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Abstract 

Motivation: Single-cell RNA sequencing (scRNA-seq) analysis reveals heterogeneity 

and dynamic cell transitions. However, conventional gene-based analyses require 

intensive manual curation to interpret the biological implications of computational 

results. Hence, a theory for efficiently annotating individual cells is necessary. 

Results: We present ASURAT, a computational pipeline for simultaneously performing 

unsupervised clustering and functional annotation of disease, cell type, biological 

process, and signaling pathway activity for single-cell transcriptomic data, using 

correlation graph-based decomposition of genes based on database-derived functional 

terms. We validated the usability and clustering performance of ASURAT using scRNA-

seq datasets for human peripheral blood mononuclear cells, which required fewer manual 

curations than existing methods. Moreover, we applied ASURAT to scRNA-seq and 

spatial transcriptome datasets for small cell lung cancer and pancreatic ductal 

adenocarcinoma, identifying previously overlooked subpopulations and differentially 

expressed genes. ASURAT is a powerful tool for dissecting cell subpopulations and 

improving biological interpretability of complex and noisy transcriptomic data. 

Availability: A GPLv3-licensed implementation of ASURAT is on GitHub 

(https://github.com/keita-iida/ASURAT). 
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Introduction 

Single-cell RNA sequencing (scRNA-seq) has deepened our knowledge of biological 

complexity in terms of heterogeneity and dynamic transition of cell populations in a 

variety of phenomena, and this knowledge has immense potential for elucidating the 

regulatory principles underlying our body plans (La Manno, et al., 2018). scRNA-seq 

has been widely used to improve the molecular understanding of malignant cells in 

lymphoma (Zhang, et al., 2019), intra- and intertumoral heterogeneity in drug-treated 

cancer populations (Stewart, et al., 2020), ligand-receptor interaction in tumor immune 

microenvironments (Chen, et al., 2020), and the effects of viral infection on immune 

cell populations (Devitt, et al., 2019). Various clustering methods based on gene 

expression similarity have been proposed (Pasquini, et al., 2021) and applied to annotate 

cell types (Kim, et al., 2020). However, conventional gene-based analyses require 

intensive manual curation to annotate clustering results; hence, efficient and unbiased 

interpretation of single-cell data remains challenging (Andrews, et al., 2021; Aran, et 

al., 2019; Gao, et al., 2019; Kiselev, et al., 2019; Lahnemann, et al., 2020). 

 

Conventionally, single-cell transcriptomes are analyzed and interpreted by means of 

unsupervised clustering followed by manual curation of marker genes chosen from a 

large number of differentially expressed genes (DEGs) (Andrews, et al., 2021; 

Lahnemann, et al., 2020). Here, manual curations are based on literature searches of 

biological functions of DEGs. Today, several computational tools for semi-automated 

cell type and marker gene inference based on clustering results are available to assist 

manual annotation, as detailed in the review by Pasquini et al. (2021). However, this is 

often difficult because a single gene is generally multifunctional and therefore 

associated with multiple biological function terms (Cancer Genome Atlas Research, et 

al., 2017). In cancer transcriptomics, this difficulty is exacerbated by the complex 

interdependence between disease-related biomarker genes and their heterogeneous 

expressions, which are associated with numerous biological function terms. 

 

A possible solution is to realize cell clustering and biological interpretation at the same 

time. Recently, reference component analysis (RCA), which is used for accurate 

clustering of single-cell transcriptomes along with unbiased cell-type annotation based on 
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similarity to reference transcriptome panels (Li, et al., 2017). Yet, these methods require 

the transcriptomic data of well-characterized reference cells as learning datasets, which 

might not always be available. Another approach is using supervised classification (Gao, 

et al., 2019) combined with gene set enrichment analysis, incorporating biological 

knowledge and functions; hence, it may improve the interpretability over signature gene-

based approaches, which place sole emphasis on individual roles of genes (Fan, et al., 

2016). Despite these advances, we still lack a prevailing theory leveraging this 

information at the single-cell level. 

 

To overcome the aforementioned limitations, a method providing simultaneous 

interpretation of biological function and classification of the cells is needed for single-

cell analysis. Thus, we propose an original computational pipeline named ASURAT 

(functional annotation-driven unsupervised clustering of single-cell transcriptomes), 

which simultaneously performs unsupervised cell clustering and biological interpretation 

in terms of cell type, disease, biological process, and signaling pathway activity. In this 

study, we demonstrate the clustering performance of ASURAT using standard scRNA-

seq and spatial transcriptome (ST) datasets for human peripheral blood mononuclear cells 

(PBMCs), small cell lung cancer (SCLC), and pancreatic ductal adenocarcinoma 

(PDAC), respectively. We show that ASURAT can greatly improve functional 

understanding of single-cell transcriptomes, adding a new layer of biological 

interpretability to conventional gene-based analyses. 

 

Methods 

Overview of ASURAT workflow 

ASURAT was developed to simultaneously cluster and interpret single-cell 

transcriptomes using functional gene sets (FGSs) (Figure 1), and it was implemented in 

the R programming language. FGSs are collected from knowledge-based databases 

(DBs) for disease, cell type, biological process, and signaling pathway activity, such as 

Disease Ontology (DO) (Yu, et al., 2015), Cell Ontology (CO) (Diehl, et al., 2016), 

Gene Ontology (GO) (Yu, et al., 2012), and Kyoto Encyclopedia of Genes and 

Genomes (KEGG) (Kanehisa and Goto, 2000) by implementing R packages such as 

DOSE (version 3.16.0), ontoProc (version 1.12.0), clusterProfiler (version 3.18.0), and 
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KEGGREST (version 1.30.0), respectively (Figure 1b). Then, ASURAT created 

multiple biological terms using single-cell transcriptome data and the FGSs (Figure 1c, 

Supplementary Note 1). We called such new biological terms signs. Finally, ASURAT 

created a sign-by-sample matrix (SSM), in which rows and columns stand for signs and 

samples (cells), respectively (Figure 1c). SSM is analogous to a read count table, where 

the rows represent signs with biological meaning instead of individual genes and that 

the values contained are sign scores instead of read counts. By analyzing SSMs, 

individual cells can be characterized by various biological terms (Figure 1d). 

 

Sign 

Let 𝐴 be a read count table of size 𝑝 × 𝑛 from single-cell transcriptomic data, whose 

rows and columns mean 𝑝 genes, represented by Ω = {1, 2,⋯ , 𝑝}, and 𝑛 cells, 

respectively, and 𝑅 a “relation” (e.g., correlation matrix) among Ω. Let ℱ =
{(𝑇! , Ω!)|𝑘 = 1, 2,⋯ , 𝑞} be a set of ordered pairs, where 𝑇! and Ω! ∈ 2" (2" is a 
power set of Ω) are biological description and the FGS, respectively. Consider an 𝑅-

dependent representation Ω! = ⋃ Ω!
($)&!

