human metabolism called Human1. The au-
thors used Human1 to generate cell-line specific mod-
els using gene essentiality data from previous CRISPR
knockout screens [58]. Using the tINIT algorithm [41]
and RNA-Seq data from HCT116 colorectal carci-
noma cells they select reactions from Human1 asso-
ciated with moderately and highly expressed genes
to build a cell-line specific model for HCT116. We
obtained the model from the authors, removed the
enzyme constraints and added a further seven ex-
change reactions to the model to account for the ex-
cretion or uptake of cis-aconitate, fumarate, isocitrate,
malate, sarcosine, succinate and xanthine that we ob-
served in our measured time-course of the medium
composition. We use this updated model for all our
analyses presented here. The model is available at
https://github.com/HAHerrmann/Hct116 DrugR

es/blob/master/Models/Colon Combined.xml.
Growth rates (Figure S1) and exchange rates (Fig-

ure S2) were fitted as described in Széliová et al. [59].
In short, we fitted an exponential model to estimate
the initial concentration, X0, and the growth rate, µ.
The fitted growth rate and the initial biomass, B0,
were then used to calculate the specific exchange rates
for all of the measured medium-based metabolites. B0

was calculated from the fitted X0 and the experimen-
tally determined dry mass per cell (Figure S3). The fit-
ting was done in Python (Version 3.7.9) using the opti-
mize function in scipy (Version 1.5.2) with parameters
soft l1 for the loss function and f scale = 0.3 for
outlier detection. The obtained growth and exchange
rates were used to constrain the respective import and
export reactions of the model. Flux constraints were
set such that the applied upper and lower bounds ac-
counted for the relative standard error of the mea-
surement. We further constrained the directionality of
uptake and excretion rates of 50 metabolites, using
HCT116 cell line specific data obtained by Jain et al.
[60]. The “blood pool” reactions were removed from
the model because we did not consider in vivo condi-
tions. Instead, we allowed for an unconstrained influx
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of stearate, palmitate, oleate, linolenate, linoleate, and
arachidonate. These fatty acids have previously been
shown to make up the majority of lipids present in
fetal calf serum [61, 62] which was used as a growth
medium supplement.

Thermodynamic metabolic modeling
The pyTFA package [46], https://github.com/EPF
L-LCSB/pytfa, formulates thermodynamic flux anal-
ysis (TFA) of GSMM as a mixed-integer linear pro-
gramming problem that incorporates metabolite con-
centrations as thermodynamic constraints into a tradi-
tional flux balance analysis (FBA) model. Masid et al.
[48] have recently constructed an extensive thermody-
namic database containing the thermodynamic infor-
mation for compounds, reactions and compartments
in human metabolism; this includes the Gibbs free en-
ergy formation of compounds and the associated error
estimation, the pH, ionic strength and membrane po-
tentials. Using Biopython (Version 1.78) we annotated
the GSMM with SEED identifiers which allowed us to
match the information in the GSMM to the thermody-
namic database of Masid et al. [48]. This allowed us to
achieve a thermodynamic coverage of 89% of the com-
pounds and to estimate the Gibb’s free energy for 20%
of the reactions. We initially applied default metabo-
lite concentrations from 10−12 to 0.1 mol per total pro-
tein. We then scaled our measured metabolite concen-
trations to fall within that same range and applied
them, condition-dependent, to different instances of
the GSMM. Using a parsimonious FBA (pFBA) that
maximizes a linear objective while minimizing the to-
tal sum of fluxes [63], we calculated the minimum total
sum of fluxes and set this as an additional constraint to
our linear model prior to performing a Flux Variability
Analysis (FVA) on the thermodynamic model, here re-
ferred to as TFVA. TFVA applies the same constraints
as TFA but instead of returning a single feasible solu-
tion, the lowest and highest possible flux value for each
reaction is returned [64]. Because pFBA does not nec-
essarily return a unique solution when two alternative
pathways with the same total sum of fluxes exist, we
chose to implement a parsimonious TFVA (pTFVA)
to compare different model instances to one another.
Upon parallelizing the existing TFVA implementation
in pyTFA for an improved run time, we ran a pTFVA
for different instances of the HCT116 cell-lines specific
GSMM. Flux analyses were done in Python (Version
3.7.9) using cobrapy (Version 0.19.0) [65].

