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Abstract

This paper describes the use of the Human Connectome Project (HCP) data for
mapping the distribution of spontaneous activity in the human brain across different
spatial scales, magnets and individuals. Specifically, the resting-state functional MRI
signals acquired under the HCP 3 tesla (T) and 7T magnet protocols were measured by
computational methods at multiple spatial scales across the cerebral cortex using: 1) an
amplitude metric on a single measuring unit (ALFF), 2) a functional homogeneity
metric on a set of neighboring measuring units (ReHo) and 3) a homotopic functional
connectivity metric on pairs of symmetric measuring units between the two hemispheres
(VMHC). Statistical assessments on these measurements revealed that all the raw
metrics were enhanced by the higher magnetic field, highlighting their dependence on
magnet field strength. Measurement reliability of these global measurements were
moderate to high and comparable between between 3T and 7T magnets. The
differences in these measurements introduced by the higher magnetic field were spatially
dependent and varied according to specific cortical regions. Specifically, the spatial
contrasts of ALFF were enhanced by the 7T magnet within the anterior cortex while
weakened in the posterior cortex. This is opposite for ReHo and VMHC. This
scale-dependent phenomena also held true for measurement reliabilities, which were
enhanced by the 7T magnet for ReHo and VMHC and weakened for ALFF. These
reliability differences were primarily located in high-order associate cortex, reflecting the
corresponding changes of individual differences: higher between-subject variability and
lower within-subject variability for ReHo and VMHC, lower between-subject variability
and higher within-subject variability for ReHo and VMHC with respect to higher
magnetic field strength. Our work, for the first time, demonstrates the spatial-scale
dependence of spontaneous cortical activity measurements in the human brain and their
test-retest reliability across different magnet strengths, and discussed about the
statistical implications for experimental design using resting-state fMRI.
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Introduction 1

Mapping the intrinsic architecture of human brain function in vivo can be accomplished 2

using functional magnetic resonance imaging (fMRI) to estimate the spontaneous brain 3

activity at a resting-state (rfMRI) [6,7,17,35]. The growing field of network neuroscience 4

can use the fMRI derived data to model the entire set of functional interactions in the 5

form of the human connectome [3, 42, 46]. This functional connectomics has greatly 6

enhanced our knowledge and understanding of brain organization (e.g., a small-word, 7

rich-club, modular and gradual connectome [8, 9, 25, 47]) and how connections are 8

optimized for mind and behavior (e.g., intelligence [2]). These general observations have 9

largely been made at the group level, and challenges are emerging when translating 10

observations into individual-level functional connectomics [27, 41], particularly when 11

quantifying an individual’s differences in their functional connectome [14,18]. 12

In measuring individual differences, two concepts are fundamental, namely reliability 13

and validity [61]. Reliability characterises a proportion of measurement variability 14

between different individuals from the overall variability including both between- and 15

within-individual (a.k.a random) variability components [51]. It is commonly used to 16

reflect the consistency or agreement of the measurements among different occasions. 17

However, it can also be a measure reflecting the discriminability. In other words, for a 18

measure to sufficiently capture (i.e., discriminate between) individual characteristics, 19

the reliability will need to be high. Discriminability is dampened in measures that 20

underestimate between-individual variability, even when the consistency of the 21

measurements within-individuals are equal. Thus a higher reliability is essential for the 22

measurement to better differentiate a group of individuals, i.e., inter-individual 23

differences [61]. Recent work has proven that measurement reliability is equivalent to 24

the fingerprint and the ability of the measures to distinguish individuals under the 25

Gaussian distribution [31]. It also provides an upper bound of the measurement 26

validity [4], which cannot be as readily quantified as the reliability [61]. High-level 27

reliability is thus the primary requirement for measuring individual differences, the 28

quantification of which is important for guiding individual-level research [33,61] into 29

developmental trends [24] and clinical variations [30]. 30

Previous meta-analyses have demonstrated that test-retest reliability can vary 31

substantially among different rfMRI measurements [32, 59]. These differences reflect the 32

complexity in handling various individual variability measurements related to the three 33

aspects of functional connectomics: biological target, imaging tool and computational 34

metric. Specifically, high-order associative target (e.g., networks) of human brain 35

function are more variable across different subjects (higher between-individual 36

variability) and thus more reliable. Structural targets (e.g., cortical thickness) are more 37

