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Abstract 
Single-cell RNA sequencing (scRNA-seq) analysis has significantly advanced our 
knowledge of functional states of cells. By analyzing scRNA-seq data, we can 
deconvolve individual cell states into thousands of gene expression profiles, allowing us 
to perform cell clustering, and identify significant genes for each cluster. However, 
interpreting these results remains challenging. Here, we present a novel scRNA-seq 
analysis pipeline named ASURAT, which simultaneously performs unsupervised cell 
clustering and biological interpretation in semi-automatic manner, in terms of cell type 
and various biological functions. We validate the reliable clustering performance of 
ASURAT by comparing it with existing methods, using six published scRNA-seq 
datasets from healthy donors and cancer patients. Furthermore, we applied ASURAT to 
patient-derived scRNA-seq datasets including small cell lung cancers, finding some 
putative cancer subpopulations showing different resistance mechanisms. ASURAT is 
expected to open new means of scRNA-seq analysis, focusing more on “biological 
meaning” than conventional gene-based analyses. 
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Introduction 
Single-cell RNA sequencing (scRNA-seq) has profoundly advanced our knowledge of 
cells, owing to its immense potential for discovering the transcriptional principles 
governing cell fates at the single-cell level1. scRNA-seq has been widely used to improve 
understanding of individual cells2, intra- and intertumoral heterogeneity3, cell-to-cell 
interaction4, tumorigenesis5, drug resistance3,6, and the effects of viral infection on 
immune cell populations7. Various clustering methods, wherein cells are partitioned 
according to transcriptome-wide similarity, have been proposed8 and applied to cell type 
annotation9. However, interpreting single-cell data remains challenging10-13. 
 
Conventionally, cell types are inferred using unsupervised clustering followed by a 
manual literature search of differentially expressed marker genes13. Currently, several 
computational tools, such as Garnett14 and SCSA12, are available to assist manual 
annotation, as detailed in the review by Pasquini et al.8. However, this process is often 
difficult because marker genes are generally expressed in multiple cell types15. In cancer 
transcriptomics, this difficulty is exacerbated by the interdependence between disease-
related genes and numerous biological terms; furthermore, expression levels of marker 
genes can be heterogeneous depending on cancer microenvironments16. 
 
A possible solution is to realize cell clustering and biological interpretation at the same 
time. Recently, reference-based analysis has been applied in single-cell 
transcriptomics10,12,17. One such technique is reference component analysis (RCA), which 
is used for accurate clustering of single-cell transcriptomes along with cell-type 
annotation based on similarity to reference transcriptome panels17. However, these 
methods require well-characterized transcriptomes with purified cells, which may be 
difficult to apply to ambiguous phenotypes. Another approach is using supervised 
classification11 combined with gene set enrichment analysis, incorporating biological 
knowledge such as pathway activity; hence, it may improve the interpretability over 
signature gene-based approaches, which place sole emphasis on individual roles of genes. 
However, we still lack a prevailing theory leveraging this information at the single-cell 
level. 
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To overcome the aforementioned limitations, a novel theoretical tool providing biological 
interpretations to computational results is needed. Thus, we propose a scRNA-seq 
analysis pipeline for simultaneous cell clustering and biological interpretation, named 
ASURAT. Here, “interpretation” is given by multiple biological terms such as cell type, 
biological process, pathway activity, chemical reaction, and various biological functions. 
By using ASURAT, users can create desired sets of biological terms and the 
corresponding spectrum matrices, which can be supplied to the subsequent unsupervised 
cell clusterings. In this paper, we first demonstrate the reliable clustering performance of 
ASURAT based on comparison with existing methods, using six published scRNA-seq 
datasets of healthy donors and cancer patients. Next, we applied ASURAT to single-cell 
lung cancer transcriptomes, which include malignant cancer types expressing 
neuroendocrine markers3. We show that ASURAT can greatly improve functional 
understandings of various cell types, which may contribute to clinical improvements. 
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Results 

Overview of ASURAT 

ASURAT was developed for simultaneously clustering single-cell transcriptomes and 
biological interpretation, which was implemented by R programming scripts 
(Supplementary Notes, Supplementary File 6). After inputting scRNA-seq data and 
knowledge-based databases (DBs), ASURAT creates lists of biological terms with 
respect to cell type and biological functions, which we termed signs. Then, ASURAT 
creates a functional spectrum matrix, termed a sign-by-sample matrix (SSM). By 
analyzing SSMs, users can cluster samples to aid their interpretation. We later explain the 
workflow (Fig. 1). The details of ASURAT’s formulations can be found in the Methods 
section. 
 
Workflow of ASURAT 
In preparation, we collected DBs for Disease Ontology (DO)18, Cell Ontology (CO)19, 
Gene Ontology (GO)20, Kyoto Encyclopedia of Genes and Genomes (KEGG)21, and 
Reactome22 using the R packages DOSE (version 3.16.0), ontoProc (version 1.12.0), 
clusterProfiler (version 3.18.0), KEGGREST (version 1.30.0), and reactome.db (version 
1.74.0), respectively (Chapter 7, Supplementary Notes). Any DBs including 
corresponding tables between biological descriptions and genes can be input to ASURAT 
(Fig. 1b). Additionally, ASURAT computes a correlation matrix using Pearson or 
Spearman correlation coefficients from a normalized read count matrix of scRNA-seq 
data. 
 
The first step is to create signs by inputting a normalized-and-centered read count matrix 
and knowledge-based DB. From a gene set Ω and correlation matrix " defined for each 
biological description # in DBs, ASURAT decomposes the correlation graph into several 
parts. Here, a triplet of biological description, gene subset, and correlation matrix is 
termed a sign, in particular (#, Ω, ") a parent sign. In many applications, high correlations 
are expected to have rich information. Hence, we decompose Ω into the following three 
categories (Fig. 2): (i) a strongly correlated gene set (SCG), which is a set of genes with 
strong positive correlations with each other; (ii) variably correlated gene set (VCG), 
which is a set of genes with strong negative correlations with genes in SCG; and (iii) 
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weakly correlated gene set (WCG), which is a set of genes with weak correlations with 
each other.  
 
Next, ASURAT creates an SSM for SCG by weighted averaging of normalized and 
centered gene set expression levels of SCGs and WCGs. Similarly, an SSM for VCG is 
created from VCGs and WCGs. Then, by vertically concatenating SSMs for SCG and 
VCG, we create a single SSM. The rows and columns of an SSM stand for signs and 
samples (or cells), respectively, and entries stand for cell-type or functional spectra, 
termed as sign scores. A remarkable benefit is that users can create multiple SSMs as 
necessary by inputting various DB (Fig. 1c). 
 
The final step is to characterize samples using SSMs to produce a conclusion. One focus 
of analyzing SSMs is to cluster samples and find significant signs (Fig. 1d), where 
“significant” means that the sign score is specifically upregulated or downregulated at the 
cluster level (cf. separation index). In ASURAT, we use two strategies: one uses 
unsupervised clusterings, such as Partitioning Around Medoids (PAM), hierarchical-
based, and graph-based clusterings with and without principal component analysis 
(PCA); while the other is a method of extracting a continuous tree-like topology using 
diffusion map23, followed by allocating samples to different branches of the data 
manifolds24. Choosing an appropriate strategy depends on the biological context, but the 
latter is usually applied for developmental processes or time-course experimental data, 
which are often followed by pseudotime analyses. 
 
Comparison of performance of ASURAT with existing methods 

Many unsupervised clustering methods have been proposed and their performances 
quantified using datasets with independently identified phenotypes. However, it remains 
unclear whether these methods robustly demonstrate better performance using cancer 
single-cell transcriptomes including ambiguous phenotypes. Conventional marker gene-
based approaches may misrepresent cluster accuracy17, and simple application of PCA 
may be ineffective. However, when using ASURAT, users can obtain robust and 
explainable clustering results, since SSMs can be created from as many DBs as needed 
and supplied to the subsequent unsupervised clusterings. 
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To validate the reliable clustering performance of ASURAT, we obtained six published 
scRNA-seq datasets derived from healthy donors (PBMC datasets: pbmc_4000 and 
pbmc_6000), cervical cancer patients (day1_norm and day7_hypo), and lung cancer 
patients (sc68_vehi and sc68_cisp). From all datasets, we excluded genes and cells with 
low qualities and attenuated technical biases with respect to zero-inflation and variation 
of capture efficiencies between cells using bayNorm25. The resulting read count tables 
were supplied to ASURAT and four other methods: Seurat (version 4.0.1)26, Monocle 3 
(version 0.2.3.0)27, SC3 (version 1.18.0)28, and PCA using prcomp() from the R stats 
package (version 4.0.4). 
 
There are five blood cells in the PBMC datasets12, which are regarded as hypothetical 
results. However, no consensus cell types exist, especially for cancer datasets. Hence, the 
clustering accuracies cannot be quantified using standard measures such as adjusted Rand 
index29. Instead, the clustering qualities were assessed using validity indices such as 
average silhouette width (ASW)30, a measure of how tightly grouped cells are in clusters 
and the distant between clusters. To reduce computational cost, we performed two-
dimensional Uniform Manifold Approximation and Projection (UMAP)31 after the 
straightforward computations of Seurat, Monocle 3, PCA, and ASURAT; the resulting 
two-dimensional cell states were supplied to NbClust32, and 26 validity indices were 
obtained (Supplementary Files). From SC3, we obtained only ASWs computed from 
consensus matrices and hierarchical clusterings. We hypothesized that clustering quality 
positively correlates with clustering accuracy, while considering that they do not 
guarantee interpretability. Additionally, other topology-based clustering methods were 
not used for computing ASWs. 
 
For PBMC datasets with known numbers of clusters of existing cell types, we compared 
ASWs across all the methods within such numbers ±1 (shaded area in Fig. 3a). For other 
datasets, we focused on the ranges of the number of clusters, wherein at least one method 
provides ASWs ≥0.6. Interestingly, the best-performing method, exhibiting the greatest 
ASW, was different across the datasets (Fig. 3a). Seurat performed best when the number 
of clusters k = 4 in pbmc_6000. Although SC3 outperformed at a different k in day7_hypo 
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and PBMC datasets, it could not detect >1 cluster in sc68_vehi and sc68_cisp. Compared 
with other methods, only the naïve usage of PCA was unremarkable across most datasets. 
 
Notably, ASURAT outperformed existing methods at ≥1 k in every dataset, with one 
exception in sc68_cisp (Fig. 3a). Moreover, those ASWs were >0.5 without exception 
and >0.6 with only one exception (viz. sc68_cisp). The existing methods presented both 
strengths and weaknesses depending on the datasets. Seurat exhibited better performances 
with PBMC datasets, while it performed less remarkably with most cancer datasets. 
Although we carefully tuned Seurat’s parameters by changing the normalization method, 
variable gene-per-cell ratio, and the number of principal components, we could not obtain 
well-separated clusters for day1_norm and day7_hypo (Fig. 3b). In contrast, Monocle 3 
generally exhibited better performances on cancer datasets while performing less 
remarkably with PBMC datasets. We found that Monocle 3’s clustering performance was 
unstable and strongly depended upon dimension reduction techniques. 
 
To confirm whether ASURAT outperforms existing methods using other low-
dimensional representation techniques, we replaced UMAP with t-distributed stochastic 
neighbor embedding (t-SNE)33 and supplied the resulting two-dimensional cell states to 
NbClust32. Again, we confirmed that ASURAT generated well-separated clusters with 
relatively greater ASWs across datasets, while Monocle 3 broke down when used with 
some datasets (Supplementary Fig. S1). These results indicate that cells are better 
characterized in the high-dimensional sign score space than in the gene expression space. 
 
Finally, to validate ASURAT’s cell-type inference, we reanalyzed PBMC datasets using 
Seurat, Monocle 3, SC3, and ASURAT under almost default settings. Consequently, 
Seurat and Monocle 3 could reproduce most blood cell type labels (Figs. 3c and d), as 
inferred by Cao et al.12, but a few dozen cells remained unspecified. Although SC3 
provided the greatest ASWs at k = 4 and 6 in pbmc_4000 and pbmc_6000, respectively, 
it reproduced only B cell and NK or NKT cell labels. However, ASURAT identified five 
cell types, with none remaining unspecified (Supplementary Figs. S3 and S4). The 
subpopulation ratios were approximately consistent with the reported values, except for 
the tiny megakaryocyte subpopulation. Such a small discrepancy was unavoidable, 
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because Cao et al. used only differentially expressed genes and preselected cell types to 
identify the most preferable cell types. Furthermore, we reanalyzed cervical cancer 
datasets using ASURAT and found several putative populations of small cell 
neuroendocrine carcinoma and adenocarcinoma (Supplementary Figs. S5 and S6). These 
results demonstrate that ASURAT can perform robust, high-quality, and reliable 
clusterings using various single-cell transcriptomes. 
 
Identifying chemoresistant cells in lung cancer scRNA-seq datasets 

Previous work3 indicated that small cell lung cancer (SCLC) tumors undergo a shift from 
chemosensitivity to chemoresistance against platinum-based therapy. However, the exact 
mechanism behind chemoresistance is still unclear, because transcriptional heterogeneity 
is often concealed in hidden biological states, which cannot be readily identified by 
conventional marker gene-based analyses. To investigate the cancer subtypes in the 
chemosensitive and chemoresistant tumors, we applied ASURAT to the scRNA-seq data 
of circulating tumor cell-derived xenografts from the vehicle (sc68_vehi) and cisplatin 
(sc68_cisp) treatment groups. 
 

Given the normalized and centered read count matrices, we created SSMs using DO and 
GO DBs, and KEGG for both sc68_vehi and sc68_cisp. We then visualized the sign 
scores in heat maps (Figs. 4a and 5a). The cells were clustered by one of the following: 
(i) PCA, followed by k-nearest neighbor (KNN) graph generation and Louvain algorithm 
using Seurat’s functions26 and (ii) diffusion map generation, followed by allocation of 
cells to the different branches of the data manifold using MERLoT24. Here, cells in 
sc68_vehi were clustered by (i), while those in sc68_cisp were clustered by (ii), providing 
the most explainable results. 
 