Data processing and flux normalization
We constrained four different instances of the HCT116
model: oxaliplatin-resistant cells (OxR) and their sen-
sitive parental counterpart (HCT116) and BOLD-
100/KP1339-resistant cells (RuR) and their sensi-
tive parental counterpart in a DMSO-based medium

(HCT116-DMSO). Model instances were constrained
using the condition-specific exchange fluxes (Fig-
ure S1) and growth rate (Figure S2). All blocked reac-
tions were removed using the find blocked reactions

in cobrapy (Version 0.19.0) with default parameters,
resulting in a model with 4530 reactions and 4492 de-
grees of freedom. Upon calculating flux values for each
model instance using pTFVA as described, we divided
each set of flux values by the outgoing flux to biomass
production of that model instance, effectively normal-
izing for difference in growth. We checked for reactions
for which both the upper and the lower bound differed
by at least 15%. Furthermore, we feature-scaled all
flux values to lie between 0 and 1 and divided the flux
values obtained in the drug-resistant instances by the
corresponding flux values obtained for their respective
controls. Having thus normalized for differences in the
medium composition, we were able to compare the flux
profiles of the two metallodrug resistance to another
another, again checking for which reactions both the
upper and lower bounds differed by at least 15%.

Results
Differences in metabolite concentrations may not
correlate to changes in flux
To investigate the metabolic changes associated with
metallo-resistance in colorectal cancer, we compared
the metabolic profiles of resistant and sensitive cells.
Using the HCT116 colorectal cancer cell line, cells
with resistance to either oxaliplatin (OxR) or BOLD-
100/KP1339 (RuR) were compared to their sensitive
counterparts. The two acquired resistence models are
largely independent of one another: while OxR cells
show moderate cross-resistance for the ruthenium-
based drug, RuR cells display no cross-resistance and
remain sensitive to oxaliplatin treatment (Figure S5).
This implies a difference in the molecular basis of re-
sistance between the two models. OxR cells and their
parental sensitive counterparts were grown in a stan-
dard medium, while RuR cells and their parental sen-
sitive counterparts were grown in the same medium
but with a low solvent-background (DMSO) as out-
lined in the Materials and Methods. Relative differ-
ences in the cellular metabolite concentrations of sensi-
tive versus resistant cells highlight the extent to which
the acquired metallodrug resistance results in an al-
tered metabolome (Figure 1). We observe that some re-
sponses, such as an increase in palmitoylcarnitine and
a decrease in lactate upon resistance, are shared across
the two metallo-resistance phenotypes. Nevertheless,
many of the metabolic changes associated with resis-
tance are drug-specific. Pyruvate and carnitine concen-
trations, for example, are higher in RuR cells but lower
in OxR cells when compared to their sensitive coun-
terparts. Palmitoyl-CoA, on the other hand, is lower
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Figure 1 Observed changes in metabolite concentrations
upon acquired resistance. Oxaliplatin (OxR) and
BOLD-100/KP1339 (RuR) resistance models are compared to
their sensitive counterparts. Relative differences in the
measured metabolite concentrations of resistant and sensitive
cells are shown. A positive relative difference (red) indicates a
higher metabolite concentration in the resistant as compared
to the parental sensitive model, whereas a negative relative
difference (blue) indicates a lower metabolite concentration in
the resistant than in the sensitive counterpart. Relative
differences were calculated from using the mean values of six
replicates. Only those metabolites for which we observed an
absolute relative change greater than 15% between sensitive
and resistant, in at least one of the two conditions, are shown.
The following abbreviations were used: ADP - adenosine
diphosphate, AMP - adenosine monophosphate, CMP -
cytidine monophosphate, CTP - cytidine triphosphate, GMP -
guanosine monophosphate, IMP - inosine monophosphate,
NAD - nicotinamide adenine dinucleotide , UDP - uridine
diphosphate, UMP - uridine monophosphate , UTP - uridine
triphosphate, CoA - coenzyme A, dATP - deoxyadenosine
triphosphate, dCMP - deoxycytidine monophosphate.

in RuR cells and higher in OxR cells when compared
to their parental sensitive counterparts (Figure 1).

With the aim of investigating whether the observed
changes in cellular metabolites concentrations (Fig-
ure 1) translate to changes in metabolic flux, we inte-
grated experimentally determined growth rates (Fig-
ure S1), intracellular metabolite concentrations (Fig-
ure 1) and exchange rates (Figure S2) in a genome-
scale metabolic model (GSMM) of HCT116. We con-
strained four instances of the GSMM: an oxaliplatin-
resistant (OxR) and a parental sensitive counter-

