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Abstract 

Honeybees (Apis mellifera) continue to succumb to human and environmental pressures 

despite their crucial role in providing essential ecosystem services. Owing to their foraging 

and honey production activities, honeybees form complex relationships with species across 

all domains, such as plants, viruses, bacteria (symbiotic and pathogenic), and other hive 

pests, making honey a valuable biomonitoring tool for assessing their ecological niche. Thus, 

the application of honey shotgun metagenomics (SM) has paved the way for a detailed 

description of the species honeybees interact with, in order to better assess the multiple 

factors governing their health. Here, we describe the implementation of optimized honey 

DNA extraction methodology coupled to direct shotgun metagenomics (Direct-SM) analysis, 

and to a computationally optimised and validated pipeline for taxonomic classification of 

species detected in honey. By comparing honey collected across 3 harvesting seasons in a 

stable apiary, we show that Direct-SM can describe the variability of sampled plant species, 

revealing honeybee behavioural adaptation. In addition, we reveal that Direct-SM can non-

invasively capture the diversity of species comprising the core and non-core bacterial 

communities of the gut microbiome. Finally, we show that this methodology is applicable for 

the monitoring of pathogens and particularly for the biomonitoring varroa infestation. These 

results suggest that Direct-SM can accurately and comprehensively describe honeybee 

ecological niches and can be deployed to assess bee health in the field. 
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1. INTRODUCTION 

Bees promote sustainable development goals by providing essential ecosystem services - 

most notably pollination - that collectively contribute to food security and maintenance of 

biodiversity (1, 2). Yet, bees and, more visibly, managed honeybees, succumb to 

anthropogenic and environmental pressures, which synergistically increase the rate of colony 

loss (3–6). Over the past half century, pollination-dependent food production has tripled, 

while global honeybee stocks have increased by only about 45% (7). Consequently, 

honeybees are confronted with more intense beekeeping practices, increased hive density, 

and hive migration, which result in exposure and propagation of pathogens, such as Varroa 

destructor mites (8–10). In addition to these economic and social pressures, all pollinators 

are subject to various environmental stressors. Indeed, landscape alterations, caused by 

habitat loss and urbanisation, have dramatically reduced the abundance and diversity of food 

resources, leading to honeybee nutritional stress and the consequent weakening of their 

immune system, disruption of their gut microbiota, and increases in their susceptibility to viral 

and Nosema infections (11–14). Moreover, beehives providing pollination services are often 

placed in fields where they are exposed to varying degrees of herbicide and insecticide use. 

Exposure to non-lethal doses of pesticides alters the composition of bee microbial gut 

community, metabolic homeostasis and is likely to affect the gut microbiota-brain axis, with 

detrimental individual neurological effects, which collectively disrupt colony function (6, 15–

19). In parallel to these pressures on pollinators, the current climate crisis is likely to 

exacerbate their effects over the coming years (20–23). The challenge of building resilient 

food production systems while maintaining plant biodiversity and ecosystem stability 

necessitates the coordination of international biomonitoring strategies in order to 

comprehensively capture the multifactorial nature of threats to honeybee health (24, 25).  

A healthy honeybee colony results from a complex interaction between external 

factors (availability of food resources, climate, species interactions) and internal colony 

factors (honeybee physiology, degree of pathogenic infestation, behavioural and social 

stability) (26–28). Recently, several attempts have been made to develop colony health 

indices from various types of approaches (29, 30). Among them, genomic technologies, such 

as DNA metabarcoding and metagenomics, are becoming attractive methodologies for 

tackling this challenge thanks to the constant increase in sequenced genomes and the 

increasing affordability of next generation sequencing (31–33). 

These methods have already provided a wealth of information on seasonal plant 

exploitation and on honeybee adaptive behaviours with greater sensitivity and specificity 

compared to the standard analyses of pollen inspection by melissopalynology (34–36). For 
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instance, recent studies have highlighted the frequent use of trees as a nutritional resource in 

urban and suburban environments, a clear preference for native species, and a capacity to 

diversify when preferred plants are no longer available (34, 36–39). In addition, DNA 

metabarcoding of honeybee gut microbiota has revealed the conservation of 5 core members 

(Gilliamella sp., Snodgrassella alvi, Lactobacillus Firm-4 and Firm-5, and Bifidobacterium 

sp.), and the presence of additional non-core members (Frischella perrara, Bartonella apis) 

(17, 40). Interestingly, recent studies also revealed individual-specific microbiomes, reflecting 

potential roles in adaptive functions, such as fluctuation of metabolic potential and nutritive 

resources across seasons, as well as social status (41–43). Contrary to plant exploitation 

and gut microbiome patterns, honeybee pathogens are rarely evaluated through genomic 

approaches. Instead, hive inspection is the standard method to assess infestation by Varroa 

destructor or brood diseases, while Nosema ceranae is detected mainly by conventional 

PCR, which often leads to delayed treatment initiation (26, 36). Nevertheless, targeted 

approaches on certain pathogens revealed that co-infections could act synergically to disrupt 

gut bacterial composition (44, 45). Notably, the specificity of certain viruses for targeting and 

interacting with core bacteria has uncovered their ability to modulate honeybee gut 

composition (46). 

Such studies support the view that due to their extensive foraging activities, storage 

capacity and complex ecological interactions, honeybee colonies are unique large-scale 

biomonitoring tools that can provide insights into the status of ecosystems. Thus, it is 

imperative that, in order to implement effective biomonitoring strategies, a shift from targeted 

approaches towards practices able to quantify interactive pressures on honeybee colonies is 

needed.  

Shotgun metagenomics on honey samples is an attractive methodology due to its 

non-invasiveness and potential for detecting many species interacting with honeybees. 

Honey is produced through the regurgitation (inversion) of flower nectar, which is 

subsequently placed in the comb until enough water evaporates. Throughout this procedure, 

the nectar (and, by extension, honey) comes in contact with a variety of organisms and 

therefore, contains DNA, termed environmental DNA (eDNA), from the sampled plants, the 

honeybee gut microbiome, and hive organisms, such as honeybees and others pathogens. 

