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Abstract

Objective: For type 1 diabetic patients, accurate adjustment of insulin
treatment to physical activity (PA) is a challenging open problem. Glu-
cose uptake by the exercising muscles increases acutely, causing increased
hepatic glucose production to maintain glucose homeostasis. Meanwhile,
insulin sensitivity is elevated for a prolonged period to drive glycogen re-
pletion during recovery. These processes strongly depend on PA duration
and intensity, making their combined effects difficult to predict accurately.
In this work, we develop a model of glucose-insulin regulation that cap-
tures PA from low to high intensity including acute and prolonged effects
on glucose metabolism.
Methods: We extended an existing minimal model of glucose-insulin regu-
lation to capture PA-driven changes in glucose metabolism. We incorpo-
rated the insulin-independent increase in glucose uptake and production,
including the effects of glycogen depletion and of high-intensity PA on
production. The model also captures the prolonged increase in insulin
sensitivity.
Results: The model accurately predicts glucose dynamics of published
data during short and prolonged PA of moderate to high intensity and
during subsequent recovery. In-silico full-day studies elucidate the effects
of timing, duration and intensity of PA and of insulin bolus reduction on
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glucose levels during and after the activity.
Conclusion: The proposed model captures the blood glucose dynamics
during all main PA regimes.
Significance: Mathematical models of glucose-insulin regulation are crit-
ical components of closed-loop insulin delivery and clinical decision sup-
port systems for achieving good glycemic control. The presented model
shows potential for the development and assessment of algorithms target-
ing treatment adjustment to PA.

1 Introduction

Type 1 diabetes (T1D) results from autoimmune destruction of pancreatic β-
cells. Affected patients depend on lifelong treatment by exogenous insulin to
achieve good glycemic control.

Physical activity (PA) is beneficial for T1D patients and recommended in
clinical guidelines [5,14], but fear of acute and late-onset (often nocturnal) hypo-
glycemia restrains many patients from exercising [7]. Preventing hypoglycemia
by adjusting insulin treatment and nutrition is a major challenge due to the
complexity of PA-driven changes in glucose metabolism, and current guidelines
consider only coarse categories of glycemia, PA duration and intensity to deter-
mine the recommended adjustments [1, 13,37].

Exercise-induced processes occur on different time-scales and strongly de-
pend on duration and intensity of PA [39]. During PA, the glucose demand by
active muscles increases acutely and glucose uptake (GU) from plasma is up-
regulated. Simultaneously, hepatic glucose production (GP) by gluconeogenesis
and glycogenolysis increases to maintain plasma glucose levels [9, 26]. During
prolonged PA, liver glycogen stores may deplete and GP cannot be maintained,
causing a drop in glucose levels [19]. In contrast, GP may (initially) exceed GU
and result in rising plasma glucose during high-intensity PA due to an increase in
catecholamines and cortisol [32]. During recovery, insulin-independent GU and
GP rates quickly return to their baseline levels [9]. However, insulin sensitivity
can stay elevated for up to 48 hours after PA to replete liver glycogen stores
and may cause late-onset hypoglycemia, including nocturnal hypoglycemia [33].

Mathematical models allow us to determine clinical parameters such as in-
sulin sensitivity from an intravenous glucose tolerance test [6] and to better un-
derstand the glucose-insulin system in physiological detail [41]. They also play
a critical role in the development of decision support systems and of closed-loop
insulin delivery systems (artificial pancreas) [11,28,29].

The need to include the impact of PA on glucose metabolism in diabetes-
related models has long been recognized [13,38,42], but the prolonged and non-
linear effects during exercise and recovery pose formidable challenges. Existing
models are usually restricted to moderate intensity and often focus exclusively
on either short-term or prolonged effects of PA. To-date, no model simulta-
neously incorporates all acute and prolonged changes in glucose metabolism
caused by exercise from low to high intensity, which limits the applicability
to predict exercise-induced hypoglycemia and to determine accurate treatment
adjustments.

A first extension of the Bergman minimal model [6] includes constant inten-
sity exercise with acute increases in glucose uptake and production and even-
tual liver glycogen depletion, but not the elevated insulin sensitivity during
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recovery [40]. An alternative extension by Breton allows different exercise in-
tensities for the insulin-independent increase in glucose clearance but not for
insulin sensitivity, and does not consider glycogen depletion [8]. Starting from
their earlier glucose-insulin model with carbohydrate intake, Dalla Man and co-
workers integrate Breton’s exercise model and add intensity-dependent insulin
sensitivity [15,16].