part (sensitive), a BOLD-100/KP1339-resistant (RuR)
and a parental sensitive counterpart for the DMSO-
containing medium (sensitive-DMSO). Measuring 110
metabolite concentrations and 37 exchange fluxes,
we constrained the solution space of a model with
6479 metabolites and 6716 reactions. Growth rates
were used to constrain the biomass production of
each model instance. Resistant cells grow slower than
sensitive cells and OxR cells grow even slower than
RuR cells (Figure S1). Exchange rates (Figure S2)
were determined from time-course measurements of
the medium composition and were applied as flux
bounds on the corresponding import and export re-
actions of the model. Intracellular metabolite concen-
trations were applied as constraints using the pyTFA
package [46]. Using a parsimonious thermodynamic
flux variability analysis (pTFVA), as outlined in the
Materials and Methods, we calculated flux solutions
for each of the four model instances, each of which
was constrained with the corresponding experimen-
tal data. By incorporating the growth and exchange
rates as well as the intracellular metabolite concentra-
tions into a GSMM, we were able to calculate possible
changes in metabolic fluxes. Metabolic rates, rather
than concentrations, could then be normalized accord-
ing to the cellular growth rate observed under those
conditions. We compared the four sets of flux solutions
against one another, both before and after normaliz-
ing all flux values by the respective growth rate (Fig-
ure 2). Growth rate normalization was implemented
by dividing all of the calculated flux values by the ex-
perimentally measured growth rate used to constrain
that model instance.

The maximum relative standard error observed
across the metabolite measurements was less than
15%. Thus, when integrating the data into the GSMM
and comparing flux differences between condition-
specific instances of the model, we used a cutoff of
15% to determine whether fluxes were significantly
different across conditions. Comparing resistant cells
to sensitive cells, we identify pathways with the most
prominent changes in flux upon acquired resistance
(Figure 2). Differences in flux observed prior to growth
standardization directly correspond to predictions of
in vivo fluxes. Differences in flux observed post growth
standardization are no longer predictions of in vivo
fluxes, but are predictions of flux differences that are
assumed to be the direct result of a metabolic re-
programming upon acquired resistance rather than
changes in growth rate.

Initially, the oxidative phosphorylation pathway
shows the highest amount of flux changes in response
to OxR. Upon growth normalizing, however, it is
RuR that shows a higher number of flux changes in
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Figure 2 Metabolic fluxes in resistant versus sensitive
models before and after growth rate normalization. Both
intracellular and extracellular metabolite constraints were
applied to generate four instances of the HCT-specific GSMM
[oxaliplatin (OxR) and BOLD-100/KP1339 (RuR) and their
parental sensitive counterparts (sensitive and sensitive-DMSO,
respectively)] as described in the Materials and Methods. A
parsimonious thermodynamic flux variability analysis (pTFVA)
was done on each model instance. Flux values of the resistant
instances were compared to their respective controls.
Metabolic reactions that had an absolute relative difference
greater than 15% in both the highest possible and the lowest
possible flux value were considered to be different. The
proportion of reactions that show a difference in flux between
the OxR and sensitive condition [OxR before growth rate
normalization (GRN); red bars] and the RuR and sensitive
conditions (RuR before GRN; orange bars) are shown for each
subsystem. All flux values were then normalized according to
the corresponding growth rate of that condition (Figure S1)
and were again checked for a relative difference between OxR
(OxR after GRN; black bars) and RuR (RuR after GRN; gray
bars) and their sensitive controls. Subsystems for which no
relative changes in flux between resistant and sensitive
instances were observed were omitted from the figure for
clarity.

this pathway. Furthermore, what initially appears to
be significant differences in flux through the choles-
terol and lipid metabolism, largely disappears upon
growth normalization. Changes in the subsystem reac-
tive oxygen species (ROS) detoxification seem minimal
prior to growth normalization; the normalized results,

however, indicate significant changes in flux with re-
gards to detoxification. While the number of reactions
that appear to be affected in starch and sugar and
tricarboxylic acid (TCA) metabolism appears to be
drug resistance-specific prior to growth normalization,
this effect disappears upon growth normalization. The
comparison of non-normalized and growth-normalized
results in Figure 2 emphasizes that observed changes
in metabolite concentrations are not necessarily in-
dicative of cellular changes in flux. It further high-
lights that flux results must be growth normalized in
order to distinguish a resistance model effect from a
growth effect when comparing the metabolic profiles
of resistant and sensitive cells. Changes in the pentose
phosphate pathway (PPP), oxidative phosphorylation,
glycolysis/gluconeogenesis, TCA, nucleotide, ROS and
fatty acid pathways, for example, appear to be a di-
rect result of acquired resistance when comparing OxR
and RuR to their parental sensitive counterparts (Fig-
ure 2).

