
pySuStaIn: a Python implementation of the Subtype and Stage Inference algorithm 
 
Leon M. Aksman1,2* Peter A. Wijeratne2*, Neil P. Oxtoby2, Arman Eshaghi2,3, Cameron 
Shand2, Andre Altmann2, Daniel C. Alexander2, Alexandra L. Young4 
 
1 Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern 
California 
2 Centre for Medical Image Computing, Departments of Computer Science and Medical Physics, 
University College London 
3 Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square 
Institute of Neurology, Faculty of Brain Sciences, University College London 
4 Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College 
London 
* Joint first authors 

Abstract 
 
Progressive disorders are highly heterogeneous. Symptom-based clinical classification of these 
disorders may not reflect the underlying pathobiology. Data-driven subtyping and staging of 
patients has the potential to disentangle the complex spatiotemporal patterns of disease 
progression. Tools that enable this are in high demand from clinical and treatment-development 
communities. Here we describe the pySuStaIn software package, a Python-based 
implementation of the Subtype and Stage Inference (SuStaIn) algorithm. SuStaIn unravels the 
complexity of heterogeneous diseases by inferring multiple disease progression patterns 
(subtypes) and individual severity (stages) from cross-sectional data. The primary aims of 
pySuStaIn are to enable widespread application and translation of SuStaIn via an accessible 
Python package that supports simple extension and generalization to novel modelling situations 
within a single, consistent architecture. 
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1. Motivation and Significance 
 

The Subtype and Stage Inference (SuStaIn) algorithm is a powerful tool for understanding 
the progression of heterogeneous diseases. SuStaIn uniquely identifies distinct disease 
progression patterns (subtypes) that account for temporal change. This is valuable because 
many progressive diseases are heterogeneous in nature and can naturally be described by a set 
of distinct subtypes [1], [2],[3], [4]. SuStaIn has been applied to a number of neurodegenerative 
diseases, including Alzheimer’s disease [5][6], frontotemporal dementia [5] and multiple 
sclerosis (MS) [7]. It has also been being applied to progressive lung disease [8]. 

In contrast to SuStaIn, most disease progression models try to find a single coherent picture 
of how a disease evolves from early to late stages based on cross-sectional or short-term 
longitudinal snapshots of disease progression within individuals. Such models assume that all 
individuals follow the same pattern of progression [9], [10], [11], [12]. SuStaIn generalizes 
these models to infer multiple patterns of progression (from equivalent data). It does so via a 
spatiotemporal clustering approach that disentangles disease subtypes (i.e. distinct spatial 
patterns of progression) from disease stages (i.e. severity or the degree of temporal progression 
within a particular subtype). Importantly, the subtypes and stages inferred by SuStaIn cannot 
be resolved by clustering directly on subtype, which does not account for heterogeneity in 
disease severity within-cluster, or on stage, which does not account for subtype heterogeneity 
within-cluster.  

The motivation for developing the pySuStaIn package is to expand the accessibility of the 
algorithm via an open-source Python implementation (originally MATLAB). This empowers 
more users to try the algorithm on their data sets and enables more developers to easily extend 
the code or compare it with other methods. Another major motivation is to increase the 
flexibility of the algorithm to handle multiple disease progression models. The original SuStaIn 
implementation was based on a linear z-score based likelihood function; pySuStaIn generalizes 
SuStaIn to handle arbitrarily defined data likelihood terms as derived classes within an object-
oriented architecture. This allows direct plug-in of new models. As an initial demonstration, 
we implemented three models as derived classes within this framework: (i) the original 
continuous model of disease progression relative to a control population using the z-score based 
likelihood (ZScoreSustain); (ii) the ‘normal-versus-abnormal’ model which uses a data 
likelihood based on a mixture of normal and abnormal distributions, as in the Event Based 
Model (MixtureSustain; [9], [13], [Firth-2020]); and (iii) a model for discrete ordinal data, that 
can be used for biomarkers based on visual ratings, neuropathological ratings or certain 
cognitive tests  (OrdinalSustain).  

