Herrmann et al.

RESEARCH

⁴Thermodynamic genome-scale metabolic modeling of metallodrug resistance in colorectal cancer

¹⁰Helena A. Herrmann^{1†}, Mate Rusz^{1,2†}, Dina Baier², Michael A. Jakupec^{2,3}, Bernhard K. Keppler^{2,3}, ¹¹₁₂Walter Berger^{3,4}, Gunda Koellensperger^{1,5,6} and Jürgen Zanghellini^{1*}

13

14 15

16

17

- 1
- 18 19

20

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

Abstract

Background: Mass spectrometry-based
 metabolomics approaches provide an immense
 opportunity to enhance our understanding of the
 mechanisms that underpin the cellular
 reprogramming of cancers. Accurate comparative
 metabolic profiling of heterogeneous conditions,
 however, is still a challenge.

Methods: Measuring both intracellular and extracellular metabolite concentrations, we constrain four instances of a thermodynamic genome-scale metabolic model of the HCT116 colorectal carcinoma cell line to compare the metabolic flux profiles of cells that are either sensitive or resistant to ruthenium- or platinum-based treatments with BOLD-100/KP1339 and oxaliplatin, respectively. **Results:** Normalizing according to growth rate and normalizing resistant cells according to their

respective sensitive controls, we are able to dissect metabolic responses specific to the drug and to the resistance states. We find the normalization steps to be crucial in the interpretation of the metabolomics data and show that the metabolic reprogramming in resistant cells is limited to a select number of pathways.

select number of pathways.
Conclusions: Here we elucidate the key
importance of normalization steps in the
interpretation of metabolomics data, allowing us to
uncover drug-specific metabolic reprogramming
during acquired metal-drug resistance.

Keywords: omics data integration; constraint-based modeling; data normalization

Background

A reprogramming of metabolism is a hallmark of mul-15 tiple diseases, including cancer [1]. Changes in glu-16 cose, amino acid, lipid, and cholesterol metabolism,17 for example, have all been associated with aberrant¹⁸ metabolic phenotypes observed in cancers [2]. Result-19 ing differences in metabolism between healthy and can-20 cerous cells hold the potential for selectively target-21 ing cancerous cells through pharmacological and di-22 etary interventions. As such, understanding the extent²³ to which metabolic reprogramming occurs in different²⁴ cancer cells is a fundamental requirement for better²⁵ treatment options. However, not only malignant trans-²⁶ formation, but also therapy response on drug resis-27 tance acquisition might be paralleled or even driven by²⁸ metabolic changes in the malignant cells [3, 4]. Espe-²⁹ cially, in case of acquired therapy resistance, dissection³⁰ of the respective metabolic alterations and mechanism³¹ 32 on a larger scale are only at the beginning.

8

10 11 12

13

14

In silico methods have the potential to integrate³³ existing experimental data and to generate new hy-³⁴ potheses about the underlying mechanisms associ-³⁵ ated with metabolic reprogramming. Genome-scale³⁶ metabolic models (GSMMs), which capture the known³⁷ biochemical reactions of a given system, have previ-³⁸ ously been applied in various cancer studies [5, 6] and³⁹ have led to the discovery of new drug targets and 40 biomarkers [7, 8, 9, 10, 11]. There are, however, ar-⁴¹ eas of cancer research, where GSMMs have not vet^{42} been applied due to a lack of available experimental⁴³ data. For example, GSMMs have not yet been used⁴⁴ extensively to study acquired drug resistance ${\rm against}^{45}$ different drug classes in different cancer cell types. Ac-⁴⁶ quired therapy resistance is considered a major ob-47 stacle for curative systemic cancer treatment at pro-⁴⁸ gressed stages and also affects the success of anitcancer⁴⁹ 50 metal drugs. [12, 13, 14, 15]. 51

52

53

^{*}Correspondence: {gunda.koellensperger, juergen.zanghellini}@univie.ac.at ⁵² ¹Department of Analytical Chemistry, University of Vienna, Vienna, Austria₅₃ Full list of author information is available at the end of the article [†]Equal contributor 55

Herrmann et al.

Page 2 of 20

¹ Metal-based drug treatments involving oxaliplatin ²are a standard therapy for colorectal cancer, the third ³most commonly diagnosed cancer [16, 17, 18, 19]. Drug ⁴resistance, however, has been reported to develop in ⁵nearly all patients with colorectal cancer; even when ⁶using modern targeted and immunotherapy options, ⁷chemotherapy remains a major part of the colorec-⁸tal cancer treatment regimen [13, 14]. Platinum-based ⁹drugs are still prescribed in different lines of sys-¹⁰temic cancer treatment in diverse tumor types and pa-¹¹tient cohorts [20]. Although platinum-based anticancer ¹²drugs like oxaliplatin are widely-used, intrinsic and ac-¹⁴quired resistances remain a crucial impediment in the ¹⁵treatment of colorectal cancer.

16 Acquired resistance against platinum drugs is thought 17 to be mainly based on elevated DNA-repair mech-18 anisms, detoxification, evading apoptosis and au-19tophagy [21]. However, there is an increasing amount $_{20}$ of evidence that metabolic alterations might play a ²¹pivotal role as well [22]. The clinically-investigated 22ruthenium-based anticancer drug BOLD-100/KP1339 23 has shown promising results with regards to colorec-24tal cancer treatment [23]. BOLD-100/KP1339 (sodium 25trans-[tetrachloridobis (1H-indazole) ruthenate(III)]) ₂₆ is a prodrug [24] displaying preferential activation by 27 reduction in the hypoxic milieu of solid tumors and 28 does not primarily target DNA [25] and metabolic al-29terations are expected to be relevant. Unlike BOLD-30100/KP1339, which is still under investigation for 31clinical applications, oxaliplatin is an already widely-32applied, clinical cancer treatment. As a result, the 33body of literature addressing oxaliplatin resistance is 34notably larger than that of BOLD-100/KP1339 resis-35 tance. Nonetheless, the extent to which metallodrug ³⁶resistance results in an altered metabolic profile re-³⁷mains poorly understood for both drug treatments 38and has not yet been compared. As such, it is not ³⁹yet known whether metabolic reprogramming during ⁴⁰resistance development against anticancer compounds ⁴¹with differenct metal centers and activity parameters ⁴²are comparable or drug-specific.

⁴³ Metabolomics aims to directly measure metabolite ⁴⁴abundance from a global and unbiased perspective ⁴⁵and has the potential to not only detect metabolic ⁴⁶alterations but to discover diagnostic and prognostic ⁴⁷markers and to generate hypotheses that can be val-⁴⁸idated with genetic experiments [26]. Recent progress ⁴⁹in targeted and untargeted metabolomics approaches ⁵⁰have resulted in a wide-ranging toolkit for study-⁵¹ing metabolic phenotypes in terms of cellular concen-⁵²trations. Mass spectrometry-based metabolomics ap-⁵³proaches can be used for the metabolic profiling of ⁵⁴drug-treatment responses in cancer cell lines [27, 28].

While metabolomics studies provide an effective in-¹ terrogation window for the cellular changes that oc-² cur in response to a change in conditions, they do^3 not necessarily provide mechanistic insights into the⁴ reprogramming of metabolism. Metabolite pools do⁵ not inform about pathway activity, ergo correspond-⁶ ing metabolic fluxes are sometimes measured. Measur-⁷ ing metabolic fluxes, however, also suffers from several⁸ practical limitations. For example, a prolonged time⁹ for peripheral pathways to reach isotopic steady-state,¹⁰ the fact that simple linear pathways can only be inves-¹¹ tigated with non-stationary labelling or an increased¹² number of samples, and the complex data analyses re-13 quired for nonstationary labelling experiments often¹⁴ hinder a successful and comprehensive application of¹⁵ isotopic labelling methods^[29]. 16

Recent trends in metabolomics have shown, it is al-17 ways possible to measure more metabolites at more¹⁸ time points and to analyse the obtained results in com-19 bination with other 'omics data sets [30, 31, 32, 33].20 While multi-omics have allowed for the identifica-21 tion of numerous regulatory mechanisms in cancer22 [34, 35], their integration with fluxomics is required₂₃ to gain a holistic understanding of metabolic repro-24 gramming. To understand the mechanisms that under-25 pin a potential reprogramming of metabolism during₂₆ resistance development, observed changes in metabo-27 lite concentrations need to be placed in the context₂₈ of changes in metabolic flux. GSMMs provide a plat-29 form for doing so [36]. Multiple techniques for integrat-30 ing omics data sets into GSMMs have been developed₃₁ [10, 37, 38, 39, 40]. While expression data sets are of-₃₂ ten used to generate system-specific models $[41, 7]_{,33}$ metabolomics and proteomics data sets are used to_{34} constrain the solution space of the generated models₃₅ [37, 40].36

Typically, constraint-based modelling (CBM) is em-37 ployed to study GSMMs and to explore metabolic phe-38 notypes in the form of steady-state fluxes [42, 43]. Flux₃₉ balance analysis (FBA), for example, uses linear opti-40 mization techniques to model the fluxome of $GSMMs_{41}$ [see Orth et al [44] for a review]. FBA, however, can_{42} lead to the prediction of thermodynamically infeasi- $_{43}$ ble flux solutions. Thermodynamic flux analysis ${\rm (TFA)}_{44}$ imposes additional constraints on stoichiometric mod_{45} els to ensure thermodynamically valid fluxes and provides a framework for integrating metabolomics data $_{47}$ into GSMMs [45, 46]; extracellular metabolite data are $\frac{1}{48}$ used to constraint the directionality of exchange reactions of the model and intracellular metabolite data⁵⁰ can be used to constraint reactions in the model. Both 51intra- and extracellular metabolite data have previously been integrated into system-specific metabolic models to draw physiological conclusions about cancerous and healthy cells [47, 48, 49, 50]. 55

Herrmann et al.

Page 3 of 20

1

18

33

40

1 In this work, we integrate experimentally deter-²mined absolute concentrations of intracellular metabo-³lites and medium-based metabolites and growth rates ⁴of the colorectal cancer cell-line HCT116 into a cell-⁵line specific, thermodynamic, genome-scale metabolic ⁶model (GSMM). We consider two different models of ⁷acquired resistance in colon cancer: oxaliplatin resis-⁸tant (OxR) and BOLD-100/KP1339 resistant (RuR) ⁹HCT116 cells as well as their sensitive controls to gen-¹⁰erate four model instances. To identify metabolic dif-11 ferences between resistant and sensitive cells, we nor-12 malize the calculated flux values by their representa-13tive growth rates. As oxaliplatin and BOLD-100 are 14prepared in different solvents (water versus dimethyl-15sulfoxid (DMSO)), OxR and RuR cells were grown in 16the same media, but RuR and its respective control 17 were exposed to a low DMSO background equivalent 18to the drugs' stock solution solvent. To account for 19 metabolic difference that are the results of a differ-20 ence in solvent, we further normalized the results ob-21 tained for the resistant cells by their sensitive controls. 22 Eliminating both differences in growth rate and solvent 23 background, we are able to draw drug-specific conclu-24 sions about the metabolic changes that occur upon ₂₅resistance. As a result, we are able to identify specific $_{26}^{-1}$ changes in flux that are the direct result of an acquired resistance to either OxR or RuR treatment.

²⁸Materials and Methods

²⁹Cell Culture

 $^{30}\mathrm{HCT116}$ colon cancer cells were generously provided ³¹by Dr. Vogelstein from John Hopkins University, ³²Baltimore. Cells were cultured in McCoy's medium $^{33}({\rm Sigma}$ Aldrich) supplemented with 10% fetal calf ³⁴serum (FCS; PAA, Linz, Austria) and 2 mM glutamine ³⁵(Sigma Aldrich). Cells were selected for acquired ³⁶drug resistance over several months via exposure to ³⁷increasing concentrations of oxaliplatin or BOLD-³⁸100/KP1339 followed by drug-free recovery phases. ³⁹Finally, the oxaliplatin-resistant HCT116 (OxR) cells ⁴⁰were selected with $5 \mu M$ of oxaliplatin [51, 52] for 24 h ⁴¹and BOLD-100/KP1339-resistant (RuR) cells with 42200 µM of BOLD-100/KP1339 for 72 h in two-week-43 intervals. All cultures were grown under standard cell 44 culture conditions and checked for Mycoplasma con-45tamination.