We visualized the t-SNE plot of SSM using GO for sc68_vehi, wherein cell clustering 
labels and SCLC-related sign scores are overlaid (Fig. 4b). Sign IDs and the related genes 
are represented by, for example, DOID:5409_S (ASCL1, etc.) and DOID:5409_V (MKI67, 
BIRC5, etc.), where the suffixes “S” and “V” indicate SCG and VCG, respectively. Since 
ASCL1, MKI67, and BIRC5 are important for neuronal differentiation34, malignancy35, 
and inhibition of apoptosis36, DOID:5409_S and DOID:5409_V represent SCLC 
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differentiation and proliferation with cell survival, respectively. We found at least two 
existing subpopulations of SCLC in sc68_vehi. This was further confirmed by violin plots 
for the related signs (Fig. 4c). Remarkably, sign scores for platinum drug resistance were 
specifically upregulated in the group with label 2 (GO: BP). The population ratios of 
group 1 and 2 were 0.84 and 0.15, respectively. Consequently, we found that the SCLCs 
not receiving cisplatin treatment contained ≤15% putative chemoresistant cells, which 
was not found in the original report3. 
 

Likewise, we visualized the diffusion map of SSM with DO for sc68_cisp. We observed 
a tree-like topology in the data manifold, representing a putative cell differentiation 
lineage (Fig 5b). We defined a pseudotime + ∈ [0, 1] (i.e., an arc-length parameter) along 
the branches using MERLoT24; a starting point + = 0 was set at the end of the branch 
with label 1. From the pseudo-time course analysis, we found at least three SCLC 
subpopulations (Fig. 5c). Strikingly, sign scores for different resistant mechanisms, such 
as platinum drug resistance and PD-L1 expression mediating immunosuppression, were 
upregulated in groups labeled 2 and 3 (DO: disease), while sign scores for intracellular 
protein transport with an SCLC malignancy marker CD2437 was upregulated in the group 
labeled 1 (DO: disease), suggesting the recalcitrant malignancy of relapsed SCLCs 
against cisplatin treatments. The population ratios of groups 1, 2, and 3 were 0.39, 0.30, 
and 0.30, respectively. Consequently, we found 30% putative chemoresistant SCLCs and 
another 30% with other possible resistant cell types expressing PD-L1, while others did 
not exhibit these resistance mechanisms. Our results support the finding that 
transcriptional heterogeneity increases in chemoresistant SCLC tumors3. 
 

The most time-consuming step in our workflow is finalizing the set of signs by tuning 
ASURAT’s parameters through trial and error, which is critical for downstream analyses. 
Here, users may face difficulty in prioritizing the importance of several signs. For 
sc68_cisp, we found that the sign scores for meningioma, myopathy, malignant pleural 
mesothelioma, and other diseases were also upregulated in the group labeled 2, but their 
actual relationships to the patient’s disease were unknown. Nevertheless, ASURAT 
helped us find well-structured data manifolds and characterize cells in biologically 
explainable manners for cell types, biological processes, and signaling pathways. 
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Discussion 

We developed a novel scRNA-seq analysis pipeline for simultaneous cell clustering and 
biological interpretation, allowing users to create systems of cell-type and functional 
spectra as necessary by inputting collected databases. The resulting matrices can be 
supplied to unsupervised clustering without gene preselection. We analyzed cancer 
patient- and healthy donor-derived scRNA-seq datasets: the former was to uncover the 
unknown characteristics of small cell neuroendocrine cancers, while the latter to confirm 
cell-type inference, aiming to reproduce results inferred in previous studies. 
 
First, we demonstrated ASURAT’s superiority to existing methods with respect to robust, 
high-quality, and reliable clustering using these datasets (Fig. 3). ASURAT yielded well-
separated cell clusters from most transcriptomes, despite the dimension reduction 
processing, while other conventional methods occasionally failed, demonstrating cells 
were better characterized in the high-dimensional sign score space than in the gene 
expression space. In practice, we recommend using signature gene-based tools such as 
Seurat before using ASURAT to broadly understand the transcriptome. Unlike reference-
based analyses10,12,17, ASURAT does not require any bespoke reference but instead takes 
input from knowledge-based databases. 
 
Next, we found the putative cancer subpopulations existing in the chemosensitive and 
chemoresistant tumors of SCLC. We found that sc68_vehi (vehicle treatment) contained 
≤ 15% possible platinum-resistant cells (Fig. 4c), suggesting this chemoresistant 
mechanism latently existed before the therapy. Moreover, we found that sc68_cisp 
(cisplatin treatment) contained 30% platinum-resistant cells with the same ratio of cells 
exhibiting PD-L1 expression (Fig. 5c). 
 

Notably, we demonstrated that simultaneous cell clustering and biological interpretation 
of single-cell transcriptomes was viable (Fig. 1). The formulation of correlation-based 
decomposition of signature gene sets was critical for ASURAT’s performance (Fig. 2). 
Additionally, we searched virtually the whole parameter space to obtain the desired 
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interpretation results. Thus, our strategy may greatly improve functional understandings 
of cancer subpopulations, intracellular heterogeneity, and cellular processes. 
 
However, some limitations are worth noting. Although small cell neuroendocrine cancers 
have been studied extensively for human tumors by bulk sample RNA-seq analyses34, 
few publications address scRNA-seq experiments for such rare cancer subtypes. As 
available scRNA-seq data and knowledge-based databases expand in size and diversity, 
our theoretical framework for ASURAT should be generalized to prioritize biological 
terms more efficiently than manual screening. Furthermore, integrating systems of signs 
across various conditions should be addressed. One means is applying canonical 
correlation analysis, which has been incorporated in Seurat26,38. Nevertheless, extracting 
common systems of “biological meanings” across multiple conditions, different cell types, 
and possibly different species remains challenging. 
 
We also expect ASURAT to improve scRNA-seq data-driven mathematical modeling for 
patient classification39, which includes parameter estimations of dynamical systems of 
gene regulatory network. Since ASURAT detects significant biological functions (e.g., 
biological process, pathway activity, and chemical reaction) for cell clustering, one can 
obtain promising candidates for a core regulatory network, which may greatly reduce the 
numbers of parameters. Another interesting approach to this problem is implementing 
ASURAT to construct sign networks, which may be analyzed by nonparametric Markov 
random field theory40. We expect ASURAT to open new ways to scRNA-seq analysis 
from “biological meaning” perspective beyond conventional gene-based analyses. 
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for all the analysis in the present paper, as well as an introduction to ASURAT, which is 
available on GitHub (https://github.com/keita-iida/ASURAT). 
Fig. S1 ASURAT outperforms existing methods with respect to robust, high-quality, 
and reliable clusterings of various single-cell transcriptomes. 
Fig. S2 Detailed workflow of Fig. 1c focusing on the parameter settings. 
Fig. S3 Identification of the cell types in pbmc_4000 by ASURAT. 
Fig. S4 Identification of the cell types in pbmc_6000 by ASURAT. 
Fig. S5 Identification of the cell types and functional subpopulations in day1_norm by 
ASURAT. 
Fig. S6 Identification of the cell types and functional subpopulations in day7_hypo by 
ASURAT. 
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Supplementary File 1 NbClust’s output for 2-dim UMAP computed by Seurat 
across six cancer patient- and healthy donor-derived scRNA-seq datasets 
(SupplementaryFile_001_nbclust_umap_seurat.pdf). 
Supplementary File 2 NbClust’s output for 2-dim UMAP computed by Monocle 
3 across six cancer patient- and healthy donor-derived scRNA-seq datasets 
(SupplementaryFile_002_nbclust_umap_monocle3.pdf). 
Supplementary File 3 SC3’s output of ASWs across six cancer patient- and 
healthy donor-derived scRNA-seq datasets 
(SupplementaryFile_003_average_silhouette_sc3.pdf). 
Supplementary File 4 NbClust’s output for 2-dim UMAP preprocessed by PCA 
across six cancer patient- and healthy donor-derived scRNA-seq datasets 
(SupplementaryFile_004_nbclust_umap_pca.pdf). 
Supplementary File 5 NbClust’s output for 2-dim UMAP computed by 
ASURAT across six cancer patient- and healthy donor-derived scRNA-seq datasets 
(SupplementaryFile_005_nbclust_umap_asurat.pdf). 
Supplementary File 6 ASURAT’s R function files 
(SupplementaryFile_006_R_files.zip), which is available on GitHub 
(https://github.com/keita-iida/ASURAT). 
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Fig. 1 Workflow of ASURAT. (a) Flowchart of the procedures, (b) collection of 
knowledge-based databases (DBs), (c) creation of sign-by-sample matrices (SSMs) 
from normalized and centered read count matrix and the collected DBs, and (d) analysis 
of SSMs to infer cell types and biological functions. 
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Fig. 2 An example showing decomposition of a correlation graph, which produces 
three signs based on a Disease Ontology (DO) term. From single-cell RNA sequencing 
data and a DO term with DOID 5409, which concerns small cell lung cancer, three signs 

(#, Ω("), "), 2 ∈ {s, v, w}, were produced from their parent sign (#, Ω, ") by 
decomposing the correlation graph (Ω, ") into strongly, variably, and weakly correlated 

gene sets, Ω($), Ω(%), and Ω(&), respectively. Red and blue edges in correlation graphs 
indicate positive and negative correlations, respectively, and color density indicates the 
strength of the correlation. 
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Fig. 3 ASURAT outperforms existing methods for robust, high-quality, and reliable 
clustering of various single-cell transcriptomes. (a) Average silhouette widths (ASWs) 
versus the number of clusters (k), computed by two-dimensional Uniform Manifold 
Approximation and Projection (UMAP) and k-means clustering for Seurat, Monocle 3, 
PCA, and ASURAT, while they were computed by consensus matrix-based hierarchical 
clustering for SC3. The dashed line on the graph represents ASW = 0.6 and the shaded 
area the hypothetical result. (b) Comparison of UMAP plots between different methods 
using various datasets. The input databases for ASURAT are indicated in parentheses. 
(c) Visualizations of the cell types on UMAP plots for pbmc_4000, which was 
reanalyzed using the inherent algorithms of Monocle 3 and ASURAT. (d) Population 
ratios in the peripheral blood mononuclear cell (PBMC) datasets, predicted by five 
different methods. 
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Fig. 4 Identification of the putative cell types in sc68_vehi by ASURAT. (a) Heat 
maps showing the sign scores of sign-by-sample matrices (SSMs) for Disease Ontology 
(DO), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG), 
which are concatenated vertically. (b) The t-distributed stochastic neighbor embedding 
(t-SNE) plots of the SSM for GO, showing cell clustering and sign scores for the 
indicated sign IDs. (c) Violin plots showing the distributions of sign scores for the 
indicated sign IDs. Each plot represents the separation index for the given group versus 
all other cells. 
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Fig. 5 Identification of the putative cell types in sc68_cisp by ASURAT. (a) Heat 
maps showing the sign scores of sign-by-sample matrices (SSMs) for Disease Ontology 
(DO), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG), 
which are concatenated vertically. (b) Diffusion map of the SSM for DO projected onto 
the first three coordinates, showing cell clustering and sign scores for the indicated sign 
IDs. (c) Sign scores for the indicated sign IDs plotted along the pseudotime, with 
standard deviations shown as the shaded area. Each plot represents the separation index 
for the given group versus all other cells. 
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Methods 

Datasets and data processing 

Human lung cancer datasets 

These data were obtained from circulating tumor cell-derived xenografts cultured with 
vehicle (symbolized by sc68_vehi) and cisplatin (sc68_cisp) treatments, which were 
generated from lung cancer patients3. The data were produced with the 10x protocol using 
unique molecular identifiers (UMIs) (https://support.10xgenomics.com/single-cell-gene-
expression/library-prep/doc/user-guide-chromium-single-cell-3-reagent-kits-user-guide-
v2-chemistry). The SRA files were downloaded from Gene Expression Omnibus (GEO) 
with the accession code GSE138474: GSM4104164 and GSM4104165, which are 
referenced in Stewart et al3. SRA Toolkit version 2.10.8 was used to dump the FASTQ 
files. Cell Ranger version 3.1.0 was used to align the FASTQ files to the GRCh38-3.0.0 
human reference genome and produce the single-cell transcriptome datasets. After quality 
controls, the read count matrices of sc68_vehi (resp. sc68_cisp) contained 6581 (resp. 
6347) genes and 3923 (resp. 2285) cells. 
 
Human cervical cancer datasets 
These data were obtained from cancer tissue originated spheroids (CTOS line cerv21) 
including small cell neuroendocrine carcinoma, cultured for 1 d under normoxic 
conditions (symbolized by day1_norm) and 7 d hypoxic conditions (day7_hypo), which 
were generated from cervical cancer patients41. The data were produced by the Nx1-seq 
protocol using UMIs. The FASTQ files were downloaded from the DNA Data Bank of 
Japan (DDBJ) with accession codes DRA007915: DRX155817 and DRX155818. The 
Nx1-seq data were aligned and annotated as described previously42. Briefly, the barcode 
sequences were extracted from the read 1 FASTQ files. The read 2 FASTQ files, which 
included each cell mRNA, were directly aligned to Refseq transcript sequences 
(ftp://ftp.ncbi.nih.gov/refseq/H_sapiens/mRNA_Prot) using bowtie 2.2.643. The aligned 
reads were linked to their paired extracted barcode sequences. By counting mapped reads 
per barcode, the gene count data in individual cells were obtained. After quality controls, 
the read count matrices of day1_norm (resp. day7_hypo) contained 5272 (resp. 6213) 
genes and 3663 (resp. 1947) cells. 
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Human peripheral blood mononuclear cell datasets 
These datasets were obtained from peripheral blood mononuclear cells (PBMCs) of 
healthy donors, which include approximately 4000 (symbolized by pbmc_4000) and 6000 
(pbmc_6000) cells. The data were produced with a 10x protocol using UMIs. The single-
cell transcriptome datasets were downloaded from 10x Genomics repository 
(https://support.10xgenomics.com/single-cell-gene-expression/datasets). The following 
filtered read count matrices were obtained: 4000 PBMCs from a healthy donor 
(https://support.10xgenomics.com/single-cell-gene-expression/datasets/2.1.0/pbmc4k) 
and 6000 PBMCs from a healthy donor (https://support.10xgenomics.com/single-cell-
gene-expression/datasets/1.1.0/pbmc6k). After quality controls, the read count matrices 
of pbmc_4000 (resp. pbmc_6000) contained 6658 (resp. 5169) genes and 3815 (resp. 
4878) cells. 
 
Data preprocessing: quality control, normalization, and centering 

For all the single-cell RNA sequencing (scRNA-seq) data, the genes and cells with low 
qualities were removed by the following three steps: (i) removing the genes for which the 
number of non-zero expressing cells is less than a user-defined threshold; (ii) removing 
the cells whose read counts, number of genes expressed with non-zero read counts, and 
percent of reads mapped to mitochondrial genes are within user-defined ranges; and (iii) 
removing the genes for which the mean of read counts is less than a user-defined threshold 
(Chapter 3, Supplementary Notes). 
 