The pySuStaIn package is intended to be flexible and easy to use: the user chooses the type 
of likelihood and sets a few parameters controlling the number of subtypes to be inferred, the 
number of Markov chain Monte Carlo (MCMC) iterations and expectation maximization (EM) 
start-points, and whether to use parallelization. It is also intended to be easy to extend: new 
disease progression models can be added as implementations of AbstractSustain with an 
appropriately defined likelihood. Simulation code and Jupyter notebooks are provided to help 
users understand these functionalities.  

2. Software Description 
 

pySuStaIn is written in Python 3 and uses the NumPy and SciPy numerical packages. It 
uses the Pathos package for parallelizing the start-points of several EM-based computations 
described later. We used Pathos instead of Python’s default multiprocessing package as it 
allows separate random seeds across processes, which is important because pySuStaIn makes 
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extensive use of randomly permuted sequences. The following sections describe pySuStaIn’s 
software architecture and its major functionalities. Several code snippets are included to aid 
understanding.  
 
2.1 Software Architecture 
 

The SuStaIn algorithm was described in detail by Young et al. [5]. Briefly, SuStaIn infers 
increasingly complex models of disease progression using a set of cross-sectional training 
samples (a subjects-by-features matrix). Ideally, these samples should adequately capture the 
dynamics of some underlying heterogeneous disease, in terms of both the variability of 
progression and disease severity. Given such data, SuStaIn begins by inferring a single 
sequence of events that characterizes disease progression from early to late stages. Each 
successive iteration increases model complexity by adding a subtype, up to a specified 
maximum. The original implementation [5] used a z-score based data likelihood to find the 
maximum likelihood event sequence for each subtype. Each biomarker was associated with a 
fixed set of z-score based events; an event corresponded to a biomarker value exceeding (for 
example) one, two or three standard deviations relative to a control population mean. pySuStaIn 
generalizes the algorithm to accept customizable data likelihoods, e.g., based on a mixture 
model. The user is free to choose the data likelihood that best fits their problem from among 
the available implementations (Figure 1), or to contribute their own.  

The core functionality of the algorithm is implemented within the AbstractSustain class, 
which, as its name suggests, is an abstract class that cannot be instantiated directly. As shown 
in Figure 1, each child class then implements its own _calculate_likelihood_stage(), 
_optimise_parameters() and _perform_mcmc() methods, all of which depend on the 
child class’ particular data likelihood function.  Each child class also has a __sustainData 
member variable which is an instance of an AbstactSustainData-derived class. In the case of 
the ZscoreSustain class, this is a ZscoreSustainData object with an internal data variable 
containing z-scored biomarkers for all subjects, where z-scoring is done externally. For 
MixtureSustain, this is a MixtureSustainData object with internal L_yes and L_no matrices 
storing the probabilities that a biomarker measure belongs, respectively, to the patient or 
control distributions of a mixture model. Storing the probabilities rather than the data itself 
allows for complete flexibility in the form of the probability distribution used to model the 
probability an event has or hasn’t occurred. These matrices are typically generated via a 
mixture modelling procedure that can be either performed in pySuStaIn or done externally. In 
the example code provided (simrun.py), mixture models are built for each biomarker using 
either Gaussian mixture modelling (setting sustainType to mixture_gmm) or kernel density 
estimation mixture modelling (setting sustainType to mixture_kde) [14]. OrdinalSustain 
similarly stores an internal OrdinalSustainData object with prob_nl and prob_score 
matrices respectively storing the probabilities of each biomarker being ‘normal’ (similar to the 
expected score in a control population) or having each particular score. As with MixtureSustain, 
this formulation allows complete flexibility for the user to choose the form of the distributions. 