Honey shotgun metagenomics has only recently been applied (47) and has been 

demonstrated to describe both the variety of the symbiotic and pathogenic organisms that 

honeybees come in contact with as well as the floral origin of honey (48, 49). 

However, this methodology requires further optimization, especially with regard to the 

deployment of inexpensive sampling methodologies and compatibility with fieldwork. In 
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addition, an evaluation of bioinformatic pipelines, in particular taxonomic classification tools 

for the identification of honey-related species, is lacking. In practice, metagenomic 

classification tools are rarely optimized for particular applications, which may increase errors 

and skew results. 

In the current study, we optimised a direct DNA extraction method to easily capture 

eDNA contained in honey and analysed the metagenomic composition by comparing 

taxonomic classifiers to analyse the landscape of species diversity contained in honey. By 

analysing samples collected over three different seasons in a static apiary, we demonstrated 

the great seasonal variability of plant exploitation by honeybees, which was in agreement 

with plant flowering periods and pollen analysis. Interestingly, we also detected the presence 

of all core and non-core gut bacterial populations at remarkably stable levels, underscoring 

the non-invasive nature of our approach for studying honeybee guts. Finally, we provide 

evidence that DNA levels detected by direct shotgun metagenomics can be used for the 

monitoring of Varroa destructor infestation, a major threat to colony survival. In conclusion, 

we have shown that our unique integrative biomonitoring method enables the simultaneous 

identification of the honeybee foraging behaviour, the state of gut microbial communities, and 

the presence of external pathogens, all of which have a strong influence on honeybee health.  

 

2. METHODS 

2.1. Apiary setup and monitoring  

An apiary was installed on the property surrounding the BSRC ‘Alexander Fleming’ in Vari 

(Attika region, Greece) in December 2018 (GPS coordinates: 37◦49’28.2" N 23◦47’25.7" E). 

The colonies contained sister queens of the species Apis mellifera macedonica; all colonies 

started 9 months earlier. Hive populations and their degree of varroa infestation were 

monitored at least once a month throughout the entire year of 2019. Honeybee populations 

were estimated by measuring bee coverage on each side of the frames and scoring them 

from 1 to 10 (10 corresponding to maximum bee coverage with no space between the bees). 

The absolute population was calculated based on the estimation of complete frame coverage 

corresponding to 2000 honeybees (50). Varroa monitoring was performed using a wooden 

drawer installed at the bottom of each hive in order to monitor their natural falling off. To 

prevent fallen varroa from escaping or returning to the hive, this monitoring was optimised by 

covering the drawers with olive oil on baking paper. The degree of varroa infestation was 

then normalised per hive per day. 
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2.2. Honey collection and extraction 

Honey was collected from four different hives in 2019 across 3 different seasons: spring 

(Hive 5), summer (Hives 6 and 7) and autumn (Hive 4). Collected frames from the hives were 

cut in small pieces (approximately 10-15 cm in length and 5 cm in width) and placed on top 

of a fine sieve on top of a glass bowl. The apparatus was placed in an incubator at 37◦C for 

approximately 16 hours. This process allowed fresh honey (uncapped) to flow naturally. After 

16 hours, the honey was collected and poured into clean glass jars, which were labelled and 

placed inside a drawer and kept at room temperature (RT: 18-24◦C) until further processing. 

 

2.3. DNA extraction 

2.3.1. Shotgun Metagenomics (SM) DNA extraction 

DNA was isolated from honey from the 4 hives as in (37) with some modifications. For each 

hive, forty grams of honey were divided between two 50 mL Falcon tubes and filled with 

sterile distilled water up to 30 mL. Tubes were incubated in a water bath at 65◦C for 30 mins, 

briefly shaken every 5 mins to ensure homogenisation, and ultra-centrifuged for 30 mins at 

15,000 RPM using an SW50.2Ti rotor (Beckman Optima L-90K Ultracentrifuge). The 

supernatant was discarded and the pellets were pooled in 400 μL Buffer AP1 from the 

Qiagen DNeasy Plant Mini Kit (Qiagen). The mixture was homogenised progressively using 

the CAT X210 homogeniser for 40 seconds, avoiding the formation of foam. 80 μL of 

Proteinase K (1 mg/mL, Sigma) were added to the mixture and incubated for 50 mins at 

65◦C. During the incubation the tube was further inverted a few times every 15 mins. 4 μL of 

RNase A stock solution (100 mg/mL, from Qiagen DNeasy Plant Mini Kit) were added and 

the tube was briefly vortexed and incubated for 10 mins at 65◦C. Further extraction 

proceeded according to manufacturer’s instructions (DNeasy Plant Mini Kit, Qiagen). with the 

following modifications: elution was performed with 25 μL of Buffer AE and DNA 

concentration was measured on a Nanodrop spectrophotometer. A total of 400 ng of DNA 

were sonicated in a total of 50 μL of Buffer AE. The solution was subsequently sonicated 

(Covaris S220 sonicator, temperature 7◦C, 120 seconds) with the following parameters: duty 

cycle; 20%, Intensity 10; Cycle/burst; 10. 

 

2.3.2. Direct Shotgun Metagenomics (Direct-SM) DNA extraction 

For each hive, five grams of honey were placed into a 15 mL Falcon tube. The tube was filled 

with sterile distilled water up to 10 mL and incubated in a hot water bath for 10 min, briefly 

shaken every 3 mins to ensure homogenisation. Several successive centrifugations at 

14,000 g for 3 min in a microcentrifuge resulted in a single pellet in a 1.5 mL Eppendorf tube. 
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The pellet was dissolved in 0.1 M NaOH, 5%Tween-20, vortexed for 30 seconds, incubated 

at RT for 15 min and quenched with 0.5 M Tris-HCl, 5 mM EDTA (. This is further referred to 

as the extraction mixture). The DNA was subsequently purified using Agencourt AMPure XP 

beads (Beckman Coulter), at a ratio of 2:1, according to manufacturer’s instructions. The 

purified DNA was snap frozen and stored at -80◦C. Of note, the DNA for direct shotgun 

metagenomics was not sonicated. 