reliable than functional targets (e.g., functional connectivity) due to their lower 38

within-subject variability (i.e., more stable across different measurement occasions 39

within individuals). We also observed that some strategies on imaging tools and 40

computational approaches such as scanning duration and global signal regression impact 41

the rfMRI measurements and their reliability [60]. Based on previous findings [59, 61], 42

we can make three major observations: 1) metrics with a structural or morphological 43

basis are more reliable than those without; 2) local metrics are more reliable than global 44

metrics; and 3) advances in rfMRI acquisition protocols (spatial-temporal resolution and 45

scan duration) improve test-retest reliability. We recently demonstrated the benefits of 46

the latter (#3) using data from the Human Connectome Project (HCP) [48], to 47

determine increased short-term (two-day) test-retest reliability with the advanced 48

protocol [59]. The previous reliability assessments on rfMRI measurements of the 49

human brain were all derived from 3T magnets. MRI acquisition protocols are 50

continuing to advance, and many brain imaging studies are now being conducted using 51

7 tesla high-field strength magnetic fields. It is not yet known how the improvements in 52
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data quality (i.e., the signal-to-noise ratio) from 7T acquisitions [48, 49] affect the 53

test-retest reliability of rfMRI measurements, and thus our ability to study 54

individual-level differences in human cortical spontaneous activity (CSA). 55

Here, we employed the test-retest HCP rfMRI datasets from the same group of 56

healthy adults scanned twice at both 3T and 7T HCP magnets. The aim of our 57

analyses is to compare differences in common CSA metrics of the human connectome 58

between the HCP 3T and 7T rfMRI settings in terms of their regional variations, 59

individual variability and test-retest reliability. Specifically, we chose three CSA metrics 60

at multiple spatial scales across the cerebral cortex: 1) amplitude metric on a single 61

measuring unit (ALFF) [54,55], 2) functional homogeneity metric on a set of 62

neighboring measuring units (ReHo) [53,60] and 3) homotopic functional connectivity 63

metric on pairs of symmetric measuring units between the two hemispheres 64

(VMHC) [58]. These CSA metrics are determined as the present research of interests 65

according to their high reliability and potential validity [26, 59]. We first perform a 66

replication of the previous work on test-retest reliability using the HCP 3T data [59], 67

and then update the evaluation based on the HCP 7T data and finally, test the 68

differences between the HCP 3T and 7T magnets. 69

Materials and Methods 70

Participants and Test-Retest Data 71

Among the 1200 participants of HCP 1200 release, a total of 84 participants (age range: 72

22-36 yrs; mean age: 29.6 yrs; 32 males) received 4 rfMRI scans during two days at the 73

3T and 7T HCP scanners, respectively. A final list of all the participants is available at 74

Github (ADD LINK). Each participant received a pair of high-resolution (0.7mm 75

isotropic voxel) structural images of T1-weighted (T1w) and T2-weighted (T2w) 76

sequences only at the WU-Minn Connectome 3T scanner. One-hour rfMRI signals were 77

acquired with a two-day test-retest design to measure the SCAs. Specifically, this rfMRI 78

protocol comprises of four 15min-scans (two scans per day). Table 1 demonstrated 79

details of the rfMRI scanning sequences across the 3T Connectome scanner and the 7T 80

MAGNETOM scanner. More details can be found in two recent papers [48, 49]. 81

Data Preprocessing 82

All preprocessing steps for both 3T and 7T images were implemented using the HCP 83

pipeline, which generated all the publicly shared images via the HCP database. These 84

steps have been comprehensively described in previous HCP publications [19, 20,40], 85

and we only briefly highlight several key steps here. 86

Temporal filtering was applied with a minimal high-pass filter of a 2000s cutoff, 87

which is almost equivalent to removing a linear trend from the data. An ICA-based 88

approach, FIX, was used to remove non-neural spatio-temporal artifacts from each 89

15-min rfMRI scan. Performance offered by FIX has been fully described and evaluated 90

in previous publications [36]. Specifically, ICA was first carried out using MELODIC to 91

decompose the volumetric rfMRI data into a set of components [5, 57]. FIX classifies 92

these components into signal and noise components with a training-validation scheme, 93

and further cleanup the rfMRI scans by regressing out the noise components from the 94

data. All the FIX processing steps are implemented in the volumetric space, and the 95

resulted data are then projected into the MNI152 space with the HCP gray-ordinate 96

system. Spatial smoothing was performed with a small Gaussian kernel of 2mm on the 97

surface to avoid the tissue-mixture effect on both signal and noise within the volume 98

space while preserving the boundaries across different functional units. 99
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In the present work, we constrain the data analyses to the cerebral cortex [13,60]. 100

