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ABSTRACT
Understanding the complex biology of the tumor microenviron-
ment (TME) is necessary to understand the mechanisms of action
of immuno-oncology therapies and to match the right therapies to
the right patients. Multiplex immunofluorescence (mIF) is a useful
technology that has tremendous potential to further our under-
standing of cancer patho-biology; however, tools that fully leverage
the high dimensionality of this data are still in their infancy. We
describe here a novel deep learning pipeline aimed to allow Graph-
based Inspection of Tissues viaEmbeddings,GraphITE. GraphITE
transforms mIF data into a graph representation, where unsuper-
vised learning algorithms can be utilised to generate embeddings
representing cellular ‘neighbourhoods’. The embeddings can be
downprojected and explored for clustering analysis, and patterns
can be mapped back to the image as well as interrogated for phe-
notypical, morphological, or structural distinctiveness. GraphITE
supports the extraction of information not only on the phenotypes
of individual cells or the relationships between specific cell types,
but is able to characterize cell neighborhoods to look for more com-
plex interactions, thereby allowing pathologists and data scientists
to explore mIF data sets, uncovering patterns that are otherwise
obscured by the high-dimensionality of the data. In this work, we
showcase the current setup of the system, going from raw input
data all the way to a user friendly exploration tool. Using this tool,
we show how the data can be navigated in a way previously not
possible.

1 INTRODUCTION
Immuno-oncology (IO) therapies have been shown to be highly
effective in some cases, however patient response is known to be

highly variable, with some patients failing to respond at all. De-
veloping a deeper understanding of the tumor micro environment
(TME) by characterizing phenotypes and cell locations is crucial for
the development of anti-cancer therapeutic interventions. Multiplex
immunofluorescence (mIF) imaging is increasingly being employed
to gain insight into the TME, but interpretation of this data modal-
ity remains challenging. Both the power and the complexity of mIF
imaging technology go hand-in-hand; it is the high-dimensionality
that simultaneously captures spatial topology and rich phenotypic
information that also makes data exploration difficult. To fully
utilise the power of mIF, a method is needed to convert this com-
plex, high-dimensional data into a lower-dimensional form wherein
interesting patterns are made plain to pathologists.

Currently, pathologists use human cognition to identify unique
patterns by toggling between biomarkers in an mIF image. Existing
methods allow pathologists to view aggregated phenotypical in-
formation and cell interactions on a limited, generally one-to-one,
basis. These methods have been largely descriptive and geared to-
ward addressing particular hypotheses; to fully exploit mIF data a
more holistic approach is required, one that leverages the spatial
and phenotypic data prior to hypothesis-testing.

In the field of artificial intelligence (AI) and deep learning there
exist such methods for converting complex, high-dimensional data
into alternative, lower-dimensional representations that emphasise
the otherwise hard to discern patterns spread across dimensions.
A suite of tools known as unsupervised learning algorithms are
appropriate for solving such problems; these are algorithms that
aim to capture the structure of data, without reference to labels or
outcomes.
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In this work we propose a novel pipeline for converting indi-
vidual cells (or whole tissues) from mIF images into graph (or cell
level) embeddings. First a graph is constructed to represent the
spatial and phenotypic information of every cell in the mIF image.
Second, a unsupervised deep learning algorithm is applied, using
graph convolutional networks (GCN) [10], to generate embeddings
representing each cellular neighbourhood. Third, the embeddings
are non-linearly down-projected into two dimensions, via uniform
manifold approximation and projection (UMAP) [12], in such a way
as to retain as much of the interesting structure in the embeddings
as possible. Finally, the down-projected embeddings may be visu-
ally examined or statistically analysed for clustering and structure;
noting that closeness in embedding space represents similarity be-
tween cellular neighborhoods in the highly complex, but real-world,
spatio-phenotypic-morphological space of the mIF image.