⁴⁷Cell viability assay

¹³Cells were seeded at densities of 3.5×10^4 cells/well ⁴⁹cells in 96-well microtiter plates and allowed to adhere ⁵⁰overnight. Cells were exposed to indicated concentra-⁵¹tions of the respective drugs for 72 h. Cell viability ⁵²was determined using the 3-(4,5-dimethylthiazol-2-yl)-⁵²2,5-diphenyltetrazolium bromide (MTT) assay (EZ4U, ⁵³Biomedica, Vienna, Austria) following the manufac-⁵⁴turer's recommendations. ⁵⁵

Metabolomics experiment

HCT116 cells, HCT116 cells with acquired oxaliplatin² resistance, and HCT116 cells with acquired BOLD-³ 100/KP1339 resistance were seeded as 2×10^5 cells/well⁴ in 12-well plate formate in 1 mL McCoy's medium⁵ (Sigma Aldrich) supplemented with 2 mM glutamine⁶ and 10% FCS. After overnight growth, wells were sup-⁷ plemented with 1 mL fresh medium each. HCT116⁸ with acquired BOLD-100/KP1339 resistance and its⁹ sensitive control contained the same medium with^{10} 0.5% dimethyl sulfoxide (DMSO) used as BOLD- ^11 100 solvent. 24 h after supplementing with additional¹² medium, cells are still not confluent. At this point, the $^{\rm 13}$ medium was removed and cells were washed 3-times¹⁴ with 2 mL PBS (37 $^{\circ}\mathrm{C})$ and snap frozen with liquid 15 16 nitrogen. 17

Metabolomics sample preparation

The samples were randomized at the stages of the ex-¹⁹ periment including seeding, sample preparation and²⁰ extraction as well as LC-MS measurement sequence.²¹ Extraction and measurement of the metabolites were²² based on a protocol described elsewhere [53]. Shortly,²³ the protocol comprised cell scraping and extraction²⁴ with 180 µL cold 80% methanol containing 5 mM²⁵ N-ethylmaleimide (dissolved in 10 mM ammonium-²⁶ formate at pH 7) with 20 µL fully ¹³C-labeled internal²⁷ standard, ISOtopic solutions (Vienna, Austria). Af-²⁸ ter a centrifugation step (14,000 rcf, 4 °C, 10 min) cell²⁹ extracts were directly measured with high-resolution³⁰ OrbiTrap mass spectrometer.

LC-MS analysis of metabolites

The quantification of metabolites was based on Schwaig⁴ et al. [54] and the LC-MS gradient was adapted and ³⁵ shortened to suit metabolites as described elsewhere³⁶ [55]. Full mass scan data was acquired both in positive³⁷ and negative ion mode.³⁹

LC-MS analysis of coenzymes

The analysis of free coenzyme A (CoA), acetyl-⁴¹ coenzyme A, palmitoyl-coenzyme A (malonyl-coenzyme A below LOD) was carried out in an additional mea-⁴³ surement series of the same samples and on the same instrumental setup but a with a dedicated LC-MS⁴⁵ method. The same separation was used with the⁴⁶ same gradient and eluents, but flushing of the column⁴⁷ started already at 6 min instead of 7 min min, shorten-⁴⁸ ing the total measurement time from 15 min to 14 min.⁵⁰ The OrbiTrap MS settings were changed with regards⁵¹ to the mass range to 750-1100 m/z and the capillary⁵¹ temperature was lowered from 280 °C to 200 °C to re-⁵² duce in-source fragmentation and the S-lense RF-level⁵³ was increased from 30 to 60.⁵⁵

Herrmann et al.

Page 4 of 20

¹Determination of total protein content

²The applied extraction and centrifugation resulted in a ³pellet containing the high-molecular fraction and non-⁴ polar metabolites. This pellet was dissolved in $0.2 \,\mathrm{M}$ ⁵NaOH overnight, diluted 1:10 in the same NaOH solu-⁶tion and determined for total protein content with the ⁷Thermo Micro BCA kit, according to manufacturer's ⁸instructions.

¹⁰Data analysis of metabolomics measurement

¹¹Targeted analysis of the data was done with Skyline ¹²20.2 (MacCoss Lab Software) extracting the [M-H]⁻ ¹³and [M+H]⁺ ions with 5 ppm mass tolerance. The ab-¹⁴solute concentrations relied on the external calibra- $^{15}\mathrm{tion}$ with internal standardization. The compounds ¹⁶were standardized compound-specifically where pos-¹⁷sible and class-specifically when the U¹³C equivalent 18 was not reliably available or by $\rm U^{13}C$ -glutamate if nei-¹⁹ther of the aforementioned were available.

 $^{20}\,$ Metabolites with technical repeatability (relative $^{21}\mathrm{standard}$ deviation) above 30% were removed from $^{22}\mathrm{the}$ dataset. This was based on the repeated injection ²³and measurement of a pooled quality control sample. ²⁴Furthermore, metabolites which had mean concentra-²⁵tion below the determined lowest limit of quantifica-²⁶tion (LOQ) according to the validation of the LC-MS ²⁷method described in [54] were removed.

²⁸ Datasets were combined by joining the metabolite ²⁹data acquired in both positive and negative mode, $^{\rm 30}{\rm as}$ well as coenzyme data in the negative acquisition ³¹mode. A further calibration was measured in positive ³²mode for several carnitines (propionyl-carnitine, O-³³acetyl-carnitine, propionyl-carnitine, palmitoyl-carnitine) ure S2) were fitted as described in Széliová et al. [59].³³ ³⁴with the method for metabolites, since these com- In short, we fitted an exponential model to estimate $^{\rm 35}{\rm pounds}$ were not contained in our original calibration ³⁶mixture. Also the calibration row for coenzymes was ³⁷prepared freshly in this mixture to avoid degradation ³⁸by storage. The external calibration of the different ³⁹coenzyme A, acetyl coenzyme A, malonyl ⁴⁰coenzyme A, palmitoyl coenzyme A) was measured in ⁴¹negative mode. For all primary thiols in the dataset ⁴²(coenzyme-A, glutathione, cysteine etc.) its N-ethyl ⁴³maleimide adduct was used for quantification after it ⁴⁴was made sure that the conversion was quantitative. 45

⁴⁶Measurement of extracellular metabolite concentrations $4^{7}10^{5}$ HCT116 cells as well as HCT116 cells with ac-⁴⁸quired oxaliplatin resistance and HCT116 cells with ⁴⁹BOLD-100/KP1339 resistance were seeded (N = 4 for ⁵⁰each respectively) into 12-well plate (StarLab) with ⁵¹2 mL McCoy's 5A medium (Sigma-Aldrich) contain- $^{52}\mathrm{ing}$ 10% FCS (BioWest) and 4 mM glutamine. Also 53 in the case of the sensitive HCT116 cells and the $^{54}\mathrm{BOLD}\text{-}100/\mathrm{KP1339}\text{-}\mathrm{resistant}$ cells the experiment was 55

run with and without 0.5% DMSO. 100 µL of was col-¹ lected from the starting medium at beginning of the² experiment, and directly from the wells after 24 h, 48 h³ and 72 h after seeding. Also, a cell free experiment was⁴ run to determine the contribution of abiotic glutamine⁵ decay. 7

8 Determination of dry-weight for the cell lines Measurements were carried out as described by Széliova $\stackrel{9}{}$ et al. [56] 11

12 HCT116-specific genome-scale metabolic model Robinson et al. [57] provide the latest consensus¹³ GSMM of human metabolism called Human1. The au-¹⁴ thors used Human1 to generate cell-line specific mod-¹⁵ els using gene essentiality data from previous ${\rm CRISPR}^{16}$ knockout screens [58]. Using the tINIT algorithm $[41]^{17}$ and RNA-Seq data from HCT116 colorectal carcinoma cells they select reactions from Human1 $\operatorname{asso-}^{19}$ ciated with moderately and highly expressed genes $^{\rm 20}$ to build a cell-line specific model for HCT116. We²¹ obtained the model from the authors, removed the $^{\rm 22}$ enzyme constraints and added a further seven ex- $^{\rm 23}$ change reactions to the model to account for the excretion or uptake of cis-aconitate, fumarate, isocitrate,²⁵ malate, sarcosine, succinate and xanthine that we observed in our measured time-course of the medium^{27} composition. We use this updated model for all our^{28} analyses presented here. The model is available at^{29} https://github.com/HAHerrmann/Hct116_DrugR³⁰ 31 es/blob/master/Models/Colon_Combined.xml.

Growth rates (Figure S1) and exchange rates (Fig-³² the initial concentration, X_0 , and the growth rate, μ_{36}^{36} The fitted growth rate and the initial biomass, $B_{0,37}^{36}$ were then used to calculate the specific exchange rates for all of the measured medium-based metabolites. B_0^{38} was calculated from the fitted X_0 and the experimen-³⁹ tally determined dry mass per cell (Figure **S3**). The fit-⁴⁰ ting was done in Python (Version 3.7.9) using the opti-⁴¹ mize function in scipy (Version 1.5.2) with parameters⁴² soft_l1 for the loss function and $f_scale = 0.3$ for ⁴³ outlier detection. The obtained growth and exchange 44 rates were used to constrain the respective import and⁴⁵ export reactions of the model. Flux constraints were⁴⁶ set such that the applied upper and lower bounds ac-47 counted for the relative standard error of the mea-48 surement. We further constrained the directionality of 49 uptake and excretion rates of 50 metabolites, $using^{50}$ 51 HCT116 cell line specific data obtained by Jain et al. [60]. The "blood pool" reactions were removed from 52 the model because we did not consider *in vivo* condi-⁵³ tions. Instead, we allowed for an unconstrained $influx^{54}$

Herrmann et al.

Page 5 of 20

23

24

25

¹of stearate, palmitate, oleate, linolenate, linoleate, and ²arachidonate. These fatty acids have previously been ³shown to make up the majority of lipids present in ⁴fetal calf serum [61, 62] which was used as a growth ⁵medium supplement.

7Thermodynamic metabolic modeling

The pyTFA package [46], https://github.com/EPF 9L-LCSB/pytfa, formulates thermodynamic flux anal-10ysis (TFA) of GSMM as a mixed-integer linear pro-11gramming problem that incorporates metabolite con-12 centrations as thermodynamic constraints into a tradi-13tional flux balance analysis (FBA) model. Masid et al. 14[48] have recently constructed an extensive thermody-15 namic database containing the thermodynamic infor-16 mation for compounds, reactions and compartments 17 in human metabolism; this includes the Gibbs free en-18 ergy formation of compounds and the associated error 19 estimation, the pH, ionic strength and membrane po- $_{20}$ tentials. Using Biopython (Version 1.78) we annotated the GSMM with SEED identifiers which allowed us to 21 $^{21}_{22}$ match the information in the GSMM to the thermody-²² namic database of Masid et al. [48]. This allowed us to ²³ achieve a thermodynamic coverage of 89% of the com-²⁴ pounds and to estimate the Gibb's free energy for 20%of the reactions. We initially applied default metabo-²⁶lite concentrations from 10^{-12} to 0.1 mol per total pro-²⁷tein. We then scaled our measured metabolite concen- $^{28}\mathrm{trations}$ to fall within that same range and applied $^{29}\mathrm{them},$ condition-dependent, to different instances of ³⁰the GSMM. Using a parsimonious FBA (pFBA) that ³¹maximizes a linear objective while minimizing the to- 32 tal sum of fluxes [63], we calculated the minimum total $^{33}\mathrm{sum}$ of fluxes and set this as an additional constraint to ³⁴our linear model prior to performing a Flux Variability ³⁵Analysis (FVA) on the thermodynamic model, here re-³⁶ferred to as TFVA. TFVA applies the same constraints ³⁷as TFA but instead of returning a single feasible solu-³⁸tion, the lowest and highest possible flux value for each ³⁹reaction is returned [64]. Because pFBA does not nec-40essarily return a unique solution when two alternative 41pathways with the same total sum of fluxes exist, we 42chose to implement a parsimonious TFVA (pTFVA) 43to compare different model instances to one another. 44Upon parallelizing the existing TFVA implementation 45 in pyTFA for an improved run time, we ran a pTFVA 46 for different instances of the HCT116 cell-lines specific 47GSMM. Flux analyses were done in Python (Version $_{48}3.7.9$) using cobrapy (Version 0.19.0) [65].