Specifically, 3T rfMRI data are projected onto a left-right symmetric cortical surface 101

grid, which is reconstructed with the HCP-customized FreeSurfer pipeline based upon 102

69 healthy adults and comprises 32,492 vertices per hemisphere with an approximate 103

2mm inter-vertex distance, namely Conte69 LR32k. For 7T rfMRI data, an averaged 104

surface models was derived from the 62 HCP participants to establish a left-right 105

symmetric cortical surface model with a higher spatial resolution (⇠ 59k vertices per 106

hemisphere), namely HCP62 59k. The preprocessed rfMRI data were then projected 107

onto the HCP62 59k grid. To make direct comparisons of the rfMRI metrics between 3T 108

and 7T magnets, we down-sampled all individual 7T rfMRI surface data onto the 109

Conte69 LR32k surface grid for the subsequent rfMRI computation of the three CSA 110

metrics. A group-level surface mask was established by including every vertex showing 111

rfMRI signals of both 3T and 7T datasets from all the four rfMRI scans of the 84 112

participants across the cortical mantle. 113

Raw Metric Computation and Normalization 114

Vertex-wise metrics allow for direct and high-resolution characterization of the intrinsic 115

functional architecture of the human cerebral cortex with respect to its organizational 116

morphology and function. Three widely used metrics (ALFF, ReHo and VMHC) are 117

employed to characterize the CSA in the human brain across different spatial scales. 118

These metrics have been defined and described in detail in our recent work on 119

test-retest reliability evaluation [12,59]. 120

Left

VMHCReHoALFF

Right

~ mm~ mm ~ cm

5mm5mm 5mm5mm

100mm100mm 100mm100mm

Figure 1. Multiscale CSA metrics. ALFF, ReHo and VMHC are calculated for
each vertex at the cortical surface of each hemisphere. ALFF measures CSA at single
vertex (within a 2mm location). ReHo measures local connectivity of CSA among a set
of neighboring vertices (within a 16mm area). VMHC measures distant connectivity
between the symmetrical hemispheric pair of vertices (outside of 16mm distance). The
Conte69 LR32k surfaces are left-right symmetrical and visualized with grids for the two
hemispheres where the colors indicate the seven intrinsic connectivity networks [44].

The three metrics were calculated based on the slow-4 band (0.033Hz - 0.083Hz) 121

4/19

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 10, 2021. ; https://doi.org/10.1101/2021.06.09.447694doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.09.447694
http://creativecommons.org/licenses/by-nd/4.0/


CSAs of each voxel in the group-level mask [10,21]. The amplitude of low frequency 122

fluctuation (ALFF) of the CSA at a single voxel was derived (⇠ within 2mm 123

distance) [54]. The regional homogeneity (ReHo) characterizes the local functional 124

connectivity across the cortical mantle [26, 60]. To quantify the ReHo vertex-wise, the 125

Kendall’s coefficients of concordance (KCCs) of the rfMRI time series among the 4-step 126

neighboring (⇠ 61 vertices within 16mm distance) vertices were calculated. 127

Voxel-mirrored homotopic functional connectivity (VMHC) was derived as the temporal 128

correlation (Fisher-z transformed) between the rfMRI timeseries from a pair of 129

symmetric voxels between the two hemispheres (> 16mm distance) [58]. As in Figure 1, 130

these metrics measure CSAs across different spatial scales (i.e., from regional, local 131

activity to distributional, distant connectivity) [37]. 132

Figure 2. Reliability gradi-
ent as a function of individ-
ual variability changes. Both
Vb and Vw are normalized by the
total sample variances to have
values between 0 and 1. Their
changes (�Vb and �Vw) intro-
duce a reliability gradient as rep-
resented by the vector (black ar-
row). The length of the arrow re-
flects the amplitude of reliability
differences when the reliability as-
sessment changes from one choice
(pink circle, J) to another choice
(red circle, K). The arrow’s direc-
tion (JK) indicates the sources of
this reliability change. Here the
reliability goes from moderate to
substantial as the �Vb increases
and the �Vb decreases.
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For each rfMRI scan, both 133