In other words, GraphITE is a graph-based AI pipeline for con-
verting mIF images into plots, statistics, and diagrams that a pathol-
ogist can quickly examine to identify hidden patterns in the data.
This allows pathologists to gain new biological insights, deepening
their understanding of the TME, and leading to a faster turnaround
and better decision making in both drug development, and patient-
therapy matching.

2 RELATED WORK
Graphs are mathematical structures that model pairwise relation-
ships between entities. The entities are represented as nodes in the
graph and depending on whether they interact with another node,
an edge can be formed between them. Graphs can be used to model
many types of interactions, processes, and relations in physical, bio-
logical and information systems. For example, in protein-to-protein
interactions [21]. Graphs are also commonly in social media to
model users’ relationships and to recommend content. Graphs are
also found in geographical settings such as in digital maps, where
the nodes might correspond to addresses or locations, while the
edges can represent the distances between them. The use of graphs
in this way can allow one to find shortest route to a particular
destination of interest [3].

The use of graphs as a means to derive insights in the biomedical
domain is not new, in fact, there are several successful attempts
at leveraging the technology. In [20] colo-rectal cancer grading is
carried out by transforming histology images into a graph, in which
cell nuclei are represented as nodes in the graphs and links made
based on node similarity. Training on these with a GCN they are
able to reach state of the art grading accuracy.

Another example may be found in [6] where an attempt is made
to circumvent the issue that standard CNNs do not account for all of
the intricate features and spatial arrangement of cells in histology
images. Building classifiers for detecting cancer can thus become
more difficult. Their approach to the problem is to instead convert
the H&E stained image into a graph (with cell nuclei as nodes
and edges based on distances). Using graph convolutional neural
networks in a supervised manner they train a model that reaches
comparable performance with other, larger CNNs.

In another example [11] a GCN is employed in order to perform
prediction of the status of human epidermal growth factors; H&E
stained slides of breast cancer were transformed into a graph; and

the approach was demonstrated to be both more computationally
efficient and more performant than prior state of the art.

In [5] the DeePaN framework is described, where unsupervised
learning is carried out on graphs integrating genomics and elec-
tronic health records data together, in order to identify responsive
and non-responsive patient subsets amongst IO therapies address-
ing Non Small Cell Lung Cancer (NSCLC).

3 METHOD
This section describes the steps that constitute the graph-based
pipeline, including data preparation, graph construction, graph
embedding training, down-projection, and analysis.

3.1 Data Preparation
To demonstrate this pipeline, we used a dataset of 65 commercially-
obtained samples of mIF stained tissue from (NSCLC) patients. The
biomarkers used to stain this mIF tissue were DAPI, CD8, PDL1,
CD68, PD1, Ki67, and CK [15]. Slides were imaged with a Vectra
Polaris multispectral imaging platform (Akoya Biosciences®) using
OPAL fluorophores 520, 540, 570, 620, 650, and 690. The autofluo-
rescence channel was also acquired and retained throughout the
image analysis. Image analysis was conducted using HALO soft-
ware Highplex FL module (Indica Labs ®). Whole slide results were
exported with object data inclusive of positivity status (0/1) for each
marker and location for each cell identified. Additional morpholog-
ical features were also extracted, in the form of for example cell
and nucleus area. These data were combined in a tabular format
listing, for each cell ID, the X & Y spatial coordinates, the full set of
biomarker immunofluorescence intensities, and the morphological
features. From this data, additional morphological features, such as
cell eccentricity could also be computed and added.

Due to the fact that not all of the samples had been created at the
same time, under the same staining procedure and image capturing
settings, the intensities of the detected dyes had to be normalized
on a per batch level to ensure a common dynamic range. A standard
mean-variance normalization was applied to each dye individually
batch-wise.