⁴⁹Data processing and flux normalization ⁵⁰We constrained four different instances of the HCT116 model: oxaliplatin-resistant cells (OxR) and their sensitive parental counterpart (HCT116) and BOLD-⁵³100/KP1339-resistant cells (RuR) and their sensi-⁵⁴tive parental counterpart in a DMSO-based medium 55

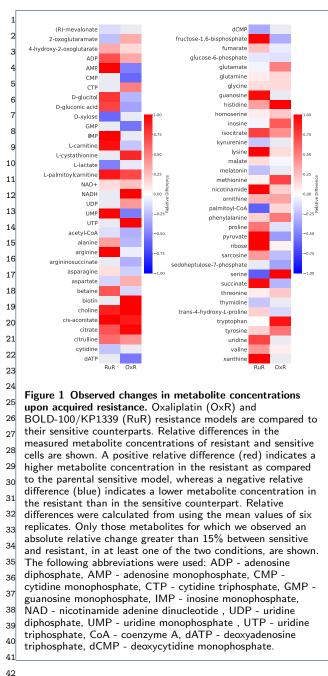
(HCT116-DMSO). Model instances were constrained¹ using the condition-specific exchange fluxes (Fig-² ure **S1**) and growth rate (Figure **S2**). All blocked reac-³ tions were removed using the find_blocked_reactions⁴ in cobrapy (Version 0.19.0) with default parameters,⁵ resulting in a model with 4530 reactions and 4492 de- 6 grees of freedom. Upon calculating flux values for each⁷ model instance using pTFVA as described, we divided⁸ each set of flux values by the outgoing flux to biomass⁹ production of that model instance, effectively normal-¹⁰ izing for difference in growth. We checked for reactions¹¹ for which both the upper and the lower bound differed¹² by at least 15%. Furthermore, we feature-scaled all¹³ flux values to lie between 0 and 1 and divided the flux¹⁴ values obtained in the drug-resistant instances by the¹⁵ corresponding flux values obtained for their respective16 controls. Having thus normalized for differences in the17 medium composition, we were able to compare the flux¹⁸ profiles of the two metallodrug resistance to another19 another, again checking for which reactions both the20 upper and lower bounds differed by at least 15%. 21 22

Results

Differences in metabolite concentrations may not correlate to changes in flux

To investigate the metabolic changes associated with 26 metallo-resistance in colorectal cancer, we compared₂₇ the metabolic profiles of resistant and sensitive cells.28 Using the HCT116 colorectal cancer cell line, cells₂₉ with resistance to either oxaliplatin (OxR) or BOLD-30 100/KP1339 (RuR) were compared to their sensitive₃₁ counterparts. The two acquired resistence models are₃₂ largely independent of one another: while OxR cells₃₃ show moderate cross-resistance for the ruthenium-34 based drug, RuR cells display no cross-resistance and₃₅ remain sensitive to oxaliplatin treatment (Figure S5).₃₆ This implies a difference in the molecular basis of re-37 sistance between the two models. OxR cells and their₃₈ parental sensitive counterparts were grown in a stan-39 dard medium, while RuR cells and their parental sen-40 sitive counterparts were grown in the same $medium_{41}$ but with a low solvent-background (DMSO) as out_{42} lined in the Materials and Methods. Relative differ- $_{\tt 43}$ ences in the cellular metabolite concentrations of sensi- $_{\rm 44}$ tive versus resistant cells highlight the extent to which_{{}_{45}} the acquired metallodrug resistance results in an al_{46} tered metabolome (Figure 1). We observe that some re- $\frac{1}{47}$ sponses, such as an increase in palmitoyl carnitine and $_{\tt 48}$ a decrease in lactate upon resistance, are shared $across_{49}$ the two metallo-resistance phenotypes. Nevertheless, $\frac{1}{50}$ many of the metabolic changes associated with resis $\frac{1}{51}$ tance are drug-specific. Pyruvate and carnitine concentrations, for example, are higher in RuR cells but lower in OxR cells when compared to their sensitive coun- 53 terparts. Palmitoyl-CoA, on the other hand, is lower⁵⁴

Herrmann et al.



43

⁴⁴in RuR cells and higher in OxR cells when compared ⁴⁵to their parental sensitive counterparts (Figure 1).

⁴⁶ With the aim of investigating whether the observed ⁴⁷changes in cellular metabolites concentrations (Fig-⁴⁸ure 1) translate to changes in metabolic flux, we inte-⁴⁹grated experimentally determined growth rates (Fig-⁵⁰ure **S1**), intracellular metabolite concentrations (Fig-⁵¹ure 1) and exchange rates (Figure **S2**) in a genome-⁵²scale metabolic model (GSMM) of HCT116. We con-⁵³strained four instances of the GSMM: an oxaliplatin-⁵⁴resistant (OxR) and a parental sensitive counter-⁵⁵ part (sensitive), a BOLD-100/KP1339-resistant (RuR)¹ and a parental sensitive counterpart for the $\dot{\rm DMSO^{-2}}$ containing medium (sensitive-DMSO). Measuring 110³ metabolite concentrations and 37 exchange fluxes,⁴ we constrained the solution space of a model with⁵ 6479 metabolites and 6716 reactions. Growth rates⁶ were used to constrain the biomass production of each model instance. Resistant cells grow slower than⁸ sensitive cells and OxR cells grow even slower than⁹ RuR cells (Figure S1). Exchange rates (Figure S2)¹⁰ were determined from time-course measurements of¹¹ the medium composition and were applied as ${\rm flux}^{12}$ bounds on the corresponding import and export re-¹³ actions of the model. Intracellular metabolite concen-¹⁴ trations were applied as constraints using the $\rm pyTFA^{15}$ package [46]. Using a parsimonious thermodynamic¹⁶ flux variability analysis (pTFVA), as outlined in the $^{\rm 17}$ Materials and Methods, we calculated flux solutions¹⁸ for each of the four model instances, each of which $^{19}\,$ was constrained with the corresponding experimen-²⁰ tal data. By incorporating the growth and exchange²¹ rates as well as the intracellular metabolite concentra-²² tions into a GSMM, we were able to calculate $\operatorname{possible}^{23}$ changes in metabolic fluxes. Metabolic rates, rather²⁴ than concentrations, could then be normalized accord-²⁵ ing to the cellular growth rate observed under those $^{\rm 26}$ conditions. We compared the four sets of flux solutions $^{\rm 27}$ against one another, both before and after normaliz-²⁸ ing all flux values by the respective growth rate (Fig-²⁹ ure 2). Growth rate normalization was implemented³⁰ by dividing all of the calculated flux values by the ex^{-31} perimentally measured growth rate used to constrain³² 33 that model instance.

Page 6 of 20

The maximum relative standard error $observed^{34}$ across the metabolite measurements was less than $^{\rm 35}$ 15%. Thus, when integrating the data into the GSMM^{36} and comparing flux differences between condition-³⁷ specific instances of the model, we used a cutoff of 38 15% to determine whether fluxes were significantly 39 different across conditions. Comparing resistant cells⁴⁰ to sensitive cells, we identify pathways with the most⁴¹ prominent changes in flux upon acquired resistance⁴² (Figure 2). Differences in flux observed prior to growth⁴³ standardization directly correspond to predictions of⁴⁴ in vivo fluxes. Differences in flux observed post growth 45 standardization are no longer predictions of $in \ vivo^{46}$ fluxes, but are predictions of flux differences that are 47 assumed to be the direct result of a metabolic re-48 programming upon acquired resistance rather than⁴⁹ 50 changes in growth rate.

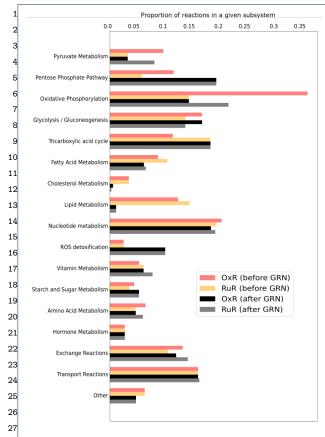
Initially, the oxidative phosphorylation pathway⁵¹ shows the highest amount of flux changes in response⁵² to OxR. Upon growth normalizing, however, it is⁵³ RuR that shows a higher number of flux changes in⁵⁴

Herrmann et al.

Page 7 of 20

21

22



28 Figure 2 Metabolic fluxes in resistant versus sensitive models before and after growth rate normalization. Both 29 intracellular and extracellular metabolite constraints were 30 applied to generate four instances of the HCT-specific GSMM [oxaliplatin (OxR) and BOLD-100/KP1339 (RuR) and their 31 parental sensitive counterparts (sensitive and sensitive-DMSO, 32 respectively)] as described in the Materials and Methods. A 33 parsimonious thermodynamic flux variability analysis (pTFVA) was done on each model instance. Flux values of the resistant 34 instances were compared to their respective controls 35 Metabolic reactions that had an absolute relative difference 36 greater than 15% in both the highest possible and the lowest 37 possible flux value were considered to be different. The proportion of reactions that show a difference in flux between 38 the OxR and sensitive condition [OxR before growth rate 39 normalization (GRN); red bars] and the RuR and sensitive conditions (RuR before GRN; orange bars) are shown for each 40 subsystem. All flux values were then normalized according to 41 the corresponding growth rate of that condition (Figure S1) 42 and were again checked for a relative difference between OxR 43 (OxR after GRN; black bars) and RuR (RuR after GRN; gray bars) and their sensitive controls. Subsystems for which no 44 relative changes in flux between resistant and sensitive 45 instances were observed were omitted from the figure for clarity 46

47 48

⁴⁹this pathway. Furthermore, what initially appears to
⁵⁰be significant differences in flux through the choles⁵¹terol and lipid metabolism, largely disappears upon
⁵²growth normalization. Changes in the subsystem reac⁵³tive oxygen species (ROS) detoxification seem minimal
⁵⁴prior to growth normalization; the normalized results,

however, indicate significant changes in flux with re-¹ gards to detoxification. While the number of reactions² that appear to be affected in starch and sugar and³ tricarboxylic acid (TCA) metabolism appears to be⁴ drug resistance-specific prior to growth normalization,⁵ this effect disappears upon growth normalization. The⁶ comparison of non-normalized and growth-normalized⁷ results in Figure 2 emphasizes that observed changes⁸ in metabolite concentrations are not necessarily in-9 dicative of cellular changes in flux. It further high-10 lights that flux results must be growth normalized in¹¹ order to distinguish a resistance model effect from a12 growth effect when comparing the metabolic profiles13 of resistant and sensitive cells. Changes in the pentose₁₄ phosphate pathway (PPP), oxidative phosphorylation, 15 glycolysis/gluconeogenesis, TCA, nucleotide, ROS and 16 fatty acid pathways, for example, appear to be a di-17 rect result of acquired resistance when comparing OxR_{18} and RuR to their parental sensitive counterparts (Fig-19 ure 2). 20

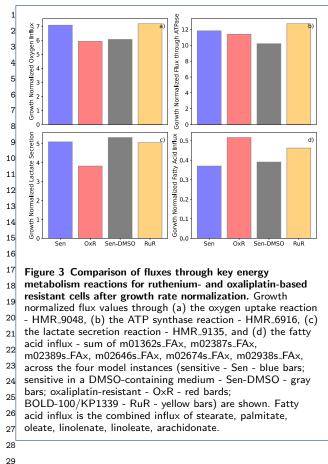
Metallodrug resistance is linked to changes in energy metabolism

Integrating metabolite measurements into GSMMs al-²³ lows for growth rate normalization of the calculated ²⁴ fluxes which in turn allows for a direct flux comparison²⁵ between resistant and sensitive cells. The reprogram-²⁶ ming of energy metabolism to support cell growth and²⁷ proliferation is a major hallmark of cancer [1] and has²⁸ previously been linked to the emergence of acquired²⁹ drug resistance [3]. To further investigate the role of³⁰ a reprogramming of energy metabolism upon acquired³¹ metallodrug resistance, we used the four instances of³² the HCT116 model (OxR, sensitive, RuR, sensitive-³³ DMSO) to specifically assess differences in flux in path-³⁴ ways related to energy metabolism. ³⁵

In the growth-conditions considered here, glucose₃₆ acts as the primary carbon source (Figure S2). Glucose³⁷ is catabolized to pyruvate, generating two ATP during38 glycolysis. Pyruvate can then be transported into the39 mitochondria and converted to acetyl-CoA which then₄₀ enters the TCA cycle or, in what is known as the War-41 burg effect in cancer cells [66], pyruvate can be con-₄₂ verted to lactate. Acetyl-CoA can also be generated₄₃ from fatty acid oxidation and sometimes amino acid_{44} catabolism (see [67] for a review). Fluxes correspond-45 ing to these three well-established energy pathways of_{46} colorectal cells along with the oxygen consumption are_{47} shown for each cell type in Figure 3. While glutaminol- $_{48}$ ysis is another common means by which cancer $\operatorname{cells}_{49}$ support the Warburg effect [68], we did not measure $_{50}$ high glutamine uptake rates in the considered growth conditions. In fact, our determined glucose and glu- $\frac{1}{52}$ tamine uptake rates are in the same orders of magnitude as previously determined for HCT116 cell lines⁵⁵ grown in fetal bovine serum [60]. 55

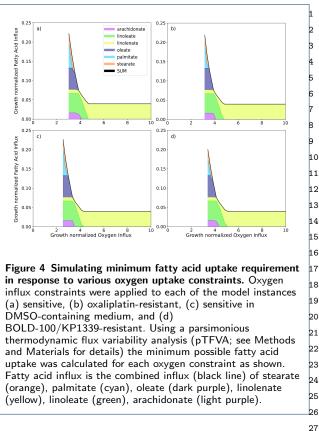
Herrmann et al.