$'( , where 𝑚! is an integer, for 𝑘 = 1, 2,⋯ , 𝑞. 

Then, the triplet (𝑇! , Ω!
($), 𝑅) is termed a sign, in particular (𝑇! , Ω! , 𝑅) a parent sign. 

Our definition is inspired by Saussure’s semiology as described in the early 20th 

century. According to Maruyama (2008), the original notion of a signe is a segment of a 

thing of interest, which is created by an arbitrary decomposition based on its 

relationships. For example, a rainbow is a continuum of varying light input, from which 

we can see distinct colors of red, yellow, green, and blue by our subjective 

decomposition based on their spectral relationships (Couper, 2015). 

 

Correlated gene set 
Let 𝑅 = (𝑟),$) be a correlation matrix of size 𝑝 × 𝑝 defined by 𝐴 and a certain measure 

(e.g., Pearson’s measure), whose diagonal elements are 1. Let 𝛼 and 𝛽 be positive and 

negative constants satisfying 0 < 𝛼 ≤ 1 and −1 ≤ 𝛽 < 0, respectively. Let us arbitrarily 

fix (𝑇! , Ω!) ∈ ℱ and consider the following subsets of Ω!: 

 
𝑈!(𝛼) = {𝑖 ∈ Ω!|∃𝑗 ∈ Ω! 	such	that	𝑟),$ ≥ 𝛼, 𝑖 ≠ 𝑗}, 
𝑉!(𝛽) = {𝑖 ∈ Ω!|∃𝑗 ∈ Ω! 	such	that	𝑟),$ ≤ 𝛽, 𝑖 ≠ 𝑗}, 
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𝑊!(𝛼, 𝛽) = 𝑈!(𝛼) ∪ 𝑉!(𝛽). 
 

Hereinafter we omit the arguments 𝛼 and 𝛽 for simplicity. Let us denote Ω!
(+) = Ω! −

𝑊!. If 𝑉! is not empty, represent each element of 𝑊! as a point in the Euclidean space 

spanned by the row vectors of 𝑅  and decompose 𝑊!  into two disjoint subsets by 

Partitioning Around Medoids (PAM) clustering (Schubert and Rousseeuw, 2019), that is 

𝑊! = Ω!
(,) ∪ Ω!

(-). Otherwise, if 𝑉! is empty, let Ω!
(,) = 𝑈! and Ω!

(-) = 𝜙 (empty). Thus 
Ω! is decomposed into three parts as follows: 

 

                                                  Ω! = Ω!
(,) ∪ Ω!

(-) ∪ Ω!
(+).																																																			(1) 

 

Let 𝜇!
(,) (resp. 𝜇!

(-)) be the mean of off-diagonal elements of 𝑅 for Ω!
(,) (Ω!

(-)), and 

assume 𝜇!
(,) ≥ 𝜇!

(-) without loss of generality. If 𝜇!
(,) ≥ 𝛼, then Ω!

(,), Ω!
(-), and Ω!

(+) are 
termed strongly, variably, and weakly correlated gene sets, respectively, which are 

hereafter abbreviated as SCG, VCG, and WCG. Otherwise, correlated gene sets cannot 

be defined for 𝑇!. 

 

For any given (𝑇! , Ω! , 𝑅) the genes should strongly and positively correlate within each 

of the Ω!
(,) and Ω!

(-), while they should negatively correlate between Ω!
(,) and Ω!

(-). 
Thus, one can hypothesize that SCG and VCG are predominantly associated with 𝑇!, 

which may aid interpretation of biological meanings of corresponding signs. Figure 2 

shows that the SCG and VCG include KRT18 and ASCL1, which respectively have 

negative and positive contributions for lung small cell carcinoma. Thus, we interpret 

that (𝑇! , Ω!
(,), 𝑅) and (𝑇! , Ω!

(-), 𝑅) for DOID 5409 relate positively and negatively with 
this cell type, respectively. 

 

Though simpler methods decomposing correlation graphs exist, such as one-shot PAM 

clustering (Schubert and Rousseeuw, 2019), hierarchical clustering and tree cutting 

(Murtagh and Legendre, 2014), principal component analysis (PCA)-based methods 

(Hyvarinen, 1999), and several graph statistical approaches (Blondel, et al., 2008; 

Bodenhofer, et al., 2011), we found that our VCG definition is critical for clustering 

cells. In fact, we tried replacing our decomposition method (1) with one-shot PAM 
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clustering, but the results frequently exhibited deteriorated performance because both 

VCG and WCG (obtained from the one-shot clustering) included many weakly 

correlated genes. 

 

Sign-by-sample matrix 
Let 𝐴 = (𝑎),$) be a gene-by-cell matrix of size 𝑝 × 𝑛 from a single-cell transcriptomic 

data, whose entries stand for normalized-and-centered gene expression levels. For 

simplicity, let us assume that functional gene sets Ω! can be decomposed into non-empty 

Ω!
(,), Ω!

(-), and Ω!
(+), for 𝑘 = 1, 2,⋯ , 𝑞. Let 𝐵(.), 𝑥 ∈ {s, v, w}, be matrices of size 𝑞 × 𝑛, 

whose entries 𝑏!,$
(.) are defined as follows: 

 

𝑏!,$
(.) =

1
|Ω!

(.)|
X 𝑎),$
)∈"!

(#)

, 

 

where |Ω!
(.)| stands for the number of elements in Ω!

(.). Additionally, let 𝐶(.), 𝑥 ∈ {s, v}, 
be 𝑞 × 𝑛 matrices as follows: 

 

                                                  𝐶(.) = 𝜔(.)𝐵(.) + \1 − 𝜔(.)]𝐵(+),																																(2) 
 

where 𝜔(.), 0 ≤ 𝜔(.) ≤ 1, are weight constants. Here 𝐶(,) and 𝐶(-) are termed sign-by-
sample matrices (SSMs) for SCG and VCG, respectively, and the entry 𝑐!,$

(.) a sign score 

of the 𝑘th sign and 𝑗th sample (cell). By vertically concatenating SSMs for SCGs and 

VCGs, we created a single SSM. Note that ensemble means of sign scores across cells 

are zeros because SSMs are derived from the centered gene expression matrix 𝐴. 