In addition to the raw intensities of the biomarkers, the HALO
image analysis system also reported whether a cell was deemed
positive for a particular marker or not, based on built-in domain
knowledge and certain rulesets. This marker positivity was encoded
in the form of a boolean value for each of the markers along with
the intensity. In order to try to capture both of the two values, the
intensity and the boolean, a combined approach was taken as a
preprocessing step in which the intensity values were normalized
to fall in the range [0.0, 0.5] with an additional 0.5 added if the
marker was positive. This ensured that the dynamic range of the
intensity was preserved while at the same time making use of the
built in domain knowledge in the cell detection tool. An example
of the resulting data is shown in table 1. In total, about 45 million
cells were processed.

3.2 Graph Construction
Since we are concerned with the interactions between cells in the
TME, we construct graphs by mapping each cell in the mIF image
as a node in a graph, using the X, Y coordinate as reported by the
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Cell_ID PDL1 CD8 Ki67 CD68 CK PD1 auto DAPI eccentricity cell_area
265205 0.023221 0.077006 0.024235 0.062387 0.000517 0.009603 0.045871 0.504963 1.307692 171.745
297948 0.018611 0.074583 0.012308 0.023856 0.000480 0.019373 0.044164 0.528180 1.076923 143.162
313582 0.013624 0.043023 0.008150 0.045226 0.000580 0.009647 0.027494 0.504590 1.071429 168.049
117385 0.028539 0.038532 0.006990 0.082494 0.000196 0.031632 0.044176 0.506989 1.090909 100.287
387327 0.022115 0.032659 0.011969 0.086545 0.000484 0.007019 0.027095 0.504594 1.083333 127.638

Table 1: Example mIF data table including normalised biomarker intensities, and auxiliary features.

Figure 1: AmIF image with a constructed graph shown as an
overlay.

image analysis tool and connecting nodes with edges according to
their distances. The selection of edges based on cell to cell distance
inherently assumes a range over which cells can interact, either
by direct contact or paracrine signaling with soluble factors. From
a biological perspective, it is reasonable to focus on local interac-
tions because these interactions in the TME, have been shown to
influence not only the immune response to tumor through anti-
gen presentation but also the active suppression of the adaptive
immune response through expression of checkpoint inhibitors by
tumor and immune cells [14][16]. However, it is worth considering
carefully the distance thresholds at this stage since they constitute
the first significant hyperparameter in the pipeline, and one which
likely has a substantial impact on the embeddings generated and
the insights derived thereby. Optimization of these thresholds may
indeed be different for exploratory as opposed to predictive applica-
tions. An example of a mIF image with constructed graph overlay
is shown in Figure 1.

As for the node feature values, we assign all (or a sub-set) or
the available phenotypical (i.e. normalised biomarker immunoflu-
orescence intensities) and morphological (i.e. cell eccentriciy and
volume) features. The edges that connect nodes get assigned a
weight inversely proportional to the distance between the two cells
as𝑊 = 1

𝑑

3.3 Deep Unsupervised Learning on the Graph
There are several ways in which embeddings can be generated from
graph-based data. It can either be on the graph level, where one tries
to represent the entire graph as an embedding, or at a sub-region
or node level. The former can be useful when comparing different
types of graphs or when classifying them in a fixed set, such as
in [4]. The latter is useful when a more fine-grained area of the
image is to be represented and explored, which is our purpose. One
could imagine that given a dataset where response is known on a
per tissue basis, that the full graph embedding could be interesting
from a prediction standpoint.

At this stage we have one graph per mIF image, and it becomes
possible to apply any of a range of unsupervised learning algorithms
set to operate on graph structured data. There are several promising
candidates for capturing information in graphs, such as GraphSage
[8], Deep Graph InfoMax (DGI) [18], Node2Vec [7], and Variational
Graph Autoencoder (GAE) [9].

While a full and exhaustive comparison of approaches would be
illuminating, a comparison of graph-based unsupervised learning
methods is not the primary focus of this work. It is, however, worth
taking a moment to consider the underlying intuitions around these
comparative methods.