Two physiologically detailed models with exercise include glucose uptake
and production, but no changes in insulin sensitivity [30], respectively glycogen
depletion with increased hepatic glucose uptake after a meal to drive glyco-
gen repletion after PA [21]. Based on the latter, a virtual patient population
generator capturing PA has been proposed [36]. Furthermore, multi-scale mod-
els of tissue and organ systems connected by the circulatory system have been
considered [27,35].

Here, we propose a semi-mechanistic model of glucose-insulin regulation that
captures the acute and prolonged changes in glucose metabolism during PA and
subsequent recovery for low- to high-intensity exercise. We use a well-established
two-compartment minimal model [12] as our core model for glucose-insulin dy-
namics and combine it with simple models of insulin kinetics [34] and carbohy-
drate absorption. We then incorporate the separate acute increase in glucose
uptake and production—including depletion—and the prolonged rise in insulin
sensitivity caused by PA. We use sigmoidal transfer functions to compactly de-
scribe some of the physiological changes. Our model accurately predicts blood
glucose dynamics during and after PA and could be used to evaluate the associ-
ated hypoglycemia risk several hours post-exercise. Its modularity allows easy
extensions of the insulin and meal submodels, which makes the developed model
suitable for incorporation into both decision support systems (‘exercise calcula-
tor’ [13]) with bolus injections and pump-based artificial pancreas systems.

2 Methods

Our model consists of a core model including basic glucose-insulin regulation,
insulin bolus kinetics, and meal absorption, and an exercise model capturing
the PA-related changes in glucose metabolism.

2.1 Core Model

2.1.1 Two-compartment minimal model

The two-compartment minimal model [12] describes the impact of insulin and
glucose on plasma glucose levels with compartment Q1 [mg/kg] to represent
glucose mass in plasma, and a remote compartmentQ2 [mg/kg] (Fig. 1). Plasma
insulin promotes the disappearance of plasma glucose into liver and tissue, and
suppresses hepatic glucose production via the dynamic state X [1/min]:

Ẋ(t) = −p2 ·X(t) + p3 · I(t)

Q̇1(t) = − [p1 +X(t)] ·Q1(t) − p4 ·Q1(t)

+p5 ·Q2(t) + (p1 +Xb) ·Q1b +Ra(t) (1)

Q̇2(t) = p4 ·Q1(t) − p5 ·Q2(t)

G(t) = Q1(t)/Vg.
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Figure 1: Schematic of the glucose-insulin model used to describe glucose (Q1)
and insulin (I) dynamics. It is based on the two-compartment minimal model
[12], extended to capture plasma insulin kinetics [34] after injection u and to
capture the glucose response to a meal D. X is a dynamic state related to insulin
concentration. Processes affected by PA are marked with a blue asterisk.

Here, I [µU/ml] is the plasma insulin concentration, Q1b [mg/kg] denotes
the basal level of glucose and Xb the basal value of X with Xb = p3/p2 · Ib,
Ra [mg/kg/min] is the rate of glucose appearance in plasma after a meal. G
[mg/dl] is the plasma glucose concentration, Vg [dl/kg] the glucose distribution
volume and pi are rate parameters.

2.1.2 Insulin kinetics model

We use a model with two subcutaneous compartments of insulin masses x1 and
x2 [µU] and a plasma insulin compartment Ic [µU/ml] (Fig. 1) to capture the
resulting plasma insulin kinetics after a subcutaneous bolus injection [34]:

ẋ1(t) = −k1 · x1(t) + u(t)

ẋ2(t) = k1 · x1(t) − (k2 + k3) · x2(t)

İc(t) =
k2

Vi ·BW
· x2(t) − k4 · Ic(t) (2)

I(t) = Ic(t) + Ib.

