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Abstract

Motivation: Technical progress in computer hardware made it possible to access and process large
amounts of data even on budget workstations. Therefore new or existing alignment algorithms may use
large index files to increase performance. Spaced seeds with large weights reduce the number of possi-
ble locations of a read within a reference sequence. Optimal patterns for spaced seeds may guarantee to
align reads even with several substitutions.
Results: For reads of 64–200 bp periodic spaced seeds of 32, 40, 48, 56, 64 weights are found that guaran-
tee to locate all positions within a reference sequence for a specified number of point mutations. SIMD
instructions to convert masked reads into 64, 80, 96, 112, 128-bit numbers are provided.
Availability: C codes to generate spaced seeds and find optimal SIMD instructions for them are freely
available under MIT license at https://github.com/vtman/VSTseed

1 Introduction

The most common question in sequence analysis is whether two sequences are related. To answer this
question we need to align the sequences or their parts. For the past two decades several sequence map-
ping and alignment software packages based on statistical methods were released and earned their pop-
ularity, e.g. BLAST [1], Bowtie2 [15], BWA-MEM/SW [18,19], SHRiMP2 [9], MiniMap2 [17]. While these
algorithms or their modifications are still effective and very popular, they were created when significant
restrictions on computational resources were in place. Initially amounts of data available for scientists
for each experiment were relatively small, so computers were able to process them. However, with better
experimental hardware for sequencing sizes of datasets started to increase very fast. As the result some
approaches for sequence alignment could not be used for real problems with large input datasets. These
days we may observe significant changes in the size of random-access memory and read/write speeds for
storage devices available even for a budget computer. Therefore many issues related to the size of mem-
ory and speed of access to storage data became obsolete. As the result modern algorithms and software
tools need to overcome different issues to improve performance, e.g. organise proper data alignment to
exploit SIMD (Single Instruction, Multiple Data) instructions and fast access to CPU’s cache, parallelise
processing for multithreading applications.
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The most recent human reference genome assembly (GRCh38.p13, released in 2019) contains L =
3,272,116,950 ≈ 3.3 ⋅ 109 bases in total. This means that each position within the reference sequence can
be written as a 32-bit unsigned integer (232 ≈ 4.3 ⋅ 109 > L). For the human reference genome each base
either belongs to the alphabetΣ = {A,C,G,T}or is symbolNwhich is any of the four bases. Suppose there
is a sequence of K integer numbers of positions (all different). Then for each position in the reference
genome we get K bases according to the given integer sequence. If there are no symbols N among the
selected K bases, then this K-sequence of bases is identified by 2K-bit “signature” (2 bits for each base).
So, for each position in the reference sequence we may store 32 bits for its position and 2K bits for the
“signature”, or L(32 + 2K) bits in total for the whole reference sequence. The list of pairs (“position”,
“signature”) can be sorted by “signature” values and be grouped in several arrays. For example, based
on values of first 16 bits of “signatures” we may split the list into 65536 = 216 arrays and omit the first
16-bits for each pair as they are all the same for pairs in the arrays. Thus to store the list we may need
only around M = L(16 + 2K) bits. If K = 32, thenM ≈ 3.3 ⋅ 109 ⋅ (16 + 64)/8 ≈ 33.0 GB, and for K = 64, we
get M ≈ 59.4 GB. Once pre-calculated the list of pairs can be stored on a hard drive and accessed within
several seconds by a sequence alignment algorithm.

After data collection a researcher is provided with a list of a fixed-length sequences of bases (reads).
A sequence alignment algorithm tries to find best possible positions within the reference sequence such
that a distance between a read and a substring of the reference sequence isminimal. The distance between
two strings x and y was introduced in [11] and can be determined in several ways. We may define a list
of elementary operations which convert a source string x into a target string y . Each operation may have
a different cost, the distance is then a sum of all costs. If we cannot transform x into y , then the cost
is ∞. According to [23], depending on permissible elementary operations the most common distances
are: Levenshtein (or edit) distance (insertions, deletions, substitutions are allowed at equal cost of 1;
symmetric, i.e. d(x, y) = d(y, x)) [16], Hamming distance (only substitutions, symmetric) [13], episode
distance (only insertions, is not symmetric) [8], longest common subsequence distance (insertions and
deletions, all costing 1, symmetric) [3, 24].