 

2.4. Library preparation 

A total of 8 DNA libraries (4 SM and 4 Direct-SM) were constructed using the Ion Plus 

Fragment Library Kit  protocol (Thermo Fisher Scientific) with the following modifications: 5 to 

10 ng of DNA were diluted, respectively, with sterile distilled water to a final volume of 39 μL. 

DNA was end-repaired by the addition of 10 μL of End-repair buffer and 1 μL enzyme per 

sample followed by 30min incubation at RT. Samples were purified using the AMPure XP 

beads (at a ratio of 1.9:1) and eluted in 20 μL Low TE. Adaptors were then ligated to the 

DNA in the presence of 5 μL ligase buffer and 1 μL ligase enzyme. 1 μL of universal 

IonXpressP1 adaptor was added in all samples with 1 μL of a barcoded IonXpress adaptor. 

The reaction was diluted in ddH2O to a final volume of 50 μL and incubated for 30 min at RT. 

After further purification with Agencourt AMPure XP beads (at a ratio of 1.5:1) and elution in 

17.5 μL of Low TE, samples were amplified using 50 μL Platinum PCR Supermix High 

Fidelity and 2.5 μL Library amplification primer mix for 17 cycles (thermal cycling protocol: 

72◦C-20’/95◦C-5’/ (97◦C -15”,60◦C-15”,70◦C-1’)*17cycles/70◦C-5’). A final 2 step purification 

was performed by adding 30 μL ddH2O to the 70 μL reaction, purified with AMPure XP 

beads (at a ratio of 0.8:1 to remove any fragments larger than 400 bp) and eluted in 20 μL 

ddH2O. The supernatant was used for a second purification using Agencourt AMPure XP 

beads (at a ratio of 0.5:1, total ratio 1.3:1 of initial). Library qualities and quantities were 

assessed on a Bioanalyzer using the DNA High Sensitivity Kit (Agilent Technologies). The 

quantified libraries were pooled at a final concentration of 7pM. The pools were processed, 

templated and enriched on an Ion Proton One Touch system. Templating was performed, 

using the IonPITM Hi-QTM OT2 200 Kit (Thermo Fisher Scientific) and sequencing with the 

IonPITMHi-QTMSequencing 200 Kit and the Ion Proton IonPITMV2 chips (Thermo Fisher 

Scientific) on a IonProtonTM System, according to commercially available protocols.  

 

2.5. Mock (simulated) samples 

Mock samples were created to evaluate various steps and parameters of the computational 

pipeline. All mock datasets were created using FASTQsim (51) and a relative abundance 
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(depth) was attributed to each species. Three mock samples were created, using the default 

IonTorrent parameters of FASTQsim, to evaluate the different taxonomic classification tools 

(see section below). The Viridiplantae community contained only Viridiplantae (11 plants and 

1 green alga) while the non-Viridiplantae community contained 11 organisms: 4 non-

Viridiplantae Eukaryota, 6 Bacteria, and 1 Virus. Honey community was created by merging 

the previous two mock samples.  

 

2.6. Taxonomic classifiers and genomic aligners 

The performance of five different computational tools for read taxonomic classification was 

evaluated. A brief description of the classifiers is described below. 

 

2.6.1. CCMetagen 

CCMetagen is a metagenomic classification pipeline for a comprehensive and accurate 

identification of eukaryotes and prokaryotes in metagenomic samples. CCMetagen uses the 

KMA software for read mapping and alignment (52), which works in five steps: trimming of 

reads, heuristic k-mer mapping, fine alignment, ConClave scoring, and reference assembly. 

To enable high resolution of gaps and mismatches, KMA uses the Needleman-Wunsch 

alignment algorithm. ConClave alignment and scoring scheme allow a reference-guided 

assembly. CCMetagen ran using the pre-indexed nt database from 2018 (downloaded from: 

https://researchdata.ands.org.au/indexed-reference-databases-kma-ccmetagen/1371207) 

 

2.6.2. DIAMOND 

DIAMOND is an application to align a set of sequences, which can be used as a query 

against a sequence database of preference (e.g., nr-NCBI) (53). DIAMOND follows a seed-

and-extend approach and uses a double indexing (both for queried sequences and 

background database) for better performance. The latest versions give comparable results to 

BLAST at a much faster speed and have become a widely used application in the field of 

metagenomics.  

 

2.6.3. Kraken2 

Kraken2 is an exact k-mer-based approach for accurately and quickly classifying 

metagenomic reads (54). Compared to its predecessor, Kraken2 comes with advanced 

indexers and data structures for faster database building and querying; thus, it offers high-

quality analyses and fast classification speeds. The main idea behind Kraken2 is to first 

match each k-mer within a query sequence to the lowest common ancestor (LCA) of all 
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genomes containing the given k-mer. In this study, Kraken2 was used with its default 

parameters with an updated version of the nt database (May 2020). 

 

2.6.4. MG-RAST 

MG-RAST is an online service for automatic phylogenetic and functional analysis of 

metagenomes and is accessible through https://www.mg-rast.org. It is a pipeline consisting 

of many specialized tools for quality control, classification, annotation, visualization and 

functional annotation of reads (55). MG-RAST is one of the most widely-used services in the 

field of metagenomics, as one can upload raw data in fastq format and compare them 

against 458,163 metagenomes containing 1,922 billion sequences (stats 05/21). 

 

2.6.5. Minimap2 

Minimap2 is an alignment application to map DNA or long mRNA sequences against a large 

reference database and is recommended for shorter reads (56). For ~10 kb noisy read 

sequences, minimap2 was found to be faster than mainstream long-read mappers, whereas 

for >100 bp short reads, minimap2 was found to be three times faster than BWA-MEM and 

Bowtie2. 

 

2.7. Filtering and normalisation of the libraries 

2.7.1. Sequence pre-processing 

Adaptors and low-quality reads were automatically removed after having been sequenced by 

the IonTorrent Server. Samples were split according to barcode. 

