
Assessment   of   deep   learning   algorithms   for    3D   instance   
segmentation   of   confocal   image   datasets   

  
Anuradha   Kar 1 *,   Manuel   Petit 1 ,   Yassin   Refahi 2 ,   Guillaume   Cerutti 1 ,   Christophe   Godin 1 *,   Jan   Traas 1 *   

  
1   Laboratoire   RDP,   Université    de   Lyon   1,   ENS-Lyon   INRAE   ,   INRIA,    CNRS,   UCBL,   69364   Lyon,   France   

2   Université   de   Reims   Champagne   Ardenne,   INRAE,   FARE,   UMR   A   614,   51097   Reims,   France  

*Authors   for   correspondence:   

Anuradha.Kar@ens-lyon.fr ,    Christophe.Godin@inria.fr ,    Jan.Traas@ens-lyon.fr     

  

Abstract     
Segmenting  three  dimensional  microscopy  images  is  essential  for  understanding  phenomena  like            

morphogenesis,  cell  division,  cellular  growth  and  genetic  expression  patterns.  Recently,  deep  learning  (DL)              

pipelines  have  been  developed  which  claim  to  provide  high  accuracy  segmentation  of  cellular  images  and                 

are  increasingly  considered  as  the  state-of-the-art  for  image  segmentation  problems.  However,  it  remains               

difficult  to  define  their  relative  performance  as  the  concurrent  diversity  and  lack  of  uniform  evaluation                 

strategies  makes  it  difficult  to  know  how  their  results  compare.  In  this  paper,  we  first  made  an  inventory  of  the                      

available  DL  methods  for  3D  segmentation.  We  next  implemented  and  quantitatively  compared  a  number  of                 

representative  DL  pipelines,  alongside  a  highly  efficient  non-DL  method  named  MARS.  The  DL  methods                

were  trained  on  a  common  dataset  of  3D  cellular  confocal  microscopy  images.  Their  segmentation                

accuracies  were  also  tested  in  the  presence  of  different  image  artifacts.  A  new  method  for  segmentation                  

quality  evaluation  was  adopted  which  isolates  segmentation  errors  due  to  under/over  segmentation.  This  is                

complemented  with  new  visualization  strategies  that  make  interactive  exploration  of  segmentation  quality              

possible.  Our  analysis  shows  that  the  DL  pipelines  have  very  different  levels  of  accuracy.  Two  of  them  show                    

high   performance,   and   offer   clear   advantages   in   terms   of   adaptability   to   new   data.     
  

Introduction         

The  use  of  3  dimensional,  quantitative  (3D)  microscopy  has  become  essential  for  understanding               

morphogenesis,  at  cellular  resolution,  including  cell  division  and  growth  as  well  as  the  regulation  of  gene                  

expression   (Thomas  &  John,  2017) .  In  this  context,  image  segmentation  to  identify  individual  cells  in  large                  

datasets  is  a  critical  step.  Segementation  methods  broadly  belong  to  two  types,  namely  ‘semantic                

segmentation’  in  which  each  pixel  within  an  image  is  associated  with  one  of  the  predefined  categories  of                   

objects  present  in  the  image.  The  other  type,  which  is  of  interest  in  this  paper,  is  ‘ instance  segmentation’                    

(Hafiz  &  Bhat,  2020) .  This  type  of  method  goes  one  step  further  by  associating   each  pixel  with  an                    

independent  object  within  the  image.  Segmenting   cells  from  microscopy  images  falls  within  this  second  type                 

of  problem.  It  involves  locating  the  cell  contours  and  cell  interiors  such  that  each  cell  within  the  image  may                     

be  identified  as  an  independent  entity   (Vicar  et  al.,  2019) .  High  accuracy  cell  instance  segmentation  is                  
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essential  to  capture  significant  biological  and  morphological  information  such  as  cell  volumes,  shapes,               
growth   rates   and   lineages    (Lei   et   al.,   2020) .  

A  number  of  computational  approaches  have  been  developed  for  instance  segmentation  (e.g.   (Thomas  &                

John,  2017;  Vu  et  al.,  2019) ,   (Cremers,  Rousson,  &  Deriche,  2007;  Gharipour  &  Liew,  2016)   (Bailoni  et  al.,                     

2019)   (Kallasi,  Rizzini,  Oleari,  &  Aleotti,  2015;  Pal  &  Pal,  1993) )  such  as  for  example  the  commonly  used,                    

watershed,  graph  partitioning  and  gradient  based  methods.  In  watershed  approaches  seed  regions  are  first                

detected  using  criteria  like  local  intensity  minima  or  user  provided  markers    .  Starting  from  the  seed  locations,                   

these  techniques  group  neighboring  pixels  by  imposing  similarity  measures  until  all  the  individual  regions  are                 

identified.  In  graph  partitioning,  the  image  is  treated  as  a  graph,  with  the  image  pixels  as  its  vertices.                    

Subsequently  pixels  with  similar  characteristics  are  clustered  into  regions.  Gradient  based  methods  use               

edge  or  region  descriptors  to  drive  a  predefined  contour  shape  (usually  rectangles  or  ellipses)  and                 

progressively  fit  them  to  accurate  object  boundaries,  based  on  local  intensity  gradients   (Ding,  2018;  Zheng,                 

Dong,   Cao,   Sun,   &   Li,   2014)    .   

  

Common  challenges  faced  by  these  segmentation  methods  arise  in  low  contrast  images  containing  fuzzy  cell                 

boundaries.  This  might  be  due  to  the  presence  of  nearby  tissue  structures  as  well  as  anisotropy  of  the                    

microscope  that  perturb  signal  quality,  poor  intensity  in  deeper  cell  layers  as  well  as  blur  and  random                   

intensity  gradients  arising  from  varied  acquisition  protocols   (Van  Valen  et  al.,  2016)   (W.  Wang  et  al.,  2019) .                   

Some  errors  can  also  be  due  to  the  fact  that  cell  wall  membrane  markers  are  not  homogenous  at  tissue  and                      

organ  level:  in  some  regions  the  cell  membrane  is  very  well  marked  resulting  in  an  intense  signal  while  in  the                      

other  regions  this  may  not  be  the  case.  These  different  problems  lead  to  segmentation  errors  such  as                   

incorrect  cell  boundary  estimation,  single  cell  regions  mistakenly  split  into  multiple  regions              

(over-segmentation),   or   multiple   cell   instances   fusing   to   produce   a   condensed   region   (under-segmentation).   

In  recent  years,  a  number  of  computational  approaches  based  on  large  neural  networks  (commonly  known                 

as  deep  learning  or  DL)   (LeCun,  Bengio,  &  Hinton,  2015)  have  been  developed  for  image  segmentation                  

(Zeng,  Wu,  &  Ji,  2017)   (Caicedo  et  al.,  2019;  Moen  et  al.,  2019) .  These  methods  seem  extremely  promising.                    

Indeed,  the  key  advantages  of  DL  based  segmentation  algorithms  include  automatic  identification  of  image                

features,  high  segmentation  accuracy,  requirement  of  minimum  human  intervention,  no  need  for  manual               

parameter  tuning  and  very  fast  inferential  capabilities.  These  DL  algorithms  are  made  of  computational  units                 

(‘neurons’),  which  are  organised  into  multiple  interconnected  layers.  For  training  a  network,  one  needs  to                 

provide  input  training  data  (for  example  images)  and  corresponding  target  output  (ground  truth).  Each                

network  layer  transforms  the  input  data  from  the  previous  level  into  a  more  abstract  feature  map                  

representation  for  the  next  level.  For  example  the  neurons  from  the  first  level  would  take  the  intensities  of  a                     

subset  of  pixels  as  an  input,  apply  a  transformation  function  and  transmit  the  resultant  of  thresholded  values                   

to  the  next  layer.  The  second  layer  can  then  proceed  on  the  information  coming  from  several  ‘neurons’  in  the                     

first  layer.  The  final  output  of  the  network  is  compared  with  the  ground  truth  using  a  loss  (or  cost)  function.                      

Learning  in  a  neural  network  involves  repeating  this  process  and  automated  tuning  of  the  network                 

parameters  multiple  times.  By  passing  the  full  set  of  training  data  through  the  DL  network  a  number  of  times                     

(also  termed  ‘ epochs’)  the  network  estimates  the  optimal  mapping  function  between  the  input  and  the  target                  

or  ground  truth  data.   The  number  of  epochs  can  be  in  the  order  of  hundreds  to  thousands  depending  on  the                      

type  of  data  and  the  network.  The  training  will  run  until  the  training  error  is  minimized.   Then,  in  a  second                       
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‘recognition’  phase,  the  neural  network  with  these  learnt  parameters  can  be  used  to  identify  patterns  in                  
previously   unseen   data.     

Instance  segmentation  using  deep  learning  is  a  challenging  task  especially  for  3D  data  due  to  large                  

computational  time  and  memory  requirements  for  extracting  individual  object  instances  from  3D  data   (Ren  &                 

Zemel,  2017)   (Tokuoka  et  al.,  2018)  Therefore,  the  current  trend  in  deep  learning  based  segmentation                 

methods  is  to  proceed  in  two  steps.  Firstly  deep  networks  are  used  to  provide  high  quality  semantic                   

segmentation  outputs.  This  involves  the  extraction  of  several  classes  of  objects  within  an  image  such  as  cell                   

boundaries,  cell  interiors  and  background.  These  DL  outputs  are  then  used  with  traditional  segmentation                

methods  to  achieve  the  final  high  accuracy  and  automatic  instance  segmentation  even  in  images  with  noise                  

and  poor  signal  quality.  t   (Eschweiler  et  al.,  2019) .  A  generic  workflow  of  such  a  deep  learning  based                    
instance   segmentation   process   is   shown   in   Figure   1.   

In  contemporary  deep  learning  literature,  two  types  of  architecture  for  segmentation  are  commonly  used:  the                 

ones  based  on  the  UNet/residual  Unet  network   (Falk  et  al.,  2019)   (Zhu  et  al.,  2020)  and  the  approaches                    

using  the  region  proposal  networks  or  RCNNs  ( Region  Based  Convolutional  Neural  Networks)   (He,  Gkioxari,                

Dollar,  &  Girshick,  2017) .  We  will  only  briefly  present  both  the  general  properties  of  both  types  of  networks.                    

The  U-Net   (Falk  et  al.,  2019)  has  a  so-called  symmetric  deep  learning  architecture.  One  part  (called                  

encoder)  extracts  the  image  features  and  the  other  part  (named  decoder)  combines  the  features  and  spatial                  

information  to  obtain  the  semantic  segmentation,  for  example  cell  boundaries,  cell  body  and  image                

background.  In  order  to  obtain  the  instance  segmentation,  this  is  followed  by  methods  such  as  watershed  or                   

graph  partitioning.  Examples  of  UNet  based  2D  and  3D  segmentation  algorithms  include  e.g.   (Al-Kofahi,                
Zaltsman,   Graves,   Marshall,   &   Rusu,   2018)     (Wolny   et   al.,   2020)     (Eschweiler   et   al.,   2019) .   

  

Figure  1   Generic  workflow  of  a  deep  learning  based  image  segmentation  pipeline.  The  DL  network  is  first                   
trained  to  produce  a  semantic  segmentation  which  corresponds  as  closely  as  possible  to  a  given                 
groundtruth.  The  trained  network  is  then  used  to  segment  unseen  images.  The  resulting  semantic                
segmentation   is   then   further   processed   to   obtain   the   final   instance   segmentation.     

3   

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 10, 2021. ; https://doi.org/10.1101/2021.06.09.447748doi: bioRxiv preprint 

https://sciwheel.com/work/citation?ids=11001803&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=11001803&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=7891018&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=9720077&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=6152448&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10387774&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=4942671&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=4942671&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=6152448&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=6535414&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=6535414&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=9355538&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=9720077&pre=&suf=&sa=0
https://doi.org/10.1101/2021.06.09.447748
http://creativecommons.org/licenses/by-nc-nd/4.0/


Besides  UNet,  the  other  state-of-the-art  deep  learning  architecture  is  a  Region  based  convolutional  neural                

network  or  RCNN  such  as  Mask-RCNN  or  MRCNN   (Zaki  et  al.,  2020) .  MRCNN  differs  from  UNet  as  the                    

former  includes  modules  for  object  detection  and  classification  unlike  the  UNets.  MRCNN  has  been  used  for                  

high  accuracy  and  automatic  segmentation  of  microscopy  images  in  several  works(e.g.   (Shu,  Nian,  Yu,  &  Li,                  
2020)     (Linfeng   Yang   et   al.,   2020)     (Johnson,   2018) ).   