Similarity between two strings were originally measured using dynamic programming algorithms, see
[10]. However, due to time complexity the use of these algorithms became impractical for the increased
size of data available. In late 90s several new algorithms, e.g. BLAST [1, 2], appeared based on ideas of
filtration and indexing. Short sequence fragments (seeds) were used. To align a read we require seeds
from the read to be also found in a reference sequence. The search is sped up using various indexing, e.g.
hash-tables, which may provide a researcherwith “false-matching” positions. The seeds were considered
as contiguous segments of 1s (1 is when corresponding bases for the search and target sequences are
compared, and 0 when they are ignored). In PatternHunter [21] spaced seeds were used, e.g. for weight
11 (total number of 1s) the most sensitive seed was 111010010100110111. Some spaced seeds
for different weights can be found in [6]. The idea of spaced seeds were extended for other problems:
vector [4], indel [22], neighbor [7] seeds. In ZOOM software [20] spaced seeds are generated to perform
alignment with at most 2 mismatches. In PerM software [5] so-called periodic spaced seeds are used to
improve efficiency of mapping.

In this paper we also consider optimal spaced seeds as periodic ones, however unlike similar prob-
lems solved in other software, e.g. PerM [5], RMAP [26], ZOOM [20], SeqMap [12], we focus on seeds
that are designed for reads of 100–250 bp, have weights between 32 and 64, can tolerate up to 6 single
letter mismatches. Seeds with large weights allow to decrease the number of candidate positions within
a reference sequence, thus helping to improve performance of an alignment algorithm. We also provide
software tools to generate the seeds for reads of a given length and a known maximum number of substi-
tutions, convert the spaced seeds into contiguous arrays (in order to generate “signatures”) using SIMD
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instructions. Once a spaced seed has been found, the software can provide a user with index files (30–60
GB in total) within 2–3 minutes on a budget computer.

2 Materials and methods

2.1 Digital representation of sequences

Suppose we have a reference sequence of length L and a set of reads of length n. For the human reference
genome each base either belongs to the alphabet Σ = {A,C,G,T} or is symbol N. To perform sequence
alignment the original strings should be stored in a computer’s hard drive/memory. Each of 5 symbols
may be encoded with numbers 0, … , 4. We may combine k consequent symbols and encode them m-bit
numbers such as 5k ≤ 2m. If k = 1, then m = 3 and numbers 5, 6 and 7 are not used, so this storage
scheme requires extra 3/5 = 60% of space compared to the ideal case. If k = 2, thenm = 5 and extra space
is (32 − 25)/25 = 28%; for k = 3 we get m = 7 and 2.4% (the best value for k < 27). So, if no additional
lossless compression is preformed, then coding each 3 consequent bases with 7-bit numbers is close to
the ideal case (Supplementary Material S1).

When we have two sequences of the same length and want to find the corresponding Hamming dis-
tance (or, similarly, count the number of same bases at same positions), we may, of course, perform
comparison per each base, however to improve performance the use of 128-, 256-, 512-bit SIMD instruc-
tions can be beneficial. If at same positions of two sequences there are letters of the alphabet Σ, then the
Hamming distance does not change if the letters are the same, or increased by one, otherwise. However,
dealing with symbol N may be more complicated. As symbol N may have the same chance to be one of
the symbols of Σ, then we may set the Hamming distance to d(S,N) = 3/4 for any symbol S ∈ Σ. At the
same time we may also set d(S,N) = 1. Similarly, there may be three options for d(N,N): 0, 1 or 3/4. So,
processing symbol N differently from the symbols of the alphabet Σ may further decrease performance.

We propose the following digital representation of a sequence. Each 32 consequent symbols are rep-
resented as 128-bit numbers, i.e. one symbol requires 4 bits. Thus the extra space is (16 − 5)/5 = 220%, so
the storage scheme is very inefficient. On the other hand, storing data for the human reference genome
even in uncompressed format requires only 1.65 GB, i.e. a fraction of RAM available in budget computers
these days. Therefore the storage overhead should not be a bottleneck for a modern computer. However,
the proposed scheme may provide us with performance benefits.