 

Unsupervised clustering of sign-by-sample matrices 

One focus of analyzing SSMs is to cluster cells and find significant signs (Figure 1d), 

where “significant” means that the sign scores, i.e., the entries of (2), are specifically 

upregulated or downregulated at the cluster level. It should be noted that significant 

signs are analogous to DEGs but bear biological meanings. Here, naïve usages of 

statistical tests and fold change analyses should be avoided because the row vectors of 
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SSMs are centered. Hence, we propose a nonparametric separation index, which 

quantifies the extent of separation between two sets of random variables 

(Supplementary Note 2). To cluster cells, we used two strategies. The first is 

unsupervised clustering, such as PAM, hierarchical, and graph-based clustering. The 

second is a method of extracting a continuous tree-like topology using diffusion map 

(Coifman and Lafon, 2006), followed by allocating cells to different branches of the 

data manifolds (Parra, et al., 2019). Choosing an appropriate strategy depends on the 

biological context, but the latter is usually applied to developmental processes or time-

course experimental data, which are often followed by pseudotime analyses. 

 

Results 

Clustering single-cell transcriptomes of peripheral blood mononuclear cells 

To validate the usability and clustering performance of ASURAT in comparison with 

the existing methods, we analyzed two public scRNA-seq datasets, namely the PBMC 

4k and 6k datasets (Supplementary Note 3), in which the cell types were inferred using 

computational tools based on prior assumptions (Cao, et al., 2020). We first excluded 

low-quality genes and cells and attenuated technical biases with respect to zero inflation 

and variation of capture efficiencies between cells using bayNorm (Tang, et al., 2020) 

(Supplementary Note 4). The resulting read count tables were supplied to ASURAT and 

four other methods: scran (version 1.18.7) (Lun, et al., 2016), Seurat (version 4.0.2) 

(Hao, et al., 2021), Monocle 3 (version 1.0.0) (Trapnell, et al., 2014), and SC3 (version 

1.18.0) (Kiselev, et al., 2017). To infer existing cell types and the population ratios in 

the PBMC 4k and 6k datasets, we implemented the existing methods using settings 

close to the default ones, performed cell clustering, and annotated each cluster by 

manually investigating DEGs based on the false discovery rates (FDRs)< 10011 

(Figure 3a, Supplementary Note 5). When using ASURAT, we performed unsupervised 

cell clustering and semi-automatic annotation based on SSMs for CO, GO, and KEGG. 

 

Among all the existing methods, Seurat and Monocle 3 could robustly reproduce most 

blood cell type labels, as inferred by Cao et al. (2020), while scran and SC3 output 

many unspecified cells (Figure 3c). We found that the Seurat pipeline, followed by 

manual annotations based only on a couple of DEGs, provided comparable population 
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ratios with previous results (Cao, et al., 2020). However, it was quite laborious to 

manually select marker genes from numerous DEGs (Figure 3a), which tend to increase 

in terms of the number of cells as well as significance levels. Based on the clustering 

results of Seurat, we assigned the labels (i) T cell, (ii) monocyte, (iii) B cell, and (iv) 

NK or NKT cell to the cells in PBMC 4k (resp. PBMC 6k) by finding marker genes 

from (i) 57 (114), (ii) 102 (148), (iii) 49 (33), and (iv) 32 (35) DEGs, respectively. To 

avoid such a laborious process, it is possible to implement automatic annotation tools 

based on the calculated DEGs, such as by using scCATCH (version 2.1) (Shao, et al., 

2020). Nevertheless, population ratios inferred by Seurat with scCATCH were less 

consistent than those by Seurat with manual annotations (Figure 3c). 

 

ASURAT simultaneously performed unsupervised cell clustering and biological 

interpretation leveraging all defined FGSs, without relying on DEGs (Figure 3a). We 

identified five cell type labels, with none remaining unspecified (Figure 3b, c, Figure 

S2). The population ratios were approximately consistent with the reported values (Cao, 

et al., 2020), except for the small dendritic cell population possibly included in PBMCs 

(Villani, et al., 2017; Wagner, 2018). Such a small discrepancy was unavoidable, 

because Cao et al. (2020) used author-defined DEGs and preselected cell types to 

identify the most preferable ones. Unexpectedly, the clustering results using SSMs for 

GO and KEGG also showed well-separated clusters in two-dimensional Uniform 

Manifold Approximation and Projection (UMAP) (McInnes and Healy, 2018) spaces 

(Figure S3), indicating that the functional states of cells are also heterogeneous with 

respect to biological process and signaling pathway activity. These results demonstrate 

that ASURAT can perform robust clustering for single-cell transcriptomes. 

 

Clustering a small cell lung cancer single-cell transcriptome 

SCLC tumors undergo a transition from chemosensitivity to chemoresistance states 

against platinum-based therapy (Stewart, et al., 2020). Stewart et al. (2020) analyzed 

scRNA-seq data obtained from circulating tumor cell-derived xenografts generated from 

treatment-naïve lung cancer patients, cultured them with vehicle or cisplatin treatments, 

and reported that the gene expression profiles of the platinum-resistant tumors were 

more heterogeneous than those of platinum-sensitive tumors. However, the mechanism 
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behind chemoresistance remains unclear, partly because transcriptional heterogeneity is 

affected by physiological states of cells such as pathological states (Stewart, et al., 

2020), cell cycle (Dominguez, et al., 2016), and metabolic processes (Jalili, et al., 2021), 

which cannot be readily identified by conventional marker gene-based analyses alone. 

To better understand SCLC subtypes in chemoresistant tumors, we applied Seurat and 

ASURAT to the published SCLC scRNA-seq data (Supplementary Note 3) (Stewart, et 

al., 2020). 

 

First, we investigated the expression levels of known SCLC marker genes (Ireland, et 

al., 2020), namely ASCL1, NEUROD1, YAP1, and POU2F3 and confirmed that almost 

all of the cells are of the ASCL1 single-positive subtype (Figure S4), which is consistent 

with the previous report (Stewart, et al., 2020). After quality controls, the data were 

normalized by bayNorm (Tang, et al., 2020) and the resulting read count table was 

supplied to the workflows of Seurat and ASURAT (Supplementary Note 4, 6). To 

investigate molecular subtypes and potential resistance pathways, we clustered the 

single-cell transcriptome and inferred a cell cycle phase for each cell using Seurat (Hao, 

et al., 2021), as shown in the UMAP spaces (Figure 4e). We found that the cell 

populations assigned to G1, S, and G2M phases are sequentially distributed in the 

UMAP space, indicating that the clustering results are considerably affected by the cell 

cycle. Then, we identified DEGs for each cluster (Group 1, 2, and 3) and performed 

KEGG enrichment analysis using clusterProfiler (Yu, et al., 2012), but the 

chemoresistance terms were not primarily enriched (Figure 4f). 