There  currently  exists  a  large  number  of  deep  learning  pipelines  (we  have  identified  and  reviewed  up  to  35                    

works  in  the  last  5  years  in  Appendix  4),  where  variants  of  both  the  above  architectures  are  used  to  address                      

specific  challenges  in  segmentation  such  as  sparse  data  sets,  availability  of  partial  ground  truths,  temporal                 

information,  etc  (see  Appendix  4  for  a  more  extensive  review).  However  the  diversity  of  the  currently                  

available  pipelines  and  inconsistent  use  of  segmentation  accuracy  metrics  makes  it  nearly  impossible  to                

characterise   and   evaluate   their   performance.     

  

In  this  work,  we  compare  representative  segmentation  pipelines  which  use  one  of  the  above  two                 

approaches.  These  pipelines  have  been  identified  from  the  literature  and  were  selected  based  on  the                 

following  criteria.  (i)  Firstly,  as  the  focus  of  this  work  is  on  3D  confocal  datasets  the  pipelines  should  be  built                      

for  3D  instance  segmentation  of  static  images.  The  analysis  of  temporal  information  or  specific  architectures                 

for  cell  or  particle  tracking  are  not  included.  (ii)  Next,  the  pipeline  implementations  including  pre-  and                  

postprocessing  methods  should  be  available  in  open-source  repositories.  (iii)  To  ensure  that  the  pipeline  is                 

reproducible  properly  on  other  machines,  the  training  dataset  used  originally  by  the  authors  should  be                 

available  publicly.  (iv)  Lastly,  the  DL  pipelines  should  be  trainable  with  new  datasets.  Based  on  these  criteria,                   

we  identified  four  pipelines  ( (Eschweiler  et  al.,  2019) ,   (Wolny  et  al.,  2020)   (Stringer,  Wang,  Michaelos,  &                  

Pachitariu,   n.d.)     (He   et   al.,   2017) ),   which   we   further   describe   below.   

The  first  pipeline  is  an  adapted  version  of  Plantseg   (Wolny  et  al.,  2020)  which  can  be  trained  using  3D                     

images  composed  of  voxels.  It  uses  a  variant  (see  Materials  and  methods  section)  of  3D  Unet  called  residual                    

3D-UNet   (Zhu  et  al.,  2020)  for  the  prediction  of  cell  boundaries  in  3D,  resulting  in  a  semantic  segmentation.                    

These  are  then  used  in  a  post-processing  step  for  estimating  the  final  instance  segmentation  using  graph                  

partitioning.  Examples  of  graph  partitioning  include  GASP   (Bailoni  et  al.,  2019) ,  Mutex   (Wolf  et  al.,  2018) ,                  

Multicut    (Kappes,   Speth,   Andres,   Reinelt,   &   Schnörr,   2011) .     

The  second  deep  learning  pipeline   (Eschweiler  et  al.,  2019)  comprises  a  3D  U-Net  which  can  be  trained                   

using  3D  confocal  images  (i.e.  composed  of  voxels)  for  prediction  of  cell  boundary,  cell  interior  and  image                   

background  regions  (as  3D  images).  These  semantic  outputs  of  the  3D  U-Net  are  then  used  to  generate  a                    

seed  image  for  watershed  based  post-processing.  Seeds  in  watershed  segmentation  indicate   locations              

within  images  from  where  growing  of  connected  regions  starts  in  the  image  watershed  map.  The  seed                  

images  produced  from  the  Unet  outputs  in  this  pipeline  are  therefore  used   to  perform  3D  watershed  and                   

obtain   the   final   segmentation   output.   

The  third  pipeline  is  adapted  from  Cellpose   (Stringer  et  al.,  n.d.) .  It  uses  a  residual  2D-UNet  architecture                   

which  should  be  trained  using  2D  images  (composed  of  pixels).  The  2D  trained  Unet  predicts  horizontal  (X)                   

and  vertical  (Y)  vector  gradients  of  pixel  values,  or  flows,  along  with  a  pixel  probability  map  (indicating                   

whether  pixels  are  inside  or  outside  of  the  cell  regions)  for  each  2D  image.  By  following  the  vector  fields  the                      

pixels  corresponding  to  each  cell  region  are  clustered  around  the  cell  center.  This  is  how  2D  gradients  in  XY,                     
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YZ  and  ZX  planes  are  estimated.  These  6  gradients  are  averaged  together  to  find  3D  vector  gradients.These                   
3D   gradients   are   used   to   estimate   the   cell   regions   in   3D.     

The  fourth  deep  learning  pipeline  is  adapted  by  the  authors  of  this  paper  from  the  well  documented  open                    

Mask  RCNN  repository  l   (He  et  al.,  2017)  and  the  3D  segmentation  concept  using  this  model  is  inspired  from                     

(Linfeng  Yang  et  al.,  2020) .  For  the  Mask-RCNN  based  segmentation,  a  hybrid  approach  is  adopted  as                  

shown  in  Figure  2.  The  pipeline  uses  a  MRCNN  algorithm  which  is  trained  using  2D  image  data  to  predict                     

which  pixels  belong  to  cell  areas  and  which  do  not  in  each  Z  slice  of  a  3D  volume  leading  to  a  semantic                        

segmentation.  Then  the  Z  slices  containing  the  identified  cell  regions  are  stacked  into  a  binary  3D  seed                   

image.  The  cell  regions  in  this  binary  image  are  labelled  using  the  connected  component  approach,  where  all                   

voxels  belonging  to  a  cell  are  assigned  a  unique  label  .  These  labelled  cell  regions  are  used  as  seeds  for                      
watershed   based   processing   to   obtain   the   final   3D   instance   segmentation.   

  

Figure  2  Displaying  all  the  3D  segmentation  pipelines  together.  The  green  colored  boxes  indicate  the                 
training  process  for  the  respective  pipeline.  The  blue  boxes  indicate  the  predicted,  semantic  segmentations               
generated  by  the  trained  DL  algorithms,  the  orange  boxes  indicate  phases  of  post  processing,  leading  to  the                   
final  instance  segmentation.  The  MARS  pipeline  doesn't  include  a  training  or  post  processing  step,  but                 
parameter   tuning   is   required.   
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 A  further  aspect  of  investigation  in  this  work  is  to  observe  how  these  deep  learning  pipelines  compare  to  a                      

classical  non-deep  learning  pipeline  in  terms  of  segmentation  accuracy.  They  were  therefore  compared  with                

a  watershed  based  segmentation  pipeline  named  MARS   (Fernandez  et  al.,  2010) ,  which  uses  automatic                

seed  detection  and  watershed  segmentation.  In  the  MARS  pipeline,  the  minima  of  local  intensity  of  the                  

image  detected  by  a  h-minima  operator  is  used  to  initiate  seeds  in  the  image  which  are  then  used  for  3D                      
watershed   segmentation   of   cells.   

As  in  the  original  works,  these  five  pipelines  have  been  developed  and  tested  on  different  datasets  and  use                    

different  evaluation  metrics,  it  is  difficult  to  directly  compare  their  performance.  The  first  motivation  was,                 

therefore,  to  test  them  on  common  3D  image  datasets  and  estimate  and  compare  their  performance  based                  

on  a  common  set  of  metrics.  More  in  general,  we  aimed  to  develop  an  efficient  strategy  for  quantitative  and                     

in  depth  comparison  of  any  3D  segmentation  pipeline  that  currently  exists  or  is  under  development.  Our                  

results  show  clear  differences  in  performance  between  the  different  pipelines  and  highlight  the  adaptability  of                 
the   DL   methods   to   unseen   datasets.   

Results   

 

Figure  3  Schematic  workflow  of  the  segmentation  evaluation  process.  The  evaluation  of  segmentation               
pipelines  begins  with  the  training  of  the  deep  learning  models  on  a  common  training  dataset  (confocal                  
images  and  ground  truth).  The  training  and  post  processing  steps  for  each  pipeline  are  reproduced  in  the                   
exact  way  as  defined  in  the  respective  papers  or  their  repositories.  Then  the  five  pipelines  are  tested  on  a                     
common  test  set  of  images.  The  test  dataset  (Figure  4)  contains  both  raw  confocal  images  and  their                   
corresponding  expert  annotated  ground  truths,  and  therefore  it  is  possible  to  assess  the  segmentation                
accuracy  of  the  5  pipelines  by  comparing  segmentation  output  of  each  pipeline  with  the  respective  ground                  
truth   data.   Finally   the   relative   accuracy   of   each   method   is   evaluated   using   multiple   strategies.   

Segmentation   of   test   data   using   the   5   pipelines   

The  workflow  for  quantitative  performance  evaluation  of  the  segmentation  pipelines  adapted  in  this  paper  is                 

shown  in  the  schematic  diagram  of  Figure  3.  All  4  deep  learning  pipelines  were  trained  following  the                   

specifications  of  respective  pipelines  (more  details  in  Materials  and  Methods  section)  as  given  in  their                 
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repositories.  For  training  we  used  a  common  set  composed  of  124  3D  original  stacks  of  confocal  images                   

from  Arabidopsis  shoot  apical  meristems  and  their  ground  truth  segmentations,  which  are  publicly  available,                

as  described  in  (PNAS).  This  is  one  of  the  more  extensive  3D  confocal  sets  with  ground  truth  publicly                    

available.  The  trained  networks  were  used  to  segment  two  test  datasets  of  floral  meristem  images  (Figure  4)                   

described  in  (Refahi  et  al  2021,  see  Materials  and  methods  section)  and  for  which  ground-truths  were                  
available   as   well.   Sample   results   from   these   pipelines   on   one   test   stack   (TS1-00h)   are   shown   in   Figure   4.   

For  MARS,  a  manual  tuning  of  three  parameter  values  is  generally  required  to  obtain  optimal  segmentation                  

( h-minima,  Gaussian  smoothing  sigma  for  image  and  that  for  seeds,  see  Materials  and  Methods  section  for                  

details  on  MARS  parameters  to  tune).  This  can  involve  many  trials  before  optimal  segmentation  is  obtained                  

and  needs  expert  supervision.  Therefore,  two  different  approaches  were  tested.  First  the  optimal  MARS                

parameters  were  found  for  one  3D  image  and  these  were  then  kept  constant  for  the  remaining  images  in  the                     
test   set.   Alternatively   tuning   was   repeated   for   every   image   in   the   test   set   (results   referred   to   as   MARS*).     

  

  

Figure  4   (A)  The  two  test  datasets  containing  a  total  of  10  confocal  image  stacks  of  two  different  Arabidopsis                     
floral   meristems   (B)   A   sample   test   stack   (TS1-00H)   and   its   segmentation   by   5   segmentation   pipelines.   
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Comparing   the   segmentation   pipelines   
  

We  next  compared  the  quality  of  the  segmentations  produced  by  the  5  pipelines.  For  this  purpose  we                   

adopted  three  different  strategies  (see  also  Materials  and  methods  for  details).  First,  we  analyzed  the  quality                  

of  segmentation  on  overall  stacks,  including  all  cell  layers.  Next,  the  confocal  stacks  were  split  into  different                   

cellular  layers  (L1,  L2,  inner)  and  the  segmentation  quality  of  the  5  pipelines  for  each  layer  was  studied.                    

Finally,  we  evaluated  the  segmentation  quality  on  images  with  commonly  occuring  (artificially  generated)               

aberrations.    In   each   strategy,   several   metrics   were   used   for   quantitative   assessment.     

 
Strategy   1:   Evaluating   segmentation   quality   for   entire   image   stacks   
  

To  estimate  the  segmentation  quality  of  the  outputs  from  the  5  pipelines,  we  used  their  segmented  results                   

and  the  corresponding  ground  truths  of  the  test  datasets.  A  Volume  averaged  Jaccard  Index  (VJI)  metric  was                   

used  to  estimate  overlap  between  the  predicted  segmentations  and  ground-truths.  The  VJI  used  here                

measures  the  degree  of  overlap  averaged  over  the  cell  volume.  In  the  VJI  metric  the  averaging  over  cell                    

volume  is  done  to  avoid  biases  arising  from  the  cell  sizes  on  the  standard  JI.  Also,  two  additional  metrics                     

that  identify  the  rates  of  over  and  under  segmentation  were  applied  (details  of  these  two  metrics  are  in  the                     

Materials  and  Methods  section).  The  rate  of  over-segmentation  is  the  %  of  cells  in  the  ground  truth                   

associated  with  multiple  regions  in  the  predicted  segmentation.  Conversely  the  rate  of  under-segmentation  is                

the  percentage  of  cases  where  several  regions  in  the  groundtruth  are  associated  with  a  single  cell  in  the                    

predicted   segmentation.     