After quality controls, the data were normalized by bayNorm25, which attenuates 
technical biases with respect to zero-inflation and variation of capture efficiencies 
between cells. The resulting inferred true count matrices were supplied to a log 
transformation with a pseudo-count to attenuate the impact of dispersion in the counts for 
highly expressed genes. Finally, subtracting the sample mean from each row vector, we 
obtained the normalized and centered read count matrices (Chapter 4, Supplementary 
Notes). 
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Definition of sign 

Let # be a biological description, Ω a variable (e.g., gene) set defined for #, and " a 
relation structure (e.g., correlation matrix) among Ω. Assume that Ω can be represented 

by a union of its subsets based on ", that is Ω =	⋃ Ω(")'
"() . Then, the triplet (#, Ω("), ") 

is termed a sign, in particular (#, Ω, ") a parent sign. 
 
Definition of correlated gene set 

Let ; = (<",+) be a gene-by-sample matrix of size = × ? from transcriptome data, whose 
entries stand for normalized and centered gene expression levels, and ; = (@",+)  a 

correlation matrix of size = × = defined by ; and a certain measure, whose diagonal 
elements are 1. Let A and B be positive and negative constants satisfying 0 < A ≤ 1 and 
−1 ≤ B < 0, respectively, and let us fix a biological description #, and the associated 
gene set Ω, = {1, 2,⋯ ,G,} , where H = 1, 2,⋯ , I  for some I . Now, consider the 
following subsets of Ω,: 

J,(A) = {3 ∈ Ω,|∃M ∈ Ω, 	such	that	@",+ ≥ A, 3 ≠ M}, 
U,(B) = {3 ∈ Ω,|∃M ∈ Ω, 	such	that	@",+ ≤ B, 3 ≠ M}, 

V,(A, B) = J,(A) ∪ U,(B). 

Hereinafter we omit the arguments A and B for simplicity. Let us denote Ω,
(-) = Ω, ∖

V,, where “∖” means set difference. If U, is not empty, represent each element of V, as 
a point in the Euclidean space spanned by the row vectors of " and decompose V, into 
two disjoint subsets by Partitioning Around Medoids (PAM) clustering44, that is V, =

Ω,
(.) ∪ Ω,

(/). Otherwise, if U, is empty, let Ω,
(.) = J, and Ω,

(/) = Z (empty). Thus Ω, is 
decomposed into three parts as follows: 

Ω, = Ω,
(.) ∪ Ω,

(/) ∪ Ω,
(-). (1) 

Let [,
(.) (resp. [,

(/)) be the mean of off diagonal elements of " for Ω,
(.) (Ω,

(/)), and assume 
[,
(.) ≥ [,

(/) without loss of generality. If [,
(.) ≥ A, then Ω,

(.), Ω,
(/), and Ω,

(-) are strongly, 
variably, and weakly correlated gene sets, respectively, which are abbreviated as SCG, 
VCG, and WCG. Otherwise, correlated gene sets cannot be defined for #,. 
 

For any given (#, , Ω, , ") the genes should strongly and positively correlate within each 

of Ω,
(.) and Ω,

(/), while they negatively correlate between Ω,
(.) and Ω,

(/). Thus, we can 
hypothesize that SCG and VCG are predominantly associated with #,, which may aid 
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interpretation of biological meanings of corresponding signs. Fig. 2 shows that Ω(.) and 
Ω(/)  include KRT18 and ASCL1, which respectively have negative and positive 
contributions for lung small cell carcinoma. Thus, we interpret that (#, Ω(.), ")  and 
(#, Ω(/), ") relate positively and negatively with this cell type, respectively. 
 

Though simpler methods based on decomposition of correlation graphs exist, such as one-
shot PAM clustering44, tree cutting after hierarchical clustering45, independent component 
analysis (ICA)- or principal component analysis (PCA)-based methods46, and several 
graph statistical approaches47,48, we found our VCG definition is critical for providing 
sample clusterings in the downstream analysis. We tried replacing our decomposition 
method (1) with one-shot PAM clustering, but sample clusterings frequently exhibited 
deteriorated performance. This occurred when both VCG and WCG (obtained from the 
one-shot clustering) included many weakly correlated genes, which may contribute less 
to the parent sign. 
 
Definition of sign-by-sample matrix 

Let ; = (<",+) be a gene-by-sample matrix of size = × ?  from a transcriptomic data, 

whose entries stand for normalized and centered gene expression levels, and \ =
{1, 2,⋯ , =} a set representing = genes. Assume that we have ] biological descriptions 
and the associated gene sets, denoted by #, and Ω,, H = 1, 2,⋯ , ], respectively. Let us 

assume that Ω, can be decomposed into non-empty Ω,
(.), Ω,

(/), and Ω,
(-) for any H. Let 

^(0), _ ∈ {s, v, w}, be matrices of size ] × ?, whose entries b,,+
(0) are defined as follows: 

b,,+
(0) =

1

|Ω,
(0)|

c <",+
"∈2!

(#)
, 

where |Ω,
(0)| stands for the number of elements in Ω,

(0). Additionally, let d(0), _ ∈ {s, v}, 
be ] × ? matrices as follows: 

d(0) = e(0)^(0) + g1 − e(0)h^(-), (2) 

where e(0), 0 ≤ e(0) ≤ 1, are weight constants. Here d(.) and d(/) are said to be sign-
by-sample matrices (SSMs) for SCG and VCG, respectively, and the entry i,,+

(0) as a sign 
score of the Hth sign and Mth sample (Fig. 1c). Note that ensemble means of sign scores 
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across samples are zeros because SSMs are derived from the centered gene expression 
matrix ;. 
 
Definition of separation index 

Briefly, a separation index is a measure of significance of a given sign score for a given 
subpopulation. Since the row vectors of SSMs are centered (i.e., the means are zeros), 
wherein the degree of freedom is reduced, naïve usages of statistical tests and fold change 
analyses should be avoided. Nevertheless, we propose helping users to find significant 
signs using a nonparametric index to quantify the extent of separation between two sets 
of random variables. A separation index of a given random variable X takes a value from 
−1 to 1: the larger positive value indicates that Xs are markedly upregulated, and the 
probability distribution is well separated against other distributions and vice versa. 
 

Let us consider a vector j of size ?, i.e., the number of samples, whose elements stand 
for the sign scores, and assume that the elements are sorted in ascending order. For 
simplicity suppose that the samples are classified into two groups labeled 0 and 1. Let k 
be a vector of the labels corresponding to j, and l3 and l) vectors having the same 
elements with k  but the elements are sorted in lexicographic orders in forward and 
backward directions, respectively. Then we define separation index as follows: 

m(k) = 1 −
2n(k,l3)

n(k,l3) + n(k,l))
, (3) 

where n(k,l")  is an edit distance (or Levenshtein distance49) with only adjacent 
swapping permitted. For example, if k = (1, 0, 0, 1, 1) , then l3 = (0, 0, 1, 1, 1)  and 
l) = (1, 1, 1, 0, 0). From (3)  one can calculate n(k,l3) = 2 and n(k,l)) = 4, and 
thus m(k) = 1/3. As another example, if k = (0, 1, 1, 0, 0), then m(k) = −1/3. From this 
example, one can see that the positive and negative values of m mean that the given sign 
has positive and negative contributions for group “1,” respectively. 
 

Drawbacks 

Signs are derived from information in existing databases (DBs). This inevitably 
introduces bias problems, such as the inherent incompleteness of the DBs and annotation 
bias, viz. some biological terms are associated with many genes, while others with few50. 
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To overcome this problem, one should monitor what signs are included during data 
processing (Fig. 1a) and carefully tune the parameters to select reliable signs 
(Supplementary Fig. S2). Our R programming scripts help users perform this process 
(Supplementary Notes). 
 
Parameter setting 

To obtain explainable results of cell clustering in the downstream analysis of ASURAT, 
it is critical to tune the parameters in the sign creation step (Supplementary Fig. S2). There 
are six to nine parameters for creating SSMs depending on the database used but many of 
them have been preset to unbiased and sensible default values. We found that our default 
settings worked well in our scRNA-seq analyses but the three parameters should be tuned 
by users, as described below. 
 
As formulated in (1) , positive and negative constants A  and B  from thresholds of 
correlation coefficients are required for decomposing correlation graphs and creating 
signs (see Fig. 2 for the demonstration). In addition, unreliable signs are discarded with 
user-defined criteria, which were preset as follows: the sum of the number of genes in 

SCG and VCG is less than ?456 or the number of genes in WCG is less than ?456
(-)  (the 

default value is 2). Furthermore, users can remove redundant signs with similar biological 
meanings if information contents (ICs)51 are defined. 
 

Comparison of clustering validity indices of ASURAT with existing methods 
To benchmark the clustering qualities of existing methods and ASURAT, we prepared 
six cancer patient- and healthy donor-derived single-cell RNA-seq datasets. Subsequently, 
careful quality control and normalization by bayNorm were performed for each dataset. 
However, 22 additional non-negligible outliers were detected for sc68_vehi by ASURAT, 
which led to a substantial average silhouette width (ASW) (much greater than 0.9). Hence, 
those cells were removed from sc68_vehi and the resulting read count table containing 
6581 genes and 3901 cells was obtained (Chapter 14.2, Supplementary Notes). Note that 
such additional preprocessing was undertaken only for the comparison of ASWs. 
 
Using Seurat version 4.0.126, we normalized the data by log transform with a pseudo-
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count of 1 (default), selected variable genes based on variance stabilizing transformation 
with a gene-per-cell ratio of 0.2 (as suggested in previous work52), scaled and centered 
gene expression levels, and performed PCA. The principal components that explain 90% 
of the total variability were used for the computations of Uniform Manifold 
Approximation and Projection (UMAP)31 and t-distributed stochastic neighbor 
embedding (t-SNE)33, and the resulting two-dimensional cell states were supplied to 
NbClust32 (Chapter 14.3.1, Supplementary Notes). 
 
Using Monocle 3 version 0.2.3.027, we ran R function preprocess_cds() in the Monocle 3 
package using the default settings, in which data were normalized by log transform with 
a pseudo-count of 1, scaled and centered in gene expression levels, and performed PCA 
with a dimensionality of the reduced space of 50. The results were used for the 
computations of UMAP and t-SNE, and resulting two-dimensional cell states were 
supplied to NbClust (Chapter 14.3.2, Supplementary Notes). 
 
Using SC3 version 1.18.028, we normalized the data by log transform with a pseudo-count 
of 1 (default), performed PCA, and ran R function sc3() in the SC3 package, with the 
arguments ks = 2:7 and biology = TRUE. This function automatically computed a 
consensus matrix for each number of clusters and output the ASW based on the 
hierarchical clustering of the consensus matrix (Chapter 14.3.3, Supplementary Notes). 
However, sc3() stopped processing and reported errors for sc68_vehi and sc68_cisp 
irrespective of the arguments. 
 
Using PCA-based clustering, we normalized the data by log transform with a pseudo-
count of 1 and ran prcomp() in R stat package. The principal components that explain 
90% of the total variability were used for the computations of UMAP and t-SNE, and the 
resulting two-dimensional cell states were supplied to NbClust (Chapter 14.3.4, 
Supplementary Notes). 
 
Databases were downloaded in December 2020 and verified for human and mouse 
scRNA-seq datasets. Using ASURAT, we normalized the data by log transform with a 
pseudo-count of 1, scaled and centered gene expressions, and created SSMs based on 
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Disease Ontology (DO) for sc68_vehi and sc68_cisp, Gene Ontology (GO) for 
day1_norm, day7_hypo, and pbmc_6000, and Cell Ontology (CO) for pbmc_4000. These 
SSMs were used for the computations of UMAP and t-SNE without preprocessing by 
PCA, and the resulting two-dimensional cell states were supplied to NbClust (Chapter 
14.3.5, Supplementary Notes). 
 
Cell-type inference of PBMC datasets by existing methods and ASURAT 
To benchmark the abilities of cell-type inference of existing methods and ASURAT, we 
prepared the normalized read count tables of pbmc_4000 and pbmc_6000 in the same 
manner described in the previous section. Using R functions FindClusters() and 
FindAllMarkers() in Seurat, cluster_cells() and top_markers() in Monocle 3, and 
sc3_plot_markers() in SC3 packages, we identified several different cell types by 
manually searching marker genes in GeneCards version 5.253 (Chapter 14.4, 
Supplementary Notes). Seurat identified T cells (resp. marker genes CD3D, CD3E, IL32, 
TRAC), monocytes (S100A8, LYZ, CD14), B cells (CD79A, MS4A1, IGHM, VPREB3, 
BANK1), and NK/NKT cells (NKG7, CD160, KLRF1, GZMA, GZMB, FGFBP2, GNLY), 
Monocle 3 identified T cells (CD3D, CD3E, CD27, IL32, TRAC, TCF7), monocytes 
(S100A8, LYZ, CD14), B cells (CD79A, CD79B, MS4A1, IGHM, VPREB3, BANK1), and 
NK/NKT cells (NKG7, GNLY, CD160, GZMA, FGFBP2), and SC3 identified B cells 
(CD79A, MS4A1) and NK/NKT cells (TPD52L2, GZMA, GZMB, GZMH, GZMK). 
 
Using ASURAT, we created SSMs based on CO, GO, and Kyoto Encyclopedia of Genes 
and Genomes (KEGG), clustered the cells by k-nearest neighbor (KNN) graph generation 
and Louvain algorithm using Seurat’s functions26 after dimension reduction by PCA, 
analyzed the separation index (3) of each sign score for each cluster, found the signs 
upregulated in specific clusters, and inferred the cell types (Supplementary Figs. S3 and 
S4; Chapter 14.4.4, Supplementary Notes): T cells (respectively marker genes CD3D, 
CD3E, CD247, PTPRC, IL7R, etc.), monocytes (MEF2C, LYN, CCL3, CD14, FGR, etc.), 
B cells (CD19, CD72, CD79B, BTK, DAPP1, etc.), NK/NKT cells (SH2D1A, KLRD1, 
NCR3, GZMB, CD160, FGR, ITGB2, FCGR3A, etc.), and dendritic cells (HLA-DOB, 
CCR7, CD2, FCGR2B, BLK, etc.). 
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Cell-type inference of cervical cancer datasets by ASURAT 
To validate ASURAT’s reliable cell-type inference, the normalized read count tables of 
day1_norm and day7_hypo were prepared in the same manner as described in the 
previous section. Previous work studying human cervical cancers using CTOS methods 
indicated that some small cell neuroendocrine carcinomas (SCNCs) exhibited combined 
phenotypes with other non-SCNC cells41. Additionally, hypoxia drove divergent 
differentiation of SCNCs, but detailed molecular information remained to be elucidated. 
Using ASURAT, we created SSMs based on DO, GO, and KEGG, and clustered the cells 
by one of the following: (i) PCA, followed by KNN graph generation and Louvain 
algorithm using Seurat’s functions26 and (ii) diffusion map generation, followed by 
allocation of cells to the different branches of the data manifold by using MERLoT24. 
Here, cells in day1_norm were clustered by (i), while those in day7_hypo were clustered 
by (i) and (ii) for SSM using DO and GO, respectively (Supplementary Figs. S5 and S6). 
 