the mean and standard deviation 134

(SD) of the raw maps for 135

each metric are first calculated 136

within the group mask. 137

Individual raw metric maps are 138

then converted into z-value maps 139

by subtracting the mean and 140

dividing by SD. The z-value map 141

can be considered as a gradient 142

(relative value) map, normalized 143

to the global mean and 144

SD. This normalization allows 145

these maps to be comparable 146

across scans and field strengths. 147

Group Patterns 148

To examine the degree 149

of differences induced by the 150

7T magnet compared to the 3T 151

magnet, we performed a set of paired t-tests on the rfMRI-derived CSA metrics 152

described above. Specifically, the individual mean and SD metrics of the two scans 153

(taken in one day) were averaged to obtain a single set of individual means and SDs for 154

the metrics to increase the signal-to-noise ratio and reduce the complexity of the 155

comparisons. The average operation was also applied to the two individual z-value maps 156

obtained from scans taken the same day. A paired t-test on each global metric was 157

performed between 3T and 7T magnetic field strengths to test if the overall CSA 158

metrics are different between the two scanner field strengths. Similar tests were applied 159

to the individual z-value maps at the vertex level. Constrained within the group mask, 160

vertex-wise paired t-tests compared all averaged individual maps between 3T and 7T, 161

and produced the general statistics. A quantity of the test significance 162

sign(t)⇥ (� log10(pcorrected)) was used to visualize the degree of strength on differences 163

in various metrics between 3T and 7T. The final significance maps were corrected for 164

multiple comparisons with the Bonferroni method (uncorrected p < 0.05/N , where N is 165

the number of vertices within the mask). 166

Individual Differences 167

Linear mixed effect (LME) models were used to estimate both intra-individual and 168

inter-individual variability of CSA metrics at global (mean and SD) and voxel (z-value 169

map) level. One strength of the linear mixed models is capable of explicitly separating 170
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the age or sex related variability with the repeated CSA measurements by including 171

them as covariates. We modeled both age and sex as participant-level covariates due to 172

the very short test-retest duration (two days). We averaged the metrics derived from 173

the two 15-min rfMRI scans within the same day for each participant to feed in the 174

LME models described as in the equation (1). 175

�ij = ↵0j + eij , ↵0j = µ00 + p0j + agej + sexj (1)

This equation denotes �ij as the i-th day measurement of the j-th participant 176

(i = 1, 2; j = 1, · · · , 84) where µ00 is a fixed parameter of modeling the group mean 177

measurement across all the participants’ repeated measurements. The term p0j models 178

the participant effect whereas sexj and agej can monitor gender and age effect, 179

respectively. The term eij is the random error. These models were implemented and 180

solved in R with the lme package. Specifically, the variance of eij was estimated as the 181

within-participant or intra-individual variability (Vw) while the variance of p0j was 182

estimated as the between-participant or inter-individual variability (Vb). As in Figure 2, 183

to offer an intuitive way of understanding the changes of individual variability and 184

reliability from 3T to 7T, we introduce and update a reliability-plane visualization we 185

introduced previously [51]. The ICC values are categorized into five common intervals: 186

0  RICC  0.2 (slight), 0.2 < RICC  0.4 (fair), 0.4 < RICC  0.6 (moderate), 187

0.6 < RICC  0.8 (substantial), 0.8 < RICC  1 (almost perfect). 188

RICC =
Vb

Vb + Vw
=

�p

�p + �e
(2)

These variance components were estimated by implementing the restricted maximum 189

likelihood (ReML) approach to avoid negative values of the intra-class correlation (ICC), 190

which is defined as in the equation (2). All these models were equally performed to the 191

three rfMRI-derived CSA metrics from both 3T and 7T HCP datasets. 192

Results 193

Our analyses generated many results, and we will present these findings according to 194

group patterns (spatial distribution) and individual differences (reliability assessment) 195

in terms their differences between 3T and 7T magnet. 196

Group Patterns of Cortical Spontaneous Activity 197

Paired t-tests revealed that the HCP scans taken using a 7T magnet produced globally 198

higher CSA metrics (i.e., mean ALFF, ReHo and VMHC) than those taken using 3T 199

magnets across the three different spatial scales (Figure 3). The spatial variability of 200

these metrics as measured by their SD across the cortical mantle increased from the 3T 201

magnet to the 7T magnet, but not for the ALFF metric. These findings are 202

reproducible across the two days. 203

These signal enhancements at the global level by the 7T introduced different changes 204

of the regional gradient level or rank (i.e., the z-value) between amplitude and 205

connectivity metrics (Figure 4). Vertex-wise mean z-values of the three CSA metrics are 206

rendered in Figure S1 for the 3T and 7T scans respectively. ALFF exhibited significant 207

field strength-related changes of z-values along a spatial distribution from posterior to 208

anterior cortex while the occipital and parietal areas showed increases of their z-values 209

but temporal, frontal and insular areas demonstrated deceases of their z-values (Figure 210