Page 8 of 20



30 We observe that OxR cells convert less pyruvate into $^{\mathbf{31}}\textsc{lactate, but in turn consume a higher relative amount}$ $^{\rm 32}{\rm of}$ fatty acids compared to their parental sensitive cells. $^{33}\mathrm{RuR}$ cells, however, show a high glycolytic flux and a $^{34}\mathrm{high}$ oxygen consumption as well as higher fatty acid ³⁵ consumption than their sensitive counterparts (Fig-³⁶ure 3). Notably, the flux values shown in Figure 3 are ³⁷growth normalized and may therefore not directly cor- $^{\mathbf{38}}$ respond to what would be observed in a traditional ³⁹oxygen consumption rate (OCR) versus extracellular $^{40}\mathrm{acidification}$ rate (ECAR) experiment [69]. When com-⁴¹paring experimentally determined OCR and ECAR ⁴²measurements to the non-normalized model results, we ⁴³find a close agreement with regards to the differences ⁴⁴in glycolysis and respiration between sensitive and re-⁴⁵sistant cells (Figure S4, S6); thus further validating ⁴⁶the set model constraints.

⁴⁷ With the four instances of the HCT116-specific $^{48}\mathrm{GSMMs},$ further conditions encountered in the tumor ⁴⁹environment can be simulated. Simulating the effect of ⁵⁰hypoxic growth conditions, we first set the oxygen in-⁵¹flux for each model instance to the minimum possible $^{52}\mathrm{value}$ and then observe the minimum required fatty $^{53}\mathrm{acid}$ influx as we iteratively increase the oxygen in- $^{\rm 54}{\rm flux},$ thus plotting the growth normalized production 55



28

envelope of oxygen versus minimum fatty acid influx₂₉ for each of the four conditions (Figure 4). While RuR₃₀ cells appear to have a lower tolerance for hypoxic con-31 ditions, they also have a higher fatty acid requirement³² under those conditions when compared to the sensitives simulations (Figure 4c,d). While the same differences4 can be observed between OxR and sensitive simula-35 tions, it is less pronounced (Figure 4a,b). 36

We then set a minimum possible fatty acid influx and³⁷ iteratively increased the total fatty acid influx to the³⁸ model while calculating the minimum required oxy-39 gen influx (Figure 4). We repeated this calculation for⁴⁰ various biomass constraints and note that there is an⁴¹ optimal fatty acid influx for minimizing the total oxy-⁴² gen required. In fact, this optimal value corresponds⁴³ directly to the fatty acid uptake rates observed in Fig-44 ure 3d and is in accordance with the parsimonious⁴⁵ thermodynamic flux variability analysis which mini-⁴⁶ mizes the total sum of fluxes (see Method and Mate-47 48 rials for details).

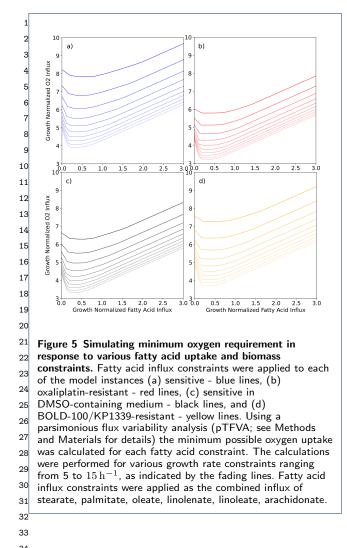
Crucially, while a direct comparison between resis-49 tant and sensitive cells for each drug respectively can^{50} be made, we cannot make a direct comparison between⁵¹ the two drug resistance models (Figure 1-5). Because⁵² RuR cells were grown in a DMSO-containing $\operatorname{medium}^{53}$ whereas OxR cells were not, we cannot, at this stage, 55

Herrmann et al.

Page 9 of 20

27

28



 34 distinguish a resistance model-specific effect from a sol- 35 vent background-induced effect.

³⁷Growth rate and medium normalization allows for a ³⁸direct comparison of fluxes of cells grown across

³⁹heterogeneous conditions

40 In order to be able to compare the metabolic profiles 41 of the two metallodrug resistance phenotypes directly, ⁴²we finally normalized the flux results obtained from the ⁴³metallo-resistant model instances against their respec-⁴⁴tive parental sensitive counterparts (see Materials and ⁴⁵Methods for further details). By dividing growth rate ⁴⁶normalized and feature-scaled flux values calculated ⁴⁷ for the resistant models by those calculated for the re-⁴⁸spective sensitive models, we add a further normaliza-⁴⁹tion step. This normalization step eliminates observed ⁵⁰differences in flux values that are the result of differ-⁵¹ences due to the presence of DMSO-background. Be- $^{52}\mathrm{cause}$ the parental sensitive counterparts were grown ⁵³in the same medium as their resistant counterparts, ⁵⁴we can assume that shared differences in flux between 55

sensitive and resistant cells are the result of differences¹ caused by DMSO. As such, this normalization step al-² lows us to directly compare the two acquired resis-³ tances, OxR and RuR, to one another even though⁴ RuR, unlike OxR, was grown in a medium with low⁵ solvent (DMSO) background. The comparison of OxR⁶ and RuR (Figure 6) cells highlights an upregulation⁷ of fluxes associated with amino acid and fatty acid⁸ metabolism in RuR. OxR cells, on the other hand,⁹ show an upregulation in glycolysis and starch and¹⁰ sugar metabolism when compared to RuR cells (Fig.¹¹ ure 6b).

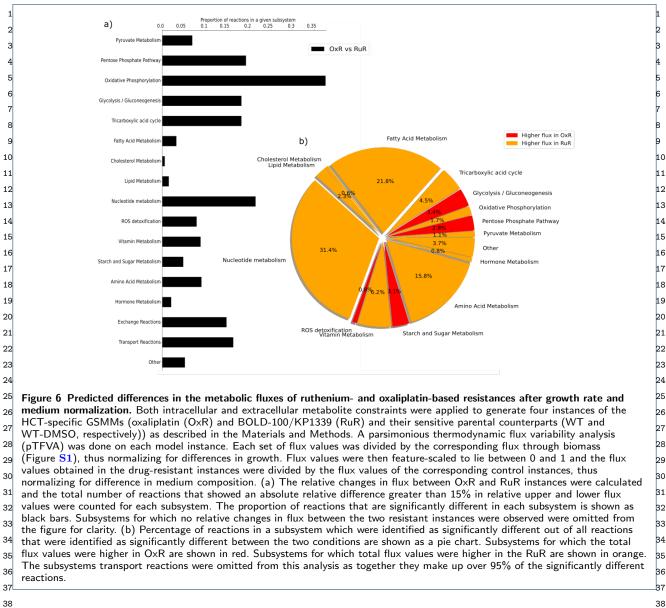
Notably, when comparing the OxR and RuR model¹³ instances to their respective parental HCT116 drug-¹⁴ sensitive counterparts, prior to growth normalization,¹⁵ we identified 1039 (OxR) and 1180 (RuR) fluxes¹⁶ that were significantly different. Upon growth nor-¹⁷ malization, these numbers reduced to 743 (OxR) and¹⁸ 883 (RuR), highlighting that hundreds of differences¹⁹ observed in the non-normalized results are simply²⁰ the result of a difference in growth rate. The OxR²¹ versus RuR comparison upon growth-media DMSO-²² background normalization highlighted 670 different re-²³ actions, suggesting that another 73 of reactions were²⁴ initially observed as significantly different because of²⁵ presence of 0.5% DMSO. ²⁶

Discussion

Genome-scale metabolic models (GSMMs) provide29 a platform for integrating omics data sets and for₃₀ analysing them in the context of metabolic fluxes.₃₁ As we have shown, GSMMs can be constrained using₃₂ both extracellular and intracellular metabolite con-33 centrations to study metallodrug resistance in colon₃₄ cancer. Approximately one-hundred metabolite con-35 straints were applied to study the effect of $changes_{36}$ in their concentrations in thousands of reactions.₃₇ Colorectal-specific GSMMs have previously been con-38 structed [47, 57, 70, 11] but have not yet been applied₃₉ to study metallo-drug resistance specifically. Here, we_{40} compared metabolic flux alterations in HCT116 $cell_{41}$ models with acquired oxaliplatin- (OxR) vs BOLD-42 100/KP1339 resistance (RuR) relative to parental, $_{\rm 43}$ drug-sensitive HCT116 cells grown in the respective _44 growth media without or with 0.5% DMSO. 45

In this study, we investigated various pathways in ⁴⁰/₄₆ silico including glycolysis, the tricarboxylic acid cycle, ⁴⁷/₄₇ fatty acid and amino acid metabolism, beta-oxidation, ⁴⁸/₄₉ the pentose phosphate pathway. A comprehensive sta-⁴⁹/₄₉ ble isotope resolved metabolic flux analysis consider-⁵⁰ ing such a diverse set of pathways would require the application of multiple different positionally labelled ⁵¹ isotopic tracers [71, 26]. In addition to economic fac-⁵³ tors, practical challenges may also play a role in experimental design. The application of palmitate to study ⁵⁴/₅₅

Herrmann et al.



39

⁴⁰beta-oxidation, for example, requires the conjugation ⁴¹of fatty acid free bovine serum albumin [72]. Moreover, ⁴²it usually has high background contamination from ⁴³plastic materials [73]. Finally, stable isotope labeling ⁴⁴in living organisms is even more complex from a data ⁴⁵evaluation perspective [74]. Thus, a purely experimen-⁴⁶tal study that provides a holistic analysis of metabolic ⁴⁷reprogramming in cancer is currently infeasible.

There is no simple relationship between changes in metabolite concentrations and changes in flux [75]. This notion also applies to acquired resistance in the HCT116 colorectal cancer cell line. We have shown that observed differences in metabolite concentrations between resistant and sensitive conditions may not necessarily reflect a drug resistance-specific response but may instead arise as a result of differences in 55 growth rate or solvent conditions. If we want to com- $_{40}$ pare changes in metabolic flux of cells grown in het- $_{41}$ erogeneous conditions, data needs to be normalized $_{42}$ in order for valid comparisons to be made. Here we $_{43}$ have outlined a procedure for this kind of normaliza- $_{44}$ tion based on thermodynamic genome-scale metabolic $_{45}$ modelling of the HCT116 cell line.

39

Accurate comparative profiling of metabolic changes⁴⁷ observed across heterogenous conditions remains a challenge. Differences in growth rates and impact of solvent necessities will result in observed differences⁵⁰ in metabolite concentrations but are not causal to a reprogramming of metabolism [76]. Considering cellular fluxes as the metabolic phenotype through the use⁵³ of GSMMs has the advantage that fluxes, unlike con-⁵⁴ centrations, can easily be normalized with regards to

Herrmann et al.

Page 11 of 20

¹other rate measurements, such as growth rate or ex-²change rates (e.g. [77, 78, 79]).

³ As a prerequisite to produce accurate, quantitative ⁴metabolomics data [76], we normalized the metabo-⁵lite amounts to total protein content, calculating ab-⁶solute concentrations based on internal standardiza-⁷tion. Even though this approach is superior to relative ⁸quantification and is able to compensate for technical ⁹variation of the sample preparation and differences in ¹⁰extracted biomass, it does not account for biological ¹¹processes like growth or environmental factors such as ¹²differences in medium composition.