Let us agree to number all positions from 0, i.e. the first symbol has index 0. A bit from the first 32-bit
chunk (bits [0, 31]) is set to 1 if the corresponding symbol of the sequence is A, otherwise it is set to
zero. In a similar way we set bits [32, 63] (symbol C), bits [64, 95] (symbol G) and bits [96, 127] (symbol
T). According to this definition only one of four bits i, (i + 32), (i + 64) and (i + 96) can be 1. By settings
all four bits to zeros we define symbol N. If we have two sequences of 32 symbols we may write them as
__m128i structures a and b used for Intel Intrinsic instructions (Supplementary Material S2). We just
need one bitwise AND instruction (_mm_and_si128) to check if corresponding bits has 1s at the same
positions and then count the total number of 1s with shift, bitwise OR and popcnt instructions.

int inum, ires;

__mm128i a, b, u1, u2, u3, u4, u5;

u1 = _mm_and_si128(a, b);

u2 = _mm_bsrli_si128(u1, 8);

u3 = _mm_or_si128(u1, u2);

u4 = _mm_bsrli_si128(u3, 4);
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A C G T A|C C|G
1 0 0 0 1 0
0 1 0 0 1 1
0 0 1 0 0 1
0 0 0 1 0 0

Table 1. Truth table for A, C, G, T, A|C, and C|G.

u5 = _mm_or_si128(u3, u4);

inum = _mm_extract_epi32(u5, 0);

ires = _mm_popcnt_u32(inum);

As the result we get a number of positions with the same symbols of the alphabet Σ (Supplementary
Material S3). The Hamming distance is then (32-ires) under assumption of d(S, S) = 0, d(S,N) = 1
and d(N,N) = 1.

2.2 Indexing of the reference genome

The above 128-bit representation of 32-symbol sequences can also be used for indexing of the reference
genome by splitting it into chunks of 32 symbols (with possible padding by symbols N). Thus we get a
sequence of 128-bit numbers. Using bitwise shift and logical instructions it is possible to find the 128-bit
number corresponding to any starting position (Supplementary Material S3) of the reference genome.
Comparing inum with 0xFFFFFFFF we may avoid chunks containing symbols N. In this case the 128-
bit number can be converted to a 64-bit number. For this purpose we may use the logical Table 1 and the
following SIMD instructions

__mm128i mACGT, mCGT0, mres;

mCGT0 = _mm_bsrli_si128(u1, 4);

mres = _mm_or_si128(mACGT, mCGT0);

Then the first 32 bits of mres corresponds to A|C values (symbol “|” means bitwise OR) and the second
32 bits are for C|G, so the first 64 bits can be used to create an index file for the reference genome.

Each position within a human reference genome can be coded as a 32-bit integer number. Therefore
a list of pairs (“position”, 32-sequence) requires 32 + 64 = 96 bits for each pair, since we have only 4
symbols and require 2 bits for each symbol to form 64-bit “signature” number. The list contains around
3.3 ⋅ 109 pairs and can be sorted by “signature” values. For a given read we may find all its 32-symbol
subsequences and by using the list we obtain all positions within the reference genome where the read
and the reference genome have at least one common contiguous 32-symbol chunk. We may reduce the
size of memory required to store the list by splitting the list into 65536 = 216 arrays, so instead of 64 bits
for “signatures” we may store only 64 − 16 = 48 bits or 10 bytes per pair. In this case we need about
3.3 ⋅ 109 × 10 = 33 GB. If a similar approach is applied to 64-symbol chunks, then the size of memory
becomes 59.4 GB. Many modern motherboards have memory capacity of at least 128 GB. Index files take
some time to generate, however they need to be created only once for a given reference genome and
a chosen length of a substring. Accessing these files is straightforward and takes several seconds with
modern storage drives, e.g. budget NMVe (Non-Volatile Memory Express) devices have read speeds of
5 GB/s.