4a, left). The lateral parietal cortex received the most significant z-value increases 211

whereas the insula, medial prefrontal cortex and temporal pole were with the most 212
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Figure 3. Paired plots of multiscale CSA metrics between 3T and 7T magnet.
Violin plots are presented for global mean (a) and SD (b) of ALFF, ReHo and VMHC
across Day1 and Day2 in the HCP-style imaging protocol. The t-statistics for each
paired t-test is labeled in the left-up corner of the corresponding box while the related
significance is shown as ** (p < 0.01), *** (p < 0.001) or ***** (p < 0.0001).

significant z-value decreases. At network-level, the most spatial locations (more than 213

20% vertices) with increased z-values are distributed in dorsal attention and sensory 214

motor network but default, limbic and ventral attention network for decreased z-values 215

(Figure 4b, left). In contrast, ReHo (Figure 4a, middle) and VMHC (Figure 4a, right) 216

distributed their z-value changes by the 7T magnet from anterior to posterior in the 217

lateral cortex but from dorsal to ventral in the medial cortex. For ReHo, most increases 218

happened to the default and ventral attention network while most decreases sit in the 219

limbic and visual and default network (Figure 4b, middle). For VMHC, z-values 220

increased in the ventral attention, sensory motor and default network but decreased in 221

the limbic, default and visual network (Figure 4b, right). These findings are also 222

provided under a 400-parcels of the network parcellation of the human cortex (see 223

Figure S2). 224

Individual Differences in Cortical Spontaneous Activity 225

The changes in individual differences in global CSA metrics (mean and SD) from the 3T 226

to the 7T magnet were generally subtle (Figure 5). Specifically, the variability of mean 227

ALFF between subjects was smaller with the 7T magnet than with the 3T magnet, 228

while the corresponding SD variability between subjects was almost identical between 229

the 7T and 3T magnets. In contrast, for large-scale connectivity metrics including ReHo 230

and VMHC, the between-subject variability of their mean metrics slightly increased 231

from the 3T to 7T magnets, while the within-subject variability decreased. The 232

direction of variability changes for the connectivity measurements (ReHo and VMHC) 233

was opposite that of the ALFF. Regarding the test-retest reliability, these global CSA 234

metrics all demonstrated moderate (0.4  RICC  0.6) to substantial 235

(0.6  RICC  0.8) reliability. We noted that the mean ALFF exhibited an ICC of 236

nearly 0.8, which indicates close to an almost perfect reliability. Reliability changes 237

were limited to 0.1 of the ICCs for all the global metrics (except for the SD of ALFF) 238

from the 3T to the 7T magnet. 239
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b)

a)

Figure 4. Surface and network mapping of differences in multiscale CSA
metrics’ z-value between 3T and 7T magnets. a) Statistical maps of the paired
t-tests on the three metrics are rendered onto the four cortical surfaces (the lateral and
medial surfaces in both left and right hemisphere). The color indicates the significance on
the tests (warm color: 7T higher than 3T; cool color: 7T lower than 3T). b) Proportion
of significant vertices are summarized according to the seven canonical large-scale
brain networks: Visual (visual), SomMot (sensory motor), VentAttn (ventral attention),
DorsAttn (dorsal attention), Control (frontal parietal control network), Limbic (limbic)
and Default (default). More details of these networks can be found in [44].