¹³ Integrating the metabolite data as part of a thermo-¹⁴dynamic flux analysis allows us to normalize the calcu-¹⁵lated reaction rates by the growth rate observed under $^{16}{\rm the\ corresponding\ conditions}.$ We showed that growth-¹⁷normalization reduces the number of reactions that ¹⁸are different between resistant and sensitive model in- $^{19}\mathrm{stances}$ and changes some of the conclusions about ²⁰altered metabolic pathways entirely. Growth normal-²¹ization is therefore a critical step when looking for ²²drug-specific metabolic phenotypes. A second limita-²³tion to studying non-normalized metabolite concentra-²⁴tions is that data obtained from heterogeneous condi- $^{25}\mathrm{tions}$ cannot be directly compared. Using the growth ²⁶normalized flux results we further normalized each re-²⁷sistant model against its sensitive counterpart which $^{28}\mathrm{was}$ grown in an identical medium and solvent com-²⁹position. Hence, we were able to do a direct compari-³⁰ son between the two metallo-resistances and to identify ³¹drug resistance-specific responses.

 32 A limitation to our approach is that we first nor-³³malized our flux results to differences in growth rate $^{\mathbf{34}}\mathbf{and}$ then normalized each resistant model against its $^{35}\mathrm{respective}$ counterpart. This means that we are unable ³⁶to capture emergent properties that result from differ-³⁷ences in growth rate and solvent impact; we assume ³⁸that a combined effect of the two is minimal. Further-³⁹more our flux analyses assume metabolism to be in ⁴⁰steady-state, such that intracellular concentrations are ⁴¹constant. Nonetheless, we have clearly demonstrated ⁴²that a growth and medium/solvent normalization is ⁴³non-trivial as it allows for comparisons across het-⁴⁴erogeneous conditions. We expect this method to be 45 of wider applicability in studies where the effects of ⁴⁶ medium compositions, such as the availability of car- $^{47}\mathrm{bon}$ sources to a cell, are of interest.

⁴⁸ Time-dependent changes of metabolite profiles have ⁴⁹ previously been considered [80, 81], but are not typ-⁵⁰ ically integrated at a genome-scale level. Measuring ⁵¹ metabolite concentrations alongside cell counts at vari-⁵² ous time points and quantifying the relative metabolite ⁵³ abundance per cell using linear regression Dubuis et ⁵⁴ al. [80] accounts for deviations from steady-state. The ⁵⁵ method was then further developed, using intermediates of fatty acid metabolism and other metabolites to² account for differences in cell size [81]. While the differ-³ ence in cell size can be interpreted as a proxy of growth⁴ rate it cannot be assumed that the observed changes⁵ in metabolite concentrations directly translate to dif-⁶ ferences in metabolic activity, i.e. fluxes. Metabolic re-⁷ sponses associated with an acquired metallodrug re-⁹ sistance in cancer have not yet been studied extensively using constraint-based flux analyses [82, 83, 38].¹¹ The use of GSMMs to integrate metabolomics data to¹² study cellular fluxes, however, provides multiple new¹³ opportunities in this field.

Defense mechanisms and acquired resistance are well $_{\tt 15}$ known phenomena when applying metal-based drugs_{16} as anticancer agents. Reduced efficacy due to acquired₁₇ resistance remains a major challenge in systemic anticancer therapy. The complexity is increasingly recog-19 nized, as the contribution of epigenetic and metabolic₂₀ effects will be uncovered. Drug-specific and tumor₂₁ tissue specific mechanisms have been described, and₂₂ more recently the tumor microenvironment has come₂₃ into focus [84]. Accordingly, response profiling with₂₄ metabolomics analysis can be a powerful tool to inves-25 tigate drugs and drug candidates [28, 27] and dissect-₂₆ ing emerging resistance [85]. Currently, only a hand-₂₇ ful of studies consider metallodrugs applied to cancers₂₈ with metabolomics [86, 87, 88], and even fewer inves-29 tigate acquired metallodrug resistance [52]. 30

In this work, we consider an *in vitro* study of colon31 cancer. Gastrointestinal cancer cell lines, including col-32 orectal cancer cell line HCT116 activate beta-oxidation33 as response to oxaliplatin treatment and conversely be-34 come more sensitive to oxaliplatin upon inhibition of³⁵ fatty acid catabolism [22]. A seminal study in the field³⁶ integrates both metabolomics and transcriptomics and³⁷ finds that, within 59 NCI60 cell lines, the metabolic ba-38 sis of platinum-sensitivity can largely be attributed to³⁹ energy metabolism (TCA cycle, glutaminolysis, pyru-⁴⁰ vate metabolism), lipoprotein uptake, and nucleotide⁴¹ synthesis [89]. The results from our *in silico* analysis⁴² are in line with these findings, also highlighting the im-43 portance of energy metabolism (OXPHOS, glycolysis,⁴⁴ 45 TCA).

Figure 6 highlights the relevance of fatty acid⁴⁶ metabolism, as fluxes from this subsystem contribute⁴⁷ to 12.5% of all observed differences (excluding all⁴⁸ transport reactions) between the RuR and OxR, show-⁴⁹ ing elevated fluxes in RuR. This supports existing⁵⁰ evidence of beta-oxidation activation in response to⁵¹ metallodrug treatment [22]. Interestingly, for the ma-⁵² jority of observed flux differences between OxR and⁵³ RuR, flux values are higher in the RuR, implying⁵⁴

Herrmann et al.

Page 12 of 20

33

¹a higher metabolic activity in this phenotype, inde-²pendently of differences in growth rate. OxR, how-³ever, does exhibit elevated activity in the Glycoly-⁴sis/Glyconeogenesis and pentose phosphate pathways. ⁵Thus, our comparison of the growth rate- and medium-⁶normalized reaction rates supports the notion that an ⁷acquired resistance to the two metallodrugs is marked ⁸by differences in their metabolic phenotype with an ⁹overall higher metabolic activity in the RuR system.

¹⁰ The high metabolic plasticity of cancer cells enables ¹¹efficient detoxification and protection strategies [84]. ¹²Normalization of the flux values by growth rate sub-¹³stantially reduces the observed differences (Figure 2) in ¹⁴most of the investigated pathways. In contrast, both ¹⁵the pentose phosphate pathway and ROS detoxifica-¹⁶tion subsystem, which includes glutathione-synthesis, ¹⁷were emphasized to the same extent in both the OxR 18and RuR resistance models upon growth standardiza-19tion. This supports the notion that metallodrugs in-20terfere with cellular redox homeostasis and stimulate 21a readiness to counter reactive oxygen species (also by 22synthesizing NADPH via the pentose phosphate path-23way) which has previously been described to conjugate 24glutathione to platinum complexes with glutathione-S-25transferase [90].

²⁶ Despite shared commonalities like the production of 27ROS, it is expected that RuR and OxR models dis-28 play different metabolic phenotypes, because of known 29 differences in their modes of action [91, 92, 25]. Oxali-30 platin, for example, is primarily a DNA targeting drug, 31 whereas BOLD-100/KP1339 has recently been found ₃₂to have a prodrug nature and is capable of causing ER-33 stress and the downregulation of GRP78, encoding a 34endoplasmic reticulum chaperone protein, which has $_{35}$ been linked to malignancy [93]. It is widely accepted ₃₆that DNA repair mechanisms play a crucial role in re-₃₇sistance to oxaliplatin [94]. It is important to note that, ₃₈using GSMM, we have here focused solely on metabolic 39 changes to compare metabolic reprogramming of the 40 two acquired resistances but cannot exclude further ⁴¹regulatory events.

42 The comparison of fluxes through key energy me- $_{43}$ tabolism reactions (Figure 3) shows that both acquired $_{\tt 44} {\rm resistances}$ are defined by lowered glycolytic flux than 45 their sensitive parental cells, although this is less pronounced with RuR. Growth normalization does not af- $_{47}^{40}$ fect this observation (Figure S4). The same cannot be said about the fatty acid beta-oxidation, where upon $_{48}$ growth standardization the acquired resistance models both show a higher fatty acid requirement than their 50 sensitive controls (Figure 3d; Figure **S**4d). Additionally, upon growth normalization OxR has lower and ⁵²RuR higher respiration rates than corresponding sensi-⁵³tive counterparts (Figure 3a). The calculated rates cor-⁵⁴respond well to the experimentally determined results 55

with a Seahorse assay (Figure S6). As expected the ex^{-1} perimentally determined and non-normalized *in vitro*² results align more closely with the non-normalized flux³ values modelled *in silico*.

Drastic changes in oxygen and fatty acid availability⁵ are known stress conditions in a tumor microenviron-⁶ ment, and are assumed to be managed with metabolic⁷ adaptations [4]. Lipid dependency, for example, is⁸ more pronounced under hypoxic conditions and relies⁹ on the uptake of extracellular fatty acids [95, 96, 72].¹⁰ We thus used the condition-specific instances of our¹¹ constrained GSMM to further inspect the relationship¹² between hypoxia and fatty acid uptake. We found that¹³ the composition of fatty acids taken up changes in^{14} response to oxygen limitation (Figure 4). Under nor-¹⁵ moxic conditions linolenate can act as the sole $\operatorname{fatty}^{16}$ acid source. As oxygen limitation becomes more pro-¹⁷ nounced, linoleate, arachidonate, oleate, stearate and¹⁸ finally palmitate are also required. RuR cells requires¹⁹ less fatty acids under oxygen limitation compared to²⁰ its sensitive counterpart (Figure 4c,d); while the same²¹ is true for OxR the observed difference is notably less²² 23 pronounced (Figure 4a,b).

Additionally, the investigation of minimum oxygen²⁴ requirement at various fatty acid influxes (Figure 5) re-²⁵ vealed that the optimal fatty acid composition, which²⁶ has the lowest oxygen demand, is the same across²⁷ growth rates. Overall, OxR has the lowest oxygen re-²⁸ quirement, which suggests that if sufficient fatty acids²⁹ are available, OxR will be the most resilient of the³⁰ investigated model against hypoxia (Figure 5).

Conclusion

34 There are different ways to capture the metabolic phenotype of a cell. Metabolic profiling via metabolomics provides an interrogation window of the intracellular concentrations at a given point in time. Extracellular concentrations measured over time provide insight³⁸ to the cellular uptake and excretion rates of cells. To- $\frac{39}{40}$ gether they can be integrated to constrain the solution space of a genome-scale metabolic model. The calcu-⁴¹ lated flux values can then be normalized according to 42 growth rates and environmental conditions, allowing⁴³
₄₄ for drug resistance specific metabolic responses to be identified across heterogenous conditions. We find the 45 outlined normalization steps to be crucial in the in-46 terpretation of the results and show that metabolic re- 47 programming is more extensive in BOLD-100/KP1339⁴⁸ resistant cells than in oxaliplatin resistant cells. We⁴⁹ identify pathways, such as fatty acid and amino acid⁵⁰ 51 metabolism, to be upregulated in response to a resistance acquired to a ruthenium-based drug when compared to a platinum-based drug. All in all, genome-53 scale metabolic modelling provides a valuable platform⁵⁴

Herrmann et al.

Page 13 of 20

¹for putting observed changes in metabolite concentra-²tions in the context of metabolic fluxes.

5 Availability of data and materials

All data and code used to conduct the analyses presented in this ⁶manuscript are available on GitHub

7(https://github.com/HAHerrmann/Hct116_DrugRes) and Zenodo (DOI: $_{8}$ 10.5281/zenodo.4633725). Metabolomics data (LC high-resolution mass spectrometry-based metabolomics dataset in rawdata and total protein ⁹contents corresponding to the samples) have been deposited to the

10EMBL-EBI MetaboLights database [97] with the identifier MTBLS2665 for 11 the OxR-batch and MTBLS2681 for the RuR-batch. The complete dataset can be accessed at https://www.ebi.ac.uk/metabolights/MTBLS2665 12and https://www.ebi.ac.uk/metabolights/MTBLS2681 for the OxR- and 13RuR-batch, respectively.

¹⁴Competing interests

15The authors declare that they have no competing interests.