Code availability 

An open-source implementation of ASURAT is available on GitHub 
(https://github.com/keita-iida/ASURAT) under the GPLv3 license. All the input and 
output files used in the present paper and user-friendly documentation written in R 
bookdown can be downloaded from the above URL. 
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Supplementary Notes 
Supplementary Notes are written in separate files, which are structured as follows: 

Chapter 1. Overview of ASURAT. 

Chapter 2. Preparing data sets. 

Chapter 3. Data quality control (QC). 

Chapter 4. Normalizing and centering data. 

Chapter 5. Computing correlations among genes. 

Chapter 6. Checking expression profiles of marker genes. 

Chapter 7. Collecting databases (optional). 

Chapter 8. ASURAT using Disease Ontology database (optional). 

Chapter 9. ASURAT using Cell Ontology database (optional). 

Chapter 10. ASURAT using Gene Ontology database (optional). 

Chapter 11. ASURAT using KEGG (optional). 

Chapter 12. ASURAT using Reactome (optional). 

Chapter 13. Multiple sign analysis by concatenating DO, CO, GO, KEGG, and 

Reactome. 

Chapter 14. Appendix A: comparing performances of ASURAT and existing methods. 

Chapter 15. Appendix B: automatically tuning ASURAT’s parameters. 
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Supplementary Files 
Supplementary Files are prepared in separate files, which are structured as follows: 
Supplementary File 1. 

NbClust’s output for 2-dim UMAP computed by Seurat across six cancer 
patient- and healthy donor-derived scRNA-seq datasets 
(SupplementaryFile_001_nbclust_umap_seurat.pdf). 

Supplementary File 2. 
NbClust’s output for 2-dim UMAP computed by Monocle 3 across six cancer 
patient- and healthy donor-derived scRNA-seq datasets 
(SupplementaryFile_002_nbclust_umap_monocle3.pdf). 

Supplementary File 3. 
SC3’s output of ASWs across six cancer patient- and healthy donor-derived 
scRNA-seq datasets (SupplementaryFile_003_average_silhouette_sc3.pdf). 

Supplementary File 4. 
NbClust’s output for 2-dim UMAP preprocessed by PCA across six cancer 
patient- and healthy donor-derived scRNA-seq datasets 
(SupplementaryFile_004_nbclust_umap_pca.pdf). 

Supplementary File 5. 
NbClust’s output for 2-dim UMAP computed by ASURAT across six cancer 
patient- and healthy donor-derived scRNA-seq datasets 
(SupplementaryFile_005_nbclust_umap_asurat.pdf). 

Supplementary File 6. 
 ASURAT’s R function files (SupplementaryFile_006_R_files.zip). 
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Supplementary Figures 
 

 

 

Fig. S1 ASURAT outperforms existing methods with respect to producing robust, 

high-quality, and reliable clusterings of various single-cell transcriptomes. (a) Average 

silhouette widths (ASWs) versus the number of clusters, computed by two-dimensional 

t-distributed stochastic neighbor embedding (t-SNE) and k-means clustering for Seurat, 

Monocle 3, PCA, and ASURAT. (b) Comparison of t-SNE plots between different 

methods using various datasets. The input databases for ASURAT are indicated in 

parentheses. 
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Fig. S2 Detailed workflow of Fig. 1c focusing on the parameter settings. The 

indicated values are preset as default in ASURAT, while “u.d.” stands for the value or 

argument that users must define. Here, ! and " are positive and negative threshold 

values of correlation coefficients, #!"# and #!"#(%)  positive integers for selecting reliable 
signs, MEASURE the name of information content (IC)-based method defining semantic 

similarities, SIM_TH a threshold value used to regard two biological terms as similar, 

KEEP_RAREID determines whether the signs with larger ICs are kept or not (if TRUE, 

the signs with larger ICs are kept), and $(') and $(() weight constants are used to 

define SSMs. 
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Fig. S3 Identification of the cell types in pbmc_4000 by ASURAT. (a) Heat maps 
showing the sign scores of sign-by-sample matrices (SSMs) for Cell Ontology (CO), 

Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG), which 
are concatenated vertically. The cells are clustered by k-nearest neighbor (KNN) graph 
generation and Louvain algorithm by using Seurat's functions in the R package after 

dimension reduction by principal component analysis. (b)-(d) Violin plots showing the 
distributions of sign scores for the indicated sign IDs. The cell type labels were inferred 
by CO as follows: T cell (label 1), monocyte (label 2), B cell (label 3), and NK/NKT 

cell (label 4 and 5). 
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Fig. S4 Identification of the cell types in pbmc_6000 by ASURAT. (a) Heat maps 
showing the sign scores of sign-by-sample matrices (SSMs) for Cell Ontology (CO), 

Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG), which 
are concatenated vertically. The cells are clustered by k-nearest neighbor (KNN) graph 
generation and Louvain algorithm by using Seurat's functions in the R package after 

dimension reduction by principal component analysis. (b)-(d) Violin plots showing the 
distributions of sign scores for the indicated sign IDs. The cell type labels were inferred 
by CO as follows: T cell (label 1), monocyte (label 2), NK/NKT cell (label 3), B cell 

(label 4), and dendritic cell (label 5). 
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Fig. S5 Identification of putative the cell types and functional subpopulations in 

day1_norm by ASURAT. (a) Heat maps showing the sign scores of sign-by-sample 

matrices (SSMs) for Disease Ontology (DO), Gene Ontology (GO), and Kyoto 

Encyclopedia of Genes and Genomes (KEGG), which are concatenated vertically. The 

cells were clustered by k-nearest neighbor (KNN) graph generation and Louvain 

algorithm by using Seurat's functions in the R package after the dimension reduction by 

principal component analysis. (b) t-SNE plots of the SSM for DO, showing the cell 

clustering and sign scores for the indicated sign IDs. (c) t-SNE plots of the SSM for GO 

and violin plots showing the distributions of sign scores for the indicated sign IDs. 
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Fig. S6 Identification of putative the cell types and functional subpopulations in 

day7_hypo by ASURAT. (a) Heat maps showing the sign scores of sign-by-sample 

matrices (SSMs) for Disease Ontology (DO), Gene Ontology (GO), and Kyoto 

Encyclopedia of Genes and Genomes (KEGG), which are concatenated vertically. The 

cells were clustered by (i) k-nearest neighbor (KNN) graph generation and Louvain 

algorithm by using Seurat's functions in the R package after the dimension reduction by 

principal component analysis for the SSM for DO, and (ii) diffusion map, followed by 

allocations of samples to the different branches of the data manifold by using MERLoT 

for the SSM for GO. (b) t-SNE plots of the SSM for DO, showing cell clustering and 

sign scores for the indicated sign IDs. (c) t-SNE plots of the SSM for GO and violin 

plots showing the distributions of sign scores for the indicated sign IDs. 
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day1_norm
KL CH Hartigan CCC Scott Marriot TrCovW TraceW Friedman Rubin Cindex DB Silhouette Duda Pseudot2 Beale Ratkowsky Ball Ptbiserial Frey McClain Dunn Hubert SDindex Dindex SDbw

2 11.6055 6545.1842 2023.4373 5.4614 5654.5078 280077356.186653547181.542416886.2314 3.6435 2.7878 0.3819 0.6484 0.558 1.8001 -985.8611 -0.4441 0.3388 8443.1157 0.743 1.6248 0.3171 0.0049 0 0.6522 1.9797 0.7596
3 0.4597 6091.4104 1623.8283 8.8946 9037.0043 250278321.826245443496.740710875.3937 6.7871 4.3286 0.3534 0.9787 0.4387 1.8808 -842.9433 -0.4678 0.4473 3625.1312 0.6383 0.6811 0.7635 0.0016 0 0.9217 1.593 0.5844
4 1.3173 6402.1796 1221.3225 14.2116 11568.5766 222921082.423912660140.15287533.1632 9.7563 6.2491 0.3072 0.853 0.4542 1.0742 -100.4768 -0.069 0.4311 1883.2908 0.6059 0.5865 1.0128 0.0071 0 0.9242 1.315 0.5518
5 2.6163 6707.8493 621.9483 18.1842 13617.9894 199061667.39288364841.04135647.9555 14.3587 8.335 0.3134 0.7553 0.4813 1.4563 -343.7384 -0.3128 0.3991 1129.5911 0.5826 0.9744 1.1576 0.0117 0 0.9166 1.1299 0.345
6 0.442 6401.3157 865.061 15.6998 14893.8983 202336934.90218129189.00544827.2129 17.4713 9.7521 0.3063 0.9206 0.4139 0.8646 145.9518 0.1563 0.3718 804.5355 0.5428 0.6824 1.3718 0.0058 0 1.2961 1.0465 0.3248
7 1.7717 6738.6193 385.6434 19.3124 16350.9804 185017760.90654563635.803 3903.7769 22.3108 12.059 0.3407 0.9216 0.4041 2.3202 -583.7913 -0.5677 0.35 557.6824 0.5112 0.9908 1.5608 0.0063 0 1.2814 0.9499 0.3567

Number_clusters 2 7 5 7 3 5 4 3 7 5 6 2 2 2 2 2 3 3 2 2 2 5 0 2 0 6
Value_Index 11.6055 6738.6193 599.3742 19.3124 3382.4965 27134682.540432783356.5882668.6073 4.8395 -0.6687 0.3063 0.6484 0.558 1.8001 -985.8611 -0.4441 0.4473 4817.9845 0.743 1.6248 0.3171 0.0117 0 0.6522 0 0.3248

day7_hypo
KL CH Hartigan CCC Scott Marriot TrCovW TraceW Friedman Rubin Cindex DB Silhouette Duda Pseudot2 Beale Ratkowsky Ball Ptbiserial Frey McClain Dunn Hubert SDindex Dindex SDbw

2 6.4904 4485.0373 705.8133 14.2897 3810.1019 136617237 37655607.8 12065.5426 6.0542 3.3059 0.3518 0.6571 0.6159 0.4811 1278.1255 1.0777 0.4418 6032.7713 0.803 2.9526 0.3331 0.012 0 0.6154 2.2981 0.5371
3 0.2122 3407.4511 2609.9035 9.8341 5751.9381 113382322 34732299.3 8852.9361 16.4202 4.5056 0.3068 0.8016 0.4681 1.353 -201.4274 -0.2603 0.4018 2950.9787 0.6529 0.2325 0.6807 0.007 0 0.8767 1.8962 0.494
4 8.2066 6188.1834 732.518 41.0003 8222.7284 56662087.7 3896360.67 3779.199 20.2684 10.5546 0.3246 0.6714 0.5545 1.7711 -409.2586 -0.4344 0.4606 944.7998 0.6906 1.1801 0.6966 0.0114 0 0.6913 1.2678 0.2584
5 4.4803 6570.6092 336.7232 43.8981 9499.1546 45961603.4 2086330.1 2744.5092 25.2207 14.5337 0.3375 0.7172 0.5333 1.7803 -379.1373 -0.4374 0.4254 548.9018 0.6213 1.346 0.8826 0.0077 0 0.8935 1.088 0.2403
6 0.7615 6232.0433 391.4234 41.1042 10273.8336 44458938.8 2054009.88 2338.9575 30.5107 17.0537 0.3247 0.8357 0.4834 1.0048 -3.0731 -0.0047 0.3924 389.8262 0.585 1.2115 0.9965 0.0192 0 1.1138 0.9963 0.2056
7 0.9348 6302.6562 208.2151 41.518 10899.1159 43891282.4 1352772.52 1946.4376 37.7813 20.4928 0.2926 0.8721 0.461 0.9893 5.16 0.0108 0.3649 278.0625 0.5367 1.5481 1.17 0.0085 0 1.1686 0.9082 0.1972

Number_clusters 4 5 3 5 4 4 4 4 3 4 7 2 2 3 3 2 4 3 2 2 2 6 0 2 0 7
Value_Index 8.2066 6570.6092 1904.0902 43.8981 2470.7903 46019750 30835938.6 4039.0472 10.366 -2.0699 0.2926 0.6571 0.6159 1.353 -201.4274 1.0777 0.4606 3081.7926 0.803 2.9526 0.3331 0.0192 0 0.6154 0 0.1972

sc68_vehi
KL CH Hartigan CCC Scott Marriot TrCovW TraceW Friedman Rubin Cindex DB Silhouette Duda Pseudot2 Beale Ratkowsky Ball Ptbiserial Frey McClain Dunn Hubert SDindex Dindex SDbw

2 5.2345 5244.2173 1762.9078 -5.9883 4971.1443 459442647.7287112489668.689921823.1138 2.4766 2.345 0.3387 0.8596 0.4756 1.4411 -1016.1964 -0.3059 0.5049 10911.5569 0.6082 0.6605 0.4953 0.0038 0 0.7295 2.1548 1.1806
3 0.5806 4687.9294 1028.6 -9.667 7927.4464 484497589.99739205675.890615028.2068 5.4607 3.4053 0.3501 0.8773 0.4221 0.5653 1218.0018 0.7685 0.4488 5009.4023 0.6212 1.0573 0.7098 0.0032 0 0.7759 1.812 0.8493
4 0.5539 4291.7488 1479.9549 -13.1145 9583.195 563425158.673133330825.624411890.5431 6.4413 4.3039 0.35 1.0234 0.378 1.4604 -488.3405 -0.315 0.4236 2972.6358 0.5761 0.5835 1.0186 0.0044 0 0.9437 1.619 0.7589
5 3.4838 4809.9666 922.7938 -4.8492 12436.9093 423599137.900221211381.96028617.7859 9.3672 5.9384 0.3621 0.9497 0.4035 0.8854 164.7498 0.1293 0.4048 1723.5572 0.5432 0.558 1.3534 0.0064 0 0.9563 1.3896 0.7975
6 0.4852 4942.6814 956.2717 -2.48 13788.7834 431335050.643113257256.95186967.4892 12.2007 7.3449 0.3314 0.8453 0.4119 2.2238 -704.9684 -0.5495 0.3741 1161.2482 0.5154 0.3536 1.592 0.0043 0 0.9628 1.2346 0.4804
7 1.8043 5288.164 729.4613 2.2512 15613.9299 367719423.80025175289.28775594.0735 16.4309 9.1482 0.322 0.7822 0.4261 1.5664 -415.4762 -0.3611 0.3524 799.1534 0.5045 0.5313 1.6937 0.006 0 0.9902 1.1046 0.4214