DGI, for instance, is a contrastive method; i.e. it aims to max-
imise the distinctiveness between pairs of graphs: the true graph
and a corrupted alternative of the graph. This is achieved by set-
ting up a classification problem, whereby a neural network (called
the discriminator) aims to predict whether a presented embedding
belongs to the true graph or a corrupted graph. If the discrimi-
nator is effective at identifying embeddings that belong to true
and corrupted graphs, we know that the embeddings must contain
the necessary information required to distinguish between these
graphs. In other words, DGI, aims to generate embeddings that
capture the distinctiveness of the graph & cellular neighbourhood, as
compared with corrupted alternatives. Naturally, this entails that
careful thought be given to the choice of the so-called corruption
function and readout function; since this choice changes what it
means to say that a graph’s embeddings are distinct.

GraphSage uses a very similar approach in the way embeddings
are generated for each node, but differs in the learning objective.
In this case, the idea is to ensure that nearby nodes in the graph
are given similar embeddings while distant nodes get very distinct
from each other. This then puts emphasis on the assumption that
nearby nodes are similar and should cluster together. While this
is a sensible assumption from one perspective, it can mean that
repeating patterns of nodes that are far away from each other, but
otherwise similar, could end up with very different embeddings.
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Conversely, GAEs work in fundamentally the same manner as
all autoencoders: the goal is to output a prediction of the input via
a bottleneck which hopefully captures a good representation of
the latent space. In other words, an effective GAE aims to capture
and represent compactly the information necessary to reconstruct
the graph. This has the benefit of effectively guaranteeing no loss
of information (under ideal conditions). Other methods, such as
contrastrive methods, do not necessarily make this guarantee; how-
ever the loss of information may be measured via a proxy task we
describe later in the experiments section.

Node2Vec builds upon Word2Vec, effectively treating random
walks in the graph like words in a vocabulary. Word2Vec, and
specifically skipgram negative sampling, trains embeddings that
represents the likelihood that another workwill be nearby the target
word. The underlying assumption is that nearby words should be
semantically related; i.e. if words appear near each other, they are
probably related at a conceptual level as well. Thus, the embeddings
generated using Node2Vec capture information such that other
embeddings will be nearby if the probability distribution of random
walks from the target cells are similar. Thus, cells that are nearby
in the graph will always be somewhat nearby in the embedding
space because somewhat similar random walks are always possible;
however cells that are distant in the graph may also have nearby
embeddings if the cellular neighbourhood is similar.

In this work we have utilised the DGI algorithm to generate
node embeddings. We expect that similar performance is achievable
via the discussed alternatives; but we have yet to fully explore
the relative performance impact. Given the use of a contrastive
approach, we consider it worthwhile to additionally evaluate the
loss of information retained by the embeddings via proxy tasks,
which we discuss later in the results section.

Under DGI, we utilised a row-shuffling corruption function; ef-
fectively randomising the connections between nodes in the graph,
and an average embedding readout function as suggested in the
orginal paper. This means that the embeddings are trained to be eas-
ily distinguished from neighbourhoods that have the same features
(i.e. phenotypic or morphological information) but are connected
in a different way.

An important hyperparameter in the embedding generation is
the selection of GCN depth. With GCN layers, as with all convo-
lutional layers, increasing depth translates directly to increasing
receptive field. A one layer GCN integrates information from ev-
ery node connected by an edge to the target node, whereas a two
layer GCN additionally incorporates the information that updated
those neighbouring nodes (i.e. their neighbours), and so on. In other
words, each embedding incorporates information about nodes that
are N hops way, where N is the number of layers in the GCN. The
choice of GCN depth in the embedding generation of a tissue graph
therefore dictates the effective ‘size’ of the cellular neighbourhood
that each embedding represents; even though the embedding is
always ‘focused’ on the target cell. The relative importance of the
information in the target cell, compared with the information in
closely, and more distantly, neighbouring cells is dictated by the
interaction between several hyperparameters, namely: The distance
threshold in graph construction, the edge weighting (if any), and
the GCN depth. Together these hyperparameters dictate the mean-
ing of the embeddings, which necessarily sit on a smooth scale

ranging from purely cell embeddings, at the ‘narrow extreme’, to
being driven by the average statistics of the entire graph, at the
‘broad extreme’.