Metallodrug resistance is linked to changes in energy
metabolism
Integrating metabolite measurements into GSMMs al-
lows for growth rate normalization of the calculated
fluxes which in turn allows for a direct flux comparison
between resistant and sensitive cells. The reprogram-
ming of energy metabolism to support cell growth and
proliferation is a major hallmark of cancer [1] and has
previously been linked to the emergence of acquired
drug resistance [3]. To further investigate the role of
a reprogramming of energy metabolism upon acquired
metallodrug resistance, we used the four instances of
the HCT116 model (OxR, sensitive, RuR, sensitive-
DMSO) to specifically assess differences in flux in path-
ways related to energy metabolism.

In the growth-conditions considered here, glucose
acts as the primary carbon source (Figure S2). Glucose
is catabolized to pyruvate, generating two ATP during
glycolysis. Pyruvate can then be transported into the
mitochondria and converted to acetyl-CoA which then
enters the TCA cycle or, in what is known as the War-
burg effect in cancer cells [66], pyruvate can be con-
verted to lactate. Acetyl-CoA can also be generated
from fatty acid oxidation and sometimes amino acid
catabolism (see [67] for a review). Fluxes correspond-
ing to these three well-established energy pathways of
colorectal cells along with the oxygen consumption are
shown for each cell type in Figure 3. While glutaminol-
ysis is another common means by which cancer cells
support the Warburg effect [68], we did not measure
high glutamine uptake rates in the considered growth
conditions. In fact, our determined glucose and glu-
tamine uptake rates are in the same orders of magni-
tude as previously determined for HCT116 cell lines
grown in fetal bovine serum [60].
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Figure 3 Comparison of fluxes through key energy
metabolism reactions for ruthenium- and oxaliplatin-based
resistant cells after growth rate normalization. Growth
normalized flux values through (a) the oxygen uptake reaction
- HMR 9048, (b) the ATP synthase reaction - HMR 6916, (c)
the lactate secretion reaction - HMR 9135, and (d) the fatty
acid influx - sum of m01362s FAx, m02387s FAx,
m02389s FAx, m02646s FAx, m02674s FAx, m02938s FAx,
across the four model instances (sensitive - Sen - blue bars;
sensitive in a DMSO-containing medium - Sen-DMSO - gray
bars; oxaliplatin-resistant - OxR - red bards;
BOLD-100/KP1339 - RuR - yellow bars) are shown. Fatty
acid influx is the combined influx of stearate, palmitate,
oleate, linolenate, linoleate, arachidonate.

We observe that OxR cells convert less pyruvate into
lactate, but in turn consume a higher relative amount
of fatty acids compared to their parental sensitive cells.
RuR cells, however, show a high glycolytic flux and a
high oxygen consumption as well as higher fatty acid
consumption than their sensitive counterparts (Fig-
ure 3). Notably, the flux values shown in Figure 3 are
growth normalized and may therefore not directly cor-
respond to what would be observed in a traditional
oxygen consumption rate (OCR) versus extracellular
acidification rate (ECAR) experiment [69]. When com-
paring experimentally determined OCR and ECAR
measurements to the non-normalized model results, we
find a close agreement with regards to the differences
in glycolysis and respiration between sensitive and re-
sistant cells (Figure S4, S6); thus further validating
the set model constraints.

With the four instances of the HCT116-specific
GSMMs, further conditions encountered in the tumor
environment can be simulated. Simulating the effect of
hypoxic growth conditions, we first set the oxygen in-
flux for each model instance to the minimum possible
value and then observe the minimum required fatty
acid influx as we iteratively increase the oxygen in-
flux, thus plotting the growth normalized production

Figure 4 Simulating minimum fatty acid uptake requirement
in response to various oxygen uptake constraints. Oxygen
influx constraints were applied to each of the model instances
(a) sensitive, (b) oxaliplatin-resistant, (c) sensitive in
DMSO-containing medium, and (d)
BOLD-100/KP1339-resistant. Using a parsimonious
thermodynamic flux variability analysis (pTFVA; see Methods
and Materials for details) the minimum possible fatty acid
uptake was calculated for each oxygen constraint as shown.
Fatty acid influx is the combined influx (black line) of stearate
(orange), palmitate (cyan), oleate (dark purple), linolenate
(yellow), linoleate (green), arachidonate (light purple).

envelope of oxygen versus minimum fatty acid influx
for each of the four conditions (Figure 4). While RuR
cells appear to have a lower tolerance for hypoxic con-
ditions, they also have a higher fatty acid requirement
under those conditions when compared to the sensitive
simulations (Figure 4c,d). While the same difference
can be observed between OxR and sensitive simula-
tions, it is less pronounced (Figure 4a,b).