Regarding the test-retest reliability, the 7T magnet (Figure 6b) reduced the 240

reliability of ALFF and increased the reliability of both ReHo and VMHC compared to 241

the 3T magnet (Figure 6a). In particular, VMHC gained the most observable 242

improvements in its measurement reliability under the 7T magnet. At the network-level 243

(Figure 6c), the largest changes in ALFF reliability were in the dorsal attention, control, 244

default and sensory motor networks. In contrast, the most evident increases in ICCs for 245

ReHo and VMHC were in the limbic, dorsal attention, default, control and sensory 246

motor networks. We noted that such reliability improvements happened in the VMHC 247

of the ventral attention network and not in the ReHo. 248

These patterns of reliability changes can be attributed to individual differences in 249

z-values (Figure 7). Such patterns are highly similar to those observed at the global 250

level (Figure 5) but provide more details on the differences in their spatial distribution 251

(Figure S3). Specifically, the 7T magnet increased the within-subject variability and 252

decreased the between-subject variability of ALFF z-values, but reversed for both ReHo 253

and VMHC z-values (Figure 7a). At the network level, across both the 3T and 7T 254

magnets, high-order associative networks, including the control, default and dorsal 255

attention networks, were more variable among subjects than those primary networks 256

(Figure 7b) and more stable within subjects (Figure 7c). From the 3T to the 7T 257

magnets, the sensory motor network showed remarkable within-subject variability 258

(Figure 7b, left) and the reduced between-subject variability (Figure 7c, left) in ALFF 259

z-values. The ReHo of the limbic network exhibited large improvements in the 260

between-subject variability (Figure 7b, middle) and reduced the within-subject 261

variability of ReHo z-values under the 7T magnet (Figure 7c, middle). The ventral 262

attention network was more recognizable among subjects in terms of the VMHC 263
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Figure 5. Reliability gradient of multi-scale CSA metrics from 3T to 7T
magnet. Measurement reliability are plotted as small circles as function of both
between-subject variability Vb and within-subject variability Vw. The values of ICC are
outlined with an interval of 0.1 in the plane and assigned the corresponding colors in
the colorbar. The face colors of these circles indicate their ICC levels.

z-values under the 7T magnet (Figure 7b, right) and more stable across the two days 264

within individual subjects (Figure 7c, right). These findings were also provided under a 265

400-parcels of the network parcellation of the human cortex (see Figure S4). 266

Discussion 267

Under 3T magnets, the test-retest reliability has been demonstrated to be limited for 268

measurements of CSA with rfMRI, especially the common functional connectivity 269

metrics (ICC< 0.4, see a recent review in [32]). In contrast, some CSA metrics (e.g., 270

ALFF, ReHo, VMHC and ICA) have shown moderate to substantial reliability 271

(ICC> 0.6, see systematic reviews in [59,61]). This may reflect the methodological 272

differences across these metrics in mapping individual differences, and such a 273

methodological choice can be an important factor of driving fMRI measurement 274

reliability (see recent arguments on task-based fMRI in [15,16,29]). While the 275

definitions of these metrics are different, several studies have reported high correlations 276

among the three metrics when applied to mapping individual differences 277

(e.g., [1, 50, 52]). Here, we presented evidence that ultra-high field (UHF) 7T MRI 278

improves the ability to detect cortical spontaneous activity (CSA), thus exhibiting a 279

higher test-retest reliability for mapping individual differences as well as distinctions 280

among the metrics compared to 3T MRI. 281

We employed a spatial standardization method, namely the z-value transformation, 282

to map individual differences in CSAs and to ensure the maps comparable across 283

magnets and metrics. This method, which has been widely used for structural MRI 284
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Figure 6. Surface and network mapping on test-retest reliability of multiscale
CSA metrics under 3T and 7T magnet. a) Reliability maps of the three metrics
derived with the 3T HCP magnet are rendered onto the four cortical surfaces (the lateral
and medial surfaces in both left and right hemisphere). The color indicates the level of
the ICCs. b) Reliability maps of the three metrics derived with the 7T HCP magnet are
rendered onto the four cortical surfaces. c) Mean ICCs of all vertices within the seven
canonical large-scale brain networks are plotted for both 3T (solid line) and 7T (dash
line) magnet while the face colors of these circles indicate the level of ICC: Visual (visual),
SomMot (sensory motor), VentAttn (ventral attention), DorsAttn (dorsal attention),
Control (frontal parietal control network), Limbic (limbic) and Default (default) [44].