However, there are two main bottlenecks. Firstly, for some subsequences there may be too many
candidate positions. We have applied the above procedure for the human genome and used contiguous
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Figure 1. For a contiguous seed of a given weight (32, 40, 48, 56 and 64) we count the number of
occurrences of same patterns within the human reference genome. Percentage of patterns (vertical axis)
having more occurrences than a given occurrence (horizontal axis) is shown.

chunks of various lengths. The percentage of unique “signatures” varies from 78.5% for 32-symbol chunks
to 86.7% for 64-symbol chunks. However, there are “signatures” occurring more than thousands times.
For a given integer number we may find percentage of all “signatures” that have more occurrences than
the given number (see Figure 1). So, if we randomly pick up a contiguous 32-symbol sequence, then there
is 5% chance that it has more than 200 positions within the reference genome. For 64-symbol sequence,
the chance is reduced to 1.67%.

Secondly, for shorter reads, there is a chance to miss cases when a read has several substitutions.
In [25] it is shown that a boolean sequence of m elements with at most k zeros contains at least one
l-run of ones with l = ⌊ m

k+1⌋. Therefore the use of 32-symbol substrings for 100 bp (150/200 bp) reads can
guarantee to find all candidate positions if there are not more than 2 (3/5) substitutions. For 64-symbol
substrings we get 0/1/2 substitutions, respectively.

In most practical applications majority of reads have complete matches or 1–2 substitutions. So, the
use of long substrings (64 or more symbols) may allow to position reads correctly very quickly as the
number of candidate positions is often small. Longer substrings may not work well when reads also
contain insertions or deletions. So, there will be only a relative small number of reads without common
substrings and those reads can be processed with shorter, e.g. 32-symbol, substrings.

2.3 Spaced seeds

Spaced seeds are good alternatives to contiguous chunks. Let there be two sequences {ai}L−10 (a reference
sequence) and {bj}n−10 (a read). Suppose there is a boolean {ck}p−10 pattern/seed of length p ≤ n consisting
of ones and zeros. The number of ones is called the weight of the seed, while p is its span (or length).
The Hamming distance for the reference subsequence starting at position s and the read subsequence
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starting at position t can be defined for 0 ≤ s ≤ L − p and 0 ≤ t ≤ n − p as

Dst ≡
p−1

∑
k=0

d(as+k , bt+k) ⋅ ck , (1)

d(A, B) is the Hamming distance for two symbols A and B:

d(A, B) ≡
{

0, if A = B,
1, if A ≠ B. (2)

There may be four main types of output [14].

1. Unique best hit. Find s and t such as Dst is the smallest, report them if there is no other different
pairs of s and t , otherwise report null.

2. All valid hits. Report all occurrences of b within a.

3. Arbitrary hit. For a given � ≥ 0 report any pair of s and t such as Dst ≤ � .

4. All best hits. Find the smallest value � of Dst . If � ≤ � , then report all pairs of s and t .

Let there be an arbitrary read {bj}n−10 of length n containing no more than m substitutions. We may
introduce a boolean array {qi}n−10 such that qi = 0 if there is a substitution for the element bi and 1,
otherwise. Our goal is to find seeds {ck}p−10 such that it is possible to translate them by s elements
(denote the seed as cs) and no 1-element of the translated seed meets 0-element of array q. A seed is
designed successfully if for any permissible array q containing no more thanm 0-elements we may find
such translation s. Of course, the value of s depends on a given array q. Strict mathematical requirements
can be written as: ∃s ∈ {0, 1, … , n − p}: ∀k = {0, 1, … , p − 1} qs+k |ck = qs+k (“|” is the bitwise OR). Both
arrays q and c (and the translated array cs) can be padded with zeros. Then we expect that q|cs = q for
all elements.

2.4 Optimal remapping

Suppose we have found a spaced seed. For example, a seed shown in Figure 2. Its length is 59 and
its weight is 32. Our aim is to form a contiguous array of ones with minimum number of remapping
operations. If we can find such operations for 32-bit numbers, e.g. for A-component of the sequence,
then we can form 128-bit instructions for all four components (A, C, G, T). We aim to use only 128-bit
bitwise AND, OR or bit shift instructions. For the given example, the spaced seed has 15 gaps (where the
seed has 0 values). So, if we want to form the contiguous seed by removing those gaps we need 14 shift
operations. However, the order in which bits from the original seed are positioned in the contiguous seed
is not important. Therefore, we may achieve this result by using only 3 shift operations. For convenience,
we denote ones as letters A, B, C, D and all zeros are replaced by symbol “_”. All ones in the first 32 bits
of the seed become A. Our goal is to shift the second 32 bits in such way that gaps/zeros of the first row
can be filled with ones of the second row. Letters B, C, D are used to distinguish ones: letter B is used
for the first shift (−8), letter C is for the second shift (−5) and letter D is for the third shift (15). Applying
masking for the corresponding letters of the rows we get the following SIMD instructions to obtain a
128-bit ACGT structure corresponding to a contiguous seed.
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11011001 11101010 00011011 00111101
01000011 01100111 10101000 01100000