To aid in understanding our implementation, we briefly explain some of the most important 
methods within AbstractSustain. The _estimate_ml_sustain_model_nplus1_clusters() 
method within run_sustain_algorithm(), which starts the algorithm after initialization, is 
responsible for inferring the desired number of subtypes. It is based on the principle that 
splitting an existing subtype into two subtypes is computationally much simpler than splitting 
a whole dataset into multiple subtypes. Initially, the _find_ml() function uses greedy 
expectation maximization (EM) to find a maximum likelihood based biomarker sequence that 
describes all subjects’ progression (i.e. a one-subtype model). Once this sequence is inferred, 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 10, 2021. ; https://doi.org/10.1101/2021.06.09.447713doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.09.447713
http://creativecommons.org/licenses/by-nd/4.0/


two separate methods generalize the algorithm to multiple subtypes. The first is 
_find_ml_split(), depicted in Figure 2a, which finds the best split of an existing event 
sequence into two subtypes. Within this method, the n subjects described by a sequence are 
randomly split into two subgroups and greedy EM is run separately for each subgroup to find 
an optimal sequence describing that subgroup’s progression. The second is 
_find_ml_mixture(), which uses the newly split sequence and the unsplit sequences from the 
previous iteration as a starting point to optimise the full set of sequences. For example, as 
depicted in Figure 2b, if SuStaIn is trying to infer a three-subtype model based on two 
previously inferred sequences S1 and S2, it will try two different splits and evaluate how well 
each of them fits the data. It will split S1 into S1,1 and S1,2 and use greedy EM to find maximum 
likelihood sequences starting with S1,1, S1,2 and S2. Similarly, it will split S2 into S2,1 and S2,2 
and do the same with S1, S2,1 and S2,2. Using maximum likelihood it will choose which of these 
two sets of optimized sequences best describes the whole training dataset and choose that set 
as the new three-subtype model. To find a four-subtype model the algorithm then splits each 
of the three subtypes and finds which of the three resulting four-subtype models best describes 
the data and so on. 

Once the sequences have been inferred using the above procedure, 
_estimate_uncertainty_sustain_model() uses MCMC to estimate the positional 
uncertainties for each sequence. Each sequence is permuted by swapping two randomly chosen 
places and the likelihood of the data under the permutation is evaluated. This procedure is 
performed a set number of times (typically one hundred thousand or one million). From this a 
positional variance diagram (PVD) can be built to visualize how often each biomarker appears 
in each position (see [9] for further explanation).  
 
2.2 Software Functionalities 
 

The major functionalities of pySuStaIn are: (i) flexible choice of data likelihood; (ii) data 
preparation, which depends on the likelihood; (iii) SuStaIn-based inference to find biomarker 
progression sequences for the specified number of subtypes; (iv) visualizations of the inferred 
sequences; (v) estimation of the most likely subtype and stage of each subject based on the 
inferred model; and (vi) tools to aid in model selection. These functionalities are depicted in 
Figure 3 and described in greater detail in the following subsections.  
 
2.2.1 Flexible choice of data likelihood 
 

One of the most important functionalities of pySuStaIn is that it allows users to choose 
among the existing implementations of AbstractSustain and to easily add new ones. Each 
represents a different underlying disease progression model, defined by a unique data 
likelihood. For example, ZscoreSustain represents continuous accumulation of abnormality 
relative to a control population using a z-score based likelihood while MixtureSustain models 
transitions from normal to abnormal measures using a mixture model based likelihood. 
OrdinalSustain models transitions from one score to another using a categorical likelihood. 
Other disease progression models can easily be added by deriving from AbstractSustain and 
AbstractSustainData. Importantly, in all such derived classes the core algorithm is unchanged: 
it always uses greedy EM and MCMC to infer sequences of events (however defined) that best 
explain the available data. 
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2.2.2 Data preparation 
 