 

2.7.2. Filters based on Kraken 2 confidence score and usual laboratory cross -contaminant 

species 

To address whether the taxonomic classification is influenced by the number of species in 

each mock sample, by the library size, or by the fragment length, additional mock samples 

were tested to decide which Kraken 2 confidence score should be applied. In kraken2, a 

perfect hit will have all the k-mers mapped. In case of mismatches, all k-mers that contain 

this nucleotide will be impacted. The confidence score represents the number of matching k-

mers divided by the total number of k-mers. The confidence thresholds were evaluated using 

three metrics: 

i) Number of species: 

Calculated as the total number of species. 

ii) Root-mean-square-error: 
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where Expected abundance is the set abundance in the simulated sample and the Observed 

abundance is the reported abundance from kraken2 at the tested confidence threshold. The 

RMSE was used because it evaluates the overall error in the classification and abundance 

estimation.  

iii) Sensitivity: 

����������� �  ������ �  ���� ��������������� �  ���� ��������� ! ������ �   �"�� ��#������ 

 

where the Number of true positives is the number of species in the mock that were correctly 

detected and the Number of false negatives is the number of species in the mock that were 

not detected (reported as 0 reads in kraken2). Sensitivity is the ability to correctly identify the 

species that do exist in the sample. 

iv) Positive predictive value: 

$$% �  ������ �  ���� ��������������� �  ���� ��������� ! ������ �   �"�� ��������� 

where the Number of true positives is the number of species in the mock that were correctly 

detected and the Number of false positives is the number of species reported by kraken2 but 

not present in the mock. 

The filtered kraken2 files generated after the processing of the 8 sequenced libraries were 

imported and processed with the taxonomizr R package to obtain the taxonomic attribution 

for each species. Reads assigned to Phylum Chordata were removed along with the family 

Drosophilidae, the genus Drosophila, and the species Drosophila melanogaster due to 

possible laboratory cross-contamination.  

 

2.7.3. Read normalisation across libraries 

DESeq2 version v3.11 was accessed via the Bioconductor library and read normalization 

was performed with the use of the estimateSizeFactors function, which applies the relative-

log expression (RLE) (57). Notably, DESeq2 RLE transformation has been shown to be 

appropriate for normalisation of shotgun metagenomic libraries (58). 
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2.8. Statistical analysis and R packages 

The analysis and graphical visualisation of the results were performed using R versions 3.6.3 

and 4.0.3 on a x64 system running Microsoft Windows 10 Pro. Statistical analysis was 

performed in R and Prism9.  

 

2.8.1. DESeq2 differential analysis and clustering 

Following library normalisation, DESeq2 was used for differential abundance analysis. First, 

the methods were used as ‘contrast’ to investigate which species differ significantly between 

methodologies. Second, the likelihood-ratio test (LRT) was used to identify the species that 

differ significantly across seasons. In order to avoid aberrant contributions of low-coverage 

species, additional filtering of the species identified by fewer than 50 reads between two 

libraries (to maintain the Direct-SM and SM pairing) was applied for hierarchical clustering. 

Then, using the DEGreport package (59), we identified the clusters of species whose 

abundance differed similarly across seasons. This was achieved using the degPatterns 

function with the minimum number of species per cluster (minc parameter) set at 2. 

 

2.8.2. Principal Component Analysis (PCA) 

PCA was performed across normalised libraries quantification and filtered for species with 

fewer than 50 reads coverage. PCA was performed using the prcomp function (base R) and 

visualisation was performed using the factoextra package (60). 

 

2.9. Plant species validation 

The plants which were detected and identified, were validated by various analyses. First, 

their presence was validated using the BIEN database (61) and by comparing their 

occurrence within defined geographic boundaries across the world. Second, a gyroscopic 

analysis was performed by the CheMa laboratory on each honey sample 

(https://www.chema.gr, Corinthos, Greece). The occurrence and abundance of each pollen 

family were then compared with families identified by metagenomics after Kraken2 

classification and DESeq2 normalisation at this level (with a min of abundance of 50 reads 

for each family). Third, a visual inspection and botanical characterisation was undertaken 

within the area using an online database of Greek plants (https://www.greekflora.gr), in which 

we also extracted the flowering pattern of species present in Greece. 
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2.10. Literature search to assess the relationship of non-plant species with 

honeybees 

In order to attribute a relationship between honeybees and the detected non-plant species, 

we searched for PubMed articles which contained the words ‘bee’/’honey’/’apis' in the title 

and/or abstract’ and which were associated with the species name. We limited our analysis 

to the species initially detected with a coverage higher than 100 reads. NCBI abstract hits 

were manually inspected to confirm the relationship of each species with honeybees. 6 

relationships were attributed: "Bacterial gut community", "Host", "Human cross 

contamination", "Others", "Pathogen", "Unknown".  

 

2.11. Functional annotation  

Reads belonging to the bacterial species showing significant increase during the autumn 

season were extracted using a script from KrakenTools 

(https://ccb.jhu.edu/software/krakentools/index.shtml). The reads were aligned to a pre-

indexed Uniref90 database using DIAMOND (53) blastx with the following parameters: --mid-

sensitive -b8 -c1. The resulting table was regrouped and renamed to Gene Ontology (GO) 

annotation using scripts from the HUMAN 3 pipeline (62). Normalised frequencies of GO 

attribution were then analysed to identify the most enriched term for each species.  

 

2.12 Genomic re-alignment of sequenced libraries against the varroa genome, 

calculation of the means of natural varroa fall and correlation with metagenomic data 

For validation purposes, the reads from each library (fastq format) were re-aligned to the 

Varroa destructor genome using HISAT2 (63), with the following parameters: -k 1 -p 12 --mp 

30,30 --rdg 30,30 --rfg 30,30 –dta.  Aligned reads were normalised with total sequenced 

reads (counts per million) and correlated with the average of the natural fall of varroa/day 

over periods of 2 weeks, 1 month and 2 months and with the respective abundances of 

Varroa species attributed by the metagenomic pipeline. 