We then set a minimum possible fatty acid influx and
iteratively increased the total fatty acid influx to the
model while calculating the minimum required oxy-
gen influx (Figure 4). We repeated this calculation for
various biomass constraints and note that there is an
optimal fatty acid influx for minimizing the total oxy-
gen required. In fact, this optimal value corresponds
directly to the fatty acid uptake rates observed in Fig-
ure 3d and is in accordance with the parsimonious
thermodynamic flux variability analysis which mini-
mizes the total sum of fluxes (see Method and Mate-
rials for details).

Crucially, while a direct comparison between resis-
tant and sensitive cells for each drug respectively can
be made, we cannot make a direct comparison between
the two drug resistance models (Figure 1-5). Because
RuR cells were grown in a DMSO-containing medium
whereas OxR cells were not, we cannot, at this stage,
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Figure 5 Simulating minimum oxygen requirement in
response to various fatty acid uptake and biomass
constraints. Fatty acid influx constraints were applied to each
of the model instances (a) sensitive - blue lines, (b)
oxaliplatin-resistant - red lines, (c) sensitive in
DMSO-containing medium - black lines, and (d)
BOLD-100/KP1339-resistant - yellow lines. Using a
parsimonious flux variability analysis (pTFVA; see Methods
and Materials for details) the minimum possible oxygen uptake
was calculated for each fatty acid constraint. The calculations
were performed for various growth rate constraints ranging
from 5 to 15 h−1, as indicated by the fading lines. Fatty acid
influx constraints were applied as the combined influx of
stearate, palmitate, oleate, linolenate, linoleate, arachidonate.

distinguish a resistance model-specific effect from a sol-
vent background-induced effect.

Growth rate and medium normalization allows for a
direct comparison of fluxes of cells grown across
heterogeneous conditions

In order to be able to compare the metabolic profiles
of the two metallodrug resistance phenotypes directly,
we finally normalized the flux results obtained from the
metallo-resistant model instances against their respec-
tive parental sensitive counterparts (see Materials and
Methods for further details). By dividing growth rate
normalized and feature-scaled flux values calculated
for the resistant models by those calculated for the re-
spective sensitive models, we add a further normaliza-
tion step. This normalization step eliminates observed
differences in flux values that are the result of differ-
ences due to the presence of DMSO-background. Be-
cause the parental sensitive counterparts were grown
in the same medium as their resistant counterparts,
we can assume that shared differences in flux between

sensitive and resistant cells are the result of differences
caused by DMSO. As such, this normalization step al-
lows us to directly compare the two acquired resis-
tances, OxR and RuR, to one another even though
RuR, unlike OxR, was grown in a medium with low
solvent (DMSO) background. The comparison of OxR
and RuR (Figure 6) cells highlights an upregulation
of fluxes associated with amino acid and fatty acid
metabolism in RuR. OxR cells, on the other hand,
show an upregulation in glycolysis and starch and
sugar metabolism when compared to RuR cells (Fig-
ure 6b).

Notably, when comparing the OxR and RuR model
instances to their respective parental HCT116 drug-
sensitive counterparts, prior to growth normalization,
we identified 1039 (OxR) and 1180 (RuR) fluxes
that were significantly different. Upon growth nor-
malization, these numbers reduced to 743 (OxR) and
883 (RuR), highlighting that hundreds of differences
observed in the non-normalized results are simply
the result of a difference in growth rate. The OxR
versus RuR comparison upon growth-media DMSO-
background normalization highlighted 670 different re-
actions, suggesting that another 73 of reactions were
initially observed as significantly different because of
presence of 0.5% DMSO.

Discussion
Genome-scale metabolic models (GSMMs) provide
a platform for integrating omics data sets and for
analysing them in the context of metabolic fluxes.
As we have shown, GSMMs can be constrained using
both extracellular and intracellular metabolite con-
centrations to study metallodrug resistance in colon
cancer. Approximately one-hundred metabolite con-
straints were applied to study the effect of changes
in their concentrations in thousands of reactions.
Colorectal-specific GSMMs have previously been con-
structed [47, 57, 70, 11] but have not yet been applied
to study metallo-drug resistance specifically. Here, we
compared metabolic flux alterations in HCT116 cell
models with acquired oxaliplatin- (OxR) vs BOLD-
100/KP1339 resistance (RuR) relative to parental,
drug-sensitive HCT116 cells grown in the respective
growth media without or with 0.5% DMSO.