 

Subsequently, to investigate functional heterogeneities in SCLCs, we used ASURAT to 

create SSMs using DO, GO, and KEGG. Based on the SSM for DO, we performed a 

dimensionality reduction using diffusion map (Coifman and Lafon, 2006), which 

showed a tree-like topology. Then, we defined a pseudotime along the branches and 

clustered the single-cell transcriptome using MERLoT (Parra, et al., 2019) (Figure 4c). 

Based on pseudotime analysis, we revealed that sign scores for platinum drug resistance 

(path:hsa01524_S) and PD-L1 expression-mediated immunosuppression 

(path:hsa05235_S) were upregulated in clusters 2 and 3, respectively. In addition, sign 

scores for intracellular protein transport (GO:0006886_S), with an FGS including the 
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SCLC malignancy marker CD24 (Kristiansen, et al., 2003), was upregulated in cluster 1 

(Figure 4d). We noticed that sign scores for hematopoietic system disease 

(DOID:74_S) were moderately increased in cluster 1 (separation index~0.38), which 

was supported by a previous work reporting that hematopoietic cancers are similar to 

SCLCs in terms of gene expression profiles and drug sensitivities (Balanis, et al., 2019). 

Although the SCLC molecular subtypes have been extensively studied (Chen, et al., 

2019; Ireland, et al., 2020; Schwendenwein, et al., 2021; Wooten, et al., 2019; Yatabe, 

2020), data regarding the functional subtypes of ASCL1-positive SCLC remain limited. 

To identify de novo SCLC subtypes, future work will validate our clustering results. 

 

Finally, we vertically concatenated all the SSMs, cell cycle phases, and expression 

matrices to characterize individual cells from multiple biological aspects, as shown by 

the heatmaps along with the clustering result of ASURAT (Figure 4a, b). As shown, we 

were able to simultaneously perform unsupervised clustering and biological 

interpretation of single-cell transcriptomes. Moreover, we added a layer of DEGs using 

multiple Mann-Whitney U tests (Figure 4a), showing that most DEGs had been 

previously overlooked (Chen, et al., 2019; Ireland, et al., 2020; Schwendenwein, et al., 

2021; Wooten, et al., 2019; Yatabe, 2020). Taken together, we provide a novel clue for 

the clinical improvements for relapsed SCLC tumors. 

 

Clustering a pancreatic ductal adenocarcinoma spatial transcriptome 

Moncada et al. (2020) analyzed scRNA-seq and ST data obtained from PDAC patients 

(Moncada, et al., 2020) and reported that cancer and non-cancer cells are spatially 

distributed in the distinct tissue regions of the primary PDAC tumors, and that PDAC 

cells are accompanied by inflammatory fibroblasts. Since the cellular resolutions of the 

STs were estimated to be 20–70 cells per ST spot, which is far lower than that of 

scRNA-seq, computational methods have been proposed to predict existing cell types 

by integrating ST and scRNA-seq datasets (Elosua-Bayes, et al., 2021; Moncada, et al., 

2020). Here, we aimed to dissect ST data and compare the annotation results of 

ASURAT with those of Seurat by using ST (PDAC-A ST1) and scRNA-seq (PDAC-A 

inDrop from 1 to 6) datasets (Moncada, et al., 2020) (Supplementary Note 3). 
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First, we combined all the scRNA-seq datasets after confirming that there were minimal 

batch effects (Figure S5). Then, the ST and scRNA-seq data were normalized by 

bayNorm (Tang, et al., 2020) (Supplementary Note 4) and the resulting read count 

tables were supplied to Seurat. To cluster the ST with reference to the scRNA-seq data, 

we performed canonical correlation analysis (CCA)-based data integration of Seurat 

(Figure 5a), followed by an unsupervised clustering of the integrated transcriptome 

using Seurat functions, which is shown in UMAP spaces (Figure 5b) and the tissue 

image (Figure 5c). Unexpectedly, batch effects were not corrected between ST and 

scRNA-seq datasets after data integration; nevertheless, the inferred cancer and non-

cancer regions were approximately consistent with previously annotated histological 

regions (Elosua-Bayes, et al., 2021; Moncada, et al., 2020), wherein several marker 

genes such as REG1A, S100A4 and TM4SF1, and CELA2A were identified as DEGs for 

clusters 2, 3, and 5, respectively (FDRs< 10023, Mann-Whitney U tests). 

 

Next, we input the ST and scRNA-seq integrated transcriptome into ASURAT 

workflow. To investigate complex PDAC tissues, we created SSMs using DO, CO, GO, 

and KEGG, as well as CellMarker (Zhang, et al., 2019) and MSigDB (Subramanian, et 

al., 2005). Based on the SSM for GO, which was computed from the integrated 

transcriptome, we performed a dimensionality reduction using PCA and clustered the 

SSM by k-nearest neighbor (KNN) graph generation and the Louvain algorithm, which 

is shown in UMAP spaces (Figure 5d) and the tissue image (Figure 5e). Remarkably, 

ASURAT was able to remove the aforementioned batch effects and infer the spots we 

suspect as atypical region which might be a normal pancreas involved in cancer (Figure 

5e left bottom). 

 

To further investigate cell states in these spots, we computed all the sign scores across 

the tissue (Figure S6). We found that the sign scores for PDAC (DOID:3498_S), which 

has an FGS including PDAC markers such as S100P and MMP1, were increased in the 

ST spots approximately matching the reported PDAC region (Moncada, et al., 2020), 

while those for transcriptional misregulation in cancer (path:hsa05202_S) and 

microRNAs in cancer (path:hsa05206_S) were increased both in the previously 

annotated PDAC spots and the newly predicted atypical spots (Figure 5f). These newly 
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predicted spots were also annotated by a sign for Th17 cell differentiation 

(path:hsa04659_S), suggesting tumor-associated inflammation or antitumor immunity 

through intercellular communications between Th17 and cancer cells (Muller-

Hubenthal, et al., 2009), which remains to be elucidated in PDAC (Liu, et al., 2019). 

 

It is reported that in more than 90% of PDAC cases, KRAS is mutated at the G domain 

of the 12th residue (Ischenko, et al., 2021; Luchini, et al., 2020). Hence, we speculated 

that it might be possible to validate our clustering results of cancer and non-cancer spots 

by comparing the frequencies of KRAS mutations using ST data. Unfortunately, we 

were unable to detect any read mapped to the specific reported region, possibly owing 

to the shallow read depth and inherent 3¢ bias present in the data. We hope that 
simultaneous genetic and transcriptional profiling can address this problem in the future 

(Lee, et al., 2020). 