¹⁶Author's contributions

Author 5 contributions									
17 –	Author contributions	HAH [‡]	MR [‡]	DB	MAJ	BKK	WB	GK	JZ
11 -	Conceptualization								
18	Funding acquisition								
	Methodology								
19	Software								
	Formal analysis								
20	Investigation								
20	Resources								
21	Validation								
21	Supervision								
22	Visualization								
	Writing – original draft								
23 1	/riting – review & editing								
21 22	Validation Supervision Visualization								

24Author details

25¹Department of Analytical Chemistry, University of Vienna, Vienna, Austria. ²Institute of Inorganic Chemistry, University of Vienna, Vienna, ²⁶Austria. ³Research Cluster Translational Cancer Therapy Research, 27University of Vienna and Medical University of Vienna, Vienna, Austria ⁴Institute of Cancer Research and Comprehensive Cancer Center, Medical 28⁴Institute of Cancer Research and Completional Metabolomics Center University of Vienna, Vienna, Austria. ⁵Vienna Metabolomics Center ²⁹(VIME), University of Vienna, Vienna, Austria. ⁶Research Network 30Chemistry Meets Microbiology, University of Vienna, Vienna, Austria.

³¹References

- 32 1. Hanahan, D., Weinberg, R.A.: Hallmarks of Cancer: The Next
- Generation. Cell 144(5), 646-674 (2011). 33
- doi:10.1016/j.cell.2011.02.013
- ³⁴ 2. Vernieri, C., Casola, S., Foiani, M., Pietrantonio, F., Braud, F.d.,
- Longo, V.: Targeting Cancer Metabolism: Dietary and Pharmacologic 35
- Interventions. Cancer Discovery 6(12), 1315-1333 (2016). 36
- doi:10.1158/2159-8290.CD-16-0615
- ³⁷ 3. Zaal, E.A., Berkers, C.R.: The Influence of Metabolism on Drug
- Response in Cancer. Frontiers in Oncology 8 (2018). 38 doi:10.3389/fonc.2018.00500 39
- 4. Faubert, B., Solmonson, A., DeBerardinis, R.J.: Metabolic 40
- reprogramming and cancer progression. Science 368(6487) (2020). 41 doi:10.1126/science.aaw5473
- 42 ^{5.} Agren, R., Bordel, S., Mardinoglu, A., Pornputtapong, N., Nookaew, I., Nielsen, J.: Reconstruction of Genome-Scale Active Metabolic 43
- Networks for 69 Human Cell Types and 16 Cancer Types Using INIT. 44 PLOS Computational Biology 8(5), 1002518 (2012).
- doi:10.1371/journal.pcbi.1002518 45 6. Nilsson, A., Nielsen, J.: Genome scale metabolic modeling of cancer.
- 46 Metabolic Engineering 43, 103-112 (2017).
- doi:10.1016/j.ymben.2016.10.022 47
- 48 ^{7.} Folger, O., Jerby, L., Frezza, C., Gottlieb, E., Ruppin, E., Shlomi, T.: Predicting selective drug targets in cancer through metabolic networks.
- 49 Molecular Systems Biology 7(1), 501 (2011). doi:10.1038/msb.2011.35
- 50 8. Frezza, C., Zheng, L., Folger, O., Rajagopalan, K.N., MacKenzie, E.D., 51 Jerby, L., Micaroni, M., Chaneton, B., Adam, J., Hedley, A., Kalna, G.,
- 52 Tomlinson, I.P.M., Pollard, P.J., Watson, D.G., Deberardinis, R.J.,
- Shlomi, T., Ruppin, E., Gottlieb, E.: Haem oxygenase is synthetically 53
- lethal with the tumour suppressor fumarate hydratase. Nature 54
- 477(7363), 225-228 (2011). doi:10.1038/nature10363 55
- 1 9. Gatto, F., Miess, H., Schulze, A., Nielsen, J.: Flux balance analysis predicts essential genes in clear cell renal cell carcinoma metabolism. 2 Scientific Reports 5(1), 10738 (2015). doi:10.1038/srep10738 3 10. Jerby, L., Ruppin, E.: Predicting Drug Targets and Biomarkers of 4 Cancer via Genome-Scale Metabolic Modeling, Clinical Cancer 5 Research 18(20), 5572-5584 (2012). doi:10.1158/1078-0432.CCR-12-1856 6 11. Zhang, C., Aldrees, M., Arif, M., Li, X., Mardinoglu, A., Aziz, M.A.: 7 Elucidating the Reprograming of Colorectal Cancer Metabolism Using 8 Genome-Scale Metabolic Modeling. Frontiers in Oncology 9 (2019). doi:10.3389/fonc.2019.00681 9 12. Dallas, N.A., Xia, L., Fan, F., Gray, M.J., Gaur, P., Buren, G.v., 10 Samuel, S., Kim, M.P., Lim, S.J., Ellis, L.M.: Chemoresistant 11 Colorectal Cancer Cells, the Cancer Stem Cell Phenotype, and Increased Sensitivity to Insulin-like Growth Factor-I Receptor 12 Inhibition. Cancer Research 69(5), 1951-1957 (2009). 13 doi:10.1158/0008-5472.CAN-08-2023 13. Hu, T., Li, Z., Gao, C.-Y., Cho, C.H.: Mechanisms of drug resistance 14 in colon cancer and its therapeutic strategies. World Journal of 15 Gastroenterology 22(30), 6876-6889 (2016). 16 doi:10.3748/wjg.v22.i30.6876 14. Stein, A., Atanackovic, D., Bokemeyer, C.: Current standards and new ¹⁷ trends in the primary treatment of colorectal cancer. European Journal $_{18}\,$ of Cancer 47, 312-314 (2011). doi:10.1016/S0959-8049(11)70183-6 19 15. Vasan, N., Baselga, J., Hyman, D.M.: A view on drug resistance in 20 cancer. Nature 575(7782), 299-309 (2019). doi:10.1038/s41586-019-1730-1 21 Gill, S., Thomas, R.R., Goldberg, R.M.: Colorectal cancer 16. 22 chemotherapy. Alimentary Pharmacology & Therapeutics 18(7), 23 683-692 (2003). doi:10.1046/j.1365-2036.2003.01735.x Anthony, E.J., Bolitho, E.M., Bridgewater, H.E., Carter, O.W.L., 17. 24 Donnelly, J.M., Imberti, C., Lant, E.C., Lermyte, F., Needham, R.J., 25 Palau, M., Sadler, P.J., Shi, H., Wang, F.-X., Zhang, W.-Y., Zhang, Z.: Metallodrugs are unique: opportunities and challenges of discovery ²⁶ and development. Chemical Science 11(48), 12888-12917 (2020). 27 doi:10.1039/D0SC04082G 28 Savvas, P., Efrosini, K., Athanasios, S.: Metallodrugs in Targeted Cancer Therapeutics: Aiming at Chemoresistance- related Patterns and²⁹ Immunosuppressive Tumor Networks. Current Medicinal Chemistry 30 26(4), 607-623 (2019) 31 19. Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., 32 Jemal, A., Bray, F.: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 33 countries. CA: A Cancer Journal for Clinicians (2020). 34 doi:10.3322/caac.21660 35 Johnstone, T.C., Park, G.Y., Lippard, S.J.: Understanding and 20 Improving Platinum Anticancer Drugs - Phenanthriplatin. Anticancer 36 research 34(1), 471-476 (2014) 37 21. Zhou, J., Kang, Y., Chen, L., Wang, H., Liu, J., Zeng, S., Yu, L.: The 38 Drug-Resistance Mechanisms of Five Platinum-Based Antitumor Agents. Frontiers in Pharmacology 11 (2020). 39 doi:10.3389/fphar.2020.00343 40 Wang, Y., Lu, J.-H., Wang, F., Wang, Y.-N., He, M.-M., Wu, Q.-N., 22. 41 Lu, Y.-X., Yu, H.-E., Chen, Z.-H., Zhao, Q., Liu, J., Chen, Y.-X., Wang, D.-S., Sheng, H., Liu, Z.-X., Zeng, Z.-L., Xu, R.-H., Ju, H.-Q.: 42 Inhibition of fatty acid catabolism augments the efficacy of 43 oxaliplatin-based chemotherapy in gastrointestinal cancers. Cancer 44 Letters 473, 74-89 (2020). doi:10.1016/j.canlet.2019.12.036 23. Burris, H.A., Bakewell, S., Bendell, J.C., Infante, J., Jones, S.F., 45 Spigel, D.R., Weiss, G.J., Ramanathan, R.K., Ogden, A., Hoff, D.V.: 46 Safety and activity of IT-139, a ruthenium-based compound, in 47 patients with advanced solid tumours: a first-in-human, open-label dose-escalation phase I study with expansion cohort. ESMO Open $1(6)_{48}$ (2016). doi:10.1136/esmoopen-2016-000154 49 24. Trondl, R., Heffeter, P., Kowol, C.R., Jakupec, M.A., Berger, W.,
- 50 Keppler, B.K.: NKP-1339, the first ruthenium-based anticancer drug on the edge to clinical application. Chemical Science 5(8), 2925-2932 51 (2014). doi:10.1039/C3SC53243G 52
- Meier-Menches, S.M., Gerner, C., Berger, W., Hartinger, C.G., 25. 53 Keppler, B.K.: Structure-activity relationships for ruthenium and osmium anticancer agents - towards clinical development. Chemical 54
 - 55

Herrmann et al.