The cellular neighbourhood size may be usefully guided by the
pathologist or end-user; however in general there is a range that
seems broadly applicable as most cells of interest in the tumor
microenvironment range from 7-20 um in diameter for lymphocytes
to 15-50 um in diameter for tumor cells [1] [13], and make up the
TME alone with blood vessels, fibroblasts, and components of the
extracellular matrix [19]. Specifically, since both extremes seem to
miss a large part of the value of the method, (the ‘narrow extreme’
ignores the cell-cell interactions in the TME, whereas the ‘broad
extreme’ approximates simpler graph-level statistical approaches),
we aim for a set of hyperparameters with an effective radius of
30-300 microns for a cellular neighbourhood.

We selected an embedding size of 64 for our pipeline. Experi-
mentingwith this parameter showed that 64 represents a reasonable
trade-off between loss of information and efficient computability.

The output of this stage of the pipeline is one embedding per cell
in every mIF image. Importantly, via the graph convolutions, an
embedding should not be interpreted as an embedding for a single
cell, but rather an embedding of a cellular neighbourhood focused
on a target cell.

3.4 Embedding Down Projection
With well trained 64-dimensional cellular embeddings, we can now
conduct analyses to explore previously hidden patterns in the data.
While there are useful analytic techniques that can be applied di-
rectly, such as clustering algorithms in 64-dimensional space, it
is easier to understand the broad structure of the data by down-
projecting and visually inspecting the embeddings. This is espe-
cially true when taking a hypothesis-free approach to data analysis.

Prior to visualisation of the trained embeddings it is necessary
to project down to a lower dimensionality - ideally two dimensions.
Many algorithms exist for down projection, but linear methods
(such as principal component analysis, or singular value decom-
position) can often fail to capture complex manifolds in high di-
mensional space which may represent a pattern in the data that
we aim to expose. More complex non-linear approaches such as
t-distributed stochastic neighbour embeddings (TSNE) [17], and uni-
form manifold projection and approximation [12] can in such cases
be more appropriate. For our pipeline we utilise UMAP, although
we expect that other non-linear methods may perform similarly as
well.

Because the total number of generated embeddings is very large
(about 44 million), in order to make the UMAP computation feasible
from a time-complexity perspective, a down-sampling is performed
in which only a subset of 1000 random cells (their 64 dimensional
embeddings) were selected per sample, and run through the UMAP
algorithm.

3.5 Visualisation and Analysis
With the embeddings down-projected into 2D space, one can finally
start to investigate whether any apparent clustering is visible. To
this end we developed a tool for interactively exploring the UMAP
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Figure 2: Embedding exploration tool showing down pro-
jected embeddings, summary statistics, selected embedding
cellular neighbourhoods, and data filtering options (best
viewed electronically).

while filtering by mIF image, generating subset biomarker statis-
tics on-the-fly, and showing cellular neighbourhood inspection, as
shown in fig 2.

For a demo, visit the following link where some of the function-
ality is showcased. https://az.box.com/v/mif-demo-vis

4 EXPERIMENTS AND RESULTS
This section details experiments carried out to validate the pipeline
and perform initial exploration on our data to demonstrate how
this tool could be used to investigate the biology contained in the
mIF images.

4.1 Reconstruction experiment
With the embeddings generated, it is of interest to verify that we
have not unduly lost information contained in the original mIF im-
ages. Unfortunately, many standard approaches to evaluating these
aspects are not directly applicable to this problem. For example re-
call@K and MAP@R require labels for the embeddings, and it is not
obvious what would constitute sensible labels for our dataset. Sim-
ilarly, clustering approaches require specifying hyperparameters
(such as number of clusters, or maximum distance) that are difficult
to choose for arbitrary data. A measure such as trustworthiness is
useful for estimating the loss of structured information that occurs
during the down-projection stage, but does not help us to identify
the loss of information captured via the embedding training itself.