Data preparation varies depending on which data likelihood is used. In the case of the 
z-score likelihood, the ZscoreSustain class assumes that users will z-score the input data 
themselves and hence there is no data preparation in this case. For clarity, z-scoring should be 
done with respect to a control population, so that z-score based events can be interpreted as 
departures from normality. In simrun.py this functionality is showcased when sustainType 
is set to zscore. 
 In the case of the mixture model likelihood, as mentioned above, MixtureSustain’s 
constructor expects L_yes and L_no likelihood matrices. While users are free to build their own 
mixture models to generate these matrices, pySuStaIn implements Gaussian mixture models 
(GMMs) and kernel density estimation based mixture models (KDE-MMs), both of which have 
been previously used with the Event Based Model [9], [13], [14]. Within simrun.py, simulated 
subjects assigned earliest stages are used as controls and those in latest stages as cases. Mixture 
models are then fit using either fit_all_gmm_models or fit_all_kde_models, depending on 
whether sustainType is set to mixture_gmm or mixture_kde, respectively. As a general rule, 
GMMs should be used when the normal and abnormal distributions for each biomarker are 
suspected to be normally distributed while KDE-MMs should be used in more general cases 
when these values are not necessarily Gaussian, e.g., they are heavy-tailed or asymmetric. 
 
2.2.3 SuStaIn-based inference 
 

Once data has been prepared, pySuStaIn is ready to run the SuStaIn algorithm to infer 
the specified number of subtypes. After an AbstractSustain type object (specifically, a 
ZscoreSustain, MixtureSustain or OrdinalSustain object) is initialized and 
run_sustain_algorithm() is called, SuStaIn proceeds to infer iteratively more complex 
models, beginning with a one-subtype model describing all subjects’ progression and ending 
with an N_S_max-subtype model, with N_S_max passed in on initialization. As SuStaIn can be 
computationally demanding, particularly with a large sample size, a large number of 
biomarkers (especially if the z-score likelihood is used), and/or a high N_S_max, pickle files are 
used to save the progress of the algorithm at each iteration of this procedure. Pickle files are 
saved within the /pickle_files subfolder of the output_folder directory, which is also 
passed in on instantiation. This allows the program to be restarted so that if, for example, the 
program has been previously run with N_S_max set to two and is subsequently set to three. In 
this case the algorithm does not have to recompute the one-subtype and two-subtype models to 
find a three-subtype model. 

SuStaIn can also be run within a cross-validation scheme via the 
cross_validate_sustain_model() function, which accepts a list of test sample indices for 
each fold. The training indices for a fold are the set difference between all training samples and 
the given test samples. SuStaIn is then run on the fold’s training data, up to the specified 
number of subtypes, with each model saved as a fold-specific pickle file.  
 
2.2.4 Visualization of inferred subtypes 
 

Once a SuStaIn model has been fit, positional variance diagrams (PVDs) are an intuitive 
way of visualizing each subtype’s inferred event ordering while accounting for the MCMC-
based positional uncertainty estimates. For example, Figure 4a depicts a PVD showing the true 
sequences from a three-subtype model used to generate simulated data. Each biomarker has 
three well-defined z-score based events, with no uncertainty in the ordering. Figure 4b on the 
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other hand, depicts a PVD of SuStaIn’s inferred sequences, where the uncertainty in the 
positioning of certain events is clearly seen.  

pySuStaIn generates PVDs for both full models (i.e. trained on all samples) and cross-
validated models. Cross-validated PVDs are formed by finding the best one-to-one match 
between each fold’s and the full model’s sequences (based on Kendall’s tau correlation 
measure) so that subtypes’ MCMC samples can be stacked across folds. This is done because 
changing the training data (as in cross-validation) can change the ordering of events within 
inferred subtypes. Figures 4b and 4c depicts PVDs from the full and cross-validated models 
respectively, showing the additional uncertainty in the cross-validated version, as expected. 
 
2.2.5 Subtype and stage estimation 
 
 Given a SuStaIn model, consisting of the maximum likelihood and MCMC 
sequences, the subtype_and_stage_individuals() function estimates a most likely subtype 
and stage for each training sample. This is done by first calculating a probability distribution 
over all of the possible subtypes and stages for every subject based on the model and the given 
subject’s biomarker values. To find the most likely subtype we sum over all possible stages, 
choosing the subtype with the highest marginal probability. Similarly, to find the most likely 
stage, we sum over all subtypes, choosing the most probable stage for every subject. Figures 
4d and 4e depict true versus estimated subtypes and stages for the inferred model built on 
simulated z-score data in simrun.py. The simulation writes the estimated subtype and stages 
to the Subject_subtype_stage_estimates.csv file. pySuStaIn can also estimate the 
subtypes and stages for unseen test samples via the 
subtype_and_stage_individuals_newData() function, which expects data in the same 
format as the training data (z-scored in ZscoreSustain;  L_yes, L_no in MixtureSustain; 
prob_nl, prob_score in OrdinalSustain).  
 Note that users are free to derive alternative subtype and stage assignments using the 
three-way prob_subtype_stage matrix returned by this function (see Section 2.3). 
 