 

3. RESULTS 

3.1. Experimental design and description of the direct shotgun metagenomic honey 

DNA extraction method 

Our study took place in an apiary whose ecosystem in a 2 km radius (12.5 km2), is typical of 

a coastal, semi-arid Mediterranean climate and is mainly composed of conifers, pines, dense 

shrubs, and olive trees (31%), as well as urban areas containing many ornamental gardens 

(59%), coastline, and sea area (10%). It is located on the edge of the Hymettus Mountain on 
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the suburbs of Athens in Greece (Figure 1a). The four hives of this study showed 

comparable evolution of honeybee population growth and varroa infestation at the time of 

honey collection (Sup. figure 1). 

A total of four honey collections were carried out, representative of the main 

beekeeper harvest seasons, in spring, summer, and autumn (Figure 1b). For each harvest, 

two DNA extraction techniques were compared (Figure 1c). The first technique follows a 

classic metagenomic shotgun (SM) protocol for extracting DNA from 40 g of honey using 

specific extraction columns, followed by a sonication step to fragment the DNA before the 

preparation of a sequencing library (37, 47). The second technique is more direct (Direct-SM) 

and has been developed using 5 g of honey. The lysis and DNA extraction does not involve 

any specific purification kit, but instead uses an optimised NaOH-based buffer (See 

methods). The DNA contained in honey is already fragmented (Sup. figure 2a); therefore, 

Direct-SM involves no sonification.  

A total of 8 libraries were prepared and sequenced (4 replicates for the Direct-SM and 

4 replicates for the SM), (Sup. figure 2a) and analysed according to specific bioinformatic 

workflows, including the initial evaluation of various taxonomic classifiers (Figure 1d). 

 

3.2. Kraken2 performs best for metagenomic classification of simulated honey 

samples  

In order to choose the most appropriate bioinformatic workflow for the analysis of shotgun 

metagenomics data from our honey samples, we first evaluated several taxonomic classifiers 

using mock (simulated) samples of various species communities. The primary reason to 

apply shotgun metagenomics in honey samples was to simultaneously study the foraging 

behaviour and health of Apis mellifera. Therefore, we built 3 different communities of mock 

samples. The first included 12 known pollinated plant species (Viridiplantae community). The 

second included 11 non-plant eukaryota, bacteria and viruses, such as Apis mellifera, the 

putative pathogens Varroa destructor, Apis mellifera filamentous virus and Nosema ceranae, 

and some symbiotic bacteria (non-Viridiplantae community). Finally, we also built a simulated 

honey sample containing all 23 species from both Viridiplantae and non-Viridiplantae 

communities (Honey community) (Sup. figure 3a).  

We assessed several taxonomic classification tools based on their ability to 

quantitatively and correctly assign the mock sequence reads distribution at both genus and 

species levels. Genus distribution of the Viridiplantae community shows that the DIAMOND 

classifier followed by the kraken2 classifier, produce the closest distributions to the mock 

(Sup. Figure 3b). In contrast, when these classifiers were evaluated for taxonomic attribution 
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at the species level, kraken2 performed better than DIAMOND for both the Viridiplantae and 

non-Viridiplantae communities (Sup. Figure 3c-d). Finally, when using the simulated honey 

community, kraken2 again produced the greatest correlation and significance between 

expected abundances and observed abundances at the species level (Figure 2). The 

reliability performance of Kraken2 in identifying taxa at the species level was further 

confirmed by the calculation of the root mean square error (RMSE) (Sup. Figure 3e), so this 

taxonomic classifier was chosen for the remaining analyses. 

Since kraken2 at default settings was found to report a much higher number of 

species than those contained in the simulated honey community (above 5000, Sup. figure 

S4a), we sought to determine the highest confidence threshold for this classifier. For this, we 

tested several scenarios likely to influence classification: The initial number of species 

contained in a simulated sample (23 versus 64 species, Sup. figure 4), the size variability of 

our sequencing libraries (1 versus 8 million reads, Sup. figure 5), and the influence of the 

length of the sequenced fragments (110 versus 250 bp, Sup. figure 6). These analyses 

showed that the absolute number of assigned species drops significantly upon application of 

a confidence level of 0.1 and approaches the actual composition at around 0.5 

(approximately 180 species reported) in every scenario. In addition, our analysis revealed 

greater robustness of classification when samples contained higher numbers of species and 

more sequencing reads, while the length of the fragments did not seem to influence the 

classification. On the other hand, the sensitivity dropped significantly after the 0.5 threshold 

in most scenarios. Therefore, kraken2 with a confidence threshold of 0.5 was selected for 

analysis of the experimental honey samples as it shows the minimal errors, the highest 

sensitivity and limited lost reads. 

 

3.3. Direct-shotgun metagenomic analysis reports similar species distribution and 

abundance compared with standard shotgun metagenomic analysis 

Between 1.4 and 8 million reads were obtained after sequencing of the 8 honey samples 

(Table 1). After taxonomic classification with kraken2 with a cut-off of 0.5 and additional 

filtering for putative laboratory cross contaminants, 50,000 to 600,000 reads per library were 

available for downstream analyses. On average, 85% of the reads were classified at the 

species level, 9% at the genus level, and fewer than 4% at the family level (Table 2). 

The number of species identified in the 8 libraries showed great variation, from 265 to 

663 species (Figure 3a). However, once species were categorised into domains, we 

observed a remarkable conservation of their distribution. Indeed, the majority of identified 

species are classified under the domain of Bacteria (53 ± 6.7%), then Viridiplantae (31 ± 
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6%), Eukaryota (14 ± 2.4%) and a minority of viruses (2.1 ± 0.5%). No significant differences 

in distribution were detected when the two techniques were compared (SM versus Direct-

SM, two-way ANOVA, p = 0.2795) or when the domains were compared individually (SM 

versus Direct-SM, Sidak’s Multiple comparison tests, Adj. p > 0.3). In addition, more than 

75% of the identified species overlap between the 2 techniques and for the 4 analysed hives 

(Figure 3b), pointing to a limited influence of DNA extraction methodology to species 

identification.  