  

  

Table   1:    Mean   values   (average   over   the   two   test   datasets)   of   segmentation   evaluation   metrics.     

  

The   results,   summarized   in   Table   1   and   Figure   5A-D,   reveal   a   number   of   differences   between   the   pipelines.     

Firstly,  comparing  the  results  of  MARS  and  MARS*  the  importance  of  tuning  the  MARS  parameter  values  to                   

obtain  good  segmentation  accuracy  is  observed.  The  MARS  results  are  obtained  by  using  a  constant  set  of                   

values  for  the  MARS  parameters  (which  are  h-minima=  2,  Gaussian  smoothing  sigma  for  image  =0.5  and                  

that  for  seeds=  0.5).  These  parameters  were  found  to  be  best  for  one  image  in  the  test  set,  but  keeping                      

these  parameters  fixed  yields  non-optimal  accuracy  for  other  images  in  the  set  as  may  be  observed  in  Figure                    

5  A  and  B  from  the  VJI  values  for  MARS  results.  On  the  other  hand,  by  tuning  the  h-minima  and  smoothing                       

parameters  for  each  image,  MARS  is  seen  to  be  capable  of  yielding  high  accuracies  as  seen  from  MARS*                    
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Jaccard   index   

(VJI)     

Rate   of     
over-segmentation   

Rate   of     
under-segmentation   

Plantseg   0.840   10.30%   2.43%   

3D   Unet+   WS   0.768   19.20%   2.40%   

Cellpose   0.741   21.38%   7.12%   

MaskRCNN+WS   0.615   49.10%   5.05%   

MARS   0.610   20.18%   7.64%   

MARS*   0.826   12.25%   2.86%   
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results.  However,  as  mentioned  above,  this  parameter  tuning  process  is  much  time  and  effort  consuming  and                  

requires  multiple  trials  with  the  3  parameters  for  each  image  in  the  set.   Note  that  these  images  were  taken                     

using   the   same   experimental   protocol.   

Among  all  the  pipelines,  Plantseg  performs  best  as  measured  using  the  VJI  metric  values,  closely  followed                  

bv   the   MARS*   and   then   UNet+Watershed.   Cellpose   and   in   particular   MRCNN+Watershed   perform   less   well.     

  

  
Figure  5   (A)   Results  of  VJI  metric  from  the  five  segmentation  pipelines.  (B)  and  (C)  shows  rates  of  over  and                      
under  segmentation.  The  distributions  shown  here  are  estimated  over  the  results  from  the  two  test  datasets                  
TS1   and   TS2.   (D)   Example   segmentation   results   by   5   pipelines   on   a   test   image   slice.     
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With  respect  to  rates  of  over-segmentation,  Plantseg  and  the  MARS*  pipelines  have  lowest  rates  followed  by                  

Unet+Watershed.  MARS  results  (i.e  without  parameter  tuning)  yields  higher  rates  of  both  over  and                

under-segmentation  errors  compared  to  MARS*.  The  two  hybrid  pipelines  Cellpose  and  MRCNN+Watershed              

have  much  higher  rates  of  over-segmentation.  The  rate  of  under-segmentation  is  much  lower  for  all  the                  

pipelines  than  the  rate  of  over-segmentation,  but  again  the  3D  Unet,  Plantseg  and  MARS*  perform  better                  
than  the  other  two.  Overall,  we  can  conclude  that  the  errors  in  the  pipelines  are  mostly  due  to                              

over-segmentation   and   therefore   to   improve   the   segmentation   quality   one   needs   to   address   this   point   first.   

From  the  above  results,  it  is  observed  that  results  from  the  MARS  pipeline  without  individual  tuning  of  the                                     

parameters  are  not  optimal.  Therefore  for  the  rest  of  the  paper,  MARS*  results  (i.e  optimized  MARS)  are  used                                     

to   compare   with   the   deep   learning   pipelines   

 
Strategy   2:   Segmentation   quality   evaluation   for   different   cell   layers     

  

3D  confocal  stacks  often  show  different  levels  of  intensity  and  contrast  in  different  cell  depths.  In  particular  in                    

the  inner  layers,  the  cell  segmentation  can  be  challenging.  We  therefore  tested  the  performance  of  the                  

pipelines   for   their   capacity   to   segment   the   different   cell   layers.     

  

 
Figure  6  (A)   Extracting  L 1,  L2  and  inner  layers  from  an  input  segmented  meristem  image  (B)  Estimating                   
segmentation  accuracy  (VJI)  for  different  cell  layers.  All  stacks  from  the  test  dataset  are  used  for  this                   
evaluation.   (C   )Boundary   Intensities   profile   plot   for   outer   and   inner   layer   cells     
 
For  identifying  the  layers  from  the  segmented  stacks,  we  used  a  neighborhood  connectivity  criterion  for                 

labeled  images.  Within  a  segmented  image,  the  L1  cells  are  identified  as  the  cells  having  the  background  as                    

their  neighbor.  The  L2  layer  cells  are  defined  as  the  cells  with  L1  cells  as  their  neighbors  and  the  inner  layer                       
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cells  are  obtained  as  the  remaining  cells  after  removing  the  L1,  L2  cells  and  background  from  the  image                    

(Figure  6A).  The  variation  of  segmentation  quality  of  the  different  pipelines  was  studied  on  the  basis  of  the                    

VJI  values  in  the  three  cellular  layers  (Figure  6B).  Plantseg  produces  the  most  accurate  segmentations  in  all                   

the  layers  out  of  the  5  pipelines  and  its  accuracy  doesn’t  degrade  significantly  in  the  outer  or  inner  layers.                     

The  VJI  index  of  the  UNet+Watershed  pipeline  is  only  slightly  lower  and  nearly  the  same  for  all  the  layers.                     

MARS*  performs  only  slightly  better  than  UNet  in  inner  layers,  but  has  lower  accuracy  in  the  L1  layer.                    

Cellpose  and  MRCNN+Watershed  perform  less  well  than  the  others,  in  all  three  layers  and  MRCNN                 

accuracy  drops  in  the  innermost  layer.  As  could  be  expected  the  inner  cells  are  less  well  segmented,  as  the                     

signals  are  weaker  and  the  signal/noise  ratio  is  lower.  However,  as  seen  in  Figure  6,  the  segmentation  of  the                     

L2  layer  is  slightly  better  than  that  of  the  L1.  This  is  actually  observed  for  all  tested  pipelines.This  might  be                      

linked   to   the   weak   labelling   of   the   outer   membranes   (Figure   6C)   which   is   often   observed.     

  

Strategy   3:   Evaluating   pipelines   on   synthetically   modified   images   
 
Confocal  images  are  often  affected  by  effects  such  as  noise,  shadows  and  motion  blur  which  tend  to  perturb                    

the  image  signal.  Especially  in  the  inner  layers,  due  to  loss  of  optical  signal  and  scattering,  there  occur                    

regions  of  very  poor  signal  and  distortions.  In  order  to  study  the  impact  of  these  variations  on  the                    

segmentation  quality,  the  effects  of  noise,  blur  and  intensity  variations  are  simulated  on  the  test  set  of                   

confocal  images.  The  five  segmentation  algorithms  are  then  applied  to  the  modified  images  and  the  VJI                  

values  and  rates  of  under/over  segmentations  are  estimated  to  observe  and  compare  their  robustness                

against   these   conditions.   

  

Effect  of  image  noise:   In  confocal  images,  noise  can  be  contributed  by  the  imaging  apparatus  such  as  the                    

electronic  detector  or  amplifier  and  this  noise  can  be  modeled  using  Gaussian  statistics   (Haider  et  al.,  2016) .                   

An  image  to  which  two  different  Gaussian  noise  levels  corresponding  to  noise  variances  of  0.04  and  0.08  are                    

added   is   shown   in   Fig.7A.   Higher   the   variance,   more   is   the   noise   effect   as   seen   in   the   PSNR   values.   

  

The  five  pipelines  behaved  very  differently  under  the  impact  of  image  noise  as  shown  in  Figure  7B.  In                    

particular  CellPose  and  MRCNN  are  very  sensitive  to  Gaussian  noise  as  their  accuracy  drops  sharply  when                  

Gaussian  noise  variance  is  increased.  At  a  noise  variance  of  0.08,  Cellpose  shows  no  detection.  For                  

MRCNN,  higher  noise  leads  to  loss  in  identified  cell  regions,  which  results  in  large  blob-like  regions  after                   

watershed  based  post-processing  leading  to  higher  under-segmentation  (Figure  7D).  The  difference  with              

Plantseg  and  UNet  +  WS  may  be  explained  by  differences  in  the  instance  segmentation  components.  As                  

explained  above,  Plantseg  uses  graph  partitioning.  UNet  +WS  like  the  MRCNN  pipeline  uses  3D  watershed                 

although   the   seed   identification   criteria   are   different   for   the   two   pipelines.     
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Figure  7   (A)  A  test  image  after  applying  Gaussian  noise  (var  0.04,  0.08)  (B)  Variation  of  segmentation                   
accuracy  (VJI)  with  3  Gaussian  noise  variances  (C)  variation  in  rates  of  over-segmentation  (D)  variation  in                  
rates  of  under-segmentation.  Note  that  for  noise  variance  of  0.08,  Cellpose  is  unable  to  identify  cells.                  
(E)   Example   results   from   the   five   pipelines   under   the   impact   of   image   noise   (Gaussian   noise   variance   0.08)  
 
Effect  of  image  blur.   Blurring  commonly  occurs  in  microscopy  images  due  to  artefacts  like  lens  aberrations                  

or  due  to  optical  diffraction  in  the  imaging  setup   (Hadj,  Blanc-Féraud,  Aubert,  &  Engler,  2013)   .   It  can  also  be                      

caused  by  motion  of  the  objects  in  the  microscope  To  simulate  blur,  the  test  confocal  image  is  convolved                    

with  a  horizontal  motion  blur  kernel  (material  and  methods).  A  sample  image  before  and  after  blurring  is                   

shown   in   Figure   8A.   

The  10  test  stacks  were  subjected  to  the  blurring  function  and  were  segmented  using  the  5  pipelines.  VJI                    

values  were  then  computed  for  each  of  the  results  and  plotted  (Figure  8B).  It  is  seen  that  the  Plantseg  and                      
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MARS  pipelines  are  least  affected  by  blurring,  whereas  this  effect  produces  large  variability  in  results  in  the                   

other  three  (Figure  8B).  Apart  from  Plantseg  and  MARS,  the  other  pipelines  suffer  higher  rates  of                  

over-segmentation   (Fig8C)   under   the   impacts   of   blurring.   The   rates   of   under-segmentations   are   below   5%   .   

    

  

 
Figure  8   (A)  Effect  of  blurring  on  an  image  (B)   Comparing  segmentation  accuracies  of  pipelines  under  the                   
effect   of   image   blur   (b)   Comparing   rates   of   over-segmentation   (D)   Under-segmentations   due   to   image   blur.   
(E)   Results   from   the   five   pipelines   under   the   impact   of   image   blur   
 
Image  intensity  variations.   Partially  bright  regions  in  microscopy  images  may  be  caused  by               

inhomogeneous  illumination  sources   and  shadow  effects  are  mostly  caused  by  presence  of  light  absorbing                

objects  or  obstructions   (Cheng  &  Kriete,  1990;  Ricci  et  al.,  2020)  or  due  to  a  non-homogenous  cell                   

membrane  marker.  To  emulate  the  effect  of  such  intensity  variations  within  an  image,  partial  overexposure  or                  

underexposure  regions  (Figure  9A)  were  imposed  on  the  test  images,  which  were  then  segmented  using  the                  
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5  pipelines.  The  VJI  values  and  rates  of  over-  and  under-segmentations  for  all  the  results  were  computed                   

(Figure   9).   The   box   plots   of   VJI   results   for   all   stacks   with   partial   overexposure   effect   are   shown   Figure   9A-D.     

  

Overexposure  had  a  strong  negative  impact  on  the  VJI  of  Plantseg,  UNet+Watershed  and  Cellpose.  The                 

MARS*  and  MaskRCNN  pipelines  were  not  affected  appreciably.  Likewise,  over-segmentation  increased             

significantly  in  the  Plantseg,  Unet+Watershed  and  Cellpose  pipelines  (Figure  9C)  while  the  other  two  were                 

barely   affected.    Under-segmentations   remained   at   low   levels   i.e.   below   10%   for   all   pipelines   (not   shown).     

  

Underexposure   was  strongly  reflected  in  the  VJI  results  from  Plantseg.  The  accuracy  of  Cellpose,  followed                 

by   Unet+Watershed   and   MARS*   was   also   clearly   affected   (Figure   9D).   MRCNN   was   less   sensitive.     