  
2.2.6 Tools for model selection 
 

SuStaIn infers models of increasing complexity up to a maximum number of subtypes 
specified by N_S_max. Users must use their own discretion to select the most appropriate model. 
In general, models with more subtypes will better describe the training data (at the risk of 
overfitting), but will be harder to interpret. pySuStaIn provides several tools to aid model 
selection: (i) an MCMC likelihoods figure (MCMC_likelihoods.png), to help in visually 
comparing models’ in-sample model fits (see Figure 5f); (ii) after cross-validation is finished, 
it prints to the terminal the cross-validation information criterion (CVIC) for one-subtype to 
N_S_max-subtype models [5]; and (iii) out-of-sample log likelihoods, averaged across MCMC 
samples, for each cross-validation fold as both a figure (Log_likelihoods_cv_fold.png; 
Figure 5g) and a file (Log_likelihoods_cv_fold.csv).  

It is generally recommended to select models using either the CVIC or out-of-sample log 
likelihoods (either visually and/or via statistical tests between models of increasing 
complexity) than via in-sample MCMC likelihoods, as cross-validation approximates the 
generalizability of models to unseen data. 
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2.3 Sample code snippets 
 

The following code snippets show how to initialize a ZscoreSustain object and run SuStaIn. 
 
Z_vals    = np.array([[1, 2, 3]] * N)  # define z-score event thresholds for each of N biomarkers  
Z_max     = np.array([5] * N)        # maximum z-score for each biomarker 
N_iterations_MCMC  = int(1e6)       # number of MCMC iterations 
N_S_max                 = 3        # maximum model complexity (here 3 subtypes) 
N_startpoints           = 25       # number of EM startpoints 
use_parallel_startpoints = True       # parallelize the EM computation across startpoints 
 
sustain = ZscoreSustain(data, Z_vals, Z_max, SuStaInLabels, N_startpoints, N_S_max, N_iterations_MCMC, 
output_folder, dataset_name, use_parallel_startpoints) 

 
where data is a matrix of size M × N, where M is the number of training samples and N is the 
number of features and SuStaInLabels is a list of biomarker names for plotting. Z_vals 
specifies the z-score event thresholds for each biomarker as a matrix. In the above example, 
each of the N biomarkers is assigned three z-scores (1, 2 and 3). Users can also assign different 
numbers and values of z-scores each biomarker by setting some values in the z_vals to zero. 
For example, the following code:  
 
Z_vals    = np.array([[1, 2, 3]] * N) 
Z_vals[0][0]  = 0 
 
sets the first biomarker’s z-scores to 0, 2 and 3 and the rest of the biomarkers’ z-scores to 1, 2, 
3 as before. If this version of Z_vals is passed to the ZScoreSustain constructor, the first 
biomarker will only have two associated z-score thresholds (2 and 3) and overall there will be 
3N-1 stages in the inferred sequences rather than 3N. By setting some elements of Z_vals to 
zero in this way, the user can fully customize the set of z-scores for each biomarker.    

Once the sustain object has been initialized SuStaIn can be run via:  
 
samples_sequence,   \ 
samples_f,          \ 
ml_subtype,         \ 
prob_ml_subtype,    \ 
ml_stage,           \ 
prob_ml_stage,      \ 
prob_subtype_stage      = sustain.run_sustain_algorithm() 
 
where sample_sequences and samples_f are the event sequences and fractions of subjects 
per subtype across MCMC samples, ml_subtype and prob_ml_subtype are the maximum 
likelihood subtype and associated subtype probability per sample, and ml_stage and 
prob_ml_stage are maximum likelihood stage and stage probability per sample. The M × 
N_stages × N_S_max matrix prob_subtype_stage stores the full probability distributions 
over all possible subtypes and stages for every sample, from which we derive the 
prob_ml_subtype and prob_ml_stage vectors. 
 Additionally, an instructional Jupyter notebook is also available in the /notebooks 
subdirectory.  
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Figure 1 The architecture of pySuStaIn.  
 