Initially, the sequenced data were quantitatively normalised over all libraries using 

DESeq2 (see Methods) and compared at both family and species levels. The comparison 

between the two methodologies did not identify any significant abundance variations at any 

level (DESeq2 Wald test, corrected for multiple testing using BH). However, 19 families 

(3.9%) and 21 species (1.1%) were respectively detected with a log2-fold change greater or 

less than 1, with a slight deviation in abundance towards Viridiplantae when the DNA 

purification technique used was plant-specific (SM) (Figure 3c, Sup. figure 7). Even if these 

observations confirm a slight bias introduced by the SM extraction method, overall, they 

suggest a very weak impact of the methodology for the determination of the metagenomic 

content and abundance of DNA in honey. 

To further verify the consistency between the two methodologies, we performed 

hierarchical clustering and principal component analyses. Both revealed a clustering of the 

samples largely driven by seasonal changes. Despite our modest sample size, this seasonal 

grouping is explained by the consistency of determination of species abundance between the 

SM and Direct-SM methodologies, but also by the identification of clusters comprising, as 

expected, season-specific plant species and seasonal bacterial, eukaryotic, and viral loads 

(Figure 3d, Sup. figure 8). For instance, the wax moth, Galleria mellonella, was consistently 

found in samples extracted during summer, when honeybee colonies are more prone to 

infestation by this pathogen (64). These analyses demonstrate that Direct-SM has the 

potential to simultaneously describe the honeybee foraging pattern and the dynamics of 

honeybee interactions with other species. 

 

3.4. Metagenomic analyses accurately describe seasonal plant species variability  

Normalised but unfiltered sequencing data reveal that 398 species belonging to Streptophyta 

were potentially foraged around the apiary. Despite this large diversity, only 45 genomes 

were covered by at least 50 reads, which correspond to 25 families and 41 genera (Sup. 

table 1). To verify how accurate the identification of the main plant species was, we used 

three types of validation: 1) in silico, by comparing our samples with the largest publicly 
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accessible plant databases from the Botanical and Ecological Information Network (BIEN), 2) 

by melissopalynology (pollen inspection) on the 4 collected honey samples and 3) in situ, by 

examination of plant species in the area.  

Using the BIEN database, we show that 66 ± 5.02% of our plant species overlap with 

species identified within the area of the Mediterranean basin, with the greatest overlap in 

Spain (Sup. figure 9). As an additional validation step, we repeat this analysis using an 

equivalent area along the same latitude for Asia and for North America. As expected, 

significantly lower overlap was observed in Asia (51 ± 3.88%); however, a significant overlap 

(85 ± 1.65%) was observed for North America highlighting, among other things, the 

overwhelming preponderance of north-american plants in the BIEN database.   

Pollen identification in honey can rarely discern plant origin at the species level and, 

therefore, we restricted comparison with metagenomic data to family level only: we found 

that 11 out of 20 families identified by pollen analysis were also present in our metagenomic 

analysis with great seasonal consistency ranging from 50% to 87.5% of overlap (Sup. figure 

10a-b). Interestingly, this comparison revealed foraging patterns not necessarily associated 

with pollen collection, such as visits of Arecaceae, Pinaceae, and Vitaceae families (Sup. 

table 2). Conversely, several families abundantly present in pollen analysis were lacking from 

the metagenomic analysis, highlighting the lack of sequenced genomes belonging to the 

Araliaceae or Boraginaceae families. Finally, correlations between abundance of families 

identified by both metagenomic methods and pollen analysis were significant only for 2 of the 

4 collected honey samples, highlighting the limitations of pollen analysis to quantitatively 

assess the botanical origin of honey (Sup. figure 10c). 

The most robust approach to validate the plants identified through shotgun 

metagenomics was implemented using a local database of Greek plants coupled with visual 

inspection of the area. Indeed, among the 45 species identified by our bioinformatic pipeline, 

20 were correctly assessed at species level, 18 at genus level and only 7 hits were 

considered false positives (Figure 4a, Sup. table 1). The overall abundance of plant species 

and genera found in honey samples were in agreement with the environment surrounding the 

apiary, which mainly comprises trees: Pinus (pine tree, 47.42%), Phoenix (Date palm tree, 

12.5%), Eucalyptus (Eucalyptus tree, 12.48%) were the most represented (Figure 4a). 

Finally, the dynamic analysis of plant abundance across seasons revealed that 16 species 

were significantly enriched in honey samples harvested in a specific season, such as 

Papaver (poppy, 13.98%) during the spring season, and that this enrichment overlapped or 

closely juxtaposed the flowering period of these plants (Figure 4b-c), thus reinforcing the 

validity of our analysis. 
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Overall, and despite the lack of local plant genomic data, these analyses show that 

our metagenomic pipeline accurately describes the botanical origin of honey samples and 

their seasonal variability with a greater accuracy than in silico latitude occurrence or pollen 

analyses. 

 

3.5. Non-invasive characterisation of the hive pathogens and the dynamics of core and 

non-core honeybee gut microbiome 

In line with previous work (47, 49), our pipeline revealed that the majority of DNA traces 

contained in honey samples did not belong to plants (Figure 3a). To better understand the 

importance of this diversity and their relationship with honeybees, we first used a text mining 

approach to categorize their relationship with honeybees based on current literature (See 

method and Sup. table 3). After filtering out reads emanating from the Apis mellifera 

filamentous virus, whose DNA is represented in more than 86% of all sequenced reads (Sup. 

figure 11a), we found that 75% of non-plant species were constituents of the gut bacterial 

community of honeybees, dominated by Lactobacillus kunkeii (Figure 5a); 4.6% originated 

from bacteria commonly present on human skin—likely due to beekeeper interventions inside 

the hives—and only 1.1% were described as pathogenic for honeybees, including traces of 

the seasonal opportunistic bacterium Spiroplasma melliferum (65) (Sup. figure 11b). 

Interestingly, 6.8% of DNA present in honey samples had no direct relation to honeybees, 

but mainly arose from 2 plant pathogens and an aphid symbiont (Sup. table 3). 