Partial  underexposure  induced  a  high  degree  of  over-segmentation  in  MARS*  and  Unet+WS  while  errors  in                 

Plantseg  and  Cellpose  were  mostly  induced  due  to  under-segmentation  as  seen  in  Figure  9F.  The  MRCNN                  

based   pipeline,   although   having   low   overall   accuracy,   is   found   to   be   less   sensitive   to   underexposure.   

  

  

  

  

Figure  9  Impact  of  image  exposure  levels  on  segmentation  quality  of  5  pipelines.  (A)  examples  of  partial                    
over  and  underexposure.  In  (B)  the  VJI  values  for  over  and  under-exposure  are  plotted  together  with  the                   
original  VJI  values  for  unmodified  stacks.  Similarly  in  (C)  and  (D)  the  rates  of  over  and  under-segmentation                   
are   plotted   for   the   impacts   of   over   and   underexposure   alongside   those   for   the   unmodified   stacks.     
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Figure  10  (A)  Sample  results  from  the  five  pipelines  under  the  impact  of  image  over-exposure  (B)  Results                   
from   the   five   pipelines   under   the   impact   of   partial   underexposure   
  
  

In  conclusion,  overall  for  the  Plantseg,  Unet+Watershed  and  Cellpose  (or  the  Unet  based)  pipelines  the                 

effect  of  image  intensity  variations  appears  to  be  much  stronger  than  image  noise  or  blur  effects.  MARS*  and                    

MaskRCNN  on  the  other  hand  were  relatively  stable.  Plantseg  nevertheless  retains  a  high  accuracy  under                 

most  of  the  conditions.  MARS*  out  of  all  the  pipelines  is  found  to  be  the  most  stable  under  the  effect  of                       

image   artefacts,   although   it   leads   to   increased   over-segmentation   in   partially   underexposed   samples.     

3D   visualization   of   segmentation   quality     
  

At  present,  visualization  and  exploration  of  3D  image  data  is  possible  by  software  packages  such  as  ImageJ,                   

Paraview  or  MorphographX   (Barbier  de  Reuille  et  al.,  2015) .  However,  only  a  few  tools  allow  users  to  project                    

any  extrinsic  property  over  an  image  and  to  interact  with  a  3D  image  dataset  at  cellular  resolution.  One  such                     

platform  is  Morphonet   (Leggio  et  al.,  2019)  (see  Appendix  2)  which  is  an  open  source  and  web-based                   

platform  for  interactive  visualization  of  3D  morphodynamic  datasets  by  converting  image  datasets  (3D               
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stacks)  into  corresponding  3D  meshes.  So  far,  Morphonet  has  been  used  to  project  a  variety  of  genetic  and                    

morphological  information  such  as  gene  expression  patterns,  cell  growth  rates  and  anisotropy  values  on                

plant   and   animal   tissue   images.     

In  this  work,  we  have  developed  a  MophoNet  based  method  for  interactive  3D  visualization  of  segmentation                  

quality  measures,  by  projecting  VJI  values  on  3D  meshes  created  from  3D  confocal  images  (Figure  11).  The                   

3D  meshes  were  created  by  the  marching  cubes  algorithm   (Feltell  &  Bai,  2010)  and  uploaded  on  MorphoNet.                   

The  VJI  values  for  the  image  were  computed  and  uploaded  as  a  quantitative  property  of  each  individual  3D                    

cell  of  the  image  for  each  segmentation  pipeline.  The  VJI  values  can  then  be  viewed  using  colormaps  on  the                     

Morphonet   browser.   

  

The  steps  of  the  Morphonet  based  visualization  pipeline  are  provided  as  open  resources  in  the  SegCompare                  

Gitlab  repository  (described  in  Appendix  1)  so  that  users  can  upload  their  own  segmentation  results  on  our                   

datasets  from  any  segmentation  method  or  pipeline  and  benchmark  study  their  accuracy  characteristics.  The                

only  requirement  is  that  these  segmentations  should  be  16bit  labelled  .tif  files  and  must  have  their  ground                   

truth  segmentations  for  evaluation.  With  segmented  and  ground  truth  .tif  stacks,  the  steps  for  Morphonet                 

based  segmentation  quality  visualization  includes  (Figure  11):  a)  estimation  of  cell-by-cell  VJI  and  converting                

this  information  to  Morphonet  compatible  format  (b)  mesh  calculation  from  the  ground  truth  segmented                

image  and  converting  it  to  Morphonet  compatible  .obj  format  and  finally  (c)  logging  in  to  Morphonet,  creating                   

a  dataset  and  uploading  the  mesh  and  VJI  information.  All  these  steps  are  documented  and  implemented  in                   

an   easy   to   use   Python   notebook   as   described   in   Appendix   1   and   3.   

  

The  benefits  of  the  Morphonet  based  visualization  is  that  a  user  can:  a)  check  the  VJI  value  for  each  cell  by                       

clicking  on  it  b)  impose  a  color  mapping  of  the  Jaccard  index  values  so  that  users  can  at  a  glance  observe                       

the  overall  distribution  of  the  VJI  values  on  the  cells  of  the  3D  stack  (Figure  12)  as  well  as  locate  cell  regions                        

where  poor  Jaccard  values  are  found  or  concentrated  c)  interact  with  segmented  data  in  3D,  e.g  rotate  360                    

degrees  or  zoom  into  cells  or  slice  through  the  segmented  data  in  XYZ  directions  and  inspect  segmentation                   

quality  in  any  inner  cell  layers  d)  requires  no  special  software  or  hardware  installation.  Also  data  uploaded  on                    

Morphonet   can   be   shared   with   multiple   users   who   can   directly   access   it   on   the   Morphonet   platform.     

Examples  of  viewing  segmentation  quality  on  Morphonet  is  illustrated  in  Figure  12  where  mesh  belonging  to                  

a  test  stack  is  uploaded  on  Morphonet  and  the  VJI  values  for  all  the  segmentation  pipelines  are  projected  on                     

it   individually   to   observe   the   cell-by-cell   variation   in   segmentation   quality.   

  

Sample  segmentation  accuracy  data  and  3D  meshes  in  Morphonet  compatible  format  are  provided  in  our                 

repository   :     https://figshare.com/projects/3D_segmentation_and_evaluation/101120   

Sample  videos  demonstrating  various  aspects  of  the  3D  visualization  process  on  Morphonet  may  also  be                 

found   under   “Videos”   in   our   repository   described   in   Appendix   3 . :     

https://doi.org/10.6084/m9.figshare.14686872.v1     

  

16   

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 10, 2021. ; https://doi.org/10.1101/2021.06.09.447748doi: bioRxiv preprint 

https://sciwheel.com/work/citation?ids=10390771&pre=&suf=&sa=0
https://figshare.com/projects/3D_segmentation_and_evaluation/101120
https://doi.org/10.6084/m9.figshare.14686872.v1
https://doi.org/10.1101/2021.06.09.447748
http://creativecommons.org/licenses/by-nc-nd/4.0/


  
Figure   11     Process   to   view   segmentation   quality   in   3D   on   Morphonet.     
  

  
Figure  12.   Segmentation  quality  results  (VJI  values)  for  a  test  stack  (TS2-26h)  from  5  pipelines  displayed  on                   
Morphonet.  Users  can  slice  through  each  3D  stack  in  XYZ  directions  and  check  the  property  (here  VJI                   
values)  for  each  cell  in  the  interior  layers  of  the  tissue  structure.  For  example,  for  each  pipeline  in  the  above                      
figure  the  left  image  shows  the  full  3D  stack  and  the  right  image  shows  the  cross  section  of  the  same  stack                       
after  slicing  50%  in  the  Z  direction.  VJI  values  are  projected  as  a  “property”  or  colormap  on  the  cells.  In  this                       
figure  a  “jet”  colormap  is  used  where  red  represents  high  and  blue  represents  low  VJI  values  as  shown  in  the                      
color   bars   alongside.     

Discussion     

In  this  study  we  have  analysed  4  deep  learning  segmentation  pipelines  and  a  non-deep  learning  one.  Initially                   

it  was  difficult  to  predict  the  relative  performance  of  the  individual  pipelines,  because  they  were  applied  on                   

diverse  datasets  and  used  different  evaluation  metrics.  Most  common  evaluation  strategies  consist  of               

estimating  simple  numerical  metric  values,  which  also  vary  widely  between  the  methods.  For  example  in  the                  

Plantseg  original  paper   (Wolny  et  al.,  2020) ,  the  variation  of  information  metric  is  used,  for  the  original                   
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Unet+WS  paper,  the  aggregated  Jaccard  metric  is  used,  whereas  for  Cellpose   (Stringer  et  al.,  n.d.)  an                  

average  precision  metric  is  used.  Also,  besides  the  conventional  Jaccard  Index,  the  aggregated  Jaccard                

index  metric  (AJI)  is  used  in  papers  like   (Eschweiler  et  al.,  2019)  and   (Kumar  et  al.,  2017) ,  in  which  the  AJI                       

not  only  estimates  the  overlap  of  the  true  positives  but  also  accounts  for  false  positives  and  false  negatives                    

present  in  the  segmentations.  The  numerical  results  from  these  metrics  are  difficult  to  compare  since  they                  

are  based  on  different  concepts.  Another  problem  is  that  these  estimates  do  not  provide  a  detailed  view                   

about  the  types  of  segmentation  errors  present  in  the  segmentation  results  or  how  the  errors  are  spatially                   

distributed.  Therefore,  we  have  provided  full  details  and  coding  implementations  of  the  metrics  used  in  this                  

study  so  that  they  can  be  re-used  by  others.  In  addition  to  the  VJI  metric  we  evaluated  the  segmentations  by                      

measuring  the  rates  of  over-  and  under-segmentations  which  indicates  the  strengths  and  weaknesses  of                

specific  segmentation  procedures.  This  spatial  distribution  of  segmentation  quality  was  further  addressed              

through  a  layerwise  evaluation  in  this  paper.  The  range  of  metrics  presented  here  provided  an  exhaustive                  

analysis  of  the  type  and  magnitude  of  the  errors  as  well  as  their  spatial  distributions  produced.  Each  of  the                     

metrics  gives  its  own  specific  information  which  finally  allowed  us  to  define  the  advantages  and  shortcomings                  
of   each   segmentation   pipeline.     

The  MorphoNet  based  interactive  evaluation  is  a  fast  and  efficient  way  to  visualize  segmentation  quality                 

superposed  on  3D  representations.  It  comprises  3  steps  -  calculation  of  cell  by  cell  VJI  values  for  a  pair  of                      

stacks,  creating  a  3D  mesh  and  uploading  these  on  Morphonet  using  their  Python  API  (Appendix  2).  All                   

these  steps  are  covered  in  two  Python  notebooks  provided  in  the  SegCompare  Gitlab  repository  (Appendix                 

1).  With  this  visualization,  users  can  navigate  through  3D  objects  in  an  image  and  study  the  segmentation                   

quality  for  different  3D  sections  by  slicing  through  the  image  data  (converted  to  3D  meshes).  Since  the                   

Morphonet  visualization  is  browser  based,  it  does  not  require  any  software  installation  or  special  hardware                 

for  3D  data  visualization.  This  technique  may  therefore  be  added  as  a  final  step  to  any  segmentation                   
pipeline-   deep   learning   or   non   deep   learning,   for   a   one-step   analysis   of   the   3D   segmentation   performance.   

We  also  tried  to  evaluate  how  much  better  the  deep  learning  algorithms  performed  compared  to  the                  

non-deep  learning  algorithms  which  is  a  recurrent  question  in  deep  learning  and  computer  vision  research.                 

Results  of  PlantSeg,  the  best  performing  deep  learning  pipeline  of  those  tested  here,  were  matched  by  those                   

of  the  non-deep  learning  MARS  algorithm.  However,  the  issue  with  MARS  is  that  getting  optimal  results  is                   

time  and  effort  consuming  since  re-tuning  is  necessary  for  each  dataset  and  tissue  image.  Without  tuning,                  

the  MARS  accuracy  may  degrade  significantly  over  a  dataset  as  observed  from  our  optimized  (MARS*)and                 

non-optimized  MARS  results.  By  contrast,  deep  learning  models,  especially  PlantSeg,  once  trained,              

performed  well  throughout.  A  comparison  of  performance  of  the  pipelines  on  a  completely  different  dataset                 

( Phalusia  mamaliata  embryo  3D  images  captured  using  light  sheet  microscopy )  are  presented  in  Appendix  5                 

which  shows  that  Plantseg  produces  high  accuracy  results   without  retraining  on  other  tissues  as  well.                 