Insulin is injected into x1 at rate u [µU/min] and yields a rise Ic in plasma
insulin concentration I, adjusted for distribution volume Vi [ml/kg] and body-
weight BW [kg]. ki are rate parameters and we assume a constant basal insulin
level Ib [µU/ml].
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2.1.3 Meal absorption model

We describe glucose appearance after a meal with a two-compartment absorp-
tion model:

Ṁ1(t) = −m1 ·M1(t) +D(t)

Ṁ2(t) = m1 ·M1(t) −m2 ·M2(t) (3)

Ra(t) =
f ·m2

BW
·M2(t),

where the ingested glucose, D [mg/min], first passes through compartments
M1 [mg] and M2 [mg] before being absorbed (Fig. 1). Ra [mg/kg/min] defines
the rate of glucose appearance in plasma as the fraction f of absorbed glucose;
mi are rate parameters.

2.2 Exercise Model

To incorporate exercise-driven changes, we replace the plasma glucose mass
equation (1) with

Q̇1(t) = −
[
p1 + rGU (t) − [rGP (t) − rdepl(t)]

+ [1 + Z(t)] ·X(t)
]
·Q1(t) − p4 ·Q1(t) (4)

+p5 ·Q2(t) + (p1 +Xb) ·Q1b +Ra(t).

The rates rGU and (rGP − rdepl) provide the insulin-independent increase in
GU and GP (including glycogen depletion), respectively, while (1 +Z) captures
the PA-driven increase in insulin sensitivity.

We model smooth transitions between different exercise modes, e.g. low-
and high-intensity PA, via the transfer function

f(x; p, n) =
(x/p)n

1 + (x/p)n
. (5)

Although this transfer function does not offer a physiologically accurate de-
scription of the underlying molecular mechanisms, it enables us to keep the
model simple, while incorporating the effects of different exercise regimes on
glucose levels. This strategy has been used before to activate the exercise-driven
increase in insulin sensitivity [8].

2.2.1 Measure of exercise intensity and duration

We consider movement via accelerometer (AC) counts, which we link to PA
intensity Y via a delay τAC [min] to allow initial adaptation to PA:

Ẏ (t) = − 1

τAC
· Y (t) +

1

τAC
·AC(t). (6)

Furthermore, we track PA duration tPA [min], integrated AC count PAint

[counts] and time spent at high intensity tHI [min]:

ṫPA(t) = f(AC; aAC , n2) − [1 − f(AC; aAC , n2)] · tPA(t)
˙PAint(t) = f(AC; aAC , n2) ·AC(t)

− [1 − f(AC; aAC , n2)] · PAint(t) (7)

ṫHI(t) = f(AC; aHI , n2) − [1 − f(AC; aHI , n2)] · tHI(t),
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where transfer functions f(AC; aAC , n2) and f(AC; aHI , n2) capture the
transition from rest to exercise, respectively from low to high intensity.

2.2.2 Insulin sensitivity

We model the rise in insulin sensitivity as

Ż(t) = b · f(Y ; aY , n1) · Y (t) − 1

τZ
· [1 − f(Y ; aY , n1)] · Z(t), (8)

where f(Y ; aY , n1) defines the minimal intensity Y considered as PA; b and
τZ are parameters. Insulin sensitivity increases proportionally with intensity
during PA, stays elevated to drive glycogen repletion after PA, and then returns
slowly to its baseline.

2.2.3 Insulin-dependent glucose uptake and production

The PA-driven, insulin-independent glucose uptake (rGU [1/min]) and produc-
tion (rGP [1/min]) rates are given by

ṙGU (t) = q1 · f(Y ; aY , n1) · Y (t) − q2 · rGU (t)

ṙGP (t) = q3 · f(Y ; aY , n1) · Y (t) − q4 · rGP (t). (9)

Both rates depend on the PA intensity and are used to model a quick-on,
quick-off behavior with rate parameters qi. Parameters q3 and q4 are modulated
between low- (subscript ‘LI’) and high-intensity (subscript ‘HI’) values by a
transfer function to smoothly transition between the two exercise regimes:

q3 = [1 − f(tHI ; tp, n2)] · q3LI + f(tHI ; tp, n2) · q3HI

q4 = [1 − f(tHI ; tp, n2)] · q4LI + f(tHI ; tp, n2) · q4HI . (10)

Figure 2: Data [44] and model prediction for 60 min of moderate-intensity
PA (vertical lines) at 40% VO2

max. (a) Model prediction of plasma glucose
concentration. (b) Plasma insulin concentration. Model fit of (c) glucose uptake
(GU) and (d) glucose production (GP) rates during PA. The difference to resting
rates is separated into contributions of insulin-dependent (dark shaded area) and
insulin-independent (bright shaded area) changes in glucose metabolism due to
PA.
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Table 1: Model Parameters