Number_clusters 2 7 3 7 3 5 3 3 7 5 7 7 2 2 2 2 2 3 3 1 2 5 0 2 0 7
Value_Index 5.2345 5288.164 734.3077 2.2512 2956.3022 147561933.515873283992.79923657.2433 4.2302 -0.2279 0.322 0.7822 0.4756 1.4411 -1016.1964 -0.3059 0.5049 5902.1546 0.6212 0.4953 0.0064 0 0.7295 0 0.4214

sc68_cisp
KL CH Hartigan CCC Scott Marriot TrCovW TraceW Friedman Rubin Cindex DB Silhouette Duda Pseudot2 Beale Ratkowsky Ball Ptbiserial Frey McClain Dunn Hubert SDindex Dindex SDbw

2 2.5107 1663.6929 1337.0659 -3.9078 2919.5304 180061066.69746145839.951414975.011 2.5378 1.7287 0.3483 1.1647 0.3903 0.6765 741.1774 0.4778 0.3244 7487.5055 0.5391 0.3958 0.5655 0.0135 1e-04 0.8517 2.3195 1.3046
3 0.6875 1986.6895 1036.3124 -8.449 4559.9734 197612510.735117134497.42039444.0131 3.5427 2.7412 0.3307 0.9148 0.4025 1.6257 -464.9512 -0.3843 0.4546 3148.0044 0.5985 0.3613 0.9711 0.0042 1e-04 0.6375 1.861 1.1954
4 1.3732 2270.3716 393.786 -1.6318 6236.8844 168644736.450610107600.62936494.638 5.9693 3.986 0.3287 0.8395 0.4092 1.2542 -217.036 -0.2023 0.4301 1623.6595 0.6067 0.7351 1.2396 0.0052 1e-04 0.6488 1.5606 0.9301
5 6.0688 2094.27 484.1893 -5.5338 6996.7899 188956887.50716280681.98075538.4876 7.344 4.6742 0.3414 0.96 0.3679 1.4527 -255.5274 -0.311 0.3953 1107.6975 0.5742 0.499 1.5206 0.0069 1e-04 0.8059 1.4439 0.8732
6 0.2059 2127.1181 519.8685 -4.7269 7853.8067 186998377.02195623268.14824568.3383 9.2651 5.6668 0.3295 0.9593 0.3664 1.0212 -12.4633 -0.0207 0.3695 761.3897 0.5477 0.2765 1.8057 0.0092 1e-04 0.8189 1.306 0.6242
7 0.7804 2262.6019 513.8555 -1.6942 8927.4784 159098436.94852807379.33313719.8043 12.2122 6.9594 0.3458 0.8305 0.398 1.0937 -49.6138 -0.0854 0.3499 531.4006 0.5396 0.3078 1.932 0.0052 1e-04 0.7403 1.1811 0.6081

Number_clusters 5 4 4 4 4 4 3 3 7 4 4 7 4 2 2 2 3 3 4 1 2 2 0 3 0 7
Value_Index 6.0688 2270.3716 642.5264 -1.6318 1676.911 49279925.34129011342.53112581.6228 2.9471 -0.5567 0.3287 0.8305 0.4092 0.6765 741.1774 0.4778 0.4546 4339.5011 0.6067 0.5655 0.0135 0 0.6375 0 0.6081

pbmc_4000
KL CH Hartigan CCC Scott Marriot TrCovW TraceW Friedman Rubin Cindex DB Silhouette Duda Pseudot2 Beale Ratkowsky Ball Ptbiserial Frey McClain Dunn Hubert SDindex Dindex SDbw

2 0.0485 3532.149 19932.5615 6.2083 12057.3027 6083879531.051119331791101.5615200835.2387 22.7413 1.9263 0.3176 0.6625 0.5841 0.1416 16968.3362 6.0623 0.4122 100417.6193 0.6169 0.0188 0.3027 0.4006 0 0.4835 5.7522 0.5032
3 15.7831 20959.0597 2538.8495 135.0128 20530.1053 1485356272.9559205090313.687432249.596 34.8664 11.9964 0.3077 0.3427 0.789 1.1896 -218.3942 -0.1592 0.553 10749.8653 0.9335 2.1246 0.3027 0.4766 0 0.1534 2.5374 0.0929
4 1.4566 24118.6943 256.0855 136.8985 23185.255 1316586608.847784200926.254419357.3253 42.9745 19.9861 0.2251 0.4828 0.6687 0.7261 382.047 0.3768 0.4874 4839.3313 0.7884 4.5901 0.4326 0.0115 0 0.3531 1.9267 0.1471
5 3.4004 19363.4767 573.4775 114.2655 23584.4511 1852787051.446668980404.302618138.4845 44.8528 21.3291 0.2197 0.6682 0.5519 5.7007 -986.2026 -0.8232 0.4367 3627.6969 0.7592 4.1391 0.4698 0.0058 0 0.5586 1.8371 0.139
6 1.3417 17932.4263 502.3355 105.6859 24581.1329 2054599071.913341327528.739515765.4798 50.9919 24.5395 0.2023 0.7766 0.4874 1.7056 -389.2992 -0.4128 0.3999 2627.58 0.6654 4.5142 0.6205 0.0058 0 0.6361 1.6752 0.1546
7 0.3046 16993.7403 156.0393 99.9834 25626.5901 2126215220.477841048102.548713928.564 59.4376 27.7759 0.1916 0.7222 0.5179 1.2055 -124.8074 -0.1701 0.3712 1989.7949 0.5904 -15.4805 0.7955 0.0038 0 0.7425 1.5114 0.1631

Number_clusters 3 4 3 4 3 3 3 3 3 4 7 3 3 3 3 3 3 3 3 1 3 3 0 3 0 3
Value_Index 15.7831 24118.6943 17393.7119 136.8985 8472.8027 4429753593.986919126700787.8741155693.3719 12.125 -6.6468 0.1916 0.3427 0.789 1.1896 -218.3942 -0.1592 0.553 89667.754 0.9335 0.3027 0.4766 0 0.1534 0 0.0929

pbmc_6000
KL CH Hartigan CCC Scott Marriot TrCovW TraceW Friedman Rubin Cindex DB Silhouette Duda Pseudot2 Beale Ratkowsky Ball Ptbiserial Frey McClain Dunn Hubert SDindex Dindex SDbw

2 0.2613 6800.1187 24985.7357 -14.0345 8252.9363 30634276060.2873534974801.9625247606.8346 3.8633 2.3946 0.2455 0.8443 0.5932 0.0449 41131.0093 21.2763 0.3476 123803.4173 0.6563 0.0516 0.2626 0.0016 0 0.6848 5.926 0.5362
3 6.7929 33308.774 7026.0634 115.4784 26134.1014 1763630070.65955328855.513940430.7016 48.4469 14.6651 0.2938 0.3398 0.7621 2.8348 -1250.4711 -0.6462 0.5423 13476.9005 0.7902 1.949 0.2239 0.6649 0 0.2263 2.3739 0.0494
4 14.6733 56540.312 891.9798 158.8042 32246.8604 895485038.106645884659.80916561.5176 64.3512 35.8012 0.1748 0.4093 0.7262 0.1114 5023.0812 7.9605 0.4893 4140.3794 0.6637 0.2926 0.3013 0.0059 0 0.4166 1.5605 0.0698
5 2.909 50378.3771 1084.3551 146.6163 33576.5162 1065362554.665827640631.436413999.5005 79.8305 42.3531 0.3224 0.3491 0.7249 1.5333 -738.3754 -0.3475 0.4383 2799.9001 0.6641 7.3999 0.2983 0.011 0 0.3935 1.5011 0.0433
6 0.2761 49477.6993 1226.656 143.5393 36552.3912 833516161.010725667433.199711451.3178 95.0142 51.7776 0.29 0.5504 0.6026 0.3936 1414.0447 1.5385 0.403 1908.553 0.5362 2.1117 0.4735 0.0055 0 1.0792 1.3229 0.0972
7 1.3889 51806.3322 418.0528 145.9419 38432.864 771590269.743621179573.29589148.0517 111.4996 64.814 0.2698 0.5551 0.6054 9.9862 -1673.7437 -0.898 0.3741 1306.8645 0.5116 15.786 0.5055 0.0064 0 1.2263 1.1774 0.0993

Number_clusters 4 4 3 4 3 3 3 3 3 4 4 3 3 3 3 3 3 3 3 1 3 3 0 3 0 5
Value_Index 14.6733 56540.312 17959.6723 158.8042 17881.1651 28002500957.07563479645946.4486183306.9489 44.5836 -14.5841 0.1748 0.3398 0.7621 2.8348 -1250.4711 -0.6462 0.5423 110326.5167 0.7902 0.2239 0.6649 0 0.2263 0 0.0433
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day1_norm
KL CH Hartigan CCC Scott Marriot TrCovW TraceW Friedman Rubin Cindex DB Silhouette Duda Pseudot2 Beale Ratkowsky Ball Ptbiserial Frey McClain Dunn Hubert SDindex Dindex SDbw

2 1.95 9072.2252 5181.8321 26.632 8607.1186 263462904.195337855405.795318768.0281 6.7664 3.4781 0.3353 0.5346 0.6502 0.3288 4835.627 2.0403 0.597 9384.014 0.8318 0.8665 0.306 0.3302 0 0.6087 1.9996 0.2635
3 84.3743 13543.8072 1255.554 71.3422 14162.4251 130092092.681920083970.1397770.1069 15.5799 8.401 0.3296 0.5576 0.6505 1.3542 -353.8986 -0.2612 0.5417 2590.0356 0.8216 1.9897 0.476 0.0254 0 0.5687 1.3384 0.2061
4 0.1834 12541.7418 739.9585 64.7438 16388.7966 125940139.307612232001.41655785.4295 21.8027 11.2829 0.3224 0.7156 0.5839 1.1455 -122.096 -0.1268 0.4774 1446.3574 0.7246 1.6085 0.6596 0.0075 0 1.0144 1.1482 0.3346
5 0.4185 11490.3893 1172.6752 58.0858 17563.7471 142783860.28447203796.56254812.2497 25.4841 13.5647 0.3085 0.7161 0.5703 0.3575 1964.3939 1.7959 0.4304 962.4499 0.7005 1.3576 0.7136 0.0022 0 1.0424 1.0302 0.1678
6 1.69 12370.3189 879.2112 62.7657 19742.2537 113436387.94293029789.70543644.0474 35.4878 17.9132 0.3036 0.8801 0.465 2.3261 -531.3263 -0.5688 0.3967 607.3412 0.6227 1.1818 0.9109 0.0025 0 1.1501 0.8969 0.1532
7 15.0212 12929.9776 504.7753 65.3847 21153.9958 105018613.33951823542.31532937.7559 42.7084 22.2199 0.264 0.8992 0.4575 0.6774 381.5331 0.4757 0.3694 419.6794 0.5618 1.4379 1.0954 0.0038 0 1.3664 0.8074 0.1897

Number_clusters 3 3 3 3 3 3 3 3 6 3 7 2 3 3 3 2 2 3 2 1 2 2 0 3 0 6
Value_Index 84.3743 13543.8072 3926.2781 71.3422 5555.3065 129218858.139117771435.65639013.2437 10.0037 -2.041 0.264 0.5346 0.6505 1.3542 -353.8986 2.0403 0.597 6793.9784 0.8318 0.306 0.3302 0 0.5687 0 0.1532

day7_hypo
KL CH Hartigan CCC Scott Marriot TrCovW TraceW Friedman Rubin Cindex DB Silhouette Duda Pseudot2 Beale Ratkowsky Ball Ptbiserial Frey McClain Dunn Hubert SDindex Dindex SDbw

2 0.4386 1326.0921 2633.1835 -3.4047 2715.5466 176082207.3659144783819.286116007.3125 2.1187 1.6818 0.373 1.1499 0.3963 0.5185 1387.2903 0.9278 0.4506 8003.6563 0.485 -0.4387 0.547 0.0063 0 0.9539 2.5584 1.0058
3 2.343 2875.8047 1479.7757 18.8738 5737.2947 83921268.51125874288.42226800.5624 7.2969 3.9586 0.3716 0.6182 0.5575 0.4728 1155.2217 1.1141 0.5002 2266.8541 0.7785 0.8729 0.4967 0.0059 1e-04 0.4999 1.6858 0.4076
4 4.7287 3867.8489 662.5686 33.5746 7655.9125 55691113.43062343529.37663861.32 13.0009 6.972 0.3222 0.6964 0.5542 0.6421 449.1882 0.5565 0.4619 965.33 0.712 0.9314 0.8239 0.0085 1e-04 0.6609 1.2508 0.2752
5 0.5907 4053.6521 715.9756 35.0692 8822.8455 47787231.85361212815.59342879.4271 17.9208 9.3494 0.2694 0.7178 0.5373 0.9514 21.4485 0.0509 0.4227 575.8854 0.6474 0.1623 1.0513 0.0072 1e-04 0.8442 1.0607 0.3449
6 16.5369 4579.3563 342.9136 40.5379 9888.0272 39817753.73821094708.92562103.7994 23.6447 12.7964 0.3249 0.6481 0.556 0.9703 13.2284 0.0305 0.3918 350.6332 0.6519 0.8956 1.0251 0.0095 1e-04 0.855 0.9296 0.2196
7 0.2158 4545.1297 368.8832 39.5985 10527.6914 39020058.8733789465.0685 1787.9287 28.3727 15.0571 0.3139 0.6277 0.5461 1.3955 -138.8811 -0.2827 0.365 255.4184 0.627 0.789 1.1054 0.0032 1e-04 0.9035 0.862 0.2491

Number_clusters 6 6 3 6 3 3 3 3 6 6 5 3 3 4 4 2 3 3 3 1 3 6 0 3 0 6
Value_Index 16.5369 4579.3563 1153.4079 40.5379 3021.7481 63930783.774138909530.86396267.5077 5.7238 -1.1862 0.2694 0.6182 0.5575 0.6421 449.1882 0.9278 0.5002 5736.8021 0.7785 0.4967 0.0095 0 0.4999 0 0.2196

sc68_vehi
KL CH Hartigan CCC Scott Marriot TrCovW TraceW Friedman Rubin Cindex DB Silhouette Duda Pseudot2 Beale Ratkowsky Ball Ptbiserial Frey McClain Dunn Hubert SDindex Dindex SDbw