Results  of  Plantseg  and  MARS  optimised  for  each  Phallusia  stack  (called  here  MARS* PM )  are  found  to  be                   
best   for   the   embryo   images   closely   followed   by   the   Unet+WS   pipeline.   

The  quantitative  impact  of  image  artefacts  on  the  accuracies  of  segmentation  pipelines  are  not  always                 

analysed  in  literature.  This  is  why  we  dedicated  part  of  our  study  to  estimate  the  impact  of  image  artefacts                     

like  blur,  over  and  under  exposure  and  3  levels  of  Gaussian  noise  on  the  VJI  values  and  rates  of  over  and                       

under-segmentation  of  the  5  segmentation  pipelines.  The  size  of  our  test  dataset  therefore  consisted  of  a                  
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total  of  60  3D  stacks  with  10  original  and  50  synthetically  modified  ones.  In  addition,  completely  unseen  3D                    
images   from   plant   and   animal   datasets   were   also   segmented   using   our   pipelines   as   described   in   Appendix   5.     

Several  features  regarding  deep  learning  based  segmentation  pipelines  were  observed  during  their  testing  in                

this  study.  Although  2D  segmentation  pipelines  may  be  adapted  to  perform  3D  segmentations  (e.g.  as  done                  

in  Cellpose  and  MRCNN+WS),  the  end  to  end  straight  3D  segmentation  pipelines  (such  as  Plantseg,                 

Unet+WS  pipelines)  achieved  higher  accuracies.  This  trend  is  observed  in  the  segmentation  accuracy  results                

of  the  pipelines  for  10  original  stacks  as  well  as  with  the  stacks  having  artefacts.  We  did,  however,  also                     

observe  a  difference  in  performance  between  the  two  end-to-end  3D  pipelines  (Plantseg  and  3DUnet+WS). ,                

Plantseg  provides  two  semantic  output  classes  (background  and  boundaries)  while  3DUnet+WS  produces              

three  classes  (background,  boundary  and  cell  interiors).  For  instance  segmentation,  Plantseg  relies  on  graph                

partitioning  while  Unet_WS  uses  watershed.  Thus,  the  question  arises  as  to  whether  the  accuracy  is  affected                  
by   the   deep   learning   architecture   itself   or   by   the   way   the   full   segmentation   pipeline   is   constructed.     

Do  deep  learning  networks  have  a  performance  limit  or  can  they  be  further  improved?  New  artificial                  

intelligence  concepts  such  as  Single  Shot  MultiBox  Detectors  (SSD)  or  context  encoder  networks   (Yi,  Wu,                 

Hoeppner,  &  Metaxas,  2018)  are  currently  emerging.  At  this  stage  they  still  need  further  development  to                  

i mprove  their  technical  capabilities  for  3D  analysis.  This  clearly  illustrates,  however,  the  need  for  reliable                 
approaches   to   quantitatively   test   their   accuracy   and   understand   their   qualities   and   characteristics.   

Data   and   code   availability   

All  the  data  and  coding  implementations  from  this  work  are  available  as  open  resources.  The  methods  for                   

reproduction  of  the  segmentation  pipelines  and  the  segmentation  evaluation  techniques  are  documented  in               

the  Gitlab  repository  named  SegCompare  ( https://mosaic.gitlabpages.inria.fr/publications/seg_compare )        

along  with  relevant  resources  in  Jupyter  notebooks.  The  3D  confocal  training  and  test  datasets  used  in  this                   
work   are   provided   in   open   data   repositories.   These    are   described   in   detail   in   Appendix   1   and   3.   

Materials   and   Methods   

Training   data   
 
The  training  data  for  all  the  deep  learning  algorithms  comprise  3D  confocal  image  stacks  and  their                  

corresponding   ground   truth   segmentations.   The   structure   of   a   3D   confocal   image   is   shown   in   Figure   13.   

  

Figure  13   A  confocal  image  is  made  up  by  scanning  through  each  point  on  a  2D  plane  of  an  object.  The  3D                        
confocal  image  is  made  up  of  such  2D  frames  stacked  along  the  Z  axis.  Using  the  2D  Z  slices  a  full  3D  view                         
of   the   object   can   be   reconstructed.   
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The  source  of  the  training  data  is  Arabidopsis  thaliana  shoot  apical  meristems  (SAM)  which  is  a  multicellular                   

tissue  where  cells  at  the  surface  grow  radially  outward  from  the  central  to  the  peripheral  zone.  This  data  has                     

been  previously  used  and  published  in (Willis  et  al.,  2016) .  The  SAM  3D  stacks  were  captured  using  a                    

time-lapse  confocal  microscope  for  every  4  h  for  0  to∼80  h  and  were  passed  through  a  pipeline  of  image                     

correction   steps.   The   mean   size   of   the   stacks   is   150x512x512   pixels   (zyx   dimensions).     

      
     

Figure   14     (A)   3D   projection   of   two   training   images   and   (B)   corresponding   ground   truth   segmentations     
(C   )    Lateral   (XY)   and   axial   slices   (XZ,   YZ)   of   a   sample   confocal   training   image   

  

For  each  stack,  slice  mis-alignments  due  to  vibrations  or  microscope  stage  movements  were  corrected  via                 

translation  transformations  using  the  StackReg  module  of  ImageJ.  Also,  z-slices  with  horizontal  shifts  were                

replaced  with  the  closest  z-slice  with  no  shifts.  Imaging  errors  during  vertical  movement  of  the  plant  due  to                    

growth  were  also  compensated  for  by  estimating  stretching  constants  for  each  stack  by  comparing  rapidly                 

acquired  low-z-resolution  stacks  with  slowly  acquired  high-z-resolution  stacks  [   (Willis  et  al.,  2016) ,S1,Table               

10].   In   addition,   Gaussian   and   an   alternative-sequential   filtering   was   done   for   noise   removal.   
  

The  ground  truth  data  for  training  consists  of  the  3D  segmentations  of  the  above  image  stacks  done  by  3D                     

watershed  followed  by  extensive  manual  corrections  on  a  slice  by  slice  basis.  For  corrections  of                 

segmentation  errors,  cell  boundaries  were  estimated  from  the  segmented  images  superposed  on  the  original                

images  for  visual  inspection.  For  errors  due  to  over  or  under-segmentation  or  missing  cells,  the  noise  filter                   

and  watershed  parameters  were  adjusted  until  satisfactory  segmentations  were  obtained  for  peripheral  as               

well  as  central  zones  of  the  SAM  images.  In  the  ground  truth  images,  voxels  which  belong  to  the  same  cell,                      

have   the   same   label.     

Test   dataset   
  

For  testing  the  segmentation  algorithms,  a  dataset  of  ten  3D  confocal  stacks  was  used  (described  in   (Refahi                   

et  al.,  2021)  ).  First  6  stacks  (0h,  24h,  32h,  72h,  120h,  132h  timepoints)  are  from  one  meristem  (FM1  in                      
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Refahi  et  al.,  2021)  while  the  time  points  26h,  44h,  56h  and  69h  are  from  another  (FM6).  Images  of  the                      

stacks  are  shown  in  Figure  4.  These  images  are  from  the  floral  meristem  of  Arabidopsis  from  initiation  to                    

stage  4.  Corrections  for  alignment  and  vertical  movements  are  described  in  Refahi  et  al.  (2021).  Expert                  

ground   truth   segmentations   of   these   test   stacks   were   also   available   to   perform   the   numerical   comparisons.     

Training   and   segmentation   details   for   deep   learning   pipelines   
  

The  four  DL  algorithms  were  first  trained  using  the  common  meristem  dataset.  The  details  on  how  these                   

pipeline s  could  be  reproduced  are  described  in  the  Gitlab  repository  i(Appendix  1).  For  training  the  deep                  

learning  networks  and  testing,  a  CUDA  enabled  NVIDIA  Quadro  P5000  GPU  was  used  with  a  Intel  Xeon  3                    

GHz  processor.  Python  3.x  is  the  default  programming  language  for  training/testing  all  the  segmentation                

pipelines   and   implementing   the   evaluation   metrics.   

  

Plantseg:   The  residual  3D  UNet  as  described  in   (Wolny  et  al.,  2020)  was  used  for  training  on  our  data.  The                      

Residual  3D  U-Net  is  a  variant  of  the  3D  U-Net  and  comprises  a  contracting  encoder  and  an  expanding                    

decoder  part  but  uses  residual  skip  connections  in  each  convolutional  block  in  the  U-Net.  For  final                  

segmentation  of  our  test  data,  all  three  of  the  graph  partitioning  post-processing  strategies  (GASP,  Mutex,                 

Multicut)  were  found  to  provide  similar  results,  so  GASP  was  used  to  obtain  all  the  final  segmentations  from                    

Plantseg   that   are   evaluated   in   this   work   (Figure   15).     

  

Figure   15    Plantseg   workflow:   (A)   Input   image   (B)   Boundary   prediction   (C)   Final   segmentation   
 
Unet+Watershed:   The  3D  UNet  module  of  the  pipeline  was  trained  using  the  custom  training  dataset                 

described  above.  The  3D  Unet  predicts  3  classes  of  output  images  from  an  input  3D  confocal  stack.  These                    

classes  are:  cell  centroids,  cell  membranes  and  background  maps  (Fig.  16(b-d)).  Dimensions  of  these  3                 

output   images   are   the   same   as   that   of   the   input   stack.   

  

Using  these  3  predicted  image  classes  a  seed  image  is  obtained  by  first  thresholding  the  centroid  maps  (0.8                    

times  the  max  intensity),  followed  by  its  morphological  opening  (circular  kernel,  size  5x5x5)  and  subtracting                 

the  membrane  and  background  maps  from  the  resultant  image.  An  example  seed  image  is  shown  in  Figure                   

16(F)   and   the   corresponding   seeded   watershed   segmentation   output   is   shown   in   Figure   16G.     
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Figure  16   3D  Unet+  WS  workflow   (A)  An  input  confocal  image  (xy  slice)  (B)  Class  0  prediction-  centroids                    
(C)  Class  1  prediction-  background  (D)  Class  2  output-  cell  membranes.  (E)  An  input  confocal  image  (xy                   
slice)   (F)   Seed   image   slice    (G)   Final   segmented   slice   using   watershed   on   (F)   
 
Cellpose:   The  Cellpose  pipeline  uses  a  2D  Unet  to  predict  horizontal  (X)  and  vertical  (Y)  flows  along  with  a                     

pixel  probability  map  for  each  2D  test  image.  Using  the  XY  intensity  gradients  or  vector  fields,  pixels                   

belonging  to  each  object  to  be  segmented  can  be  aggregated  around  the  centroid  region  for  that  object.  For                    

the  final  segmentation  in  3D  of  the  test  sets,  Cellpose  uses  the  2D  trained  model  to  predict  the  horizontal                     

and  vertical  gradients  for  each  of  the  XY,  XZ  and  YZ  sections  of  a  3D  volume.  These  six  predicted  gradients                      

are   then   averaged   pairwise   to   obtain   the   final   XYZ   vector   map   in   3D.     

The  2DUnet  module  was  trained  using  2D  slices  (512x512  pixels)  from  the  custom  training  dataset  along                  

with  their  corresponding  2D  masks.  The  tunable  parameters  of  the  method  such  as  flow_threshold,  cell                 

probability   threshold   and   cell   diameter   were   set   to   the   default   values   of   0.4,   0.0   and   30   pixels   respectively.     

  

Mask  RCNN :   Mask  RCNN  uses  a  backbone  network  such  as  Resnet-50  or  Resnet-101  to  extract  image                  

features  followed  by  generating  region  proposals  of  objects  (to  be  segmented)  using  a  region  proposal                 

network  (RPN).  These  region  proposals  are  refined  and  fed  to  a  fully  convolutional  classifier  to  identify  object                   

classes.  The  final  output  of  MRCNN  includes  1)  boundary  box  for  each  object  instance  2)  pixel  level  mask  for                     

each   object   identified   3)    class   predictions   for   each   object   instance   4)   confidence   score   of   each   prediction.   