 
 
Figure 2 Core computations within the _estimate_ml_sustain_model_nplus1_clusters() method 
of AbstractSustain. 
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Figure 3 Depiction of the major functionalities of pySuStaIn, as a sequence of operations that begins 
with an input biomarker data matrix, followed by a data preparation step that depends on the chosen 
data likelihood, then the SuStaIn algorithm run on both full and cross-validated data and finally a set of 
outputs consisting of: (i) visualizations of the inferred models; (ii) estimates of the most likely subtype 
and stage for training and test subjects; and (iii) a set of model selection tools. 
 

 
Figure 4 Schematic of simulated z-scored data as implemented in simrun.py. Inference of three 
subtypes via ZScoreSustain based on the simulated input data, with: (plot a) true event sequences for 
each subtype; and (b) sequences inferred by SuStaIn given a (c) subjects × features input matrix of z-
scores for subjects with randomly-sampled subtypes and stages. A comparison of estimated versus 
true subtypes and stages are depicted in (d) and (e), respectively.  
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Figure 5 Schematic of simulated mixture model data as implemented in simrun.py, with the two 
available mixture model types shown (mixture_GMM or mixture_KDE, based on Gaussian mixture 
modelling or kernel density estimation, respectively). Inference of three subtypes using MixtureSustain 
on the simulated input data (L_yes and L_no matrices). Each matrix is a subjects × features matrix 
storing the probability of subjects’ observations belonging to the mixture-model-derived case (L_yes) 
or control (L_no) distribution. Figures shown are from the mixture_GMM style; those from the 
mixture_KDE style are very similar. 

3.	Illustrative	Examples	
 

Illustrative examples of pySuStaIn are shown in Figures 4 and 5 for both the z-score and 
mixture likelihood styles of SuStaIn, which are the most commonly used implementations at 
present. These are produced by the simrun.py simulation code available in the /sim 
subdirectory. The simulator proceeds by randomly sampling a subtype (between zero and 
N_S_ground_truth, the number of ground truth subtypes, set to three in both cases) and stage 
(between zero and the total number of stages) for a set of 800 subjects. Ground truth subtypes 
are sampled from a discrete distribution with probabilities of 0.5, 0.3 and 0.2 assigned to the 
three subtypes. Ground truth stages are sampled from a uniform distribution.  

Using randomly generated ground truth sequences (shown in Figures 4a and 5a) and these 
subtype and stage assignments, a training dataset is generated for input to the SuStaIn 
algorithm. The maximum number of subtypes to infer, N_S_max, is also set to three. Figures 
4b and 5b show the inferred sequences for the three subtype models. In both cases there is a 
close correspondence to the true sequences, showing the ability of SuStaIn to recover the true 
underlying patterns of biomarker progression in a purely data-driven manner. Importantly, 
SuStaIn has a built-in quantification of uncertainty (positional variance, evident when 
comparing the inferred sequence in 4b to ground truth in 4a) which realistically reflects under-
sampling across stages. Figures 4d and 4e depict the correspondence between the true 
(randomly generated) subtypes and stages of the training subjects and their estimated 
counterparts for the z-score likelihood simulation. Figures 5f and 5g depict the in-sample 
(MCMC likelihoods) and out-of-sample (cross-validation fold likelihoods) for the mixture 
simulation, showing that, as expected, the three-subtype model better explains the training data 
than simpler models. 
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4. Impact	
 
 Chronic diseases present enormous personal and societal challenges that will likely 
increase with the aging of worldwide populations. These include neurodegenerative diseases 
such as Alzheimer’s, Parkinson’s, and MS, as well as respiratory diseases such as chronic 
obstructive pulmonary disease (COPD). Understanding such complex multifactorial diseases 
necessarily involves accounting for heterogeneity using methods that group subjects with 
similar spatiotemporal progression patterns. SuStaIn is unique in its ability to find such 
subtypes in an objective, data-driven manner, using cross-sectional information from a suitably 
diverse set of samples.  