2 2.9926 9595.1413 802.0216 19.1466 7339.6167 251789173.558558796220.986715974.5751 5.4619 3.4609 0.3695 0.6324 0.6067 0.5711 1400.8773 0.7507 0.4768 7987.2875 0.8027 5.7953 0.3781 0.0197 0 0.6072 1.8671 0.3764
3 2.9182 6183.852 1673.961 1.8766 8766.5329 392972716.151448746449.892813249.2198 6.1404 4.1728 0.3522 0.9424 0.477 0.5869 1430.0498 0.7034 0.4521 4416.4066 0.6747 0.7213 0.6359 0.0115 0 1.0184 1.6381 0.4078
4 0.4248 6449.2998 1969.8278 7.1988 12446.8306 271966838.70619194748.38939268.8119 9.0888 5.9648 0.2978 1.0402 0.4144 1.247 -299.1326 -0.1979 0.448 2317.203 0.6478 0.6411 0.8649 0.0063 0 0.9193 1.3864 0.3421
5 1.9775 7772.3964 341.2797 20.8163 14994.8093 221142403.232311884458.64796156.7445 14.4148 8.9799 0.2824 0.895 0.452 1.5 -412.6604 -0.3328 0.4119 1231.3489 0.6069 2.8087 1.0863 0.0047 0 0.9247 1.1364 0.3458
6 1.324 6829.0935 348.9227 12.9063 15623.5607 271041784.53378969981.01185660.867 15.7098 9.7665 0.2756 1.029 0.4114 1.2462 -306.8563 -0.1974 0.3788 943.4778 0.5688 2.2142 1.2622 0.0032 0 1.3002 1.0754 0.345
7 0.4351 6257.2625 1353.0272 7.6949 16378.9258 303973538.81968779978.23165195.4474 17.4454 10.6414 0.2703 0.958 0.4012 0.6734 585.9425 0.4846 0.3534 742.2068 0.5447 0.4816 1.3931 0.0037 0 1.2717 1.0177 0.3493

Number_clusters 2 2 5 5 4 5 4 5 5 5 7 2 2 4 4 2 2 3 2 2 2 2 0 2 0 4
Value_Index 2.9926 9595.1413 1628.5481 20.8163 3680.2978 100723816.775129551701.50352616.1899 5.3261 -2.2284 0.2703 0.6324 0.6067 1.247 -299.1326 0.7507 0.4768 3570.8809 0.8027 5.7953 0.3781 0.0197 0 0.6072 0 0.3421

sc68_cisp
KL CH Hartigan CCC Scott Marriot TrCovW TraceW Friedman Rubin Cindex DB Silhouette Duda Pseudot2 Beale Ratkowsky Ball Ptbiserial Frey McClain Dunn Hubert SDindex Dindex SDbw

2 0.8757 2964.2762 1844.8118 7.6838 3955.1525 160103562.530116332059.969914136.7364 3.3738 2.2984 0.3496 0.8312 0.5089 0.4891 1519.6784 1.0437 0.5139 7068.3682 0.6878 0.6465 0.4446 0.0066 0 0.6918 2.2366 0.5609
3 42.0242 3600.6297 745.8691 18.3012 6229.1545 133161703.283913095705.59527818.7115 6.8437 4.1557 0.3446 0.788 0.5009 0.649 523.998 0.5401 0.496 2606.2372 0.7057 0.9119 0.7725 0.0096 1e-04 0.6385 1.6847 0.5973
4 0.0337 3432.1127 210.872 15.7386 7483.5112 136725567.706210220477.38595892.6918 9.4089 5.514 0.3082 0.8353 0.4772 3.2219 -769.617 -0.6883 0.4489 1473.1729 0.6653 3.2423 0.9887 0.0072 1e-04 0.721 1.4514 0.4712
5 3.0487 2863.5135 347.3762 6.4012 7881.2252 179505993.68647666269.00095394.029 10.4834 6.0237 0.2975 0.8939 0.4522 7.7702 -918.3527 -0.8685 0.4054 1078.8058 0.6207 1.224 1.1767 0.0061 1e-04 1.134 1.3589 0.4439
6 0.3117 2708.121 767.9391 3.7037 8542.0193 193574783.22374776225.66874680.8623 12.4627 6.9415 0.3147 0.8372 0.4334 3.382 -414.1393 -0.7017 0.3754 780.1437 0.5916 0.4545 1.3418 0.0045 1e-04 1.0576 1.269 0.4964
7 36.9176 3143.8248 335.7631 11.2391 9950.8451 142225141.62544557182.63913501.1153 17.8001 9.2805 0.3095 0.9294 0.4006 1.9377 -216.7965 -0.4821 0.3557 500.1593 0.5527 0.5324 1.642 0.0093 1e-04 0.9127 1.1265 0.4613

Number_clusters 3 3 3 3 3 4 3 3 7 4 5 3 2 3 3 2 2 3 3 1 2 3 0 3 0 5
Value_Index 42.0242 3600.6297 1098.9426 18.3012 2274.002 39216561.55783236354.37474392.0052 5.3373 -0.8485 0.2975 0.788 0.5089 0.649 523.998 1.0437 0.5139 4462.131 0.7057 0.4446 0.0096 0 0.6385 0 0.4439

pbmc_4000
KL CH Hartigan CCC Scott Marriot TrCovW TraceW Friedman Rubin Cindex DB Silhouette Duda Pseudot2 Beale Ratkowsky Ball Ptbiserial Frey McClain Dunn Hubert SDindex Dindex SDbw

2 0.13 4365.9018 9118.2269 20.6108 9711.1544 8113543008.348310101230193.3402152446.5924 11.7905 2.145 0.3139 0.6648 0.5946 0.2532 8138.872 2.9478 0.3675 76223.2962 0.6894 0.0972 0.2975 0.3956 0 0.3579 5.0962 0.443
3 4.5007 11959.1322 3248.7998 86.1798 17302.8379 2495548394.8555215100715.459844951.5627 25.3064 7.2745 0.298 0.41 0.7202 3.7064 -1214.3113 -0.7289 0.5316 14983.8542 0.9124 1.6989 0.3433 0.0129 0 0.1645 2.9764 0.1601
4 13.063 15846.358 1099.0374 103.4502 20592.4891 1873069891.2386119487528.59324268.5477 33.9097 13.4742 0.2522 0.5696 0.6297 0.3608 1861.8417 1.7698 0.4793 6067.1369 0.7495 1.6258 0.5819 0.002 0 0.3173 2.1727 0.1231
5 0.201 15582.8336 1586.2417 98.2824 22001.167 2023075100.199776806967.778818836.4013 37.6284 17.3599 0.2907 0.6835 0.574 1.9517 -628.0707 -0.4867 0.4332 3767.2803 0.7004 1.1978 0.6667 0.0026 0 0.4014 1.8888 0.1522
6 18.1771 17968.9585 679.3488 106.3012 24859.8626 1377033262.294840012168.515413299.3837 57.8484 24.5875 0.2669 0.7041 0.5453 1.1702 -162.4235 -0.1452 0.3992 2216.5639 0.624 1.6397 0.7983 0.0037 0 0.4014 1.606 0.1234
7 0.1406 17753.3849 877.8809 103.5326 25986.4271 1395055271.868132808704.877211286.4117 66.0161 28.9728 0.2442 0.7495 0.5066 1.606 -344.4894 -0.3764 0.3709 1612.3445 0.5773 0.4416 0.9093 0.004 0 0.5289 1.4995 0.1563

Number_clusters 6 6 3 6 3 3 3 3 6 6 7 3 3 3 3 3 3 3 3 1 2 2 0 3 0 4
Value_Index 18.1771 17968.9585 5869.4271 106.3012 7591.6835 4995516109.8769886129477.880486812.0147 20.2199 -2.8423 0.2442 0.41 0.7202 3.7064 -1214.3113 -0.7289 0.5316 61239.442 0.9124 0.2975 0.3956 0 0.1645 0 0.1231

pbmc_6000
KL CH Hartigan CCC Scott Marriot TrCovW TraceW Friedman Rubin Cindex DB Silhouette Duda Pseudot2 Beale Ratkowsky Ball Ptbiserial Frey McClain Dunn Hubert SDindex Dindex SDbw

2 1.3368 14161.267 20543.1989 50.2729 20220.4117 5798563155.8247515237896.6149181227.5221 36.0469 3.9043 0.2477 0.5674 0.7439 1.0334 -115.583 -0.0323 0.5923 90613.761 0.8955 0.2757 0.2133 0.7245 0 0.351 4.941 0.3116
3 0.4936 47174.1522 -3794.4615 183.207 31272.3765 1353731602.131669112779.467234763.6997 71.3478 20.3535 0.2918 0.2055 0.8583 149.6827 -2932.2783 -0.9917 0.5632 11587.8999 0.9657 -2.2205 0.1802 1.2583 0 0.1183 2.1951 0.0344
4 0.9089 5704.7424 68789.9711 -3.4869 23212.9388 12558909539.8777712371420.1114156841.275 62.6015 4.5113 0.2713 0.7928 0.4902 0.0291 64267.6207 33.3511 0.4285 39210.3188 0.502 -0.0363 0.8944 0.0016 0 1.1712 4.0329 0.5562
5 115.4654 81845.3432 1595.9715 214.3002 39702.5784 667849459.512225374671.638510377.4527 132.4281 68.1827 0.2586 0.5915 0.6232 0.8946 145.3919 0.1177 0.4437 2075.4905 0.6339 1.8078 0.3821 0.0051 0 0.7959 1.287 0.1495
6 1.1073 87221.9056 1415.3692 214.2172 42707.0173 519459975.628923269943.2847817.2129 191.0017 90.5134 0.2374 0.5505 0.6474 0.4784 1418.3993 1.0894 0.4058 1302.8688 0.6115 2.3574 0.3918 0.005 0 0.9301 1.1149 0.1187
7 3.0586 94017.2787 896.0082 216.4618 45124.5316 430736155.77110631165.2386057.4558 254.5114 116.8086 0.2047 0.6827 0.543 0.7414 384.3206 0.3484 0.3761 865.3508 0.5605 3.3787 0.4302 0.005 0 0.831 0.9783 0.0974

Number_clusters 5 7 4 7 5 3 5 3 5 5 7 3 3 2 2 2 2 3 3 1 3 3 0 3 0 3
Value_Index 115.4654 94017.2787 72584.4326 216.4618 16489.6396 15650009491.4391686996748.4729268541.3977 69.8266 -41.3407 0.2047 0.2055 0.8583 1.0334 -115.583 -0.0323 0.5923 79025.8611 0.9657 0.1802 1.2583 0 0.1183 0 0.0344
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Silhouette k_2 Silhouette k_3 Silhouette k_4 Silhouette k_5 Silhouette k_6 Silhouette k_7
day1_norm 0.461411259 0.531113415 0.370549786 0.394185179 0.347939816 0.412120419
day7_hypo 0.682073491 0.532468182 0.635421138 0.597010772 0.729945212 0.534758528
sc68_vehi
sc68_cisp
pbmc_4000 0.904972291 0.803128323 0.713574035 0.643987297 0.558917001 0.658264645
pbmc_6000 0.687110344 0.568379471 0.719959268 0.69145881 0.746599617 0.662569735
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day1_norm
KL CH Hartigan CCC Scott Marriot TrCovW TraceW Friedman Rubin Cindex DB Silhouette Duda Pseudot2 Beale Ratkowsky Ball Ptbiserial Frey McClain Dunn Hubert SDindex Dindex SDbw

2 10.0725 7548.3142 2136.0562 2.2422 5283.0158 55724103.305922421305.98947814.777 3.5894 3.0618 0.3477 0.5694 0.6126 0.6445 1609.2286 0.5515 0.465 3907.3885 0.7741 2.8377 0.2082 0.004 1e-04 0.9345 1.3353 0.715
3 4.2569 7042.3403 1284.6308 2.8417 8477.8763 52412504.52723879848.92034935.246 7.7179 4.8483 0.3308 0.9368 0.4252 0.6982 799.2335 0.432 0.4463 1645.082 0.5913 1.2139 0.6681 0.0053 1e-04 1.4521 1.072 0.8809
4 0.3698 6769.1239 756.6096 3.5596 10890.9931 48217779.03524389081.063 3653.0534 9.5803 6.55 0.2951 0.8725 0.422 0.9208 113.6905 0.086 0.4373 913.2634 0.5261 0.9384 1.0048 0.0046 1e-04 1.5792 0.9143 0.7999
5 0.2453 6314.061 1451.9969 0.8522 12533.2544 48119001.42192418328.41563027.1069 11.6935 7.9044 0.279 0.9144 0.412 2.0259 -570.204 -0.5055 0.4061 605.4214 0.4875 0.3635 1.2486 0.003 1e-04 1.773 0.8219 0.5386
6 48.8357 7344.6692 595.2103 11.3009 14739.6355 37938923.58011526756.47632166.9597 17.4472 11.0419 0.3135 0.8045 0.4301 2.0802 -639.7475 -0.5183 0.3793 361.1599 0.4759 0.9108 1.3411 0.0066 1e-04 1.6924 0.7042 0.4189
7 0.0492 7213.9631 827.6646 10.8047 15525.6533 41666434.6578935146.0402 1863.6358 21.6827 12.8391 0.294 0.8525 0.411 1.1291 -107.1571 -0.1142 0.3516 266.2337 0.4472 0.4975 1.5324 0.0086 1e-04 1.9874 0.6472 0.3968

Number_clusters 6 2 6 6 3 6 3 3 6 6 5 2 2 2 2 2 2 3 2 3 2 7 0 2 0 7
Value_Index 48.8357 7548.3142 856.7866 11.3009 3194.8606 13907588.919618541457.0691597.3384 5.7536 -1.3404 0.279 0.5694 0.6126 0.6445 1609.2286 0.5515 0.465 2262.3065 0.7741 1.2139 0.2082 0.0086 0 0.9345 0 0.3968

day7_hypo
KL CH Hartigan CCC Scott Marriot TrCovW TraceW Friedman Rubin Cindex DB Silhouette Duda Pseudot2 Beale Ratkowsky Ball Ptbiserial Frey McClain Dunn Hubert SDindex Dindex SDbw