Row 1              AA_AA__AAAA_A_A____AA_AA__AAAA_A
Row 2              _D____DC_DD__BBDC_C_C____BB_____

Shift  0:          AA_AA__AAAA_A_A____AA_AA__AAAA_A
Shift -8:  _D____DC_DD__BBDC_C_C____BB_____
Shift -5:     _D____DC_DD__BBDC_C_C____BB_____
Shift 15:                         _D____DC_DD__BBDC_C_C____BB_____

Result:            AACAABBAAAACACACDBBAADAADDAAAADA

Seed length (59), weight (32)

Figure 2. A possible procedure to form a contiguous seed for a spaced seed of length 59 and weight 32.
For better presentation it is split into two rows (32 bit each) with extra gaps for each 8 elements.

__m128i c, t, s;

c = _mm_set1_epi32(0xbcd8579b);

res[0] = _mm_and_si128(m[0], c);

c = _mm_set1_epi32(0x06006000);

t = _mm_and_si128(m[1], c);

s = _mm_srli_epi32(t, 8);

res[0] = _mm_or_si128(res[0], s);

c = _mm_set1_epi32(0x00150080);

t = _mm_and_si128(m[1], c);

s = _mm_srli_epi32(t, 5);

res[0] = _mm_or_si128(res[0], s);

c = _mm_set1_epi32(0x00008642);

t = _mm_and_si128(m[1], c);

s = _mm_slli_epi32(t, 15);

res[0] = _mm_or_si128(res[0], s);

There may be several possible combinations to form contiguous (even for a given number of shifts).
Similar ideas can be used to form seeds of other lengths/weights.

We explain how the problem can be solved for the given example (weight 32 and two rows), with more
details in Supplementary Material S4. The number of zeros for the first row is 13. We shift the second
row (from −31 to 31) and for each shift value we check if any ones from the second row can be at same
positions as zeros of the first row. If the shift provides us with such a chance, then we form a vector. The
length of the vector is the number of zero elements for the first row of the seed. Each element of the
vector is 0 if there is no 1-element of the shifted second row, otherwise it is the index of this element. As
the result we get 45 such vectors and can form a (45 × 13)-matrix. For a given number k of shifts we need
to pick up k rows of this matrix, apply a reduction procedure to be sure the matrix is a valid one:

1. all 1-indexes of the second row of the seed are present in the matrix;

2. there are no rows/columns of zeros;

3. if a non-zero element is the only non-zero element in a column, then for all other columns the
same non-zero elements are set to 0;
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4. if there are several non-zero elements in a column and one of non-zero elements is the only element
in the matrix, then all other elements of the column can be set to zero.

If after the reduction procedure there are still several same non-zero elements, then for a column with
m > 1 non-zero elements we formmmatriceswhich are the same as the original matrix but only one non-
zero element in the column. For each of thosemmatrices we apply the above reduction procedure. After
the procedure we get one or several matrices with all columns containing only one non-zero element and
each non-zero element is unique in the matrix. Those matrices allow us to form masks for 1-elements of
the seed’s row and find shift values.

3 Results

3.1 General properties of spaced seeds

Let us consider all reads of length n, containing k substitutions. We want to find all spaced seeds of
length m and weight w that can be used for any read of the given class. We assume that each seed starts
and ends with 1. Denote all possible seeds as S(n, k, m, w). If there are no such seeds, then the set is the
empty set ∅.

1. ∀� ∈ S(n, k, m, w), ∀p > n: � ∈ S(p, k, m, w), i.e. if a seed is valid for reads of a given length, then it
is also valid for longer reads. Therefore we have S(n, k, m, w) ⊂ S(n + 1, k, m, w).