Parameter Value Unit From

Glucose-insulin model
p1 0.008 1/min adapted [12]
p2 0.015 1/min set manually
p3 2.47·10−5 ml/µU 1/min2 original [12]
p4 0.058 1/min original [12]
p5 0.0885 1/min original [12]
Vg 1.289 dl/kg original [12]

Insulin model
k1 0.022 1/min set manually
k2 0.03 1/min set manually
k3 0.0021 1/min original [34]
k4 0.2 1/min set manually
Vi 125 ml/kg original [34]

Meal model
m1 0.0115 1/min estimated [23]
m2 0.0513 1/min estimated [23]
f 0.93 dimensionless estimated [23]

Insulin sensitivity
τAC 5 min physiology
τZ 600 min physiology
b 1.68·10−6 1/count estimated [43]

Glucose uptake & production
α 0.36 dimensionless estimated [44]
q1 1.92·10−7 1/(count·min) estimated [44]
q2 0.078 1/min estimated [44]
q3LI 1.19·10−7 1/(count·min) estimated [44]
q4LI 0.048 1/min estimated [44]
q3HI 2.51·10−7 1/(count·min) estimated [25]
q4HI 0.031 1/min estimated [25]
q5 0.03 1/min set manually

Glycogen depletion
β 0.72 dimensionless estimated [2]
q6 0.05 1/min estimated [2]
adepl 0.0108 min2/count estimated [19]
bdepl 180.6 min estimated [19]

Transfer functions
aY 1500 counts/min
aAC 1000 counts/min
aHI 5600 counts/min
tp 2 min
n1 20 dimensionless
n2 100 dimensionless
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2.2.4 Glycogen depletion

We determine the time tdepl [min] until depletion of liver glycogen stores from
the integrated AC count and PA duration:

tdepl(t) = −adepl ·
PAint(t)

tPA(t)
+ bdepl. (11)

After depletion, GP decreases with rate rdepl [1/min]:

ṙdepl(t) = q6 · (f(tPA; tdepl, n1) ·GPdm(t) − rdepl(t))

GPdm(t) = β ·
(
q3
q4

· Y (t) +GPb

)
(12)

and the transfer function indicates whether exercise time exceeded tdepl. The
maximum drop GPdm in GP is the sum of the PA-driven GP at steady state,
q3/q4 · Y (t), and the basal GP rate, GPb. q6 is a rate parameter and β is the
proportion of net hepatic glucose production attributed to glycogenolysis.

2.3 Parameter Determination

We obtained parameter values from literature or physiological knowledge when
feasible. We estimated the remaining parameters from published data using
least squares regression. Parameter values are given in Table 1.

We are aware that already the simple two-compartment minimal model of
glucose-insulin regulation is known to be unidentifiable [12], and our model is
therefore unlikely to be identifiable from blood glucose measurements alone.
Nevertheless, we found that the reported parameter values enable accurate pre-
diction of plasma glucose levels for a wide variety of experimental scenarios (see
below). To calibrate our model, we have to rely on literature values and do-
main knowledge for some parameters. However, we calibrated the model parts
related to physical activity based on published data sets. We separated pa-
rameters into process-specific sets and individually estimated these on data sets
acquired during the corresponding exercise modes.

We used experimental data from different published studies to test if our
calibrated model is able to accurately describe independent data. Importantly,
these studies not only provide independent data not used in calibration of our
model, but also investigated exercise at different intensities and for varying
durations compared to the data sets used for parameter estimation. This enables
us to investigate the general applicability of our model to various PA types and
provides further validation of the intensity dependence given in the model.

We also tested whether model predictions qualitatively agree with clinical
knowledge over an extended period of time by performing several full-day sim-
ulations with different PA scenarios and with and without insulin bolus adjust-
ments.

2.3.1 Core model parameters

We slightly modified the original core model and manually adjusted insulin
parameters to mimic the appearance of the plasma insulin peak after about
60 min, typical for current fast-acting insulins. We estimated m1, m2 and f
of the meal model from plasma glucose measurements after a 75g oral glucose
load [23].
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2.3.2 Exercise model parameters

We set the delay parameter τAC to 5 min [8] and chose a time constant τZ of
600 min such that insulin sensitivity stays elevated for up to 48h in accordance
with literature reports [33].