In this study, we investigated various pathways in
silico including glycolysis, the tricarboxylic acid cycle,
fatty acid and amino acid metabolism, beta-oxidation,
the pentose phosphate pathway. A comprehensive sta-
ble isotope resolved metabolic flux analysis consider-
ing such a diverse set of pathways would require the
application of multiple different positionally labelled
isotopic tracers [71, 26]. In addition to economic fac-
tors, practical challenges may also play a role in exper-
imental design. The application of palmitate to study
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Figure 6 Predicted differences in the metabolic fluxes of ruthenium- and oxaliplatin-based resistances after growth rate and
medium normalization. Both intracellular and extracellular metabolite constraints were applied to generate four instances of the
HCT-specific GSMMs (oxaliplatin (OxR) and BOLD-100/KP1339 (RuR) and their sensitive parental counterparts (WT and
WT-DMSO, respectively)) as described in the Materials and Methods. A parsimonious thermodynamic flux variability analysis
(pTFVA) was done on each model instance. Each set of flux values was divided by the corresponding flux through biomass
(Figure S1), thus normalizing for differences in growth. Flux values were then feature-scaled to lie between 0 and 1 and the flux
values obtained in the drug-resistant instances were divided by the flux values of the corresponding control instances, thus
normalizing for difference in medium composition. (a) The relative changes in flux between OxR and RuR instances were calculated
and the total number of reactions that showed an absolute relative difference greater than 15% in relative upper and lower flux
values were counted for each subsystem. The proportion of reactions that are significantly different in each subsystem is shown as
black bars. Subsystems for which no relative changes in flux between the two resistant instances were observed were omitted from
the figure for clarity. (b) Percentage of reactions in a subsystem which were identified as significantly different out of all reactions
that were identified as significantly different between the two conditions are shown as a pie chart. Subsystems for which the total
flux values were higher in OxR are shown in red. Subsystems for which total flux values were higher in the RuR are shown in orange.
The subsystems transport reactions were omitted from this analysis as together they make up over 95% of the significantly different
reactions.

beta-oxidation, for example, requires the conjugation
of fatty acid free bovine serum albumin [72]. Moreover,
it usually has high background contamination from
plastic materials [73]. Finally, stable isotope labeling
in living organisms is even more complex from a data
evaluation perspective [74]. Thus, a purely experimen-
tal study that provides a holistic analysis of metabolic
reprogramming in cancer is currently infeasible.

There is no simple relationship between changes in
metabolite concentrations and changes in flux [75].
This notion also applies to acquired resistance in the
HCT116 colorectal cancer cell line. We have shown
that observed differences in metabolite concentrations
between resistant and sensitive conditions may not
necessarily reflect a drug resistance-specific response
but may instead arise as a result of differences in

growth rate or solvent conditions. If we want to com-
pare changes in metabolic flux of cells grown in het-
erogeneous conditions, data needs to be normalized
in order for valid comparisons to be made. Here we
have outlined a procedure for this kind of normaliza-
tion based on thermodynamic genome-scale metabolic
modelling of the HCT116 cell line.

Accurate comparative profiling of metabolic changes
observed across heterogenous conditions remains a
challenge. Differences in growth rates and impact of
solvent necessities will result in observed differences
in metabolite concentrations but are not causal to a
reprogramming of metabolism [76]. Considering cellu-
lar fluxes as the metabolic phenotype through the use
of GSMMs has the advantage that fluxes, unlike con-
centrations, can easily be normalized with regards to
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other rate measurements, such as growth rate or ex-
change rates (e.g. [77, 78, 79]).

As a prerequisite to produce accurate, quantitative
metabolomics data [76], we normalized the metabo-
lite amounts to total protein content, calculating ab-
solute concentrations based on internal standardiza-
tion. Even though this approach is superior to relative
quantification and is able to compensate for technical
variation of the sample preparation and differences in
extracted biomass, it does not account for biological
processes like growth or environmental factors such as
differences in medium composition.

Integrating the metabolite data as part of a thermo-
dynamic flux analysis allows us to normalize the calcu-
lated reaction rates by the growth rate observed under
the corresponding conditions. We showed that growth-
normalization reduces the number of reactions that
are different between resistant and sensitive model in-
stances and changes some of the conclusions about
altered metabolic pathways entirely. Growth normal-
ization is therefore a critical step when looking for
drug-specific metabolic phenotypes. A second limita-
tion to studying non-normalized metabolite concentra-
tions is that data obtained from heterogeneous condi-
tions cannot be directly compared. Using the growth
normalized flux results we further normalized each re-
sistant model against its sensitive counterpart which
was grown in an identical medium and solvent com-
position. Hence, we were able to do a direct compari-
son between the two metallo-resistances and to identify
drug resistance-specific responses.