  

In  the  MRCNN  with  watershed  pipeline,  using  a  2D  trained  Mask-R  CNN  model  the  cell  regions  in  each  Z                     

slice  of  a  3D  volume  are  predicted  (Fig.  17  C).  The  predicted  Z  slices  with  the  identified  cell  regions  are                      

stacked  together  to  produce  a  3D  binary  seed  image  which  is  then  labelled  using  a  26-neighbor  connected                   

components  labelling  method  .  The  labelled  seed  image  is  then  used  for  watershed  based  post-processing                 

to  obtain  the  final  3D  instance  segmentation.  The  Mask-RCNN  algorithm  with  a  Resnet  101  backbone                 

network  was  trained  using  2D  images  along  with  instance  masks  for  each  object  (to  be  segmented)  in  the                    

image.  Using  Resnet  50  as  a  backbone  network  did  not  give  satisfactory  results.  Training  images  (2D  slices)                   

from  the  custom  training  dataset  were  used  and  the  instance  masks  were  generated  from  the  corresponding                  
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ground  truth  2D  masks  (each  labeled  cell  region  forms  an  instance  mask)  as  shown  in  Figure  17(A).  Both  the                     

raw   image   and   the   set   of   instance   masks   for   each   image   are   then   used   for   training   the   MaskRCNN   network.   

  

Figure  17   MRCNN+Watershed  workflow:  (A)  Creation  of  instance  masks  for  training  MRCNN  (B)  Example                
confocal  slice  (C)  2D  predictions  by  MRCNN  (D)  Binary  seed  image  created  from  identified  cell  regions  in                   
(C).(E)   Same   slice   after   3D   segmentation   using   watershed   on   the   binary   seed   image.   

  

 
Table   2:    Parameters   to   tune   for   each   segmentation   pipeline   

Evaluation   metrics   
  

Volume  averaged  Jaccard  index.   The  Jaccard  index  is  a  metric  which  estimates  the  similarity  between  two                  

regions  of  labelled  images,  G  and  P,  in  terms  of  the  intersection  between  them  divided  by  their  union   (Taha  &                      

Hanbury,   2015) .   Let   us   denote   G i    and   P j    these   two   overlapping   regions,    their   Jaccard   index   is   defined   as:   

  
                                                                                                                                         (1)   
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Pipelines   Parameters   to   tune   

Plantseg   Pre-processing:   Interpolation   (upto   degree   2),   Gaussian   or   median   filter   
Post-processing:   CNN   predictions   threshold,   watershed   seeds   sigma,  
watershed   boundary   sigma,   superpixels   minimum   size   (voxels),   cell   
minimum   size   (voxels)   

Unet+Watershed     Pre-processing:   None   
Post-processing:   Morphological   opening/erosion   kernel   sizes   for   estimating   
watershed   seeds   from   Unet   outputs.   

Cellpose   Pre-processing:   None   
Post-processing:   Cell   diameter,   cell   probability   threshold,   flow   error   
threshold   

MRCNN+   Watershed     Pre-processing:   None   
Post-processing:   Morphological   opening/erosion   kernel   sizes   for   estimating   
watershed   seeds   from   MRCNN   outputs.   

MARS   h-minima,   Gaussian   smoothing   sigma   for   image   and   seeds   
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where  |X|  denotes  the  volume  of  region  X.  We  also  define  an  asymmetric  inclusion  index  metric  between  two                    
regions   defined   as:   

  
(2)   

  
  

Given  a  set  of  labelled  regions  G i  in  the  image  G,  we  associate  with  each  cell  region  index  i  a  cell  region                        
index    A ( i )   =    j    in   the   image   P   containing   the   predicted   segmentations   P j    ,   using   the   Jaccard   index:   
  

  (3)     
  

Note  that  if  the  cell  has  no  intersection  with  any  cell  of  P,  we  set  .  Similarly,  using  the  asymmetric       Gi           (i)A = 0      

index   each   region     of   the   image   G   is   associated   with   one   region   index   in   the   image   P   according   to:  Gi (i)B = j  
    

(4)   
   

Reciprocally,   each   region   P j     of   the   image   P   is   associated   with   one   region   index     in   the   image   G:  (j)B′ = i  
  

  (5)   
    

We   then   define   an   average   metric   between   two   images   P   and   G,   called   Volume   averaged   Jaccard,   that   
assesses   how   well   the   regions   of   two   images   overlap   Index   (VJI):   

    
    

  
  (6)   

  

  

where  G i  and  P j  represent  regions  in  respectively  images  G  and  P  corresponding  to  either  ground  truth  or                    

predicted  labeled  cells.  In  this  equation,  it  is  assumed  that            for  any  i.  Background  regions  are        

not  included  in  this  estimation  and  in  both  the  segmented  and  ground  truth  images,  the  background  label  is                    

set   as   1.   

  

Rates  of  over  and  under  segmentation  to  evaluate  the  quality  of  3D  segmentation  methods.   The                 

Volume  averaged  Jaccard  index  is  a  measure  that  quantifies  the  degree  of  overlap  between  two                 

segmentations  although  it  does  not  indicate  whether  the  cell  segmentation  errors  are  due  to  over  or                  

under-segmentation.  In  order  to  detect  these  different  type  of  errors,  we  use  the  asymmetric  index  (2)  to                   

automatically   determine   a   region-to-region   correspondence   map     (Michelin,   2016) .     

  

Using  the  previous  inclusion  index  metrics,  a  correspondence  map  is  obtained  by  :  1)  making                 

region-to-region  association  from  the  segmentation  G  to  segmentation  P  then  2)  repeating  the  procedure  in                 

the  opposite  direction  ie.  from  image  P  to  image  G  before  3)  building  the  resulting  reciprocal  associations                   

between   sets   of   regions.     
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The  two  first  steps  consist  of  computing  two  values   and   for  each  region  index   of  the  first  image           (i)B   (j)B′      i      

and  each  region  index   of  the  second  image  using  (4)  and  (5)  respectively.  Using  the  previous  computed      j               

indexes,    set   of   pair   of   associated   regions   index   between   image   P   and   G   can   be   defined   by:   

  

  (7)   

Let  us  define  the  two  subsets        and   corresponding  to  the     

region  indexes   associated  with  a  given  region  index   and  the  region  indexes   associated  with  a  region    j        i      i      

index     respectively.   We   then   consider   the   different   cases   of   resulting   reciprocal   mapping:  j  

  

● one-to-one  (exact  match  between  and  )      Gi  P j  if   

.   

● one-to-many  (over-segmentation  of  )  if     Gi   .   

● many-to-one  (under-segmentation  of  )  if     Gi   .   

● many-to-many   otherwise   

It   has   to   be   noted   that   the   correspondence   involving   the   image   background   is   treated   separately,   ie.   without     

considering  a  reciprocal  association:  the  regions  of  segmentation  G  that  maximize  their  inclusion  with  the                 

background  of  the  image  P  are  associated  and  vice  versa.  From  the  resulting  reciprocal  mapping,  a  global                   

rate  of  over  and  under  segmentation  can  be  calculated  by  counting  the  number  of  voxels  of  the  over  or  under                      

correspondence   regions   in   the   image   P.     

Finally,  a  tolerance  on  the  region  border  position  can  be  introduced  by  considering  an  eroded  region   in                   G i
r  
    

and  reciprocally,  an  eroded  region   in   where   is  the  radius  of  a  sphere  (structuring  (G , )I i
r P j        P r

j   (P , )I r
j Gi     r         

element).  The  higher  the  parameter,  the  more  one-to-one  correspondences  will  be  found  by  the  method.  In                  

the   present   study,   the   parameter     was   fixed   to   2   for   all   the   comparisons.  r  

    
Figure  18  Segmentation  quality  metric   (Michelin,  2016)  applied  to  outputs  from  5  segmentation  pipelines                
and  types  of  errors  displayed  as  a  colormap  (on  a  common  Z  slice).  The  green  cell  regions  represent  regions                     
of  complete  overlap  between  ground  truth  and  predicted  segmentations  (i.e  regions  of  fully  correct                
segmentation).  Red  regions  represent  over  and  blue  regions  represent  under-segmentation  errors.  White              
regions  are  regions  where  cells  were  mistaken  for  background.  The  benefit  of  this  metric  is  that  it  helps  to                     
estimate   the   rate   of   over   and   under-segmentations   as   a   volumetric   statistics   and   as   spatial   distributions.     
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Simulation   of   image   artefacts   
  

T he  effects  of  noise,  blur  and  intensity  variations  are  simulated  on  the  test  set  of  10  confocal  images  to                     

evaluate  their  impact  on  the  segmentation  quality  of  the  pipelines.  The  procedure  for  simulation  of  these                  

artefacts   are   described   below.     

  

Image  noise: ,  The  Gaussian  noise  was  added  to  the  images.  The  noise  variable  z  is  represented  as  the                    

probability   density   function   (PDF)   P(z)   and   given   by:   

                                                                         (5)   

where  µ  is  the  mean  and  σ  is  the  standard  deviation  (or  the  square  of  the  variance).   The  Gaussian                     

distributions  for  different  variance  values  are  plotted  in  Figure  17A.  Gaussian  noise  was  generated  with                 
different   values   of   noise   variance   ([0.00,   0.04,   0.08])   and   added   to   an   image   as   shown   in   Figure   7A.   

  
Image  blur:   To  simulate  motion  blur,  the  test  confocal  image  i(x,y)  is  convolved  with  a  horizontal  motion  blur                    

kernel  w(dx,  dy)  of  size  4x4  to  get  the  final  blurred  image  b(x,y)  .In  frequency  domain  this  is  given  by  the                       

following   relation:   

     (6)   

Image  intensity  variations:   Partially  bright  regions  in  microscopy  images  may  be  caused  by               

inhomogeneous  illumination  sources   and  shadow  effects  are  mostly  caused  by  presence  of  light  absorbing                

objects  or  obstructions (Cheng  &  Kriete,  1990;  Ricci  et  al.,  2020) .  To  emulate  the  effect  of  intensity  variations                   

within  an  image,  partial  overexposure  (Figure  19A)  and  random  shadow  regions  (Figure  19B)  are  imposed                 

(individually)  on  the  test  images.  In  order  to  impose  the  partial  overexposure  effect,  for  each  Z  slice  of  a                     

given  3D  test  stack,  a  brightness  mask  is  created,  which  is  a  2D  array  having  the  same  size  as  the  x,  y                        

dimensions  of  the  3D  stack.  This  2D  brightness  mask  array  is  filled  with  gray  integer  values  of  255  for  the                      

left  half  of  the  mask  array  (Figure  19A).  This  brightness  mask  is  then  numerically  added  to  each  Z  slice                     

array  with  30%  transparency  (using  OpenCV  function  cv2.addweighted)  to  obtain  the  partially  brightened               

image   array   as   shown   in   Figure   19A.     

For  creating  the  randomly  shadowed  or  under-exposed  regions,  a  shadow  mask  is  created  with  random  dark                  

geometrical  patch  areas  for  each  2D  Z  slice  of  a  3D  test  stack.  The  dark  patches  are  created  by  reducing                      

image  pixel  intensities  within  the  patch  areas  by  a  factor  of  30%  of  the  original  intensity  values.  Figure  19  A                      

and  B  shows  the  intensity  profiles  within  the  yellow  boundary  boxes  impacted  due  to  the  over  and                   

under-exposure  effects  respectively.  Within  the  over-exposed  regions,  image  intensities  are  higher  than              

original   values   and   vice-versa   for   under-exposed   regions.   
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Figure  19  Modification  of  image  intensity  (inside  selected  area  within  the  yellow  box)  (a)  image  intensity                  
transition   under   partial   overexposure   (b)   image   intensity   variations   due   to   imposition   of   underexposure.   
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Supplementary   information   

Appendix   1   

Gitlab   repository   SegCompare   
  

SegCompare  is  an  open  repository  of  resources  to  train,  test  and  evaluate  multiple  deep  learning  or                  
non-deep  learning  algorithms  (that  are  described  in  this  article)  for  instance  segmentation  of  3D  confocal                 
images  and  compare  their  segmentation  quality  both  in  a  quantitative  and  visual  manner.  All  the                 
segmentation  pipelines  and  evaluation  methods  in  the  repository  are  implemented  using  Python              
programming   language.   SegCompare   resources   are   user   friendly   and   contain:   

a)  Steps  for  replicating  deep  learning  and  non-deep  learning  segmentation  pipelines  on  custom  user  data  .                  
This  includes  steps  for  retraining  the  deep  learning  models  used  in  this  article  as  well  as  using  them  for                     
directly   segmenting   user   data.     

b)  Methods  for  quantitative  evaluation  of  segmentation  quality  for  a  given  segmented  image  and  its  ground                  
truth   image     

c)  Methods  for  3D  visualization  of  segmentation  quality  on  the  Morphological  browser  interface  named                
Morphonet.   

Link   to   the   Gitlab   page: https://mosaic.gitlabpages.inria.fr/publications/seg_compare   
  

  
Figure  A1.1   The  SegCompare  repository  on  Gitlab  hosting  the  resources  for  training  and  evaluation  of                 
segmentation   pipelines   described   in   this   paper   
  

The   utilities   of   this   repository   are   the   following:     
 
For  users  wanting  to  segment  their  data:  They  can  directly  use  one  of  the  trained  models  and  pipelines                    
described   here   to   segment   their   data.     
  