2 0.641 1548.6404 572.3534 -5.4792 2297.3801 21024393.62027596352.06514805.7792 2.2311 1.7962 0.3192 1.0895 0.411 0.9157 134.8146 0.092 0.3162 2402.8896 0.5568 0.8354 0.492 0.007 2e-04 1.4583 1.4127 1.43
3 1.1923 1287.693 984.9167 -20.9178 3131.2698 30824780.08183742864.00953713.1222 2.5838 2.3248 0.2911 1.1129 0.3602 1.5835 -373.2904 -0.3677 0.4227 1237.7074 0.5585 0.6004 0.8293 0.0026 2e-04 1.2772 1.2637 1.486
4 5.0522 1620.8683 424.8306 -10.9142 4734.3201 24054913.39371335898.44642464.4981 5.2186 3.5026 0.3079 0.9755 0.3621 0.9764 17.9995 0.0241 0.4116 616.1245 0.5362 0.3843 1.3607 0.0052 2e-04 1.3278 1.0351 1.1589
5 0.53 1586.8399 504.1772 -11.6517 5523.1095 25065583.2559760246.1858 2022.3236 6.6192 4.2685 0.3065 0.9689 0.3546 2.8679 -367.992 -0.6485 0.3859 404.4647 0.5286 0.2582 1.5798 0.0094 2e-04 1.363 0.9392 0.9271
6 4.5623 1699.0092 299.1066 -8.5553 6443.9497 22492580.4412592905.123 1605.5061 8.5599 5.3766 0.3006 0.8722 0.3931 2.168 -300.0862 -0.5365 0.3667 267.5844 0.5267 0.5669 1.7417 0.0074 3e-04 1.2667 0.8311 0.6863
7 0.4152 1683.0045 336.1904 -8.913 6944.1739 23678473.684491206.4247 1391.1335 10.3048 6.2052 0.2923 0.8939 0.3694 1.7944 -175.752 -0.4404 0.3434 198.7334 0.5024 0.2704 2.0007 0.0083 3e-04 1.5852 0.7735 0.6469

Number_clusters 4 6 4 2 4 4 3 4 4 4 3 6 2 2 2 2 3 3 3 1 2 5 0 6 0 7
Value_Index 5.0522 1699.0092 560.086 -5.4792 1603.0503 7780536.55033853488.0557806.4496 2.6348 -0.412 0.2911 0.8722 0.411 0.9157 134.8146 0.092 0.4227 1165.1822 0.5585 0.492 0.0094 0 1.2667 0 0.6469

sc68_vehi
KL CH Hartigan CCC Scott Marriot TrCovW TraceW Friedman Rubin Cindex DB Silhouette Duda Pseudot2 Beale Ratkowsky Ball Ptbiserial Frey McClain Dunn Hubert SDindex Dindex SDbw

2 3.7824 2737.8959 1728.6196 -7.041 4620.3362 41760651.66377481316.60816992.5819 2.0005 1.7018 0.2971 1.1933 0.3671 0.8474 421.7928 0.1799 0.3942 3496.291 0.493 0.4106 0.6068 0.005 1e-04 1.7035 1.2174 1.6875
3 3.2989 2839.141 1360.4645 -22.0342 6880.3838 52658666.05815656423.48514845.4538 2.8833 2.456 0.2884 1.0107 0.361 1.4732 -563.0736 -0.3209 0.4411 1615.1513 0.5391 0.4218 1.0116 0.0042 1e-04 1.3036 1.0251 1.6874
4 1.9059 3005.743 945.1954 -18.2439 9260.695 50872773.56583892881.06223592.3196 4.7851 3.3127 0.274 0.9897 0.3485 1.2982 -359.7241 -0.2295 0.4134 898.0799 0.5391 0.4197 1.3905 0.0043 2e-04 1.3929 0.8865 1.2946
5 0.3039 3036.3161 874.8381 -17.4561 10907.6641 52124746.04131998970.05442891.3892 6.3103 4.1158 0.2951 0.9798 0.34 1.2481 -238.1726 -0.1985 0.3866 578.2778 0.5259 0.3276 1.6881 0.0036 2e-04 1.5258 0.7935 0.9494
6 9.438 3148.3712 639.713 -15.1277 12513.2251 49745353.29731508494.61182361.4116 8.0189 5.0395 0.2816 0.8863 0.3609 1.4408 -309.9081 -0.3054 0.3649 393.5686 0.5153 0.424 1.928 0.005 2e-04 1.5214 0.7183 0.766
7 0.206 3160.1351 603.5983 -14.8393 13678.0189 50238562.0726997374.5453 2028.4336 9.6638 5.8667 0.2796 0.8834 0.3541 1.3252 -224.5349 -0.2448 0.3435 289.7762 0.4974 0.224 2.1689 0.0042 2e-04 1.5832 0.6619 0.6344

Number_clusters 6 7 4 2 4 4 5 3 4 6 4 7 2 2 2 2 3 3 3 1 2 2 0 3 0 7
Value_Index 9.438 3160.1351 415.2692 -7.041 2380.3112 3037864.96781893911.0079893.9939 1.9018 -0.0965 0.274 0.8834 0.3671 0.8474 421.7928 0.1799 0.4411 1881.1397 0.5391 0.6068 0.005 0 1.3036 0 0.6344

sc68_cisp
KL CH Hartigan CCC Scott Marriot TrCovW TraceW Friedman Rubin Cindex DB Silhouette Duda Pseudot2 Beale Ratkowsky Ball Ptbiserial Frey McClain Dunn Hubert SDindex Dindex SDbw

2 9.6287 1361.8943 1071.2253 -9.0031 2435.1676 13248415.45465715412.31263929.051 1.8415 1.5965 0.2536 1.2942 0.3518 0.9666 53.0526 0.0346 0.3261 1964.5255 0.4365 0.353 0.6228 0.0017 2e-04 2.0179 1.1506 1.6445
3 0.6241 1535.3998 663.8067 -19.9574 3877.0719 15859644.93612041315.21512674.246 2.6789 2.3457 0.2575 1.0206 0.3519 1.0712 -73.0391 -0.0664 0.436 891.4153 0.4907 0.4117 1.0779 0.0031 2e-04 1.4928 0.9571 1.4537
4 0.9732 1541.9458 479.9353 -19.6034 5058.9408 16808970.97131102090.71012071.6327 4.0508 3.028 0.2337 1.0451 0.3306 1.0682 -50.7248 -0.0638 0.4091 517.9082 0.4906 0.3423 1.4492 0.0053 3e-04 1.5839 0.8438 1.3866
5 2.1178 1519.1025 415.6812 -20.2243 5885.1201 18295101.9228767456.7236 1711.5193 5.3207 3.6651 0.2385 1.0372 0.3252 1.3293 -224.1725 -0.2472 0.3797 342.3039 0.4862 0.3672 1.7087 0.0025 3e-04 1.6072 0.7684 1.0023
6 0.9948 1519.3173 419.8103 -20.2075 6750.761 18037271.065630114.9985 1447.5985 6.7859 4.3333 0.2253 0.9346 0.3403 1.9079 -323.5947 -0.4748 0.3584 241.2664 0.4738 0.1598 1.9822 0.0069 4e-04 1.6404 0.6997 0.8837
7 0.1496 1568.603 616.3137 -18.7462 7454.0874 18046289.6631341205.5969 1222.419 8.2368 5.1315 0.2401 0.9548 0.3513 1.6166 -234.5744 -0.3803 0.3389 174.6313 0.4768 0.2045 2.0685 0.0076 4e-04 1.9864 0.6558 0.7052

Number_clusters 2 7 3 2 3 4 3 3 6 3 6 6 3 2 2 2 3 3 3 1 2 7 0 3 0 7
Value_Index 9.6287 1568.603 407.4186 -9.0031 1441.9043 536804.9163 3674097.0975652.1917 1.4652 -0.0668 0.2253 0.9346 0.3519 0.9666 53.0526 0.0346 0.436 1073.1102 0.4907 0.6228 0.0076 0 1.4928 0 0.7052

pbmc_4000
KL CH Hartigan CCC Scott Marriot TrCovW TraceW Friedman Rubin Cindex DB Silhouette Duda Pseudot2 Beale Ratkowsky Ball Ptbiserial Frey McClain Dunn Hubert SDindex Dindex SDbw

2 2.6413 15997.6639 10664.2582 44.3209 12914.9879 117589240.7055188916235.309816526.7781 28.4475 5.1956 0.3219 0.3257 0.7639 0.2368 9012.3466 3.2221 0.3456 8263.3891 0.9071 1.3077 0.1657 0.6655 0 0.5058 1.6811 0.1243
3 17.8706 35692.8564 1746.979 126.7779 19905.8571 42336887.57245553982.75224352.7997 37.8584 19.7266 0.3034 0.2979 0.765 8.1577 -1481.0789 -0.8759 0.5456 1450.9332 0.8795 4.4432 0.2247 0.0552 0 0.4432 0.9446 0.0318
4 0.6 35273.2875 309.2018 123.2335 23227.7491 31509148.66541012469.19242984.8777 66.6056 28.767 0.2855 0.773 0.5675 0.6111 646.0395 0.6359 0.4803 746.2194 0.6518 27.9718 0.4507 0.0066 0 1.4799 0.7868 0.1342
5 0.8769 28671.1389 1594.6362 106.6544 23991.223 40303601.9189848178.9179 2760.8766 80.1317 31.1009 0.2831 1.0828 0.4281 0.573 1011.3827 0.7446 0.43 552.1753 0.5936 1.5804 0.5626 0.0042 0 2.1763 0.7411 0.1478
6 2.9749 32847.2225 924.6192 115.2519 26065.6103 33694644.96341094788.57481946.2808 92.4197 44.1179 0.2608 0.9445 0.4434 0.9648 38.7005 0.0364 0.3979 324.3801 0.5225 1.5741 0.682 0.0048 0 2.3063 0.6405 0.2391
7 13.2613 34162.425 522.7044 117.1209 27754.0836 29460555.277680736.3194 1566.1132 120.4415 54.8274 0.2451 0.9281 0.435 1.2549 -162.9294 -0.2028 0.37 223.7305 0.4795 1.8001 0.7692 0.0051 0 2.4375 0.5804 0.2859

Number_clusters 3 3 3 3 3 3 3 3 4 4 7 3 3 3 3 3 3 3 2 2 2 0 3 0 3
Value_Index 17.8706 35692.8564 8917.2792 126.7779 6990.8693 64424614.2261183362252.557610806.0564 28.7472 -6.7064 0.2451 0.2979 0.765 8.1577 -1481.0789 -0.8759 0.5456 6812.4558 0.9071 0.1657 0.6655 0 0.4432 0 0.0318

pbmc_6000
KL CH Hartigan CCC Scott Marriot TrCovW TraceW Friedman Rubin Cindex DB Silhouette Duda Pseudot2 Beale Ratkowsky Ball Ptbiserial Frey McClain Dunn Hubert SDindex Dindex SDbw

2 23.5828 13067.263 2708.1268 17.1322 8556.503 140256158.488929067660.512112126.6719 4.6609 3.6799 0.3253 0.4856 0.6504 0.616 2194.0216 0.6231 0.3923 6063.3359 0.8248 2.4849 0.242 0.0111 0 0.7144 1.3993 0.324
3 0.5048 11514.1071 2138.1482 18.1761 12879.7707 130076394.70416479544.2217796.501 12.0669 5.7237 0.2923 0.9881 0.4594 0.736 775.041 0.3584 0.3643 2598.8337 0.6425 0.9411 0.6663 0.0045 0 1.3268 1.1375 0.4334
4 2.5258 11753.0587 1415.0693 23.2919 16389.3647 112619189.23426467405.10725419.5265 12.7073 8.2341 0.2804 0.8133 0.491 2.255 -1251.1026 -0.5559 0.4298 1354.8816 0.5951 0.8355 0.8738 0.0016 0 1.2958 0.9656 0.541
5 0.4722 11725.3559 600.6253 24.8445 18725.7451 108998754.33114760677.49344200.1083 17.8271 10.6248 0.2942 0.8014 0.4902 1.2379 -256.9752 -0.192 0.3957 840.0217 0.5621 1.8307 1.0143 0.0037 0 1.489 0.8529 0.3968
6 1.5931 10654.3969 592.625 18.827 19929.5929 122632035.64362974522.30093739.2271 19.9718 11.9343 0.2805 0.8731 0.4594 1.4747 -344.4086 -0.3214 0.3682 623.2045 0.5237 0.8771 1.1917 0.005 0 2.0053 0.8016 0.3421
7 1.4309 10055.3621 549.6484 15.3367 21196.455 128738128.88932247874.89353333.7172 21.9816 13.386 0.2803 0.8799 0.4548 1.3872 -357.0031 -0.2787 0.3472 476.2453 0.5106 1.2919 1.258 0.005 0 2.109 0.7597 0.3963

Number_clusters 2 2 5 5 3 5 3 3 3 5 7 2 2 3 3 2 4 3 2 2 2 2 0 2 0 2
Value_Index 23.5828 13067.263 814.444 24.8445 4323.2677 17253716.215712588116.29111953.1964 7.406 -1.0811 0.2803 0.4856 0.6504 0.736 775.041 0.6231 0.4298 3464.5023 0.8248 2.4849 0.242 0.0111 0 0.7144 0 0.324
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day1_norm
KL CH Hartigan CCC Scott Marriot TrCovW TraceW Friedman Rubin Cindex DB Silhouette Duda Pseudot2 Beale Ratkowsky Ball Ptbiserial Frey McClain Dunn Hubert SDindex Dindex SDbw

2 4.6746 10649.6541 3239.4566 16.9684 6896.7023 376003775.089141071653.314320880.8354 5.1683 3.9089 0.3376 0.5152 0.6527 0.4328 3060.8727 1.3097 0.5899 10440.4177 0.8075 1.3568 0.3023 0.2649 0 0.5 2.1595 0.287
3 31.7074 11653.0747 1180.8289 31.8478 11140.008 265630376.485425438762.392911078.2146 14.7409 7.3678 0.3539 0.6985 0.5719 1.6734 -612.8853 -0.4019 0.5072 3692.7382 0.7327 1.8224 0.5378 0.0098 0 0.6726 1.6029 0.3201
4 3.5203 10665.8387 904.3448 28.9352 13178.9818 270650824.942513131074.55148375.8931 16.7493 9.7449 0.3377 0.8141 0.5342 0.5385 1133.6542 0.8562 0.4628 2093.9733 0.6478 1.5342 0.7552 0.0047 0 1.0591 1.3934 0.447
5 0.4332 10199.7735 708.6697 27.5317 15361.0852 233084677.644610276403.35016715.9933 20.7045 12.1534 0.3378 0.9928 0.4306 1.2169 -221.1821 -0.178 0.4255 1343.1987 0.5732 1.1202 1.0083 0.0054 0 1.0879 1.2385 0.3775
6 0.1391 9879.6647 455.0524 26.3855 16233.6888 264495408.47137560057.97895626.0504 24.5705 14.5079 0.3139 0.9689 0.3992 1.244 -199.4691 -0.1958 0.39 937.6751 0.5371 1.4772 1.1565 0.0079 0 1.1356 1.1333 0.3045
7 0.361 9330.8095 988.0232 23.3579 16932.8079 297455773.59246036576.50425003.4543 28.3549 16.3131 0.2997 0.9324 0.3946 0.6662 459.9931 0.5004 0.362 714.7792 0.5073 0.5753 1.3011 0.0079 0 1.2892 1.0674 0.2902