2. ∀� ∈ S(n, k, m, w), ∀r < k: � ∈ S(n, r , m, w), i.e. if a seed is valid for a given number of substitutions,
then it is also valid for cases of less substitutions. We have S(n, k, m, w) ⊂ S(n, k − 1, m, w).

To check if a seed � ∈ S(n, k, m, w) is valid we need to generate all possible reads of length n with k

substitutions or, equivalently, a binary n-array with k zeros. There are Ck
n ≡ n!

k!(n−k)! possible reads. For
each read we need to translate the seed. As the read has lengthm wemay perform (n−m+1) translations.

In Figure 3 we see all spaced seeds found for n = 11 and k = 2. The seeds are combined in groups
depending on the value of weight w . For any valid seed of weight w its sub-seeds (obtained by either
reducing its length or setting some bits to zero but having 1s as its first/last elements) should also be
valid seeds. For example, 11101 has weight of 4, all its sub-seeds of weight 3 are 111, 11001, 10101
and 1101 are also present in Figure 3. Therefore, we may construct all seeds iteratively. We start with
all seeds of length 1, i.e. 1, then continue with longer seeds by extending seeds found on previous steps
and checking if the necessary condition (all sub-seeds are already in the list of found seeds). If a found
seed is of length p and a candidate seed should of length m, then we pad the found seed by a contiguous
(m − p − 1)-array of zeros and one 1-element.

3.2 Periodic spaced seeds

For a given length n of a read and number k of substitutions there may be many valid seeds. We should
agree how to select best of them. Our aim is to use seeds for sequence alignment problems. Therefore
the best option is to choose seeds of the maximum weight. In this case we reduce a number of candidate
positions within a reference sequence. When a seed is designed, we have no information about a read.
So, the chance to find a subsequence of weight w should be 4 times more likely than for a subsequence
of weight (w + 1). Therefore, when there is a set of possible seeds we choose seeds of maximum weight.
For the case shown in Figure 3 we have three seeds (11101, 10111 and 1100011).
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110001

101001

100101

100011

10011

111

1101

1011

11001

10101

1100001

1010001

1001001

1000101

1000011

10010001

10001001

100100001

100010001

100001001

11

101

1001

10001

100001

1000001

10000001

100000001

1

11101 10111 1100011

Weight 1

Weight 2

Weight 3

Weight 4

Figure 3. All possible patterns for a read of length 11 and 2 substitutions. The patterns are grouped
based on a number of non-zero elements.

For a human genome some subsequences may appear in several places. With longer sequences there
is a chance that a frequent sequence will also contain unique patterns. So, among seeds of maximum
weight we choose seeds of maximum length. For the case discussed above the best seed is 1100011.
Examples of other spaced seeds for k = 3 substitutions are shown in Figure 4.

We may see that “maximum weight/maximum length” seeds are periodic patterns. For the examples
provided we may find a shorter boolean pattern such that the spaced seed is a concatenation of several
same patterns. In Figure 5 the corresponding shorter patterns are shown. A spaced seed usually contains
several whole patterns and a subpattern ending with 1. This is a purely practical observation (without
any proof). There is always a chance that for long reads best spaced seeds may have a different struc-
ture. However, in order to avoid computationally expensive procedures we suppose that best seeds have
periodic structures.

3.3 Numerical procedure

For a given length n of a read, weight w and period T (the length of a periodic structure starting with 1
and ending with 0) a code to generate all possible spaced seeds is written. For each candidate periodic
seed we randomly generate positions of substitutions within a read (millions of various combinations).
Fixing weight w , number of substitutions k and the period T we vary the length n of reads. According
to general properties of spaced seeds, by reducing the length we reduce the number of spaced seeds.
In Figure 6 we see how the number of minimum lengths of reads are found as a function of period T .
Computational complexity is increased with the number of substitutions and length of a read. Therefore
the maximum periods were 25–28 depending on the number of substitutions (Supplementary Material
S5). The best seeds are chosen from seeds permitting smallest values of reads’ lengths (see Table 2 and
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110010001100100011001
101010001010100010101
100110001001100010011

11101000001110100000111
11100100001110010000111
11100001001110000100111
11100000101110000010111

111010000011101
110110000011011
101110000010111

24 28 32

1110100100011101001
1001011100010010111

111011010000011101101
111010110000011101011
110101110000011010111
101101110000010110111