We then characterised the dynamics of the gut community and found remarkable 

conservation of abundance in the harvested honey samples, independently of season 

(Figure 5b). All previously described core members, such as Bifidobacterium sp. (2.6 ± SEM 

0.7%), Gilliamella apicola (18.1 ± SEM 2.7%), Snodgrassella alvi (< 0.1%), Lactobacillus 

Firm-4 (< 0.1%), Firm-5 (9.1 ± SEM 2.4%), and non-core members Frischella perrara (47.5 ± 

SEM 7.5%), Bartonella apis (22.6 ± SEM 8.3%), were detected with no significant variation 

across honey samples (Two-way ANOVA, Sidak’s Multiple comparison tests). Only Frischella 

perrara was significantly enriched in honey harvested in the spring. Additional symbiotic 

bacteria were also detected with limited variation across honey samples (Sup. figure 11c), 

with the exception of 5 species (Enterobacter sp. SA187, Klebsiella oxytoca, Leuconostoc 

pseudomesenteroides, Sodalis glossinidius and Sodalis praecaptivus), which were 

significantly more abundant in autumn honey samples (Figure 5c). To further explore the 

potential role of such seasonal associations between bacteria and honeybee, we functionally 

annotated the reads aligning against these 5 genomes specifically and identified significantly 

enriched functions for each species (Figure 5d). For example, Enterobacter sp. SA187 and 
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Leuconostoc pseudomesenteroides were both enriched in metabolic functions related with 

carbohydrate process and glycogenesis, while Sodalis glossinidius and Sodalis praecaptivus 

were enriched in functions related to transposition and amino-acid transfer, respectively.  

 

In conclusion, these observations revealed that metagenomic analyses of honey 

samples derived from a static apiary allow for the non-invasive characterisation of honeybee 

pathogens and core microbiome, but can also describe specific adaptations of the 

microbiota, in particular for processing of season-specific sugars and, more surprisingly, for 

functions associated with genome remodelling. 

 

3.6 The Direct-shotgun metagenomic approach quantified the number of natural 

varroa falls more accurately. 

The original hives of the studied honey samples showed relatively low contamination by 

varroa mites at harvest time (Sup. figure 1). Nevertheless, an average of 47 ± 17 reads 

corresponding to varroa DNA were detected across the sequenced libraries and we sought 

to investigate the relationship between the abundances detected by shotgun metagenomics 

with the natural falls of varroa over periods of 2 weeks, 1 month and 2 months preceding 

honey collection. As a validation step, we also correlated these abundances with the 

abundances obtained after re-alignment of each sequenced library specifically against the 

Varroa destructor genome. 

Overall, the Direct-SM approach correlated better with the average of natural varroa 

falls over a one-month period (R= 0.68), while the SM approach inversely correlated with all 

measurements of varroa natural fall (Figure 6). Interestingly, these correlations with V. 

destructor genomic alignments showed similar trends pointing to this result not being due to 

pipeline classification or normalization steps, but, most likely, due to the different DNA 

extraction methods that were employed. Therefore, the Direct-SM approach appears to be 

more suitable for the biomonitoring of monthly varroa infestation. 

 

4. DISCUSSION 

The assessment of the complex ecological niche that honeybees occupy has only recently 

begun to be examined through the use of shotgun metagenomics (47–49). In this study we 

have developed a direct approach for shotgun metagenomics (Direct-SM) and a 

bioinformatic pipeline to assess the species composition of honey samples. Our analyses 

revealed that Direct-SM offers an integrative approach to molecularly dissect not only the 
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seasonal adaptive behaviours of foragers, but also their gut microbiota composition and hive 

pests, such as varroa. 

It is important to note that shotgun metagenomics studies often suffer from high rates 

of false positives and are rarely either computationally or analytically validated. We have 

optimised and validated our metagenomic classification pipeline using simulated samples 

that resemble the species composition of actual honey samples. We have also optimised the 

DNA extraction step to reduce biased enrichment for certain species. For example, some 

DNA extraction methods may be more efficient in lysing Gram-positive bacteria than other 

methods (66, 67). In fact, we show that standard methods of DNA extraction may fail to 

record hive varroa infestation compared with the shotgun metagenomic extraction 

methodology described herein. 

Bees directly depend on plants to meet their energetic and nutrient needs. 

Importantly, pollen itself is known to facilitate associative learning in honeybees (68), and 

pollen quality is associated with cognitive function (13), emphasising the importance of 

accurately determining honeybee foraging patterns. We show that Direct-SM reported the 

presence in honey of similar families as those detected by melissopalynological analyses. In 

particular, the detection of tree species (such as pine and eucalyptus) with high abundance is 

consistent with the findings of previous studies describing the foraging patterns of urban and 

suburban apiaries (36–38). The identification of plants through next generation sequencing 

still remains a challenge due to the relative lack of sequenced plant genomes (61). 

Nevertheless, it can be used in addition to melissopalynological analysis, in particular for 

quantifying foraging behaviours associated with non-pollen harvests. 

Our methodology is further suitable for describing species interactions in the 

honeybee gut. Our study reports for the first time the detection and seasonal stability of core 

and non-core gut bacterial species in honey through honey shotgun metagenomics. Notably, 

Frischella perrara was more abundantly detected in spring, which is in accordance with the 

findings of previous studies (42). Interestingly, autumn honey was enriched in Sodalis 

species, which are known to be more abundant in solitary bee species (69). This may 

characterise bee transition to overwintering, as honeybees begin their non-productive and 

less active period.  

Functional annotation of the autumn-specific bacteria identified functions related to 

carbohydrate metabolism, amino acid process and transport, and transposition. Roles for 

bacteria in carbohydrate metabolism have been described in the past and are crucial for 

polysaccharide breakdown of pollen and nectar sugars (70). Likewise, amino acid transport 

appears to occur frequently between the gut microbiome and honeybees (71). Sodalis 
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glossinidius was enriched in functions related to transposition, consistent with a recent study 

that evaluated the genomic landscape of Sodalis glossonidius and showed that a large part 

of it encoded for transposition-related pseudogenes (72). Importantly, Sodalis praecaptivus is 

considered to be the only currently known free-living form of Sodalis bacteria (73), while 

Sodalis glossonidius is an insect endosymbiont (74). The exact function of these 

transposition-related pseudogenes has not yet been identified, but owing to their 

identification here in autumn-specific microbiota, it may be worth considering how 

transposition is related to host colonisation and how both transposition and associated 

metabolic functions relate to honeybee overwintering. On the other hand, endosymbionts are 

considered to have enabled insects to adapt in new environments. Recently, they have also 

been found to provide various functions to their insect hosts, including pesticide detoxification 

(75), and to communicate with the insect immune system, providing among others increased 

protection against other bacterial and viral species (76).  