For  users  designing  a  new  3D  segmentation  pipeline:  They  can  use  the  fully  annotated  image  datasets                  
and   evaluation   methods   to   estimate   the   quality   of   their   method.     
  

For  users  having  segmented  data  and  expert  ground  truth:  They  can  use  this  repository  to  evaluate  the                   
quality   of   their   segmentations   with   quantitative   metrics   and   3D   visualizations.   
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Figure   A1.2    Contents   of   the   SegCompare   repository   
  

The   contents   of   SegCompare   are   as   follows:   
  

Datasets:  A  description  of  the  confocal  image  datasets  used  for  training  and  testing  the  segmentation                 
pipelines   described   here.   The   links   to   the   actual   images   are   provided   in   Appendix   3.   

  
Installation  instructions:  Each  pipeline  has  its  own  library  dependencies  and  therefore  needs  dedicated               
environments  for  running.  For  this,  Python  environments  for  each  pipeline  may  be  set  up  using  yaml  files,                   
which  are  also  provided  in  the  SegCompare  repository.  The  installation  Instructions  section  provides  detailed                
instructions  to  install  environments  for  the  segmentation  pipelines,  evaluation  and  visualization  methods.              
After  installing  the  environments,  users  can  run  the  segmentation  pipelines  (for  training  or  testing)  or  the                  
evaluation   and   visualization   methods.   

  
Segmentation  pipelines:   Brief  descriptions  of  each  pipeline  along  with  details  of  their  pre-  and  post                 
processing  steps  are  presented  here.  Steps  for  dataset  preparation  for  training  the  pipeline  and  links  to                  
training   dataset   are   provided.   

  
Evaluation:   This  section  provides  details  of  the  segmentation  evaluation  metrics  (Volume  averaged  Jaccard               
Index,  Rates  of  over  and  under  segmentation)   and  Jupyter  (Python)  notebooks  for  implementing  them  on  a                  
pair  of  segmented  images.  For  evaluating  segmentations  a  user  must  have  a  segmented  image  and                 
corresponding  ground  truth  segmentation  (currently  .tif  format  is  supported  for  images).  Sample  segmented               
and   ground   truth   data   are   in   the   data   repository   described   in   Appendix   3.   

  
3D  Visualization:   This  section  describes  how  the  browser  based  Morphological  data  visualization  platform               
Morphonet  may  be  used  for  visualizing  segmentation  quality.  A  Jupyter  notebook  is  provided  which  contains                 
the  full  implementation  of  the  visualization  pipeline  starting  from  a  segmented  image.  For  this  visualization,                
results  from  the  Jaccarding  Index  evaluation  notebook  are  required  and  the  full  workflow  is  documented  in                  
the  repository.  Links  to  sample  meshes  and  datasets  for  uploading  to  Morphonet  are  provided  along  with                  
demo   videos    (described   in   Appendix   3).   

  
Downloads:  This  section  contains  links  to  Jupynter  notebooks  for  implementations  of  the  MARS  pipeline,                
segmentation  evaluation  metrics  and  3D  visualizations.  Sample  CSV  files  containing  Jaccard  index              
estimates  and  corresponding  mesh  files  for  uploading  to  Morphonet  are  in  the  data  repository  (see  Appendix                  
3)   .   

Appendix   2   

Morphonet   based   visualization   of   segmentation   quality   
  

To  visualize  quality  of  the  five  segmentation  pipelines  on  Morphonet,  users  can  click  the  link  below  which  will                    
directly  take  them  to  an  uploaded  dataset  with  segmentation  quality  information  from  the  5  pipelines                 
(MorphoNet   works   best   with   Chrome   or   Firefox)   :   
   https://morphonet.org/icRos2mO     
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Figure  A2.1   A  mesh  uploaded  on  Morphonet  (right  side  of  window).  Information  to  be  displayed  is  found  by                    
clicking  the  “Infos”  tab  on  top.  By  clicking  on  the  specific  info  name  under  the  “Quantitative”  section  the  small                     
panel  opens  up  on  the  right  which  can  be  used  to  select  the  colormap  (e.g  Jet).  Clicking  the  green  ✓  button                       
on  this  panel  sets  the  colormap  representing  Segmentation  Quality  information  on  the  3D  mesh.  More                 
information   on   displaying   multiple   meshes   may   be   found   in   :    https://morphonet.org/help_api     
  

At  first  only  a  3D  mesh  of  the  image  is  displayed.  Next,  to  visualize  Jaccard  Index  info  for  the  pipelines,  click                       
on  Info->  Click  on  Info  name->  Set  colormap.  This  superposes  the  VJI  values  as  color-mapped  information                  
on   the   mesh.   Multiple   meshes   and   multiple   information   may   be   uploaded   in   this   manner.   
  

To  upload  and  visualize  information  on  Morphonet,  users  need  to  create  an  account  on  Morphonet.org  by                  
clicking  the  “Signup”  option  on  the  page  or   use  the  guest  account  provided  with  this  paper.  To  use  this  guest                      
account,   users   may   login   using   :    username:    guest,    password:    guest2021.    
  

To  use  the  Morphonet  platform  for  uploading  new  data,  after  logging  in  to  Morphonet,  the  users  may  upload                    
meshes  for  multiple  time  points  and  corresponding  information  to  superpose  on  the  meshes.  For  visualizing                 
segmentation  quality  on  a  cell  by  cell  basis,  users  need  to  first  compute  the  Volume  -averaged  Jaccard  Index                    
metric  using  the  Jaccard_Index.ipynb  (may  be  found  under  Downloads  section  of  the  SegCompare               
repository),  using  as  input  a  segmented  image  and  corresponding  ground  truth  segmentation.  The  output  of                 
the  Jupyter  notebook  is  a  CSV  file  containing  Volume  averaged  Jaccard  Index  measure  for  each  cell.  This                   
CSV  file  along  with  the  ground  truth  segmented  image  may  be  used  with  the  3D_visualization.ipynb                 
notebook  (also  under  Downloads/Notebooks  in  the  SegCompare  repository  )  to  do  a  one  step  uploading  of                  
mesh  and  numerical  information  on  Morphonet.  After  running  this  notebook,  users  can  go  to  the                 
Morphonet.org  page,  navigate  to  their  dataset  to  visualize  it.  Sample  videos  demonstrating  these  operations                
maybe   found   in   our   figshare   repository   as   described   below   under   “Videos”.   

Appendix   3     

Data   and   model   repositories   

The  training  and  test  datasets  used  in  this  work  are  available  online.  The  training  dataset  of  shoot  apical                    
meristems   may   be   found   under:    https://www.repository.cam.ac.uk/handle/1810/262530     

The   test   datasets   of   floral   meristems   may   be   found   at:   
https://www.repository.cam.ac.uk/handle/1810/318119      
    
A   repository   of   materials   generated   as   part   of   this   study   may   be   found   at     
LINK:    https://figshare.com/projects/3D_segmentation_and_evaluation/101120     
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This  repository  (3D  Segmentation  and  evaluation)  contains  the  trained  models  for  each  of  the  pipelines,                 
meshes  for  uploading  to  Morphonet  and  corresponding  segmentation  accuracy  files  in  CSV  format.  The                
structure   of   this   repository   is   as   below:   
  

Trained  deep  learning  models:   The  models  trained  in  the  four  deep  learning  pipelines  are                
provided.Instructions   for   running   them   are   in   the   Gitlab   repository   (Appendix   1).   
Original  stacks  and  segmented  data:  Segmented  confocal  stacks  by  each  of  the  five  pipelines  are                 
provided  along  with  ground  truth  stacks  for  each.  Users  may  test  the  segmentation  evaluation  methods  using                  
them.   Details   of   using   the   evaluation   function   are   in   the   Gitlab   (Appendix   1).   
Meshes  for  Morphonet:   Example  meshes  that  might  be  uploaded  to  Morphonet  are  included.  Users  may                 
test  the  Morphonet  visualisation  using  these  and  the  cellwise  VJI  values  (saved  in  CSV  files).  Procedure  for                   
the   visualization   is   provided   in   Gitlab.   
Accuracy  results:   Cellwise  VJI  values  saved  in  CSV  files  are  provided  for  each  pipeline.  These  may  be                   
used   for   projection   on   Morphonet   for   3D   visualization   of   segmentation   quality.   
Videos:   Videos  (.mp4  format)  showing  examples  on  how  to  use  the  Morphonet  based  3D  visualization                 
method   on   a   sample   test   image,   videos   showing   sample   training   and   test   data.   

  

  
Figure   A3.1    Contents   of   the   data   and   model   repository   
  
  

 
Figure   A3.2    Organization   of   the   3D   segmentation   and   evaluation   repository   on   Figshare   
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Appendix    4   -   Literature   overview   
Current   research   on   deep   learning   based   instance   segmentation   techniques   

In  complement  to  the  survey  given  in  the  introduction,  we  provide  here  a  more  extensive  overview  of  the                    

existing  deep  learning  based  segmentation  methods  identifying  the  major  trends  of  research  in  this  rapidly                 

evolving  field.  The  focus  of  the  survey  is  on  methods  that  are  developed  for  instance  segmentation  of  images                    

and  papers  for  non-image  datasets  are  excluded.  We  identified  different  categories  of  pipelines,  which  have                 

been  developed  to  address  specific  challenges.  The  research  works  belonging  to  each  category  are                

discussed  below.  The  main  purpose  is  to  illustrate  the  existing  diversity,  rather  than  giving  all  the  details  of                    

the   individual   methods,   which   is   out   of   the   scope   of   this   article.  

Pipelines  for  end  to  end  3D  instance  segmentation.   As  discussed  in  the  introduction  of  the  main  text,                   

end  to  end  3D  (3D  input,  3D  output)  segmentation  pipelines  have  been  implemented  using   either  Unet,                  

residual  UNet  or  Mask  RCNN  architectures.  For  more  details  on  the  Unet  and  Residual  UNet  architectures                  

see   (Falk  et  al.,  2019)   (Zhu  et  al.,  2020)  and   (He  et  al.,  2017)  for  MaskRCNN.  Besides  the  pipelines  used                      

here  (Plantseg   (Wolny  et  al.,  2020) ,  Unet_WS   (Eschweiler  et  al.,  2019)  and  Cellpose   (Stringer  et  al.,  n.d.) ),                   

( (Jiang,  Kao,  Belteton,  Szymanski,  &  Manjunath,  2019) )  proposed  a  method  which  uses  3D  images  of  A.                  

Thaliana  and  time  lapse  images  of  leaf  epidermal  tissue  for  training  a  3D  Unet.  This  Unet  extracts  cell                    

boundaries  that  are  processed  using  3D  watershed  along  with  conditional  random  fields   ( a  prediction                

concept   which   uses   contextual   information   from   previous   labels) .     

Deep  learning  algorithms  for  2D  instance  segmentation:   Mask  RCNN  is  widely  used  for  highly  accurate                 

2D  instance  segmentation.   (Zaki  et  al.,  2020)  tested  two  deep  learning  architectures  for  2D  nucleus                

segmentation  i.e.  a  feature  pyramid  network  (FPN)  and  a  Mask  RCNN.  This  study  indicates  that  Mask                  

RCNN  gave  superior  results.   (Shu  et  al.,  2020)  used  a  modification  of  the  basic  MRCNN  to  perform                   

multi-organ  segmentation  of  human  esophageal  cancer  CT  images  and  mitigate  effects  of  fuzzy  organ                

boundaries  and  diverse  organ  shapes  in  the  images.  The  additional  features  in  the  proposed  algorithm                 

include  a  pre-background  classification  step  to  improve  boundary  predictions  and  use  of  a  custom  loss                 

function.  In   (Liu  et  al.,  2020)  a  modified  Mask  RCNN  architecture  termed  as  Panoptic  Domain  Adaptive                  

Mask   R-CNN   is   developed   to   achieve   unsupervised   segmentation   of   nuclei   from   histopathology   images.   