110100001101000011
110010001100100011
110001001100010011
110000101100001011

25 29 33

10111000100101110001
10001110100100011101

1110100000111010000011101
1101100000110110000011011
1011100000101110000010111

1110100100011101
1011100010010111

26 30 34

1111010001000111101
1110110100000111011
1101110000010110111
1011110001000101111

1110100100011101001000111
1110001001011100010010111

11010000110100001101
10110000101100001011

27 31 35

Figure 4. For a given length (numbers in ovals) of reads patterns with a maximum number of non-zero
elements are found, 3 substitutions. Only maximum-length patterns are shown.

111011111010011101111101

111111010110011111101011

11111011000111110110001111

11111010100111110101001111

11111001010111110010101111

11111000110111110001101111

11110101100111101011001111

11110110010111101100101111

111101100011110110001111011

111010011101001110100111010011

111001011100101110010111001011

Figure 5. All maximum-length patterns found for a read of length 36 and 2 substitutions. Flipped
patterns are not shown. The patterns are periodic, the corresponding sub-patterns are indicated.
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Figure 6. The minimal value of reads’ lengths required for periodic spaced seeds of given weights (up
to 2 substitutions are allowed).

Supplementary Material S6).
For each best periodic seed we identify optimal remapping procedure to convert sequences with gaps

into “signature” numbers by using as less SIMD procedures as possible. The output results of the software
for the best seeds can be found in Supplementary Material S7.

4 Discussion

Software tools used to generate results of the paper are available at https://github.com/vtman/VSTseed.
The authors worked only with seeds of specific weights (32, 40, 48, 56 and 64) and periods (usually less
than 29). In principle, other weights, e.g. multiples of 4, can be used. In this case each pair (“position”,
“signature”) will require an integer number of bytes. Other periods can also be considered with possibly
other seeds to be found.

The minimum length of reads required for seeds of given weight is almost a linear function (or more
strictly, an affine function) of a number of substitutions allowed. As the minimum length of a read for a
contiguous seed of weightw can be written as (k +1)w +k, the corresponding lengths for the best spaced
seeds are near 53% of (k + 1)w + k. For example, contiguous seeds of weight w = 48 and at most k = 3
substitutions require lengths of at least 195 bp, but corresponding spaced seeds must be at least 101 bp,
i.e. 52%.

There is usually a very small number of seeds valid for the reads of minimal lengths. However, when
reads’ lengths are given, e.g. L = 120, and weight of seeds is chosen, e.g. w = 48, there may be many
seeds to be used that guarantee full sensitivity. For the known L and w values we obtain full sensitivity
for the case of at most 3 substitutions. We cannot use k = 4 as the minimum requirement is L = 135,
however the minimum requirement for k = 3 is L = 101, so more seeds are available. Some of those seeds
might have shorter conversion “sequence”–“signature” procedures (less SIMD instructions).

Weight of a seed is the main parameter determining the number of candidate positions within a ref-
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Table 2. Spaced seeds of weight w that can be used for reads of at least a given length L with no more
than k substitutions.
Spaced seed w k L

111101111011110111101111011110111101111 32 1 43

11111011100101111101110010111110111001011111 32 2 56

111101011001000111101011001000111101011001000111101011001 32 3 71

11101110010111000001000000011101110010111000001000000011101110010111 32 4 94

11111011100101111101110010111110111001011111 32 5 112

111101011001000111101011001000111101011001000111101011001 32 6 135

111101011001000111101011001000111101011001000111101011001 32 7 142

11111011100101111101110010111110111001011111 32 8 168

11111011111011111011111011111011111011111011111 40 1 52

11111101011001111110101100111111010110011111101011001111 40 2 68

111101011001000111101011001000111101011001000111101011001000111101011001 40 3 86

1101111100001010001000100001101111100001010001000100001101111100001010001000100001

1011111 40 4 115

11111101011001111110101100111111010110011111101011001111 40 5 136

111101011001000111101011001000111101011001000111101011001000111101011001 40 6 165

111101011001000111101011001000111101011001000111101011001000111101011001 40 7 172