The pySuStaIn package is intended to make SuStaIn widely accessible, easy to use and 
applicable to different modelling scenarios. It is already having a significant impact on the 
basic understanding of a variety of neurodegenerative diseases [15] and, in the longer term, 
will impact both clinical trials and clinical practice. pySuStaIn’s key features are: (i) it 
simplifies the process of implementing new subtyping models; (ii) it broadens the reach of the 
algorithm through Python; (iii) it is substantially faster than the original MATLAB 
implementation, due to several code optimizations, enabling more complex models to be fit; 
(iv) it has parallelized EM start-points for additional speed; (v) it integrates previously disparate 
disease progression models into a single package; and (vi) it adds both simulations and 
notebooks to make SuStaIn easier to understand and use. 

Four recent studies illustrate how pySuStaIn has already enabled researchers to better 
understand both neurodegenerative and lung diseases: 

 
• It has been used to characterize the spatiotemporal spread of Alzheimer’s related tau protein 

pathology throughout the brain. This is the largest study using tau PET imaging to date, 
analyzing over 1100 individuals from across five studies, with the aim of capturing as much 
tau heterogeneity as possible. It found four distinct subtypes, two of these were consistent 
with previous studies and two were novel subtypes which resembled atypical variants of 
Alzheimer’s. This study used the z-score likelihood, so that the interpretation of 
abnormality was relative to cognitively normal individuals [6]. 
 

• A related study investigated the spread of Alzheimer’s related amyloid and tau protein 
pathologies using PET imaging in 400 individuals from a single study. This study found 
that subjects fell into two basic subtypes: an amyloid-first subtype, in which amyloid 
pathology first appears in the brain, and a tau-first subtype. This model favors the dual 
pathway hypothesis of Alzheimer’s progression over the amyloid cascade hypothesis, the 
prevailing amyloid-centric model. This study used the mixture model likelihood, 
interpreting disease stages as transitions from distinctly normal to distinctly abnormal 
measurements [16].  
 

• SuStaIn has also been used to find MRI-based subtypes of MS, showing that there are three 
distinct MRI-driven subtypes are better associated with disability progression than the 
current subtyping system that is based on four symptom-based subtypes. Importantly, the 
study also showed that only one of the identified subtypes showed a significant treatment 
response in randomised controlled trials. This study used the z-score likelihood [7]. 
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• SuStaIn identified two major patterns of lung damage in Chronic Obstructive Pulmonary 
Disease (COPD) [8]: ‘tissue-airway’, which affected lung tissue early on, and ‘airway-
tissue’, which affected the lung airways first. These patterns could be used to identify 
otherwise healthy smokers at risk of COPD at follow-up, suggesting that SuStaIn can be 
used for very early stratification in COPD.  

To date pySuStaIn has been developed and used by researchers at UCL, along with close 
collaborators. However, the intended user group for this package is the wider community of 
researchers and clinicians who are focussed on understanding neurodegenerative and other 
progressive diseases. We anticipate that pySuStaIn will facilitate this, as has been the case with 
event-based model code that is now finding broader use among the community [17]. 

5. Conclusions	
 
 We have presented pySuStaIn, a python-based implementation of the SuStaIn 
algorithm, a paradigm-shifting approach to understanding heterogeneity within progressive 
processes such as chronic diseases. pySuStaIn aims to widen the accessibility of this algorithm 
via an open source Python implementation. Our object-oriented implementation enables user-
defined sub-models, which can be easily added to in the future, increasing the applicability of 
the algorithm. Inclusivity and accessibility is enhanced by providing code examples, 
visualizations to aid model interpretation, and tools for model selection. 
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