 

Discussion 

We have developed ASURAT, a novel computational pipeline for simultaneous cell 

clustering and biological interpretation using FGSs. ASURAT begins by performing a 

correlation graph-based decomposition of FGS to define multiple biological terms, 

termed signs. ASURAT then transforms scRNA-seq data into an SSM, whose rows and 

columns stand for signs and samples, respectively. This SSM plays a key role in 

characterizing individual cells by various biological terms. Applying ASURAT to 

several scRNA-seq and spatial transcriptome datasets for PBMCs, SCLC, and PDAC, 

we robustly reproduced the previously reported blood cell types, identified putative 

subtypes of chemoresistant SCLC, and identified distinct regions within the PDAC 

tissue. 

 

Conventionally, single-cell transcriptomes are analyzed and interpreted by means of 

unsupervised clustering followed by manual curation of marker genes chosen from a 

large number of DEGs, which has been a common bottleneck of gene-based analyses 

(Andrews, et al., 2021; Aran, et al., 2019; Gao, et al., 2019). The statistical significance 

of individual genes, typically defined by p-value or fold change, is dependent on 

clustering results, which are also affected by various physiological states of cells 
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(Dominguez, et al., 2016; Jalili, et al., 2021). Here, we expect that ASURAT provides 

an alternative approach using FGSs and demonstrates superior performance for 

identifying functional subtypes even within a fairly homogeneous population such as 

isolated cancer cells. In practice, complemental usages of ASURAT and existing 

methods (Butler, et al., 2018; La Manno, et al., 2018) will provide more comprehensive 

understanding of single-cell and spatial transcriptomes, helping us shed light on putative 

transdifferentiation of neuroendocrine cancers (Balanis, et al., 2019; Kubota, et al., 

2020), intercellular communication in tumor immune microenvironments (Maynard, et 

al., 2020), and virus infection on immune cell populations (Devitt, et al., 2019). 

 

In omics data analyses, knowledge-based DBs are used to interpret computational 

results: GO, KEGG pathway, and motif enrichment analyses are often used for 

transcriptomic and epigenomic analyses (McLeay and Bailey, 2010; Mootha, et al., 

2003; Reimand, et al., 2019). In contrast, we propose a unique analytical workflow, in 

which such DBs are used for simultaneous clustering and biological interpretation by 

defining signs from single-cell transcriptome data and FGSs. This framework is 

potentially applicable to any multivariate data with variables linked with annotation 

information. We can also find such datasets in studies of T cell receptor sequencing (De 

Simone, et al., 2018; Rempala, et al., 2011) along with a pan-immune repertoire (Zhang, 

et al., 2020). We anticipate that ASURAT will make it possible to identify various inter-

sample differences among T cell receptor repertoires in terms of cellular subtype, 

antigen-antibody interaction, genetic and pathological backgrounds. 

 

Finally, future challenges in data-driven mathematical analysis are worth noting. Since 

ASURAT can create multivariate data (i.e., SSMs) from multiple signs, ranging from 

cell types to biological functions, it will be valuable to consider graphical models of 

signs, from which we may infer conditional independence structures. A non-Gaussian 

Markov random field theory (Morrison, et al., 2017) is one of the most promising 

approaches to this problem, but it requires quite a large number of samples for 

achieving true graph edges (Morrison, et al., 2017). As available data expand in size and 

diversity, biological interpretation will become increasingly important. Hence, future 

work should improve methods for prioritizing biological terms more efficiently than 
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manual screening. We hope ASURAT will greatly facilitate our intuitive understanding 

of various biological data and open new means of general functional annotation-driven 

data analysis. 
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Figure 1. Workflow of ASURAT. (a) Flowchart of the procedures. (b) Collection of 

knowledge-based data-bases (DBs). (c) Creation of sign-by-sample matrices (SSMs) 

from normalized-and-centered read count table and the collected DBs. (d) Analysis of 

SSMs to infer diseases, cell types, biological processes, and signaling pathway 

activities. 
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Figure 2. Representation of correlation graph-based decomposition. From single-cell 

RNA sequencing data and a Disease Ontology (DO) term with DOID 5409, which 

concerns small cell lung cancer, three signs (𝑇! , Ω!
($), 𝑅), 𝑗 ∈ {s, v, w}, were produced 

from their parent sign (𝑇! , Ω! , 𝑅) by decomposing the correlation graph (Ω! , 𝑅) into 

strongly, variably, and weakly correlated gene sets: Ω!
(,), Ω!

(-), and Ω!
(+), respectively. 

Red and blue edges in correlation graphs indicate positive and negative correlations, 

respectively; color density indicates the strength of the correlation. 
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Figure 3. Clustering peripheral blood mononuclear cell (PBMC) single-cell 

transcriptomes. (a) Schematic illustration of conventional single-cell RNA sequencing 

and ASURAT workflows. (b) Identification of cell types in the PBMC 6k dataset from 

analyses of sign-by-sample matrices (SSMs) for Cell Ontology (CO), Gene Ontology 

(GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG). According to 

heatmaps and violin plots of representative signs and functional gene sets, T cell (“T”), 

B cell (“B”), NK or NKT cell (“NK/NKT”), monocyte, and dendritic cell (“DC”) were 

identified as shown in Uniform Manifold Approximation and Projection (UMAP) plots. 
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(c) Population ratios in the PBMC 4k and 6k datasets predicted by seven different 

methods. DEG, differentially expressed gene. 

 

 

Figure 4. Clustering a single-cell transcriptome of small cell lung cancers. (a) Heatmaps 

showing (i) clustering results of ASURAT, (ii) sign scores of sign-by-sample matrices 

(SSMs) for Disease Ontology (DO), Gene Ontology (GO), and Kyoto Encyclopedia of 

Genes and Genomes (KEGG), and (iii) scaled gene expression levels, which are 

concatenated vertically. Here, only the most significant signs and differentially 

expressed genes (DEGs) for ASURAT clusters are shown. (b) Representative signs 

from (a). (c) Diffusion map of the SSM for DO, projected onto the first three 

coordinates. (d) Sign scores for the indicated IDs along the pseudotime, in which the 

standard deviations are shown by the shaded area. The value on each plot stands for the 

separation index for a given group versus all the others. The clustering labels are 

consistent with those in (a) and (b). (e) Clustering results and cell cycle phases 

computed by Seurat. (f) KEGG pathway enrichment analysis based on DEGs for Seurat 

clusters in (e). 
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Figure 5. Clustering of spatial transcriptome (ST) data of pancreatic ductal 

adenocarcinoma (PDAC). (a) Canonical correlation analysis-based data integration of 

single-cell RNA sequencing (scRNA-seq) and ST datasets using Seurat. (b) Seurat 

unsupervised clustering based on the integrated data. Cells were manually labeled 

according to the indicated differentially expressed genes (DEGs) in Uniform Manifold 

Approximation and Projection (UMAP) plots. (e) ASURAT clustering result shown in 

the PDAC tissue, in which red arrows indicate the spots newly predicted as atypical 

region which might be a normal pancreas involved in cancer. (f) Profiles of sign scores 

in the PDAC tissue, predicting cancer and inflammation spots. DO, Disease Ontology. 