Page 14 of 20

- ¹ Society Reviews **47**(3), 909–928 (2018). doi:10.1039/C7CS00332C
- ²26. Jang, C., Chen, L., Rabinowitz, J.D.: Metabolomics and Isotope
- 3 Tracing. Cell **173**(4), 822–837 (2018). doi:10.1016/j.cell.2018.03.055
- 27. Armitage, E.G., Godzien, J., Peña, I., López-Gonzálvez, Á., Angulo, S., Gradillas, A., Alonso-Herranz, V., Martín, J., Fiandor, J.M.,
- 5 Barrett M.P. Gabarro, R. Barbas, C.: Metabolic Clustering An
- ⁵ Barrett, M.P., Gabarro, R., Barbas, C.: Metabolic Clustering Analysis
 as a Strategy for Compound Selection in the Drug Discovery Pipeline
- as a Strategy for Compound Selection in the Drug Discovery Pipeling for Leishmaniasis. ACS Chemical Biology 13(5), 1361–1369 (2018).
- 7 doi:10.1021/acschembio.8b00204
- ⁸28. Armitage, E.G., Southam, A.D.: Monitoring cancer prognosis,
- 9 diagnosis and treatment efficacy using metabolomics and lipidomics.
- $\begin{array}{rl} & \mbox{Metabolomics 12(9), 146 (2016). doi:10.1007/s11306-016-1093-7} \\ \mbox{Tomboxi} & \mbox{N} & \mbox{Sashatelian. A., Patti, G.J.: Defining the Metabolom} \end{array}$
- ¹⁰29. Zamboni, N., Saghatelian, A., Patti, G.J.: Defining the Metabolome:
 ¹¹Size, Flux, and Regulation. Molecular Cell 58(4), 699–706 (2015).
 ¹²doi:10.1016/j.molcel.2015.04.021
- doi:10.1016/j.molcel.2015.04.021
 Buescher, J.M., Antoniewicz, M.R., Boros, L.G., Burgess, S.C., Brunengraber, H., Clish, C.B., DeBerardinis, R.J., Feron, O., Frezza,
- C., Ghesquiere, B., Gottlieb, E., Hiller, K., Jones, R.G., Kamphorst,
- J.J., Kibbey, R.G., Kimmelman, A.C., Locasale, J.W., Lunt, S.Y.,
- Maddocks, O.D., Malloy, C., Metallo, C.M., Meuillet, E.J., Munger, J.,
- Nöh, K., Rabinowitz, J.D., Ralser, M., Sauer, U., Stephanopoulos, G.,
- ¹⁷ St-Pierre, J., Tennant, D.A., Wittmann, C., Vander Heiden, M.G.,
- 18 Vazquez, A., Vousden, K., Young, J.D., Zamboni, N., Fendt, S.-M.: A
- roadmap for interpreting 13C metabolite labeling patterns from cells.
- Current Opinion in Biotechnology **34**, 189–201 (2015).
- 20 doi:10.1016/j.copbio.2015.02.003
- 2131. Eicher, T., Kinnebrew, G., Patt, A., Spencer, K., Ying, K., Ma, Q., Machiraju, R., Mathé, E.A.: Metabolomics and Multi-Omics
- Integration: A Survey of Computational Methods and Resources.
 Metabolites 10(5), 202 (2020), doi:10.3390/metabo10050202
- ²³ Metabolites **10**(5), 202 (2020). doi:10.3390/metabo10050202
- 2432. Meng, C., Kuster, B., Culhane, A.C., Gholami, A.M.: A multivariate approach to the integration of multi-omics datasets. BMC
- ²⁶Bioinformatics 15(1), 162 (2014). doi:10.1186/1471-2105-15-162
 ²⁶33. Rampler, E., Abiead, Y.E., Schoeny, H., Rusz, M., Hildebrand, F.,
- 27 Fitz, V., Koellensperger, G.: Recurrent Topics in Mass
- Spectrometry-Based Metabolomics and Lipidomics—Standardization,
- Coverage, and Throughput. Analytical Chemistry **93**(1), 519–545
- ²⁹ (2021). doi:10.1021/acs.analchem.0c04698
- 3034. Chen, Y.-X., Chen, H., Rong, Y., Jiang, F., Chen, J.-B., Duan, Y.-Y.,
- Zhu, D.-L., Yang, T.-L., Dai, Z., Dong, S.-S., Guo, Y.: An integrative
- multi-omics network-based approach identifies key regulators for breast
 cancer. Computational and Structural Biotechnology Journal 18,
- 33 2826–2835 (2020). doi:10.1016/j.csbj.2020.10.001
- 34.35. Ghaffari, S., Hanson, C., Schmidt, R.E., Bouchonville, K.J., Offer,
 S.M., Sinha, S.: An integrated multi-omics approach to identify
- regulatory mechanisms in cancer metastatic processes. Genome
- 36 Biology **22**(1), 19 (2021). doi:10.1186/s13059-020-02213-x
- Bordbar, A., Monk, J.M., King, Z.A., Palsson, B.O.: Constraint-based models predict metabolic and associated cellular functions. Nature
- 38 Reviews Genetics **15**(2), 107–120 (2014). doi:10.1038/nrg3643
- 3937. Pandey, V., Hadadi, N., Hatzimanikatis, V.: Enhanced flux prediction
 by integrating relative expression and relative metabolite abundance
- into thermodynamically consistent metabolic models. PLOS
 Computational Biology 15(5), 1007036 (2019).
- 42 doi:10.1371/journal.pcbi.1007036
- $_{43}$ 38. Yizhak, K., Chaneton, B., Gottlieb, E., Ruppin, E.: Modeling cancer metabolism on a genome scale. Molecular Systems Biology $11(6),\,817$
- 44 (2015). doi:10.15252/msb.20145307
 4539. Yizhak, K., Benyamini, T., Liebermeister, W., Ruppin, E., Shlomi, T.:
- 4539. Tiznak, K., Benyamini, T., Liebermeister, W., Ruppin, E., Sniomi, T.:
 Integrating quantitative proteomics and metabolomics with a
 46
- genome-scale metabolic network model. Bioinformatics **26**(12)
- 47 255–260 (2010). doi:10.1093/bioinformatics/btq183
- 4840. Zur, H., Ruppin, E., Shlomi, T.: iMAT: an integrative metabolic
 analysis tool. Bioinformatics 26(24), 3140–3142 (2010).
 doi:10.1093/bioinformatics/btq602
- ⁵⁰41. Agren, R., Mardinoglu, A., Asplund, A., Kampf, C., Uhlen, M., Nielsen,
 J.: Identification of anticancer drugs for hepatocellular carcinoma
- through personalized genome-scale metabolic modeling. Molecular
- 52 Systems Biology **10**(3), 721 (2014). doi:10.1002/msb.145122
- ⁵³42. Lewis, N.E., Nagarajan, H., Palsson, B.O.: Constraining the metabolic
 genotype-phenotype relationship using a phylogeny of in silico

- 1 methods. Nature Reviews Microbiology 10(4), 291-305 (2012). 2 doi:10.1038/nrmicro2737 43. O'Brien, E.J., Lerman, J.A., Chang, R.L., Hyduke, D.R., Palsson, B.: 3 Genome-scale models of metabolism and gene expression extend and 4 refine growth phenotype prediction. Molecular Systems Biology 9(1), 5 693 (2013). doi:10.1038/msb.2013.52 Orth, J.D., Thiele, I., Palsson, B.Ø.: What is flux balance analysis? 44. 6 Nature Biotechnology 28(3), 245-248 (2010). doi:10.1038/nbt.1614 7 Henry, C.S., Broadbelt, L.J., Hatzimanikatis, V.: 8 Thermodynamics-Based Metabolic Flux Analysis, Biophysical Journal 92(5), 1792-1805 (2007). doi:10.1529/biophysj.106.093138 9 Salvy, P., Fengos, G., Ataman, M., Pathier, T., Soh, K.C., 46. 10 Hatzimanikatis, V.: pyTFA and matTFA: a Python package and a 11 Matlab toolbox for Thermodynamics-based Flux Analysis. Bioinformatics 35(1), 167-169 (2019). 12 doi:10.1093/bioinformatics/bty499 13 47. Aurich, M.K., Paglia, G., Rolfsson, Ó., Hrafnsdóttir, S., Magnúsdóttir, 14 M., Stefaniak, M.M., Palsson, B.Ø., Fleming, R.M.T., Thiele, I.: Prediction of intracellular metabolic states from extracellular 15 metabolomic data. Metabolomics 11(3), 603-619 (2015). 16 doi:10.1007/s11306-014-0721-3 17 48. Masid, M., Ataman, M., Hatzimanikatis, V.: Analysis of human metabolism by reducing the complexity of the genome-scale models 18 using redHUMAN. Nature Communications 11(1), 2821 (2020). 19 doi:10.1038/s41467-020-16549-2 20 49. Volkova, S., Matos, M.R.A., Mattanovich, M., Marín de Mas, I.: Metabolic Modelling as a Framework for Metabolomics Data 21 Integration and Analysis. Metabolites 10(8), 303 (2020) 22 doi:10.3390/metabo10080303 23 50. Zielinski, D.C., Jamshidi, N., Corbett, A.J., Bordbar, A., Thomas, A., Palsson, B.Ø.: Systems biology analysis of drivers underlying hallmarks24 of cancer cell metabolism. Scientific Reports 7(1), 41241 (2017). 25 doi:10.1038/srep41241 26 Jungwirth, U., Xanthos, D.N., Gojo, J., Bytzek, A.K., Körner, W., 51. Heffeter, P., Abramkin, S.A., Jakupec, M.A., Hartinger, C.G., 27 Windberger, U., et al.: Anticancer activity of methyl-substituted 28 oxaliplatin analogs. Molecular pharmacology 81(5), 719-728 (2012) 29 52. Galvez, L., Rusz, M., Schwaiger-Haber, M., Abiead, Y.E., Hermann, G., Jungwirth, U., Berger, W., Keppler, B.K., Jakupec, M.A., 30 Koellensperger, G.: Preclinical studies on metal based anticancer drugs 31 as enabled by integrated metallomics and metabolomics. Metallomics 32 11(10), 1716-1728 (2019). doi:10.1039/C9MT00141G 53. Rusz, M., Del Favero, G., El Abiead, Y., Gerner, C., Keppler, B.K., 33 Jakupec, M.A., Koellensperger, G.: Morpho-metabotyping the 34 oxidative stress response. Scientific Reports. (2021) 35 Schwaiger, M., Schoeny, H., Abiead, Y.E., Hermann, G., Rampler, E., 54. Koellensperger, G.: Merging metabolomics and lipidomics into one 36 analytical run. Analyst 144(1), 220-229 (2018). 37 doi:10.1039/C8AN01219A
- Oberhuber, M., Pecoraro, M., Rusz, M., Oberhuber, G., Wieselberg, 38 55. M., Haslinger, P., Gurnhofer, E., Schlederer, M., Limberger, T., 39 Lagger, S., Pencik, J., Kodajova, P., Högler, S., Stockmaier, G., 40 Grund-Gröschke, S., Aberger, F., Bolis, M., Theurillat, J.-P., 41 Wiebringhaus, R., Weiss, T., Haitel, A., Brehme, M., Wadsak, W., Griss, J., Mohr, T., Hofer, A., Jäger, A., Pollheimer, J., Egger, G., 42 Koellensperger, G., Mann, M., Hantusch, B., Kenner, L.: 43 STAT3-dependent analysis reveals PDK4 as independent predictor of 44 recurrence in prostate cancer. Molecular Systems Biology $\mathbf{16}(4),\,9247$ (2020). doi:10.15252/msb.20199247 45
- Széliová, D., Schoeny, H., Knez, v., Troyer, C., Coman, C., Rampler, E., Koellensperger, G., Ahrends, R., Hann, S., Borth, N., Zanghellini, J., Ruckerbauer, D.E.: Robust Analytical Methods for the Accurate Quantification of the Total Biomass Composition of Mammalian Cells. 48 In: Nagrath, D. (ed.) Metabolic Flux Analysis in Eukaryotic Cells: Methods And Protocols. Methods in Molecular Biology, pp. 119–160. Springer, New York, NY (2020). doi:10.1007/978-1-0716-0159-4_7
- Robinson, J.L., Kocabaş, P., Wang, H., Cholley, P.-E., Cook, D.,
 Nilsson, A., Anton, M., Ferreira, R., Domenzain, I., Billa, V., Limeta,
 A., Hedin, A., Gustafsson, J., Kerkhoven, E.J., Svensson, L.T.,
 Palsson, B.Ø., Mardinoglu, A., Hansson, L., Uhlén, M., Nielsen, J.: An⁵³
 atlas of human metabolism. Science Signaling 13(624) (2020).

55

55

Herrmann et al.