UNets  are  also  used  for  2D  image  segmentation.  In   (Al-Kofahi  et  al.,  2018)  a  UNet  based  module  followed                    

by  post  processing  steps  of  thresholding  and  watershed  is  used  to  predict  locations  of  the  cells  and  their                    

nuclei.  Multiple  deep  learning  architectures  based  on  UNet,  modified  UNet  and  Mask  RCNN  are  tested  for                  

2D  nuclear  image  segmentation  in   (Kromp  et  al.,  2019)  and  the  Mask  RCNN  architecture  was  found  to                   

outperform  the  UNet  based  models  in  the  2D  segmentation  task.  It  may  be  noted  that  for  evaluation   (Zaki  et                     

al.,  2020)  use  F1-score,  while   (Kromp  et  al.,  2019)  use  under/oversegmentation  and  aggregated  Jaccard                

index.     
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Deep   learning   based   segmentation    pipelines   for   specific   purposes   in   bioimaging   
 
a.  Deep  learning  for  cell  segmentation  and  tracking:   Deep  learning  pipelines  for  instance  segmentation                

coupled  with  cell  tracking  have  been  proposed  in  several  works,  such  as   (Payer,  Štern,  Feiner,  Bischof,  &                   

Urschler,  2019)  where  the  pipeline  makes  predictions  for  every  cell  instance  in  videos,  as  well  produces                  

temporally  connected  instance  segmentations.  Cell  instance  segmentation  in  calcium  imaging  videos  is              

described  in   (Kirschbaum,  Bailoni,  &  Hamprecht,  2020)  which  uses  temporal  information  to  estimate               

pixel-wise  correlation  and  shape  information  to  identify  cells  and  classify  active  and  non-active  cells.   (Scherr,                 

Löffler,  Böhland,  &  Mikut,  2020)  also  proposes  a  modified  Unet  based  model  which  can  be  used  for  tracking                    

cells  while  dealing  with  challenging  conditions  such  as  crowded  cell  regions,  poor  image  quality  and  on  data                   

with  missing  annotations.  The  method  is  tested  on  cell  images  from  mouse  muscle  stem  cells,  HeLa  cells,                   

and  images  from  developing  embryos.  Other  approaches  for  implementation  of  cell  segmentation  and               

tracking  include   (C.  Wang  et  al.,  2019)  and   (Lugagne,  Lin,  &  Dunlop,  2020) .  The  latter  uses  two  Unet                    

models  to  create  an  architecture  named  DELTA  to  first  segment  the  cells  followed  by  tracking  lineage                  

reconstruction   from   time   lapse   videos   of   E.   coli   cells   in   fluidic   medium.   

b.  Pipelines  for  addressing  sparse  annotations  and  small  training  datasets:   For   training  of  deep                

learning  based  segmentation  models,  annotated  ground  truth  data  is  essential.  However,  expert  annotation               

of  biomedical  images  (especially  3D  datasets)  is  a  highly  labour  intensive  and  time  consuming  process.  For                  

this  reason,  several  deep  learning  pipelines  have  been  developed  which  can  work  with  sparsely  annotated                 

data.  These  include  the  method  described  by   (Zhao  et  al.,  2018)  which  uses  only  a  few  fully  annotated  voxel                     

instances  to  segment  a  full  3D  stack.  In   (Guerrero-Peña,  Marrero-Fernández,  Tsang,  &  Cunha,  2019)  it  is                  

demonstrated  how  varying  the  contrasts  of  cell  boundaries  and  a  new  loss  function  (weighted  cross  entropy)                  

could  be  useful  to  obtain  high  accuracy  segmentations  when  a  3D  Unet  model  trained  with  a  small  and                    

sparsely  annotated  training  dataset.  The  issue  of  sparse  annotations  is  also  addressed  in  works  like                 

(Dawoud,   Hornauer,   Carneiro,   &   Belagiannis,   2020)    and    (Arbelle   &   Raviv,   2018) .   

c.  Pipelines  for  segmenting  images  with  densely  packed  cells/tissues  :   Cell  instance  segmentation  in                

images  where  cells  appear  in  dense  clusters  or  in  overlapping  manner  is  a  common  research  problem.  It  is                    

quite  challenging  as  there  are  high  chances  of  errors  in  separating  each  cell.  Specially  designed  deep                  

learning  models  for  segmenting  densely  packed  cell  regions  are  reported  in  works  like   (Korfhage  et  al.,                  

2020) .  It  uses  an  object  detection  module  called  a  feature  pyramid  network,  which  apparently  outperforms                 

MRCNN  in  this  task.  The  feature  pyramid  network  extracts  information  of  the  same  image  at  different  scales,                   

in  this  case  the  cells  and  the  subcellular  nuclear  scale.  In   (Linfeng  Yang  et  al.,  2020)  a  hybrid  architecture                     

combining  UNet  and  MRCNN  is  proposed  to  address  effects  of  crowded  and  variable  sized  objects,  named                  

Nuclei  Segmentation  Toolset  or  NuSeT  for  nuclei  segmentation.  The  U-Net  here  is  used  for  semantic  level                  

segmentation,  the  modified  MRCNN  predicts  the  instance  bounding  boxes  based  on  the  UNet  outputs  which                 

are  then  finally  used  as  seeds  for  watershed  segmentation.   (Vu  et  al.,  2019)  uses  a  combination  of  two                    

CNNs,  that  provide  a  semantic  segmentation  of  nuclear  material,  followed  by  a  final  instance  level                 

segmentation  of  the  individual  nuclei.  The  research  in   (Kumar  et  al.,  2020)  performs  3  class  classifications                  

on  a  human  tissue  image  dataset  to  distinguish  between  cell  boundaries,  inside  and  outside  of  dense  nuclei                   

regions.  A  new  CNN  architecture  named  HoVer-Net  is  presented  in   (Graham  et  al.,  2019)  for  instance  level                   

segmentation  of  nuclei  from  histological  images  where  they  appear  overlapped  with  each  other.  This  method                 
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can  further  classify  the  type  of  nuclei,  e.g.the  type  of  cells-such  as  between  tumour  and  lymphocyte  cells                   

from  which  the  nuclei  are  obtained.  Another  method  specially  designed  for  dense  cell  clusters  in  images  is                   

(Lux  &  Matula,  2020)  which  uses  two  Unet  based  deep  models  to  predict  pixels  belonging  to  the  cell  regions.                     

Using   this   output,   a   final   watershed   based   segmentation   is   implemented.   

d.  Pipelines  for  segmenting  special  cell  shapes:   In  many  biological  datasets,  cells  or  tissues  could  have                  

morphologically  complex,  e.g.  very  thin  or  elongated  shapes  that  are  difficult  to  segment  by  generic  pipelines                  

built  for  regular  spherical  cell  shapes.  Deep  learning  pipelines,  with  specific  DL  architectures  for  segmenting                 

this  kind  of  data  have  been  developed.  This  includes  the  method  described  by   (Yi  et  al.,  2019)  which  can                     

perform  precise  segmentation  of  neural  cells  which  have  unconventional  structures  while  also  countering               

challenges  like  cell  division  and  unclear  cell  boundaries.  An  approach  combining  object  detection  and                

segmentation  is  described  in   (Yi  et  al.,  2018)  which  is  successful  in  high  precision  detection  of  small  scale                    

and  narrow  structures  of  neural  cells.  Other  works  include   (Lin  Yang,  Zhang,  Guldner,  Zhang,  &  Chen,  2016)                   

for  the  segmentation  of  glial  cells,  a  deep  learning  model  named  DeepEM3D-Net  in   (Zeng  et  al.,  2017)  for                    

segmenting  3D  neurite  images  and (Gu  et  al.,  2019)  for  segmentation  of  diversely  shaped  human  organs  in                   

images.     

Conclusions.   

From  this  literature  survey,  the  following  aspects  are  observed  1)  UNet  and  Mask  RCNN  are  two  most                   

common  deep  learning  architectures  that  are  currently  used  for  instance  segmentation  of  biological  images                

2)  The  number  of  works  on  end  to  end  3D  deep  learning  for  instance  segmentation  is  much  lower  than  that                      

for  2D  image  datasets.  3)  the  existing  segmentation  pipelines  have  been  trained  on  a  wide  variety  of                   

datasets  (plant  and  animal  tissue,  cell  and  nuclei;  2D  and  3D  still  images,  videos,  time-lapse  images)  and                   

therefore  it  is  not  possible  to  determine  their  relative  performance  levels.  4)  For  many  of  the  methods                   

surveyed  it  is  not  possible  to  reproduce  the  pipeline  as  they  are  not  open  source  or  do  not  allow  retraining.                      

5)  There  exists  a  shortage  of  large  3D  annotated  image  datasets  on  plant  and  animal  tissues  which  are                    

publicly   available.     

Appendix   5   

Cross   dataset   validation   of    the   segmentation   pipelines   

We  tested  the  performance  of  our  trained  deep  learning  pipelines  and  MARS  on  data  different  from  confocal                   

images  of  floral  meristems,  for  example  on  data  from  other  microscopes  and  tissue  types  to  observe  the                   

adaptability  of  our  methods  to  new  and  unseen  data  (the  deep  learning  pipelines  were  trained  on  shoot                   

apical   meristem   images).   Images   from   two   datasets   are   used   for   this   and   are   described   below.   

  

a)   Ascidian  Phalusia  mamaliata  (PM)  embryo  images:  The  5  pipelines  are  used  for  segmenting  3  images                  

from  the  PM  embryo  dataset  which  is  described  in   (Guignard  et  al.,  2020) .  These  are  captured  using                   

multi-view  Light-sheet  (MuVi-SPIM)  microscopes  from  fluorescently  labelled  cell  membranes.  Ground  truth             

segmentations   for   these   images   are   also   provided   in   the   dataset.     
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Figure   A5.1    Slice   view   of   a   sample   (A)   Ascidian   embryo   image   and   its   (B)   ground   truth   segmentation   
  

Three  test  images  and  their  ground  truths  are  taken  from  each  of  the  above  datasets  and  all  five  pipelines                     

are  used  to  segment  this  data.  Then  the  volume  averaged  Jaccard  Index  metric  is  used  to  estimate  the                    

segmentation   quality   as   done   with   the   floral   meristem   test   dataset   and   the   results   are   in   Table   A5.1.     

  

Table   A5.1 :    VJI   values   for   segmentation   results   using   Ascidian   PM   data   and   5   pipelines   
  

It  is  seen  that  the  deep  learning  pipelines  Plantseg,  Unet+WS  provide  high  accuracy  results  on                 

completely  unseen  data  without  requirement  of  re-training.   MARS* PM  indicates  the  MARS  algorithm               

results  after  tuning  the  parameters  for  this  dataset  and  it  also  provides  high  accuracy                

segmentations  on  this  dataset.  The  MRCNN+WS  results  are  similar  to  what  we  got  previously  from                 

this  pipeline  on  floral  meristem  data.  The  Cellpose  accuracy  however  falls  from  their  average                

values   observed   for   floral   meristem   data.   

  

Figure   A5.2    Ascidian   embryo   image   (PM03),   ground   truth   and   segmentations   by   5   pipelines   
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Sample   name   Plantseg   Unet+WS   MARS* PM   Cellpose   MRCNN+WS   

PM   01   0.90   0.84   0.91   0.40   0.51   

PM   02   0.83   0.82   0.87   0.34   0.66   

PM   03   0.89   0.80   0.86   0.32   0.67   
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b)  Arabidopsis  ovule  images:  3D  confocal  Images  of  Arabidopsis  thaliana  ovules  at  various  developmental                

stages  are  provided  by  the  authors  of  the  Plantseg  pipeline   (Wolny  et  al.,  2020) .  Three  stacks  from  this                    

dataset  along  with  their  ground  truths  are  used  for  evaluating  our  5  pipelines.  Structurally  these  are  quite                   

different  from  Arabidopsis  floral  meristems  and  the  segmentation  results  from  the  five  pipelines  along  with                 

the   original   and   ground   truth   images   are   shown   in   Figure   A5.3   below.   

  

Table   A5.2 :    VJI   values   for   segmentation   results   using   ovule   data   and   5   pipelines   
  

 
Figure   A5.3    Ovule   image   (Ov   03),   ground   truth   and   segmentations   by   5   pipelines   
 

  

Figure   A5.4    Leaf   image   and   segmentations   by   5   pipelines   
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Sample   name   Plantseg   Unet+WS   MARS* OV   Cellpose   MRCNN+WS   

Ov   01   0.82   0.80   0.85   0.68   0.64   

Ov   02   0.87   0.89   0.91   0.50   0.62   

Ov   03   0.77   0.78   0.83   0.69   0.55   
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c)  Leaf  images:   A  3D  confocal  image  of  Arabidopsis  thaliana  leaf  obtained  from  the  dataset  provided  by                   

(Wolny  et  al.,  2020)  is  used  for  testing  the  5  pipelines  and  the  results  are  in  Figure  A5.3.  This  tissue  shape  is                        

not  present  in  the  training  data  but  still  the  segmentation  results  look  satisfactory.  The  Plantseg  repository                  

does   not   provide   a   volume   segmented   ground   truth   for   this   dataset   so   VJI   values   could   not   be   computed.   
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