Number_clusters 3 3 3 3 3 3 3 3 3 3 7 2 2 3 3 2 2 3 2 6 2 2 0 2 0 2
Value_Index 31.7074 11653.0747 2058.6277 31.8478 4243.3057 115393847.0606115632890.92147100.2994 9.5727 -1.0818 0.2997 0.5152 0.6527 1.6734 -612.8853 1.3097 0.5899 6747.6795 0.8075 1.4772 0.3023 0.2649 0 0.5 0 0.287

day7_hypo
KL CH Hartigan CCC Scott Marriot TrCovW TraceW Friedman Rubin Cindex DB Silhouette Duda Pseudot2 Beale Ratkowsky Ball Ptbiserial Frey McClain Dunn Hubert SDindex Dindex SDbw

2 0.2973 1373.5223 7.6053 -2.2094 2619.6097 2708155387.90321366019868.193560380.3831 2.7356 1.7062 0.3984 0.5972 0.5171 0.4093 516.6912 1.4393 0.3793 30190.1915 0.5449 -4.7161 0.2269 0.328 0 0.8291 4.7549 0.4081
3 0.4056 692.8927 12090.3271 -40.7294 2635.6163 6043460531.5481361998382.748760145.2036 2.7538 1.7129 0.4059 0.752 0.4164 41.7607 -1011.192 -0.9709 0.3124 20048.4012 0.4876 0.3014 0.2625 9e-04 0 1.8973 4.6964 0.8845
4 20.5598 7361.1228 56.442 69.0312 10434.0659 195728631.795440496081.94048331.1636 31.8689 12.3656 0.2799 0.4892 0.664 9.3024 -517.6508 -0.89 0.4795 2082.7909 0.7377 -5.0242 0.5831 0.0059 0 0.4445 1.8153 0.2309
5 1.7421 5692.3958 651.5533 52.736 10683.625 269034617.620140262928.07298095.9841 35.243 12.7248 0.2849 0.6642 0.5906 0.9942 4.2032 0.0058 0.4294 1619.1968 0.7009 1.2747 0.6617 0.0019 0 1.2495 1.7567 0.2672
6 0.7277 6208.8965 19.3062 56.0305 11546.1467 248758566.953420594993.6156062.1083 42.4207 16.9941 0.2345 0.7013 0.559 0.6687 101.0888 0.4929 0.396 1010.3514 0.6248 -2.7936 0.8196 0.0019 0 1.2759 1.474 0.2424
7 3.8562 5226.0684 357.1645 46.5091 11622.1601 325623846.939320575584.40646002.4051 43.6986 17.1631 0.2368 0.7315 0.5494 1.0353 -22.7217 -0.034 0.3667 857.4864 0.6133 1.7346 0.8587 0.0036 0 1.6974 1.4511 0.2272

Number_clusters 4 4 3 4 4 4 4 4 4 4 6 4 4 3 3 2 4 4 4 1 2 2 0 4 0 7
Value_Index 20.5598 7361.1228 12082.7218 69.0312 7798.4496 5921037885.57741321502300.808351578.8604 29.1151 -10.2935 0.2345 0.4892 0.664 41.7607 -1011.192 1.4393 0.4795 17965.6103 0.7377 0.2269 0.328 0 0.4445 0 0.2272

sc68_vehi
KL CH Hartigan CCC Scott Marriot TrCovW TraceW Friedman Rubin Cindex DB Silhouette Duda Pseudot2 Beale Ratkowsky Ball Ptbiserial Frey McClain Dunn Hubert SDindex Dindex SDbw

2 2.1522 8813.1248 4371.0805 23.546 8488.1716 523327937.5274339064624.933325537.8591 5.5141 3.2604 0.3223 0.6593 0.6196 1.232 -531.2731 -0.1882 0.5788 12768.9296 0.8191 0.6076 0.353 0.0097 0 0.6195 2.3112 0.3874
3 13.2608 11529.2421 1466.8438 57.4776 13594.1035 318066611.366127075493.723112040.0416 12.4414 6.9155 0.3431 0.548 0.6564 0.6047 1385.3343 0.6535 0.5287 4013.3472 0.8455 2.1664 0.4302 0.0142 0 0.4773 1.613 0.2029
4 1.0895 11064.6247 834.2919 54.1981 16116.1189 296225247.423121826289.77138748.0798 16.7147 9.5178 0.3329 0.8581 0.4954 1.2493 -308.9254 -0.1994 0.4721 2187.02 0.6883 0.9213 0.7576 0.0064 0 0.8718 1.3738 0.3179
5 1.2761 10280.9859 886.8905 48.753 17788.703 301463650.61920148815.99437205.488 21.9506 11.5554 0.3343 0.8788 0.485 0.8335 284.1803 0.1995 0.4264 1441.0976 0.6711 1.4535 0.8048 0.008 0 0.8802 1.2381 0.233
6 0.9703 10271.8313 543.7912 48.5692 19133.3822 307535770.62799378006.35995869.3757 27.2485 14.1859 0.3399 0.8368 0.4809 0.6606 555.364 0.5133 0.3919 978.2293 0.6089 1.8705 0.9961 0.0083 0 0.9138 1.1199 0.2836
7 0.4542 9843.028 340.0972 45.5542 20230.3876 315980793.63385781731.46645150.3252 32.6124 16.1665 0.3166 0.9862 0.3909 1.2002 -125.7806 -0.1665 0.3645 735.7607 0.5495 1.0255 1.2362 0.0048 0 1.2216 1.0477 0.3227

Number_clusters 3 3 3 3 3 3 3 3 3 3 7 3 3 2 2 2 2 3 3 1 2 3 0 3 0 3
Value_Index 13.2608 11529.2421 2904.2366 57.4776 5105.9318 183419962.2182311989131.210310205.8558 6.9274 -1.0528 0.3166 0.548 0.6564 1.232 -531.2731 -0.1882 0.5788 8755.5824 0.8455 0.353 0.0142 0 0.4773 0 0.2029

sc68_cisp
KL CH Hartigan CCC Scott Marriot TrCovW TraceW Friedman Rubin Cindex DB Silhouette Duda Pseudot2 Beale Ratkowsky Ball Ptbiserial Frey McClain Dunn Hubert SDindex Dindex SDbw

2 0.0852 2384.0529 2343.2945 3.3726 3643.8351 123439879.800431232943.355212665.503 3.8564 2.0443 0.3363 0.7591 0.4985 2.7429 -951.8601 -0.6344 0.3374 6332.7515 0.6223 0.6971 0.3295 0.0132 1e-04 0.8423 2.1081 1.173
3 2.9595 3585.6106 1170.0128 20.5335 6279.4008 87642321.35319888456.53926250.2167 6.1754 4.1425 0.378 0.7765 0.5038 1.3876 -290.2134 -0.2788 0.4958 2083.4056 0.6665 0.6061 0.7638 0.0078 1e-04 0.7208 1.5376 0.821
4 7.0185 4004.2505 516.6236 26.271 8243.2247 65969112.08643850199.32674131.7907 10.2942 6.2664 0.3469 0.7897 0.483 1.4359 -311.1764 -0.303 0.4565 1032.9477 0.6425 1.1035 0.9861 0.0059 1e-04 0.8206 1.2356 0.4919
5 0.5426 3810.8643 364.333 23.202 9118.4226 70277729.65763105569.98743368.7929 13.1106 7.6857 0.3543 0.8941 0.4418 1.5226 -285.5531 -0.3425 0.4148 673.7586 0.5879 0.9501 1.2563 0.0079 1e-04 1.1281 1.1218 0.4772
6 0.5755 3607.1414 544.1983 20.0995 9850.0221 73473385.61142136131.26882904.6447 15.4303 8.9139 0.3307 0.8459 0.4307 0.726 221.4994 0.3766 0.3837 484.1075 0.5537 0.4827 1.456 0.0075 1e-04 1.185 1.0382 0.5678
7 1.4217 3812.7628 216.9446 22.8228 10785.802 66399723.44261069696.88862344.7468 20.2807 11.0424 0.3443 0.8403 0.4221 2.0105 -251.8023 -0.5008 0.3587 334.9638 0.5319 1.0244 1.5963 0.0078 1e-04 1.1872 0.9357 0.3597

Number_clusters 4 4 3 4 3 4 3 3 7 4 6 2 3 2 2 2 3 3 3 1 2 2 0 3 0 7
Value_Index 7.0185 4004.2505 1173.2817 26.271 2635.5657 25981826.837921344486.8164296.8603 4.8504 -0.7046 0.3307 0.7591 0.5038 2.7429 -951.8601 -0.6344 0.4958 4249.3459 0.6665 0.3295 0.0132 0 0.7208 0 0.3597

pbmc_4000
KL CH Hartigan CCC Scott Marriot TrCovW TraceW Friedman Rubin Cindex DB Silhouette Duda Pseudot2 Beale Ratkowsky Ball Ptbiserial Frey McClain Dunn Hubert SDindex Dindex SDbw

2 4.0252 5746.8203 2291.0483 30.3345 12223.7172 1501426835.35931039939493.423279343.6251 18.8342 2.5072 0.3281 0.8082 0.6009 0.3052 5070.4072 2.2758 0.4911 39671.8125 0.7806 0.9223 0.3765 0.4618 0 0.6902 4.0378 0.4795
3 0.119 5743.9214 7876.7232 25.1885 15648.425 1376646862.5978215932804.297249563.3766 29.0172 4.0136 0.2998 0.6369 0.5865 0.0845 17154.6842 10.8231 0.4871 16521.1255 0.7633 0.1604 0.5691 0.0055 0 0.5147 3.1771 0.4165
4 5.3776 14363.5171 2471.0705 93.4995 20543.9759 678261360.641628854543.939716163.9204 37.6664 12.3069 0.2752 0.4847 0.6985 4.5659 -1404.9961 -0.7796 0.4771 4040.9801 0.8372 1.1605 0.5084 0.0083 0 0.3333 1.811 0.1743
5 3.5057 18370.6131 380.9699 108.8447 23227.683 524454106.436823016088.26 9805.7959 47.1345 20.2867 0.2997 0.4941 0.6659 0.5868 705.6483 0.7035 0.435 1961.1592 0.7766 6.2185 0.5758 0.0073 0 0.446 1.4312 0.1199
6 0.2942 16237.9545 2390.8537 97.1846 24116.5865 598244068.038315551428.62168914.4238 54.4106 22.3152 0.2905 0.741 0.5555 0.708 641.6785 0.4121 0.3981 1485.7373 0.7082 0.913 0.7068 0.0061 0 1.1138 1.3411 0.1437
7 7.6091 22417.8233 782.3899 118.5735 27454.959 339418990.82564550105.06025476.7486 78.4088 36.3222 0.2943 0.7046 0.5527 0.8027 217.3302 0.2456 0.3724 782.3927 0.6467 1.7414 0.7722 0.0071 0 1.1038 1.0852 0.1427

Number_clusters 7 7 3 7 4 4 3 4 7 5 4 4 4 4 4 2 2 3 4 1 2 2 0 4 0 5
Value_Index 7.6091 22417.8233 5585.675 118.5735 4895.5509 544578247.7514824006689.125927041.3317 23.9982 -5.9513 0.2752 0.4847 0.6985 4.5659 -1404.9961 2.2758 0.4911 23150.687 0.8372 0.3765 0.4618 0 0.3333 0 0.1199

pbmc_6000
KL CH Hartigan CCC Scott Marriot TrCovW TraceW Friedman Rubin Cindex DB Silhouette Duda Pseudot2 Beale Ratkowsky Ball Ptbiserial Frey McClain Dunn Hubert SDindex Dindex SDbw

2 2.4608 8159.3881 1557.7453 30.6363 13483.9572 4266045279.41298431427065.1651103992.5178 9.2177 2.6734 0.281 0.773 0.6281 0.3653 5113.2109 1.7368 0.5373 51996.2589 0.812 2.1536 0.3284 0.409 0 0.5444 4.1419 0.407
3 0.6975 6160.6509 668.5144 10.3552 15507.7372 6339110159.66754690614266.644478813.7378 11.3595 3.5274 0.2331 0.7198 0.5663 10.0132 -3094.6524 -0.8997 0.4811 26271.2459 0.6931 12.6357 0.6183 0.0072 0 0.5552 3.2829 0.3018
4 0.1793 4892.1464 29074.4461 -6.2161 21656.3625 3195110768.77544391758846.413669309.2768 36.8244 4.0112 0.2302 0.6306 0.5751 0.0772 23094.5021 11.9537 0.4278 17327.3192 0.6107 -0.0213 0.8483 8e-04 0 0.6394 2.7824 0.2814
5 62.6655 32818.0066 1434.8288 147.717 32933.269 494662243.254349980506.01159950.777 64.5688 27.9386 0.2788 0.4429 0.7237 0.4037 2292.8896 1.4764 0.439 1990.1554 0.7469 2.4637 0.4993 0.0025 0 0.4744 1.2365 0.1131
6 1.5519 34264.8073 1115.6684 147.6309 35201.6427 447419689.393928860045.81317687.2943 84.177 36.165 0.2462 0.4898 0.686 0.4748 1446.8034 1.1053 0.4022 1281.2157 0.669 1.4857 0.6042 0.0053 0 0.8684 1.0683 0.1683
7 2.1699 35271.4624 836.3779 147.3635 37458.23 383443922.731619750355.42936254.9385 104.1293 44.4467 0.2086 0.6378 0.5933 1.3167 -337.6886 -0.2402 0.3736 893.5626 0.6093 1.654 0.6747 0.0053 0 0.958 0.9457 0.1304

Number_clusters 5 7 4 5 5 5 5 5 5 5 7 5 5 3 3 2 2 3 2 3 2 2 0 5 0 5
Value_Index 62.6655 35271.4624 28405.9318 147.717 11276.9065 2653205971.66074341778340.402157095.0172 27.7444 -15.7011 0.2086 0.4429 0.7237 10.0132 -3094.6524 1.7368 0.5373 25725.013 0.812 12.6357 0.3284 0.409 0 0.4744 0 0.1131
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