GO, Gene Ontology. KEGG, Kyoto Encyclopedia of Genes and Genomes. 
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Figure S1. Detailed workflow of Figure 1c focusing on the parameter settings 

Figure S2. Clustering peripheral blood mononuclear cell (PBMC) 4k single-cell 

transcriptomes using ASURAT 

Figure S3. Clustering peripheral blood mononuclear cell (PBMC) 4k and 6k single-cell 

transcriptomes using ASURAT 

Figure S4. Heatmaps of expression levels of known small cell lung cancer marker genes 

Figure S5. Data qualities across all the cells in single-cell RNA-seq datasets PDAC-A 

inDrop from 1 to 6 

Figure S6. Sign scores for functions and signaling pathway activities using Gene 

Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) across the 

PDAC tissue 

 

Supplementary Note 1. Parameter settings of ASURAT 

Supplementary Note 2. Separation index 

Supplementary Note 3. Datasets 

Supplementary Note 4. Data preprocessing: quality control, normalization, and 

centering 

Supplementary Note 5. Analysis of scRNA-seq datasets of PBMC 4k and 6k 

Supplementary Note 6. Analysis of an SCLC scRNA-seq dataset 

Supplementary Note 7. Limitations of the study 
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Figure S1. Detailed workflow of Figure 1c focusing on the parameter settings. The 

indicated values are preset as default in ASURAT, while “u.d.” stands for the value or 

argument that users must define. Here, 𝛼 and 𝛽 are positive and negative threshold 

values of correlation coefficients; 𝑛456 and 𝑛456
(+) , positive integers for selecting reliable 

signs; MEASURE, the name of information content (IC)-based method defining 

semantic similarities; SIM_TH, a threshold value used to regard two biological terms as 

similar; KEEP_RAREID determines whether the signs with larger ICs are kept or not (if 

TRUE, the signs with larger ICs are kept), and 𝜔(,) and 𝜔(-) weight constants are used 
to define sign-by-sample matrices. 
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Figure S2. Clustering peripheral blood mononuclear cell (PBMC) 4k single-cell 

transcriptomes using ASURAT. Identification of cell types in the PBMC 4k dataset 

from analyses of sign-by-sample matrices (SSMs) for Cell Ontology (CO), Gene 

Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG). According 

to heatmaps and violin plots, showing representative signs and the functional gene sets, 

T cell (“T”), B cell (“B”), NK or NKT cell (“NK/NKT”), and monocyte were identified 

as shown in Uniform Manifold Approximation and Projection (UMAP) plots. 

  

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted October 12, 2021. ; https://doi.org/10.1101/2021.06.09.447731doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.09.447731


 24 

 

 
 

Figure S3. Clustering peripheral blood mononuclear cell (PBMC) 4k and 6k single-cell 

transcriptomes using ASURAT. Uniform Manifold Approximation and Projection 

(UMAP) plots of sign-by-sample matrices for Cell Ontology (CO), Gene Ontology 

(GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG). 
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Figure S4. Heatmaps of expression levels of known small cell lung cancer marker 

genes. Log-normalized gene expression levels for ASCL1, NEUROD1, YAP1, and 

POU2F3 across all the cells after controlling for data quality. nReads, total read counts. 
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Figure S5. Data qualities across all the cells in single-cell RNA sequencing datasets 

PDAC-A inDrop from 1 to 6. nReads, total read counts; nGenes, number of genes 

expressed with non-zero read counts. 
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Figure S6. Sign scores for functions and signaling pathway activities using Gene 

Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) across the 

pancreatic ductal adenocarcinoma (PDAC) tissue. 
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Supplementary Note 1. Parameter settings of ASURAT 

To obtain desired results, it is critical to tune ASURAT parameters for creating sign-by-

sample matrices (SSMs). Depending on the DBs, there were six to nine parameters for 

creating SSMs, but many of them have been preset to unbiased and sensible default values 

(Figure S1). We found that our default settings worked well in our single-cell RNA 

sequencing (scRNA-seq) analyses, but the three parameters should be tuned by users, as 

described below. 

 

As formulated in Error! Reference source not found., positive and negative constants 

𝛼 and 𝛽 from thresholds of correlation coefficients are required for decomposing 

correlation graphs and creating signs (see Figure 2 for the demonstration). In addition, 

unreliable signs are discarded with user-defined criteria, which were preset as follows: 

the sum of the number of genes in the strongly and variably correlated gene sets, SCG 

and VCG, respectively, is less than 𝑛456 or the number of genes in weakly correlated 

gene set (WCG) is less than 𝑛456
(+)  (the default value is 2). Furthermore, users can 

remove redundant signs with similar biological meanings if information contents (ICs) 

(Yu, et al., 2010) are defined. 

 

Supplementary Note 2. Separation index 

Briefly, a separation index is a measure of significance of a given sign score for a given 

subpopulation. Since the row vectors of SSMs are centered (i.e., the means are zeros), 

wherein the degree of freedom is reduced, naïve usages of statistical tests and fold change 

analyses should be avoided. Nevertheless, we propose helping users to find significant 

signs using a nonparametric index to quantify the extent of separation between two sets 

of random variables. A separation index of a given random variable X takes a value from 

−1 to 1: the larger positive value indicates that Xs are markedly upregulated, and the 

probability distribution is well separated against other distributions and vice versa. 

 

Let us consider a vector 𝒂 of size 𝑛, i.e., the number of samples, whose elements stand 

for the sign scores, and assume that the elements are sorted in ascending order. For 

simplicity suppose that the samples are classified into two clusters labeled 0 and 1. Let 𝒗 

be a vector of the labels corresponding to 𝒂, and 𝒘3 and 𝒘( be vectors having the same 
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elements with 𝒗  but the elements are sorted in lexicographic orders in forward and 

backward directions, respectively. Then, we define the separation index as follows: 

 

                                                  𝐼(𝒗) = 1 − 78(𝒗,𝒘%)
8(𝒗,𝒘%);8(𝒗,𝒘&)

,																																																(3) 

 

where 𝑑(𝒗,𝒘)) is an edit distance (or Levenshtein distance (Lowrance and Wagner, 

1975)) with only adjacent swapping permitted. For example, if 𝒗 = (1, 0, 0, 1, 1), then 

𝒘3 = (0, 0, 1, 1, 1) and 𝒘( = (1, 1, 1, 0, 0). From (3) one can calculate 𝑑(𝒗,𝒘3) = 2 

and 𝑑(𝒗,𝒘() = 4, and thus 𝐼(𝒗) = 1/3. As another example, if 𝒗 = (0, 1, 1, 0, 0), then 

𝐼(𝒗) = −1/3. From this example, one can see that the positive and negative values of 𝐼 
mean that the given sign has positive and negative contributions for cluster “1,” 

respectively. 