To at least ensure that the information of the target cell of each
embedding had been maintained, a simple experiment was devised
aiming to demonstrate howwell the initial information in the graph
could be reconstructed from the trained embeddings. In principle,
the embeddings should have captured this information, along with
neighbouring cell information, so reconstructing the target cell
features from the embeddings should be relatively simple. In par-
ticular in the case of the weighted graph, for each embedding, the
emphasis would have been mainly put on the target cell.

To investigate whether the embedding still contained the original
information, we train a single fully connected layer neural network
to project from the embeddings to predicted target features (i.e.
biomarkers). We train this layer on the training data, and report

performance on the remaining validation dataset. These two sets
of data were formed by simply splitting the full dataset in a 80-20
manner. Table 2 shows the performance statistics on this task, which
demonstrate that the target node features could be reconstructed
from the trained embeddings to a great degree. This verifies that
indeed the target cell information is not lost as a result of the GCN
step.

4.2 Effective Receptive Field
As discussed in the methods section, several hyperparameters play
a crucial role in determining the receptive field (i.e. the size of the
cellular neighbourhood) captured by the embeddings. The effective
receptive field of the embeddings (in terms of microns on the tissue
sample) is a non-trivial combination of three hyper-parameters:
edge-connection distance threshold, edge-distance weighting, and
GCN depth.

The edge-connection distance threshold has a profound effect,
determining the very structure of the graph. The effect can be
considered as a special case of edge-distance weighting however,
where the weighting is a binary function of distance. The edge-
distance weighting affects, more smoothly, the relative weighting
of the more distant cells and the nearer cells in the neighbourhood.
In effect, this modifies the kurtosis of the distribution of weighting
across the the receptive field.

Finally, the GCN depth changes the number of hops that can
affect the embedding at a target node; in effect ‘lifting’ the distribu-
tion of weighting upwards with more hops. Thus this parameter
affects the total size of the receptive field without changing the
shape of the distribution of weighting across it.

It is crucial to understand the interplay between these three
hyper-parameters to develop a good intuition of the changing
meaning of the trained embeddings. Figure 3 shows the interaction
between these hyper-parameters in our experiments. In a future
implementation of the downstream visualisation tool, it may be
beneficial to map these interactions to a single parameter that the
pathologist or end-user can control. Since the end-user likely does
not need to grasp the nuances of these three hyper-parameters,
but may very well care about the receptive field of the embeddings
captured.

From the figure, it is clear that the majority of the clustering
remains relatively unchanged for certain selections of hyperparame-
ters. Indeed, as already mentioned, certain combinations of settings
might actually approximate one another. For example the interplay
between hops and distance thresholds. The fact that the clustering
is relatively robust to these changes is quite welcome though, as it
indicates that the particular choice made is not massively important
for the outcome.

4.3 Exploring the data for biological meaning
Here we explore the down projected embeddings to demonstrate
an example walkthrough of how to use this pipeline to explore the
biology from a new perspective.

The place to start with embedding exploration is to view the
down-projected embeddings and seek structure in the form of clus-
tered groups of embeddings. In 4 we show a UMAP of embeddings
trained on our dataset.
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DAPI PDL1 CD8 Ki67 CD68 CK PD1 Auto

0.0038 0.0047 0.0053 0.0064 0.0037 0.0029 0.0025 0.005

Table 2: Mean absolute error on the reconstruction task.

Figure 3: Down-projected embeddings for a set of differ-
ent receptive-field-related hyper parameters (best viewed
zoomed in).