Page 15 of 20

T			
	doi:10.1126	colornal april 192	
	uoi.10.1120	/scisignal.aaz1482	

- ²58. Hart, T., Chandrashekhar, M., Aregger, M., Steinhart, Z., Brown,
- 3 K.R., MacLeod, G., Mis, M., Zimmermann, M., Fradet-Turcotte, A.,
- Sun, S., Mero, P., Dirks, P., Sidhu, S., Roth, F.P., Rissland, O.S.,
- 4 Durocher, D., Angers, S., Moffat, J.: High-Resolution CRISPR Screens
- 5 Reveal Fitness Genes and Genotype-Specific Cancer Liabilities. Cell
- 163(6), 1515-1526 (2015). doi:10.1016/j.cell.2015.11.015 6
- 7^{59.} Széliová, D., Ruckerbauer, D.E., Galleguillos, S.N., Petersen, L.B., Natter, K., Hanscho, M., Troyer, C., Causon, T., Schoeny, H.,
- 8 Christensen, H.B., Lee, D.-Y., Lewis, N.E., Koellensperger, G., Hann,
- S., Nielsen, L.K., Borth, N., Zanghellini, J.: What CHO is made of: 9
- Variations in the biomass composition of Chinese hamster ovary cell
- 10 lines. Metabolic Engineering 61, 288-300 (2020).
- 11 doi:10.1016/j.ymben.2020.06.002
- Jain, M., Nilsson, R., Sharma, S., Madhusudhan, N., Kitami, T., 1260.
- Souza, A.L., Kafri, R., Kirschner, M.W., Clish, C.B., Mootha, V.K.: 13
- Metabolite Profiling Identifies a Key Role for Glycine in Rapid Cancer 14
- Cell Proliferation. Science 336(6084), 1040-1044 (2012)
- doi:10.1126/science.1218595 15
- 16^{61.} Else, P.L.: The highly unnatural fatty acid profile of cells in culture. Progress in Lipid Research 77, 101017 (2020). 17
- doi:10.1016/j.plipres.2019.101017
- Gregory, M.K., King, H.W., Bain, P.A., Gibson, R.A., Tocher, D.R., 1862. Schuller, K.A.: Development of a Fish Cell Culture Model to 19
- Investigate the Impact of Fish Oil Replacement on Lipid Peroxidation. 20 Lipids 46(8), 753-764 (2011). doi:10.1007/s11745-011-3558-9
- 2163. Lewis, N.E., Hixson, K.K., Conrad, T.M., Lerman, J.A., Charusanti, P., Polpitiya, A.D., Adkins, J.N., Schramm, G., Purvine, S.O., 22
- Lopez-Ferrer, D., Weitz, K.K., Eils, R., König, R., Smith, R.D.,
- 23 Palsson, B.Ø.: Omic data from evolved E. coli are consistent with
- computed optimal growth from genome-scale models. Molecular 24
- Systems Biology 6(1), 390 (2010). doi:10.1038/msb.2010.47
- ²⁵64. Gudmundsson, S., Thiele, I.: Computationally efficient flux variability 26 analysis. BMC Bioinformatics 11(1), 489 (2010).
- 27 doi:10.1186/1471-2105-11-489
- 28^{65.} Ebrahim, A., Lerman, J.A., Palsson, B.O., Hyduke, D.R.: Cobrapy:
- constraints-based reconstruction and analysis for python. BMC systems 29 biology 7(1), 1-6 (2013)
- 3066. Warburg, O.: Über den Stoffwechsel der Carcinomzelle. Naturwissenschaften 12(50), 1131-1137 (1924). 31
- doi:10.1007/BF01504608
- ³²67. Brown, R.E., Short, S.P., Williams, C.S.: Colorectal Cancer and Metabolism. Current Colorectal Cancer Reports 14(6), 226-241 33 (2018). doi:10.1007/s11888-018-0420-y
- 68. Li, T., Le, A.: Glutamine Metabolism in Cancer. In: Le, A. (ed.) The
- 35 Heterogeneity of Cancer Metabolism. Advances in Experimental
- Medicine and Biology, pp. 13-32. Springer, ??? (2018). 36
- doi:10.1007/978-3-319-77736-8 2
- ³⁷69. Wu, M., Neilson, A., Swift, A.L., Moran, R., Tamagnine, J., Parslow, 38 D., Armistead, S., Lemire, K., Orrell, J., Teich, J., Chomicz, S.,
- Ferrick, D.A.: Multiparameter metabolic analysis reveals a close link 39
- between attenuated mitochondrial bioenergetic function and enhanced
- 40 glycolysis dependency in human tumor cells. American Journal of
- 41 Physiology. Cell Physiology 292(1), 125-136 (2007). doi:10.1152/ajpcell.00247.2006 42
- 43^{70.} Uhlen, M., Zhang, C., Lee, S., Sjöstedt, E., Fagerberg, L., Bidkhori,
- G., Benfeitas, R., Arif, M., Liu, Z., Edfors, F., Sanli, K., Feilitzen, K.v., 44 Oksvold, P., Lundberg, E., Hober, S., Nilsson, P., Mattsson, J.,
- Schwenk, J.M., Brunnström, H., Glimelius, B., Sjöblom, T., Edqvist, 45
- P.-H., Djureinovic, D., Micke, P., Lindskog, C., Mardinoglu, A., 46
- Ponten, F.: A pathology atlas of the human cancer transcriptome.
- Science 357(6352) (2017). doi:10.1126/science.aan2507 47
- 4871. Balcells, C., Foguet, C., Tarragó-Celada, J., de Atauri, P., Marin, S., Cascante, M.: Tracing metabolic fluxes using mass spectrometry: 49
- Stable isotope-resolved metabolomics in health and disease. TrAC
- 50 Trends in Analytical Chemistry 120, 115371 (2019).
- doi:10.1016/j.trac.2018.12.025 51
- 52^{72.} Yao, C.-H., Fowle-Grider, R., Mahieu, N.G., Liu, G.-Y., Chen, Y.-J., Wang, R., Singh, M., Potter, G.S., Gross, R.W., Schaefer, J., Johnson,
- 53 S.L., Patti, G.J.: Exogenous Fatty Acids Are the Preferred Source of
- Membrane Lipids in Proliferating Fibroblasts. Cell Chemical Biology 54

- 23(4), 483-493 (2016). doi:10.1016/j.chembiol.2016.03.007 73. Yao, C.-H., Liu, G.-Y., Yang, K., Gross, R.W., Patti, G.J.: Inaccurate 2 quantitation of palmitate in metabolomics and isotope tracer studies 3 due to plastics. Metabolomics 12(9), 1-7 (2016) 4
- 74. Hasenour, C.M., Rahim, M., Young, J.D.: In Vivo Estimates of Liver 5 Metabolic Flux Assessed by 13C-Propionate and 13C-Lactate Are Impacted by Tracer Recycling and Equilibrium Assumptions. Cell 6 Reports 32(5) (2020). doi:10.1016/j.celrep.2020.107986 7
- 75. Williams, T.C.R., Miguet, L., Masakapalli, S.K., Kruger, N.J., 8 Sweetlove, L.J., Ratcliffe, R.G.; Metabolic Network Fluxes in Heterotrophic Arabidopsis Cells: Stability of the Flux Distribution 9 under Different Oxygenation Conditions. Plant Physiology 148(2), 10 704-718 (2008). doi:10.1104/pp.108.125195
- 11 76. Wu, Y., Li, L.: Sample normalization methods in quantitative metabolomics. Journal of Chromatography A 1430, 80-95 (2016). 12 doi:10.1016/j.chroma.2015.12.007 13
- Chan, S., Cai, J., Wang, L., Simons-Senftle, M., Maranas, C.: 77. 14 Standardizing biomass reactions and ensuring complete mass balance in genome-scale metabolic models. Bioinformatics 33(22), 3603-3609 15 (2017), doi:10.1093/bioinformatics/btx453 16
- 78. Pereira, R., Nielsen, J., Rochaa, I.: Improving the flux distributions 17 simulated with genome-scale metabolic models of saccharomyces cerevisiae. Metabolic Engineering Communications 3(1), 153-163 18 (2016), doi:10.1016/i.meteno.2016.05.002 19
- Yuan, H., Cheung, M., Hilbers, P., van Riel, N.: Flux balance analysis 79. 20 of plant metabolism: The effect of biomass composition and model structure on model predictions. Frontiers in Plant Sciences 7(1), 537 21 (2016). doi:10.3389/fpls.2016.00537 22
- Dubuis, S., Ortmayr, K., Zampieri, M.: A framework for large-scale metabolome drug profiling links coenzyme a metabolism to the toxicity²³ of anti-cancer drug dichloroacetate. Communications biology $\mathbf{1}(1)$, 24 1-11(2018)25
- 81. Ortmayr, K., Dubuis, S., Zampieri, M.: Metabolic profiling of cancer 26 cells reveals genome-wide crosstalk between transcriptional regulators and metabolism. Nature communications 10(1), 1–13 (2019) 27
- Nam, H., Campodonico, M., Bordbar, A., Hyduke, D., Kim, S., 82. 28 Zielinski, D., Palsson, B.: A systems approach to predict oncometabolites via context-specific genome-scale metabolic networks. 29 PLOS Computational Biology 10(9), 1003837 (2014). 30 doi:10.1371/iournal.pcbi.1003837
- 31 83. Turanli, B., Zhang, C., Kim, W., Benfeitas, R., Uhlen, M., Arga, K., 32 Mardinoglu, A.: Discovery of therapeutic agents for prostate cancer using genome-scale metabolic modeling and drug repositioning. 33 EBioMedicine 42, 386-396 (2019). doi:10.1016/j.ebiom.2019.03.009 34
- 84. McGuirk, S., Audet-Delage, Y., St-Pierre, J.: Metabolic Fitness and Plasticity in Cancer Progression. Trends in Cancer $\boldsymbol{6}(1),~49\text{--}61~(2020).^{35}$ doi:10.1016/j.trecan.2019.11.009 36
- Lee, S., Jang, W.-J., Choi, B., Joo, S.H., Jeong, C.-H.: Comparative 85. 37 metabolomic analysis of HPAC cells following the acquisition of 38 erlotinib resistance. Oncology Letters 13(5), 3437-3444 (2017). doi:10.3892/ol.2017.5940 39
- Fan, T.W.-M., El-Amouri, S.S., Macedo, J.K.A., Wang, Q.J., Song, 40 H., Cassel, T., Lane, A.N.: Stable Isotope-Resolved Metabolomics 41 Shows Metabolic Resistance to Anti-Cancer Selenite in 3D Spheroids versus 2D Cell Cultures. Metabolites 8(3), 40 (2018). 42 doi:10.3390/metabo8030040 43
- 87. Ricci, F., Brunelli, L., Affatato, R., Chilà, R., Verza, M., Indraccolo, 44 S., Falcetta, F., Fratelli, M., Fruscio, R., Pastorelli, R., Damia, G.: Overcoming platinum-acquired resistance in ovarian cancer 45 patient-derived xenografts. Therapeutic Advances in Medical Oncology₄₆ 11, 1758835919839543 (2019). doi:10.1177/1758835919839543
- 88. Rusz, M., Rampler, E., Keppler, B.K., Jakupec, M.A., Koellensperger, 47 G.: Single Spheroid Metabolomics: Optimizing Sample Preparation of $\ _{48}$ Three-Dimensional Multicellular Tumor Spheroids. Metabolites 9(12), 49 304 (2019). doi:10.3390/metabo9120304
- 50 89. Cavill, R., Kamburov, A., Ellis, J.K., Athersuch, T.J., Blagrove, M.S.C., Herwig, R., Ebbels, T.M.D., Keun, H.C.: 51 Consensus-Phenotype Integration of Transcriptomic and Metabolomic 52 Data Implies a Role for Metabolism in the Chemosensitivity of Tumour 53 Cells. PLOS Computational Biology 7(3), 1001113 (2011). doi:10.1371/journal.pcbi.1001113 54

55

55

Herrmann et al.

¹ 90.	Jungwirth, U., Kowol, C.R., Keppler, B.K., Hartinger, C.G., Berger,	1
2	W., Heffeter, P.: Anticancer Activity of Metal Complexes: Involvement	2
3	of Redox Processes. Antioxidants & Redox Signaling 15 (4), 1085–1127 (2011). doi:10.1089/ars.2010.3663	3
⁴ 91.	Gibson, D.: The mechanism of action of platinum anticancer	4
5	agents—what do we really know about it? Dalton Transactions (48),	5
6	10681–10689 (2009). doi:10.1039/B918871C Kelland, L.: The resurgence of platinum-based cancer chemotherapy.	6
7 ^{92.}	Nature Reviews Cancer 7(8), 573–584 (2007). doi:10.1038/nrc2167	7
893.	Lizardo, M.M., Morrow, J.J., Miller, T.E., Hong, E.S., Ren, L.,	8
9	Mendoza, A., Halsey, C.H., Scacheri, P.C., Helman, L.J., Khanna, C.:	9
10	Upregulation of Glucose-Regulated Protein 78 in Metastatic Cancer Cells Is Necessary for Lung Metastasis Progression. Neoplasia 18 (11),	10
11	699–710 (2016). doi:10.1016/j.neo.2016.09.001	11
12 ^{94.}	Gottesman, M.M., Fojo, T., Bates, S.E.: Multidrug resistance in	12
13	cancer: role of atp-dependent transporters. Nature Reviews Cancer 2(1), 48–58 (2002)	13
1495.		14
15	Weiss, H.L., Evers, B.M., Zaytseva, Y.Y.: Inhibition of Fatty Acid	15
16	Synthase Upregulates Expression of CD36 to Sustain Proliferation of Colorectal Cancer Cells. Frontiers in Oncology 10 (2020).	16
17	doi:10.3389/fonc.2020.01185	17
1896.	Valli, A., Rodriguez, M., Moutsianas, L., Fischer, R., Fedele, V.,	18
19	Huang, HL., Stiphout, R.V., Jones, D., Mccarthy, M., Vinaxia, M.,	19
20	Igarashi, K., Sato, M., Soga, T., Buffa, F., Mccullagh, J., Yanes, O., Harris, A., Kessler, B.: Hypoxia induces a lipogenic cancer cell	20
21	phenotype via HIF1 $lpha$ -dependent and -independent pathways.	21
²² 97.	Oncotarget 6, 1920–1941 (2014). doi:10.18632/oncotarget.3058	22
97. 23	Haug, K., Cochrane, K., Nainala, V.C., Williams, M., Chang, J., Jayaseelan, K.V., O'Donovan, C.: MetaboLights: a resource evolving in	23
24	response to the needs of its scientific community. Nucleic Acids	24
25	Research 48 (D1), 440–444 (2020). doi:10.1093/nar/gkz1019	25
26 Add	litional Files	26
27 Add	litional file 1 — supplementary material	27
Pdf 28	of the supplementary material containing Figure S1 to S6.	28
29		29
30		30
31		31
32		32
33		33
34		34
35		35
36		36
37		37
38		38
39		39
40		40
41		41
42		42
43		43
44		44
45		45
46		46
47		47
48		48
49		49
50		50
51		51
52		52
53		53
54		54
55		55