 

Supplementary Note 3. Datasets 

Human peripheral blood mononuclear cells 

These data were obtained from peripheral blood mononuclear cells (PBMCs) of healthy 

donors, which include approximately 4,000 and 6,000 cells; thus, they were referred to as 

PBMCs 4k and 6k, respectively. The data were produced with a 10x protocol using unique 

molecular identifiers (UMIs). The single-cell transcriptome datasets were downloaded 

from the 10x Genomics repository (https://support.10xgenomics.com/single-cell-gene-

expression/datasets). The following filtered read count matrices were obtained: PBMC 

4k from a healthy donor (https://support.10xgenomics.com/single-cell-gene-

expression/datasets/2.1.0/pbmc4k) and PBMC 6k from a healthy donor 

(https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/pbmc6k). 

After data quality controls, the read count tables of PBMC 4k (resp. PBMC 6k) contained 

6,658 (resp. 5,169) genes and 3,815 (resp. 4,878) cells. 

 

Human small cell lung cancer with cisplatin treatments 

The data were obtained from circulating tumor cell-derived xenografts cultured with 

cisplatin treatments, which were generated from lung cancer patients (Stewart, et al., 

2020). The data were produced with a 10x protocol using UMIs. The SRA files were 
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downloaded from Gene Expression Omnibus (GEO) with accession codes GSE138474: 

GSM4104164, which is referenced in Stewart et al. (2020). SRA Toolkit version 2.10.8 

was used to dump the FASTQ files. Cell Ranger version 3.1.0 was used to align the 

FASTQ files to the GRCh38-3.0.0 human reference genome and produce the single-cell 

transcriptome datasets. After controlling for data quality, the read count table contained 

6,581 genes and 3,923 cells. 

 

Human pancreatic ductal adenocarcinoma 

The single-cell RNA sequencing (scRNA-seq) and spatial transcriptome (ST) data were 

obtained from PDAC patients using inDrop and ST protocols (Moncada, et al., 2020), 

respectively. The FASTQ files were downloaded from Gene Expression Omnibus 

(GEO) with accession codes GSE111672: GSM3036909, GSM3036910, GSM3036911, 

GSM3405527, GSM3405528, GSM3405529, and GSM3405530. Mapping of raw 

sequencing data from inDrop and ST protocols were processed using custom pipelines 

from https://github.com/flo-compbio/singlecell and 

https://github.com/jfnavarro/st_pipeline, respectively. Both pipelines used the 

parameters explained by Moncada et al. (2020). Prior to downstream analysis, we 

concatenated all the scRNA-seq datasets. After data quality controls, the read count 

table of the combined scRNA-seq dataset contained 5,893 genes and 2,051 cells, 

wherein the ST dataset contained 4,497 genes and 428 ST spots. ST data was imported 

and visualized using Spaniel (Queen, et al., 2019). 

 

Supplementary Note 4. Data preprocessing: quality control, normalization, and 

centering 

For all the scRNA-seq datasets, the low-quality genes and cells were removed by the 

following three steps: (i) removing the genes for which the number of non-zero expressing 

cells is less than a user-defined threshold; (ii) removing the cells whose read counts, 

number of genes expressed with non-zero read counts, and percent of reads mapped to 

mitochondrial genes are within user-defined ranges; and (iii) removing the genes for 

which the mean of the read counts is less than a user-defined threshold. See Chapters 2 

and 3 in our tutorial (https://keita-iida.github.io/ASURAT_0.0.0.9001/index.html). 
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After applying data quality controls, the data were normalized by bayNorm (Tang, et 

al., 2020), which attenuates technical biases with respect to zero inflation and variation 

of capture efficiencies between cells. The resulting inferred true count matrices were 

supplied to a log-transformation with a pseudo-count to attenuate the impact of 

dispersion in the counts for highly expressed genes. Finally, subtracting the sample 

mean from each row vector, we obtained the normalized-and-centered read count tables. 

See Chapter 4 in our tutorial (https://keita-

iida.github.io/ASURAT_0.0.0.9001/index.html). 

 

Supplementary Note 5. Analysis of scRNA-seq datasets of PBMC 4k and 6k 

To compare the cell-type inference abilities of existing methods and ASURAT, we 

prepared two scRNA-seq datasets, namely PBMCs 4k and 6k (see Datasets). 

Subsequently, data quality controls and normalization by bayNorm were carefully 

performed for each dataset. See Chapters 2–4 in our tutorial (https://keita-

iida.github.io/ASURAT_0.0.0.9001/index.html). 

 

Using scran (version 1.18.7) (Lun, et al., 2016), we normalized the data using the 

functions quickCluster(), computeSumFactors(), and logNormCounts(), selected highly 

variable genes using modelGeneVar() and getTopHVGs() based on a variance modeling 

with a gene-per-cell ratio of 0.2 (as suggested in a previous work (Cruz and Wishart, 

2007)), and set the principal components using denoisePCA(). Cells were clustered using 

buildSNNGraph() and cluster_louvain(). Then, candidates of differentially expressed 

genes (DEGs) were detected using pairwiseTTests() and combineMarkers(), and DEGs 

were defined as genes with false discovery rates (FDRs)< 10011 (T tests). According to 

the DEGs, we identified several different cell types by manually searching for marker 

genes in GeneCards version 5.2 (Stelzer, et al., 2016) as follows: B cells (resp. marker 

genes CD79A, MS4A1, IGHM), monocytes (S100A8, LYZ, CD14), NK or NKT cells 

(NKG7, GZMA, FGFBP2), and T cells (MAL). See Chapter 13 in our tutorial 

(https://keita-iida.github.io/ASURAT_0.0.0.9001/index.html). 

 

Using Seurat (version 4.0.2) (Hao, et al., 2021), we normalized the data using the function 

NormalizeData() with a log normalization (default), selected highly variable genes using 
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FindVariableFeatures() based on a variance-stabilizing transformation with a gene-per-

cell ratio of 0.2 (as suggested in previous work (Cruz and Wishart, 2007)), scaled and 

centered gene expression levels, and performed PCA. The principal components that 

explained 90% of the total variability were used for the computations of FindNeighbors(). 