We estimated the increase in insulin sensitivity during PA (parameter b) from
measurements of the insulin-dependent rate of glucose disappearance during rest
and 100 min of cycling at 80% VO2

max in healthy subjects [43]. We converted
%VO2

max to accelerometer count using

%V Omax
2 = 0.0135 ·AC + 1.7228, (13)

estimated from simultaneous AC count and %VO2
max measurements for

different types and intensities of PA [17].
We estimated the insulin-independent GU and GP parameters q1, q2, q3LI

and q4LI from total GU and GP rates measured in healthy adults during 60
min of PA at 40% VO2

max [44]. We distinguished between resting and exercise-
driven contributions by separating the net rate of glucose change at rest into
endogenous glucose production and glucose uptake:

GP (t) = (p1 +Xb) ·Q1b − α · [p1 +X(t)] ·Q1(t)

GU(t) = (1 − α) · [p1 +X(t)] ·Q1(t). (14)

We estimated the high-intensity exercise parameters q3HI and q4HI from
interstitial glucose measurements [25] of T1D patients performing 45 min of
intervals at 82.5% VO2

max and introduced the parameter q5 = 0.03 min-1 to
prevent a switch to low-intensity parameters during recovery.

We determined the time until hepatic glycogenolysis decreases due to glyco-
gen depletion from reported depletion times for different intensities [19] (pa-
rameters adepl and bdepl). We estimated glycogen depletion parameters β and
q6 from plasma glucose measurements [2] recorded during 3h of cycling at 58%
VO2

max in healthy individuals, where we restricted q6 to 0.05 min-1 to avoid an
overshoot in GP after PA.

Finally, we enforce the transition from rest to PA between 1000 and 2000
counts/min with parameters aY = 1500 counts/min and n1 = 20 [17]. Accord-
ingly, we defined aAC = 1000 counts/min and n2 = 100 to track duration and
AC count immediately from the start of PA. High-intensity PA commences at
80% VO2

max (5800 counts/min), and we set aHI = 5600 counts/min and tp =
2 min for a transition between intensity regimes at 75%-80% VO2

max.

3 Results

3.1 Glucose Metabolism during Moderate-Intensity Exer-
cise

We first evaluated the effects of moderate-intensity PA on plasma glucose dy-
namics on a cycling session of 60 min at 40% VO2

max, the data used for esti-
mating the GU and GP rates [44]. Model and observed data are in very good
agreement (Fig. 2).

Both GU and GP rates increase at the onset of PA, starting from a baseline
level of 2.2 mg/kg/min. GU increases to 3.0 mg/kg/min due to a higher uptake
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by the exercising muscles, while GP increases to 2.9 mg/kg/min to meet the
increased demand. During recovery, both rates return quickly to their pre-
exercise levels.

In our model, we separate the PA-driven changes in GU and GP into insulin-
dependent and -independent contributions. While insulin-independent GU and
GP rise immediately at the beginning of PA and turn off quickly after the end
of exercise, insulin sensitivity increases gradually during the activity and stays
elevated during recovery, leading to a continued rise in GU and drop in GP
compared to resting rates. Plasma insulin concentration decreases during PA
in the healthy individual to counteract the effects of increased insulin sensitiv-
ity (while T1D patients must actively reduce the insulin dose), and increases
again after PA to drive glycogen repletion. Glucose homeostasis is maintained
throughout the activity, where plasma glucose levels only decrease slightly from
89.3 mg/dl to 86.5 mg/dl, and return to previous levels after the activity.

We validated the calibrated exercise model on data from two additional
independent studies in healthy subjects. In the first study [22], participants
cycled for 60 min at 60% VO2

max. Glucose levels decreased from 93.7 mg/dl
to 86.5 mg/dl and remained constant during the first hour of recovery. In the
second study [4], participants performed arm exercise on a cycle ergometer for
120 min at 30% VO2

max and glucose concentration remained stable throughout
PA. We again observe good agreement between data and model predictions (Fig.
3).