image intensity normalization [34,38,39], decomposes an individual raw map of CSA 285

into two components. The first component includes two global CSA measurements, i.e., 286

mean and SD, of all the vertices across the cortex. The second component is a 287

vertex-wise map of z-values, which is a spatially relative measurement of the CSAs 288

normalized by the mean and SD. Our findings revealed that the UHF 7T magnet 289

enhanced the signal-to-noise ratio of measuring the global CSA compared to the 3T 290

magnet for all the different spatial scales. This is consistent with all the previous 291

studies using fMRI under various conditions [22, 23,28]. Beyond the global intensity 292

increases of the CSA signals, different CSA metrics also demonstrated different patterns 293

of changes on spatial distribution across the human cortical mantle. Specifically, the 7T 294

magnet raised the spatial ranks of the lateral parietal areas in terms of their amplitude 295

of CSA but maintained or lowered such ranks regarding the connectivity metrics of 296

CSA. In contrast, the medial prefrontal cortex showed an inverse pattern of its spatial 297

ranks. The direction of spatial ranks was different between the amplitude metric and 298

the two connectivity metrics. Such metric-related differences were also observed 299
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Figure 7. Reliability plane and network mapping on individual variability
of multiscale CSA metrics from 3T to 7T magnet. a) Reliability gradient of
multiscale CSA metrics from 3T to 7T magnet. Measurement reliability of each vertex
is plotted as one member of the cloud as function of both between-subject variability
Vb and within-subject variability Vw. Small circles indicated the mean ICC of all the
vertices. The values of ICC are outlined with an interval of 0.1 in the plane. b) Mean
between-subject variability of all vertices within the seven canonical large-scale brain
networks are plotted for both 3T (solid line) and 7T (dash line) magnet while the
face colors of these circles indicate the level of Vb: Visual (visual), SomMot (sensory
motor), VentAttn (ventral attention), DorsAttn (dorsal attention), Control (frontal
parietal control network), Limbic (limbic) and Default (default). c) Mean within-subject
variability of all vertices within the seven canonical large-scale brain networks are plotted
for both 3T and 7T magnet while the face colors of these circles indicate the level of Vw.

regarding the test-retest reliability, which was lower for the amplitude metric under 7T 300

magnet but higher for the two connectivity metrics although at the same level of 301

measurement reliability. At both the global and the local vertex levels, it was clear that 302

the reliability improvements were largely driven by the decreases in within-subject 303

variability (i.e., the random errors) and the increases in between-subject variability (i.e., 304

individual differences). This represents the first study of mapping changes in the 305

individual differences in CSAs induced by the UHF 7T MRI comparing with the 3T 306

MRI. Our findings also show a promising way of the z-value method for mapping 307

individual differences, especially in multi-center studies (e.g., [11, 56, 58]). 308
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The present work on the test-retest reliability of individual differences could inspire 309

statistical considerations for experimental designs. As indicated by [61], given a 310

statistical power of 80%, for a two-sample t-tests (widely used in case-control studies), a 311

10% increment of the measurement reliability (e.g., from 0.5 to 0.6 or 0.6 to 0.7) can 312

save 50 samples when detecting a 0.3 experimental effect size. This is the case where 313

the UHF 7T MRI offers such advantages over the 3T MRI, as we have demonstrated. In 314

contrast, with the same number of samples, the use of the UHF 7T MRI can provide 315

greater power to detect the effect size, and this has been demonstrated in previous 316

studies of both functional activation [45] and effective connectivity experiments [43]. 317

Beyond the above-mentioned points in theory, three aspects should be noted for 318

measurement reliability in practice: the measurement target, measurement tool and 319

measurement metric. When designing an experiment, a choice of the reliable 320

measurements should be the first priority rather than simply a large sample size [61]. 321

We conclude that the UHF 7T and 3T MRI can serve as robust tools for detecting 322

highly reliable individual differences in human brain CSAs with the multi-scale metrics, 323

while the UHF 7T MRI can even better detect connectivity metrics than 3T MRI. 324
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Supporting Information

We provide all the supplementary figures here.
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Figure S1. Vertex-wise mapping on mean z-values of the three CSA metrics.
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Figure S2. Parcel-wise mapping on differences in z-values of the three CSA
metrics between 7T and 3T magnet.
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Figure S3. Vertex-wise mapping on individual differences in z-values of the
three CSA metrics under both 7T and 3T magnet.
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Figure S4. Parcel-wise mapping on test-retest reliability and individual vari-
ability of the three CSA metrics.

19/19

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 10, 2021. ; https://doi.org/10.1101/2021.06.09.447694doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.09.447694
http://creativecommons.org/licenses/by-nd/4.0/