One can immediately observe several islands where cell embed-
dings seems to cluster together. Some larger, some smaller. Via
the tool once can manually start circling the areas in order to get
a feeling for what cells reside there. Having looked around for a
while, the map shown in Figure 5 could be constructed. Two of
the main things one may observe are the two major islands on
either side of the plot. The one on the left hand side seems at first
glace to be quite odd, with all of the markers negative. Although
on second thought this is quite interesting, because that just means
that there are several cells in the tissue that the mIF dyes simply do
not characterize! A similar arguments can be made for the island on
the right where the only difference is that the all the target cells are
tumor (CK+). Given a set of additional markers, one would likely
have observed clustering effects also within these major islands.

Continuing to investigate the central part of the UMAP reveals
several clusters where a set of two or three other biomarkers are
active. Interestingly enough, one can occasionally observe unex-
pected combinations of markers "in the wild". While observations
of rare multimarker phenotypes have been documented [2], the
current accuracy of cell segmentation in image analysis software
requires that unexpected phenotypes be visually confirmed on the
image, preferably by a pathologist or other subject matter expert.
This tool allows for the enumeration of many individual cells along

Figure 4: Initial exploration of the down projected embed-
dings shows several large clusters, as well as smaller ones.
Each one seems distinct in terms of density of neighbor-
hoods or available markers for the target cell. One cluster of
cells is selected, and its distribution and a selection of neigh-
borhoods are visible (best viewed electronically).

Figure 5: Summary statistics regarding some of the visible
clusters in the UMAP visualizer. Part of an active lasso selec-
tion is visible to the right (best viewed electronically).
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with their coordinates to locate them within the original tissue
sample. This has utility both for QC and for the identification of
rare and potentially predictive or prognostic cell phenotypes or
spatial phenotypes (small networks of cells).

Further exploration seems to continue to yield clusters where the
major distinguishing factor is two or three biomarkers. A question
naturally arises as a result from this. Does the system simply group
cell embeddings based on their target cell characteristic? Luckily
enough, this does not seem to be the case. Looking around the
UMAP some more, one can observe that some clusters actually
share common target cell features, but differ on things such as
neighborhood density. Or, by actually using the cell neighborhood
visualization feature of the exploration tool, one can see that indeed
the neighborhoods in which the target cells finds themselves in are
different.

A factor that seems to play an important role in the clustering of
the cell embeddings is the neighborhood density. Notable for some
islands is that the density is quite low, sometimes even having a
good amount of cell neighborhoods just consisting of a single loner
cell. It has been known for some time that density might play a
role in how the tissue can behave in response to some drugs, but
to carefully, not to say consistently, measure the density between
samples is very demanding for a human pathologist. Having a way
to characterize the cell density in an automated way like this, and
to be able to explore such neighborhoods might be helpful.

All in all, the tool in its nascent form does not give direct answers
or point in any particular direction. It does, however provide the
user with a new perspective of the data. These new ways of visual-
izing the TME and investigating the clusters of cell neighborhoods
are an incredibly valuable tool for understanding how therapies,
time, or demographics may affect consequential cell populations
in and around tumors, as well as in other contexts in which more
complete understanding of the interaction of multimarker pheno-
types and cellular spatial arrangement may fuel the generation of
novel testable hypotheses. Conducting experiments to verify these
new hypotheses might in turn yield new data that can be visualized
in a circle of incremental refinement of ideas.

5 CONCLUSION
The aim of this study is to explore the feasibility of an unsuper-
vised graph-based network for generating embeddings of cellular
neighbourhoods. The generated embeddings must be compact rep-
resentations of complex high-dimensional mIF data that can be
easily explored to provide new perspectives of the data, or test
existing hypotheses.

We have shown that our pipeline can produce embeddings which
retain the majority of the information in the original data and
are robust to a range of sensible hyperparameter settings. The
down projected embeddings were explored via a hypothesis-free or
hypothesis-generating procedure, and this demonstrates how the
pipeline offers a valuable approach in getting a new perspective
on the TME as captured via the complex high-dimensional mIF
imaging data.
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