A limitation to our approach is that we first nor-
malized our flux results to differences in growth rate
and then normalized each resistant model against its
respective counterpart. This means that we are unable
to capture emergent properties that result from differ-
ences in growth rate and solvent impact; we assume
that a combined effect of the two is minimal. Further-
more our flux analyses assume metabolism to be in
steady-state, such that intracellular concentrations are
constant. Nonetheless, we have clearly demonstrated
that a growth and medium/solvent normalization is
non-trivial as it allows for comparisons across het-
erogeneous conditions. We expect this method to be
of wider applicability in studies where the effects of
medium compositions, such as the availability of car-
bon sources to a cell, are of interest.

Time-dependent changes of metabolite profiles have
previously been considered [80, 81], but are not typ-
ically integrated at a genome-scale level. Measuring
metabolite concentrations alongside cell counts at vari-
ous time points and quantifying the relative metabolite
abundance per cell using linear regression Dubuis et
al. [80] accounts for deviations from steady-state. The

method was then further developed, using intermedi-
ates of fatty acid metabolism and other metabolites to
account for differences in cell size [81]. While the differ-
ence in cell size can be interpreted as a proxy of growth
rate it cannot be assumed that the observed changes
in metabolite concentrations directly translate to dif-
ferences in metabolic activity, i.e. fluxes. Metabolic re-
sponses associated with an acquired metallodrug re-
sistance in cancer have not yet been studied exten-
sively using constraint-based flux analyses [82, 83, 38].
The use of GSMMs to integrate metabolomics data to
study cellular fluxes, however, provides multiple new
opportunities in this field.

Defense mechanisms and acquired resistance are well
known phenomena when applying metal-based drugs
as anticancer agents. Reduced efficacy due to acquired
resistance remains a major challenge in systemic anti-
cancer therapy. The complexity is increasingly recog-
nized, as the contribution of epigenetic and metabolic
effects will be uncovered. Drug-specific and tumor
tissue specific mechanisms have been described, and
more recently the tumor microenvironment has come
into focus [84]. Accordingly, response profiling with
metabolomics analysis can be a powerful tool to inves-
tigate drugs and drug candidates [28, 27] and dissect-
ing emerging resistance [85]. Currently, only a hand-
ful of studies consider metallodrugs applied to cancers
with metabolomics [86, 87, 88], and even fewer inves-
tigate acquired metallodrug resistance [52].

In this work, we consider an in vitro study of colon
cancer. Gastrointestinal cancer cell lines, including col-
orectal cancer cell line HCT116 activate beta-oxidation
as response to oxaliplatin treatment and conversely be-
come more sensitive to oxaliplatin upon inhibition of
fatty acid catabolism [22]. A seminal study in the field
integrates both metabolomics and transcriptomics and
finds that, within 59 NCI60 cell lines, the metabolic ba-
sis of platinum-sensitivity can largely be attributed to
energy metabolism (TCA cycle, glutaminolysis, pyru-
vate metabolism), lipoprotein uptake, and nucleotide
synthesis [89]. The results from our in silico analysis
are in line with these findings, also highlighting the im-
portance of energy metabolism (OXPHOS, glycolysis,
TCA).

Figure 6 highlights the relevance of fatty acid
metabolism, as fluxes from this subsystem contribute
to 12.5% of all observed differences (excluding all
transport reactions) between the RuR and OxR, show-
ing elevated fluxes in RuR. This supports existing
evidence of beta-oxidation activation in response to
metallodrug treatment [22]. Interestingly, for the ma-
jority of observed flux differences between OxR and
RuR, flux values are higher in the RuR, implying
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a higher metabolic activity in this phenotype, inde-
pendently of differences in growth rate. OxR, how-
ever, does exhibit elevated activity in the Glycoly-
sis/Glyconeogenesis and pentose phosphate pathways.
Thus, our comparison of the growth rate- and medium-
normalized reaction rates supports the notion that an
acquired resistance to the two metallodrugs is marked
by differences in their metabolic phenotype with an
overall higher metabolic activity in the RuR system.

The high metabolic plasticity of cancer cells enables
efficient detoxification and protection strategies [84].
Normalization of the flux values by growth rate sub-
stantially reduces the observed differences (Figure 2) in
most of the investigated pathways. In contrast, both
the pentose phosphate pathway and ROS detoxifica-
tion subsystem, which includes glutathione-synthesis,
were emphasized to the same extent in both the OxR
and RuR resistance models upon growth standardiza-
tion. This supports the notion that metallodrugs in-
terfere with cellular redox homeostasis and stimulate
a readiness to counter reactive oxygen species (also by
synthesizing NADPH via the pentose phosphate path-
way) which has previously been described to conjugate
glutathione to platinum complexes with glutathione-S-
transferase [90].