Cells were clustered using FindClusters(). Then, candidates of DEGs were detected using 

FindAllMarkers() and DEGs were defined as genes with false discovery rates (FDRs)<

10011 (Mann-Whitney U tests). According to the DEGs, we identified several different 

cell types by manually searching for marker genes in GeneCards version 5.2 (Stelzer, et 

al., 2016) as follows: T cells (resp. marker genes TRAC, CD3D, IL32, TCF7, CD27), 

monocytes (S100A8, LYZ, CD14), B cells (CD79A, MS4A1, IGHM, VPREB3, BANK1), 

and NK or NKT cells (CD3D, NKG7, GZMA, FGFBP2). Additionally, to automatically 

annotate the clustering results, we used the R function findmarkergenes() in the 

scCATCH (version 2.1) package (Shao, et al., 2020), which identified monocytes, B cells, 

and T cells. See Chapter 14 in our tutorial (https://keita-

iida.github.io/ASURAT_0.0.0.9001/index.html). 

 

Using Monocle 3 (version 1.0.0) (Trapnell, et al., 2014), we used the function 

preprocess_cds() under the default settings, in which data were normalized by a log 

transform with a pseudo-count of 1, scaled and centered in gene expression levels, and 

were subjected to PCA with the dimensionality of the reduced space set to 50. Cells were 

clustered by cluster_cells() using Uniform Manifold Approximation and Projection 

(UMAP) (McInnes and Healy, 2018). Then, candidate DEGs were detected using 

top_markers() and DEGs were defined as genes with false discovery rates (FDRs)<
10011  (Monocle’s marker significance tests). According to the DEGs, we identified 

several different cell types by manually searching for marker genes in GeneCards version 

5.2 (Stelzer, et al., 2016) as follows: T cells (resp. marker genes CD3D, TCF7, CD3E, 

IL32), monocytes (S100A8, LYZ, CD14), B cells (CD79A, CD79B, BANK1, MS4A1), and 

NK or NKT cells (GNLY, NKG7, GZMA). See Chapter 15 in our tutorial (https://keita-

iida.github.io/ASURAT_0.0.0.9001/index.html). 

 

Using SC3 (version 1.18.0) (Kiselev, et al., 2017), we performed the function runPCA() 

inputting log-normalized read count tables with a pseudo-count of 1. Cells were clustered 
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using sc3(), and reasonable numbers of clusters were manually determined by 

sc3_plot_markers(). Then, candidate DEGs were detected using get_marker_genes() and 

DEGs were defined as genes with false discovery rates (FDRs)< 10011 (Kruskal-Wallis 

tests). According to the DEGs, we identified several different cell types by manually 

searching for marker genes in GeneCards version 5.2 (Stelzer, et al., 2016) as follows: 

NK or NKT cells (resp. marker genes GZMA, GZMB, GZMH, GZMK, GNLY), T cells 

(TRGC2, TCL1A), monocytes (GSN, LILRB4, S100A8, CD14, S100A12), and B cells 

(CD79A, CD79B, MS4A1, SPI1, LYN). See Chapter 16 in our tutorial (https://keita-

iida.github.io/ASURAT_0.0.0.9001/index.html). 

 

Using ASURAT, we created SSMs using the CO, GO, and KEGG DBs. After 

dimensionality reduction by PCA, cells were clustered by k-nearest neighbor (KNN) 

graph generation and Louvain algorithm using Seurat functions FindNeighbors() and 

FindClusters() (Hao, et al., 2021). Subsequently, separation indices (SIs) were 

computed for all the signs for a given cluster versus all the others, then cell types were 

identified by manually selecting significant signs with the larger values of SIs> 0.5 

(Figure 3). See Chapter 17 in our tutorial (https://keita-

iida.github.io/ASURAT_0.0.0.9001/index.html). 

 

Supplementary Note 6. Analysis of an SCLC scRNA-seq dataset 

For the analysis of an SCLC scRNA-seq dataset, we began the Seurat workflow by 

normalizing data using the Seurat function NormalizeData() with a log normalization 

(default). Then, highly variable genes were selected by FindVariableFeatures() based on 

a variance stabilizing transformation with a gene-per-cell ratio of 0.2 (as suggested in 

previous work (Cruz and Wishart, 2007)). Then, data were scaled and centered by 

ScaleData(), and PCA was applied by RunPCA() with highly variable genes. 

Subsequently, a KNN graph was generated by FindNeighbors(), with the principal 

components that explain 90% of the total variability, and cells were clustered by 

FindClusters() with a Louvain algorithm. Additionally, cell cycle phases were inferred by 

CellCycleScoring() with cell cycle-related genes defined in the Seurat package. Finally, 

KEGG enrichment analysis was done by compareCluster() in clusterProfiler package (Yu, 

et al., 2012). See Chapter 14 in our tutorial (https://keita-
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iida.github.io/ASURAT_0.0.0.9001/index.html). 

 

The ASURAT workflow started with the collection of DO, GO, and KEGG databases. 

First, we excluded functional gene sets including too few or too many genes. Next, we 

created multiple signs using a correlation graph-based decomposition. Then, we 

removed redundant signs with similar biological meanings using doSim() from the 

DOSE package (Yu, et al., 2015). We then created SSMs for DO, GO, and KEGG. 

Based on the SSM for DO, we performed a dimensionality reduction using the diffusion 

map and clustered cells using MERLoT (Parra, et al., 2019). Finally, we vertically 

concatenated all the SSMs, cell cycle phases inferred by Seurat, and expression matrix 

for characterizing individual cells from multiple biological aspects. The DEGs were 

identified using FindAllMarkers() in Seurat package. See Chapters 9–12 in our tutorial 

(https://keita-iida.github.io/ASURAT_0.0.0.9001/index.html). 

 

Supplementary Note 7. Limitations of the study 

To formulate signs, we used a correlation graph-based decomposition based on functional 

gene sets (FGSs) with thresholds set as positive and negative correlation coefficients 

(Figure 2), from which we obtained SCGs, VCGs, and WCGs. Although this method is 

intuitive and easy to use, such three-part decomposition might be insufficient in some 

cases. For example, one cannot divide the FGS for the DO term “lung small cell 

carcinoma” (DOID 5409) into more than three parts, while SCLC can be classified into 

at least four molecular subtypes (Schwendenwein, et al., 2021; Yatabe, 2020). Therefore, 

development of a more flexible method for dividing the correlation graphs is warranted. 

 

Signs are derived from information in existing DBs. This inevitably introduces bias, 

such as the inherent incompleteness of the DBs and annotation bias; viz., some 

biological terms are associated with many genes, while others are associated with few 

(Gaudet and Dessimoz, 2017). To overcome this problem, one should monitor what 

signs are included during data processing (Figure 1a) and carefully tune the parameters 

to select reliable signs (Figure S1). Our R scripts help users perform this process. 
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