1111110111111011111101111110111111011111101111110111111 48 1 61

11100101111101110010111110111001011111011100101111101110010111110111 48 2 80

111111100011010011001010111111100011010011001010111111100011010011001010111111 48 3 101

1001011000110101000010010110001101010000100101100011010100001001011000110101000010

0101100011010100001001011000110101 48 4 135

11100101111101110010111110111001011111011100101111101110010111110111 48 5 160

111111100011010011001010111111100011010011001010111111100011010011001010111111 48 6 194

111111100011010011001010111111100011010011001010111111100011010011001010111111 48 7 202

111111101111111011111110111111101111111011111110111111101111111 56 1 70

1111111110110111000111111111011011100011111111101101110001111111110110111 56 2 91

1110111110100111010010001110111110100111010010001110111110100111010010001110111110

10011101001 56 3 116

1000110010100111000010001100101001110000100011001010011100001000110010100111000010

001100101001110000100011001010011100001000110010100111 56 4 155

1111111110110111000111111111011011100011111111101101110001111111110110111 56 5 182

1011100101111101110001001011100101111101110001001011100101111101110001001011100101

111101110001 56 6 220

11111111011111111011111111011111111011111111011111111011111111011111111 64 1 79

1111010111111111011001111010111111111011001111010111111111011001111010111111111011 64 2 102

1110111110100111010010001110111110100111010010001110111110100111010010001110111110

10011101001000111011111 64 3 128

1101011110110001000001000001101011110110001000001000001101011110110001000001000001

10101111011000100000100000110101111011000100000100000110101111011 64 4 173

1111010111111111011001111010111111111011001111010111111111011001111010111111111011 64 5 204

erence sequence. Percentage of patterns determined by different seeds of the same weight that have
a given number of occurrences within the human reference genome vary slightly. The curves found
for contiguous seeds and shown in Figure 1 are similar to curves obtained for spaced seed. Curves for
lengthier seeds usually below the curves for contiguous seeds but within [0, 0.3%] interval.

When a spaced seed and corresponding SIMD “signature” instructions are found, indexing of the
whole genome is a relatively fast procedure for a modern budget computer. For example, a PC with Intel
I5-10600KF CPU (6 cores, 4.1 GHz) and NMVe storage (2400/1950 MBps read/write speed) form unsorted
index files for w = 32 within 28.6 s (31.8 GB of data) and for w = 64 within 92.7 s (54.9 GB). To sort the
files 75.2 s and 115.8 s are needed. The index files should be generated only once when reads’ lengths or
seeds are changed.
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Figure 7. Minimum values for a read’s length as a function of weight of spaced seeds found for different
number of substitutions (1, 2, 3, 4, 5).

For read alignment problems it may be reasonable to generate index files for several weights. Usually
aligned reads have a very small number of substitutions with respect to a reference sequence. Therefore,
we may consider seeds of greater weights, check all candidate positions for each read and only in case
of large values of Hamming distance between a read and a chunk of the reference sequence we attempt
to find other candidate positions using seeds of smaller weight. For example, if our reads have length
140, then we consider seeds of weight 64. In this case we are guaranteed to find all locations when the
number of substitutions is no more than 3. Once all reads are processed, we consider reads with no
candidate locations found, e.g. when there is no corresponding positions in the reference sequence for a
given “signature”, and reads with higher values of Hamming distance. For these reads we may use seeds
of weight 32 allowing us to have up to 6 substitutions.

An optimal seed found for reads of length L, weight w and at most k substitutions will help us to pick
up some positions in case of insertions or deletions. The shorter length of a seed is, the higher chance to
find those positions is. Of course, in case of very small number of indels we may generate corresponding
signatures directly from a given read. If Ls is a length of a seed, then in case of no indels we should
generate (L − Ls + 1) “signatures” for each read. For a single insertion we obtain 4(L + 1) new reads of
length (L + 1). Thus may obtain up to 4(L + 1)(L − Ls + 2) “signatures”. However, the real number of
“signatures” is smaller, since several new reads have same patterns.

Shorter seeds tend to have slightly larger number of candidate positions for each seed. As the result,
shorter seeds will force us to consider more candidate positions. The authors plan to discuss strategies to
choose periodic seeds, combine several ones for faster mapping and their embedding in a new alignment
software in future papers.
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