Despite shared commonalities like the production of
ROS, it is expected that RuR and OxR models dis-
play different metabolic phenotypes, because of known
differences in their modes of action [91, 92, 25]. Oxali-
platin, for example, is primarily a DNA targeting drug,
whereas BOLD-100/KP1339 has recently been found
to have a prodrug nature and is capable of causing ER-
stress and the downregulation of GRP78, encoding a
endoplasmic reticulum chaperone protein, which has
been linked to malignancy [93]. It is widely accepted
that DNA repair mechanisms play a crucial role in re-
sistance to oxaliplatin [94]. It is important to note that,
using GSMM, we have here focused solely on metabolic
changes to compare metabolic reprogramming of the
two acquired resistances but cannot exclude further
regulatory events.

The comparison of fluxes through key energy me-
tabolism reactions (Figure 3) shows that both acquired
resistances are defined by lowered glycolytic flux than
their sensitive parental cells, although this is less pro-
nounced with RuR. Growth normalization does not af-
fect this observation (Figure S4). The same cannot be
said about the fatty acid beta-oxidation, where upon
growth standardization the acquired resistance models
both show a higher fatty acid requirement than their
sensitive controls (Figure 3d; Figure S4d). Addition-
ally, upon growth normalization OxR has lower and
RuR higher respiration rates than corresponding sensi-
tive counterparts (Figure 3a). The calculated rates cor-
respond well to the experimentally determined results

with a Seahorse assay (Figure S6). As expected the ex-
perimentally determined and non-normalized in vitro
results align more closely with the non-normalized flux
values modelled in silico.

Drastic changes in oxygen and fatty acid availability
are known stress conditions in a tumor microenviron-
ment, and are assumed to be managed with metabolic
adaptations [4]. Lipid dependency, for example, is
more pronounced under hypoxic conditions and relies
on the uptake of extracellular fatty acids [95, 96, 72].
We thus used the condition-specific instances of our
constrained GSMM to further inspect the relationship
between hypoxia and fatty acid uptake. We found that
the composition of fatty acids taken up changes in
response to oxygen limitation (Figure 4). Under nor-
moxic conditions linolenate can act as the sole fatty
acid source. As oxygen limitation becomes more pro-
nounced, linoleate, arachidonate, oleate, stearate and
finally palmitate are also required. RuR cells requires
less fatty acids under oxygen limitation compared to
its sensitive counterpart (Figure 4c,d); while the same
is true for OxR the observed difference is notably less
pronounced (Figure 4a,b).

Additionally, the investigation of minimum oxygen
requirement at various fatty acid influxes (Figure 5) re-
vealed that the optimal fatty acid composition, which
has the lowest oxygen demand, is the same across
growth rates. Overall, OxR has the lowest oxygen re-
quirement, which suggests that if sufficient fatty acids
are available, OxR will be the most resilient of the
investigated model against hypoxia (Figure 5).

Conclusion
There are different ways to capture the metabolic phe-
notype of a cell. Metabolic profiling via metabolomics
provides an interrogation window of the intracellular
concentrations at a given point in time. Extracellu-
lar concentrations measured over time provide insight
to the cellular uptake and excretion rates of cells. To-
gether they can be integrated to constrain the solution
space of a genome-scale metabolic model. The calcu-
lated flux values can then be normalized according to
growth rates and environmental conditions, allowing
for drug resistance specific metabolic responses to be
identified across heterogenous conditions. We find the
outlined normalization steps to be crucial in the in-
terpretation of the results and show that metabolic re-
programming is more extensive in BOLD-100/KP1339
resistant cells than in oxaliplatin resistant cells. We
identify pathways, such as fatty acid and amino acid
metabolism, to be upregulated in response to a resis-
tance acquired to a ruthenium-based drug when com-
pared to a platinum-based drug. All in all, genome-
scale metabolic modelling provides a valuable platform
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for putting observed changes in metabolite concentra-
tions in the context of metabolic fluxes.

Availability of data and materials

All data and code used to conduct the analyses presented in this

manuscript are available on GitHub

(https://github.com/HAHerrmann/Hct116 DrugRes) and Zenodo (DOI:

10.5281/zenodo.4633725). Metabolomics data (LC high-resolution mass

spectrometry-based metabolomics dataset in rawdata and total protein

contents corresponding to the samples) have been deposited to the
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the OxR-batch and MTBLS2681 for the RuR-batch. The complete dataset
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