As the honeybee gut receives increasingly more attention, it is important to develop 

non-invasive methods that are able to capture the diversity of the ‘’shared gut’’ within the 

colony. The constant exchange of honey and beebread between honeybees allows them to 

transfer gut microbes between generations, potentially contributing to hive-specific 

microbiomes and behavioural variation. Non-invasive methods, such as direct shotgun 

metagenomics, can complement existing studies of single-honeybee 16S rDNA in order to 

sample colony microbiomes. 

The methodologies described here are aimed at constituting a field-deployable 

system allowing for the description of the complexity of the honeybee ecological niche in a 

non-invasive and precise manner. This will enable not only the assessment of the 

environmental diversity of habitats surrounding apiaries during specific times of the year, but 

also the evaluation of honeybee health in an integrative manner taking into account food 

type, gut microbiome composition and beehive pest invasion. 
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Tables and Figures 

Tables 

Table 1 Distribution of raw, classified and filtered sequencing reads across the 8 libraries 

Sample 
Raw 

reads 

Kraken2 

Classified 

reads 

Classified 

(%) 

After filtering 

(Confidence 

0.5) 

After filtering 

(% of 

classified) 

DirectSM_H4 3,282,781 480,566 14.6% 230,316 47.9% 

SM_H4 4,058,520 730,745 18 % 440,017 60.2% 

DirectSM_H5 1,444,924 154,577 10.7% 58,722 38% 

SM_H5 8,160,732 253,515 3.1% 143,154 56.5% 

DirectSM_H6 2,379,244 676,415 28.4% 274,230 40.5% 

SM_H6 3,619,844 1,247,102 34.4% 623,454 50% 

DirectSM_H7 2,280,627 827,329 36.3% 482,892 58.4% 

SM_H7 2,038,988 1,353,429 66.3% 223,023 16.%% 
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Table 2 Kraken2 taxonomic classification across the 8 libraries 

Sample Family (%) Genus (%) Species (%) 

DirectSM_H4 15415 (6.69%) 40710 (17.68%) 174190 (75.63%) 

SM_H4 22336 (5.08%) 91293 (20.75%) 326388 (74.18%) 

DirectSM_H5 4686 (7.98%) 8966 (15.27%) 45070 (76.75%) 

SM_H5 6587 (4.6%) 12582 (8.79%) 123985 (86.61%) 

DirectSM_H6 4318 (1.57%) 10269 (3.74%) 259643 (94.68%) 

SM_H6 6056 (0.79%) 20188 (3.24%) 597210 (95.79%) 

DirectSM_H7 5082 (1.05%) 3585 (0.74%) 474225 (98.21%) 

SM_H7 1920 (0.86%) 1020 (0.46%) 220083 (98.68%) 
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Figures 

 

Figure 1: Overview of the experimental design and bioinformatic workflow.  

(a) Apiary location and habitat structure. (b) Honey sampling across 3 seasons. (c) 8 libraries 

were sequenced following 2 methodologies: Shotgun Metagenomic (SM) and direct-SM 

library preparation. (d) Flowcharts depicting the detailed bioinformatics workflow leading to 

the four main output analyses.   
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Figure 2: Kraken2 provides optimal performance for taxonomic classification and 

genomic alignment.  

Correlation between expected and observed abundance from the mock honey species 

community using CCMetagen (a), DIAMOND (b), kraken2 (c) and minimap2 (d).  
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Figure 3: Seasonal variation, not extraction methodologies, explain variations between 

libraries.  

(a) Barplot of the distribution of the number of identified species per library and classified 

according to the domain they belong to. (b) Barplot of percentages of overlapping species 

between SM and Direct-SM methodologies for each hive. (c) Volcano plots of species 

abundance associated with SM and Direct-SM methodologies. Dashed lines indicated the 

limit of significance (y axis: Walt test with BH multiple comparison, x axis: log2 fold change -1 

< or > 1). (d) PCA analysis across identified species. Arrows correspond to the 8 samplings 

across seasons and each dot corresponds to the species that contributed the most to the 

seasonal deviation.  
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Figure 4: Plant distribution and abundance capture composition and seasonal 

changes of apiary area. 

(a) Abundance treemap of the 38 validated plants. Plants validated at the species level are 

presented in full, others by genus only. The % indicates the general abundance across all 

honey samples (only species with abundance higher than 0.2% are indicated). (b) Dynamics 

of abundance across hives and seasons. The colour code highlights significant direction 

toward a specific season (spring: green, summer: yellow, autumn: brown). Seasonal 

significance was obtained with DESeq2 using a likelihood-ratio test (see Methods). (c) 

Flowering ranges of the plants shown in panel (a).  
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Figure 5: Characterisation of core honeybee microbiota stability and seasonal 

dynamics of five non-core bacterial strains. 

(a) Distribution of the 10 most abundant microbiota species.  (b) Barplots of symbiotic 

bacteria distribution of species previously described as core or non-core. Species with 

significant variations are annotated with stars (L. kunkeei was excluded). (c) Distribution of 

the five species specifically associated with autumn honey samples with (d) their respective 

gene functional enrichment categories. Only the most representative terms among the top 20 

significant GO terms are shown. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 10, 2021. ; https://doi.org/10.1101/2021.06.09.447678doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.09.447678
http://creativecommons.org/licenses/by-nc-nd/4.0/


33 

 

Figure 6: The Direct-shotgun metagenomic methodology correlates better with the 

number of natural varroa falls. 

Correlation matrices were built by comparing counts per million from genomic alignment 

against the Varroa destructor genome (‘Genomic alignment’) with the average of varroa 

natural falls per day over periods of 2 weeks, 1 month, and 2 months (‘Varroa natural fall’) 

and with Varroa species abundance detected by our metagenomic pipeline (‘Metagenomic’), 

comparing (a) Direct-SM and (b) SM approaches. 
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