3.2 Glycogen Depletion during Prolonged Exercise

To evaluate the dynamics of glycogen depletion, we compared model predictions
to the data for 180 min of PA at 58% VO2

max previously used for parameter
estimation [2]. During the first two hours of PA, plasma glucose concentration
decreases slowly from 79.1 mg/dl to 64 mg/dl. In the last 60 min, GP drops
below its pre-exercise levels due to depletion, causing glucose levels to drop
quickly reaching 50.1 mg/dl at the end of PA. During recovery, GP returns to
the baseline level and plasma glucose starts rising. The model correctly captures
glycogen depletion after 136 min (Eq. 11) and the observed plasma glucose levels
(Fig. 4a).

Importantly, we find good agreement of our model predictions with the ob-
served data for the time before onset of depletion, even though we did not use
this part of the data for model calibration. We also determined the time of
depletion independently and again observe good agreement for these data.

For independent validation of the depletion model, we used a data set of
plasma glucose levels measured in healthy adults during 240 min of cycling at
30% VO2

max [3]. At this intensity, depletion is reached after 158 min. The model
correctly predicts the drop in glucose levels from 81.3 mg/dl at the beginning
to 56.2 mg/dl at the end of PA (Fig. 5).

3.3 Glucose Dynamics during High-Intensity Exercise

We used the previous data of high-intensity intervals at 82.5% VO2
max for 45

min to evaluate this part of the exercise model [25]. The initial glucose level is
180 mg/dl and increases during PA to a maximum of 201 mg/dl shortly after
PA before returning to pre-exercise levels. GP increases from 3.7 mg/kg/min
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Figure 3: Validation of exercise model. (a) Model prediction and data [22] for
60 min of PA (vertical lines) at 60% VO2

max. (b) Model prediction and data [4]
for 120 min of PA at 30% VO2

max.

at rest to 8.0 mg/kg/min during PA, while GU reaches 6.8 mg/kg/min. This
dynamics is correctly reflected by the model (Fig. 4b).

3.4 Full-Day Simulation of Glucose Dynamics in T1D

Overall, our model adequately reflects experimental data for a range of exercise
scenarios and generalizes to independent scenarios. We next considered its po-
tential for long-term predictions for a full day of a T1D patient, consisting of
three meals and corresponding insulin boluses. We defined twelve PA scenarios
for this typical day: exercise in the morning or afternoon, of duration 60 or 180
min and with moderate (30% or 60%) or high (90% VO2

max) intensity (Fig. 6).
For moderate intensities, plasma glucose decreases during PA and slowly

approaches resting glucose levels afterwards. For prolonged PA of 180 min,
depletion shows slightly earlier for an intensity of 60% VO2

max than for 30%
VO2

max. Blood glucose decreases with increasing intensity and duration. Glu-
cose levels are lower during the night for afternoon PA than for comparable
morning PA, indicating higher risk for nocturnal hypoglycemia when exercise is
performed later in the day.

Glucose concentration increases during high-intensity PA, but decreases to
levels below those of moderate-intensity PA after the activity. The model thus
confirms observations that high-intensity PA protects against hypoglycemia
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Figure 4: (a-c) Data [2] and model prediction for 180 min of PA (vertical lines) at
58% VO2

max. (d-f) Data [25] and model prediction for 45 min of high-intensity
PA at 82.5% VO2

max. (a, d) Model fits of plasma glucose concentration, where
the dashed vertical line indicates time of depletion. Model predictions of (b, e)
GU and (c, f) GP during PA. The difference to resting rates is separated into
contributions of insulin-dependent (dark shaded area) and insulin-independent
(bright shaded area) changes in glucose metabolism due to PA.

short-term [20], while the risk for late-onset hypoglycemia increases with higher
intensity and duration of PA [24, 31]. Furthermore, risk of nocturnal hypo-
glycemia is increased following afternoon compared to morning PA [18].

Figure 5: Model prediction and data [3] for 240 min of PA (vertical lines) at 30%
VO2

max for validation of the exercise model. The dashed vertical line indicates
time of depletion.
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Figure 6: Full-day simulation of glucose dynamics at rest (blue), including three
meals and corresponding insulin bolus injections. In addition, PA is performed
(vertical lines) for (a, b) 60 min and (c, d) 180 min in the morning (a, c) and
the afternoon (b, d). Glucose dynamics are shown for moderate intensities of
30% and 60% VO2

max and for high-intensity PA at 90% VO2
max.

3.5 Insulin Reduction for Post-Exercise Meal Bolus

Lastly, we studied reduction of the correction insulin bolus for a meal post-
exercise, a strategy successful in protecting against early-onset but not late-
onset hypoglycemia [10]. We simulated PA in the morning from 10:00 to 12:00
and an insulin bolus for lunch at 13:00 either given in full, or reduced by 25%
or 50% (Fig. 7).

As expected, plasma glucose is initially higher after lunch for reduced insulin
compared to the full dose and is comparable to resting glucose levels. However,
glucose concentrations are lower than resting levels throughout the night in all
scenarios, independent of the bolus reduction. These results indicate that bolus
reduction post-PA may protect against early-onset hypoglycemia, but does not
target PA-induced late-onset hypoglycemia.

Figure 7: Full-day simulation with insulin reduction for post-PA meal bolus.
Glucose dynamics are shown for rest (blue) and morning PA with a full (100%),
75% and 50% insulin dose administered for lunch.
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4 Discussion

We presented a model of exercise-related changes in glucose-insulin regulation
in type 1 diabetes. The model comprehensively covers acute and prolonged
PA-driven processes from low to high intensity to capture changes in glucose
dynamics during and after PA. We employ transfer functions to keep the model
compact while allowing transitions between different exercise regimes.

Our model quantitatively describes exercise-driven changes in insulin sen-
sitivity, GU and GP for all exercise regimes and allows for varying intensity
throughout the activity. It describes the prolonged rise in insulin sensitivity
that drives glycogen repletion during recovery, a main cause of late-onset hypo-
glycemia. We further modeled the insulin-independent acute rise in GU during
the activity and the simultaneous increase in hepatic GP responsible for meet-
ing the increased energy demand of the exercising muscles. To capture glucose
metabolism during prolonged PA, we added the reduction in GP due to liver
glycogen depletion. We also included GP increases during high-intensity PA.

Our model accurately reflects glucose dynamics for low- to high-intensity
PA during the activity and the following recovery period. We validated model
predictions on independent data of moderate-intensity PA, with and without
depletion. No additional data were available for independent validation of the
high-intensity model extension.

The developed model includes simple modules for insulin bolus injections
and meal intake, which makes it suitable for full-day simulations with simple
meals.

To evaluate the long-term prediction capabilities of the model, we presented
full-day simulations with different PA scenarios. For moderate-intensity PA,
model predictions agree with the observations that glucose levels decrease with
intensity and duration. In addition, we correctly predict that blood glucose is
lower during the night following afternoon compared to morning PA, which is
associated with a higher risk for nocturnal hypoglycemia. Lastly, the model
successfully captures the blood glucose rise during high-intensity PA, and the
subsequent decrease below levels reached with comparable moderate-intensity
PA several hours after the activity.

Our determination of the model parameters suffers from two drawbacks:
first, we only identify some of the parameters directly from data, but have
to rely on domain knowledge and literature values for other parameters. We
partially addressed this problem by testing model predictions on independent
data sets, but cannot ensure that the individual model parts are physiologically
accurate. Second, the available data sets only provide average glucose responses
over several study participants. For future application of the model, it would be
beneficial to use individual patient data for subject-specific model adjustment
and to assess inter-patient variability. Based on these results, an in-silico patient
population could be generated and applied for realistic simulation studies, in
which the whole range of potential glucose outcomes would be covered.

5 Conclusion

Summarizing, our comprehensive model of glucose-insulin regulation captures
the acute and prolonged effects of low- to high-intensity PA on glucose metabolism.
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In addition, it includes meal intake and insulin injection kinetics, making it well-
suited to describe glucose dynamics during everyday life. Hence, the model can
be used to predict blood glucose during PA and recovery and to evaluate the
impact of PA on glucose levels acutely and up to several hours after the activity
in practical scenarios. It can further be used to compare different exercise types
and the associated hypoglycemia risk within one framework. We anticipate
that our model finds applications as an ‘exercise calculator’ for clinical decision
support [13] to assist patients and clinicians achieve good glycemic control af-
ter exercise, as well as for improving control algorithms for closed-loop insulin
delivery. Its modular nature makes it easily adaptable to other forms of in-
sulin delivery, in particular insulin pumps, and readily allows extension of our
comparatively simple meal model to more complex meals.

We evaluated the model’s performance on real data, but further validation
of the model components on the individual patient level is warranted before
application in a clinical setting.
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