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Abstract: Cell signaling is orchestrated in part through a network of protein kinases and phosphatases. 16	
Dysregulation of kinase signaling is widespread in diseases such as cancer and is readily targetable 17	
through inhibitors of kinase enzymatic activity. Mass spectrometry-based analysis of kinase signaling can 18	
provide a global view of kinase signaling regulation but making sense of these data is complicated by its 19	
stochastic coverage of the proteome, measurement of substrates rather than kinase signaling itself, and the 20	
scale of the data collected. Here, we implement a dual data and motif clustering strategy (DDMC) that 21	
simultaneously clusters substrate peptides into similarly regulated groups based on their variation within 22	
an experiment and their sequence profile. We show that this can help to identify putative upstream 23	
kinases and supply more robust clustering. We apply this clustering to large-scale clinical proteomic 24	
profiling of lung cancer and identify conserved proteomic signatures of tumorigenicity, genetic mutations, 25	
and tumor immune infiltration. We propose that DDMC provides a general and flexible clustering 26	
strategy for the analysis of phosphoproteomic data.  27	
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Introduction 28	

Cell signaling networks formed by protein kinases dictate cell fate and behavior through protein 29	
phosphorylation (1). As such, it is not surprising that kinase dysregulation orchestrates the onset and 30	
development of a myriad of diseases, including cancer. Measuring cell signaling by mass spectrometry 31	
(MS)-based global phosphoproteomics provides a promising opportunity to direct therapy development 32	
(2), particularly given the accessibility of these signaling changes to drug targeting. Nevertheless, despite 33	
the rapid accumulation of large-scale phosphoproteomic clinical data, it is still difficult to identify the 34	
signaling events leading to observed proteomic alterations and phenotypic outcomes. 35	

One approach to make sense of phosphoproteomic measurements has been to infer the activity of 36	
upstream kinases. Previously published methods have combined each phosphopeptide with reported 37	
kinase-substrate interactions to reconstruct signaling networks. For instance, kinase-substrate enrichment 38	
analysis (KSEA) averages the signals of groups of kinase substrates to infer enriched pathways in 39	
biological samples (3). Another method, Integrative Inferred Kinase Activity (INKA), infers kinase 40	
activity by integrating the scores of two components that compute kinase’s overall and activation loop 41	
phosphorylation alongside another two components that quantify the phosphorylation abundance of 42	
known substrates. Kinase-substrate relationships are either experimentally determined or predicted by 43	
NetworKIN, an algorithm that uses sequence motif and protein-protein network information (4–6). 44	
Finally, Scansite predicts kinase-substrate interactions using sequence motifs generated from oriented 45	
peptide library scanning experiments (7). These methods, sometimes in combination, help to reconstruct 46	
signaling pathway activities from phosphoproteomic measurements. 47	

Kinase-substrate inference still provides a limited view of signaling network changes, however. Kinase 48	
prediction methods are necessarily dependent on having well-characterized kinase-substrate interactions. 49	
Unfortunately, the majority of the phosphoproteome remains largely uncharacterized (8). Just 20% of 50	
kinases have been shown to phosphorylate 87% of currently annotated substrates and around 80% of 51	
kinases have fewer than 20 substrates, with 30% yet to be assigned a single substrate (8). Hence, insights 52	
generated by computational methods dependent on this unequal knowledge distribution are less likely to 53	
identify understudied protein kinases. An additional major challenge being faced during the analysis of 54	
large-scale signaling data is missingness. This is due to two major limitations of discovery-mode 55	
multiplexed tandem mass tag (TMT) MS. The technique processes batches of samples with stochastic 56	
signaling coverage in each experiment. This means that the portion of the phosphoproteome quantified in 57	
the samples of different TMT experiments varies (9). Thus, in the resulting data set, phosphosites are 58	
observed in certain groups of samples but not others. Computational tools usually require complete data 59	
sets and so a frequent strategy to handle this challenge is either imputing missing values with a 60	
representative statistic (e.g. average signal) or throwing out any peptides displaying missing values–at the 61	
expense of losing critical information (10, 11). Kinase enrichment and prediction methods are further 62	
compromised by this problem. Thus, there is a clear need to develop tailored and unbiased computational 63	
methods capable of modeling the entirety of the phosphoproteomic data set despite missingness. 64	

Clustering methods such as hierarchical or k-means clustering identify signaling nodes by grouping 65	
phosphopeptides based on their co-variation. This clustering criterion results in groups of peptides that 66	
display similar activation patterns across conditions, but that may be targeted by sets of different upstream 67	
kinases. The residues surrounding phosphorylation sites have had to evolve throughout millions of years 68	
to become exquisitely fine-tuned motifs that confer signaling specificity and fidelity (12, 13). Clustering 69	
based on motif similarity might, therefore, improve model interpretation by facilitating the identification 70	
of upstream kinases modulating particular clusters that display conserved sequence motifs. On the other 71	
hand, clustering peptides based on sequence distance may result in groups of proteins that, while sharing 72	
the same set of upstream kinases, are differently regulated due to context. Thus, combining 73	
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phosphorylation status and sequence similarity may enable a balanced characterization of the cell 74	
signaling state. 75	

Here, we present an algorithm, Dual Data and Motif Clustering (DDMC), that probabilistically and 76	
simultaneously models both the peptide phosphorylation variation and peptide sequence motifs of peptide 77	
clusters to reconstitute cell signaling networks and identify causal interactions (Fig. 1). To test the utility 78	
of our method, we analyze the phosphoproteomes of 110 treatment-naïve lung adenocarcinoma (LUAD) 79	
tumors and 101 paired normal adjacent tissues (NATs) from the National Cancer Institute (NCI)’s Clinical 80	
Proteomic Tumor Analysis Consortium (CPTAC) LUAD study (11). We characterize the 81	
phosphoproteome of patients by identifying those signaling signatures associated with tumorigenesis, the 82	
presence of specific mutations, and tumor immune infiltration. In total, we demonstrate DDMC as a 83	
general strategy for improving the analysis of phosphoproteomic surveys. 84	

Results 85	

Constructing an expectation-maximization algorithm tailored for clustering phosphoproteomic 86	
data 87	

MS-based global phosphoproteomic data provides unparalleled coverage when interrogating kinase 88	
signaling networks and their therapeutic implications. However, these data also present challenging issues 89	
as a consequence of their incomplete and stochastic coverage, high-content but low-sample throughput, 90	
and variation in coverage across experiments. In addressing these issues, we recognized that MS 91	
measurements provide two pieces of information: the exact site of phosphorylation on a peptide sequence 92	
and some measure of abundance within the measured samples. Both of these pieces of information are 93	
critical to the overall interpretation of the data. 94	

Based on this observation, we built a mixture model that probabilistically clusters phosphosites based on 95	
both their peptide sequence and abundance across samples (Figure S1). In each iteration, DDMC applies 96	
an expectation-maximization algorithm to optimize clusters that capture the average features of member 97	
sequences and their abundance variation (Figure 1A and S1). Both information sources—peptide 98	
abundance and sequence—can be prioritized by a weight parameter. With a weight of 0, DDMC becomes 99	
a Gaussian Mixture Model (GMM) that clusters peptides according to their phosphorylation signal. With 100	
a very large weight, DDMC exclusively clusters peptides according to their peptide sequences. Clustering 101	
both the sequence and abundance measurements ensures that the resulting clusters are a function of both 102	
features, which we hypothesized would provide both more meaningful and robust clusters. 103	

The resulting clustering provides coordinated outputs that can be used in a few different ways. The cluster 104	
centers, by virtue of being a summary for the abundance changes of these peptides, can be regressed 105	
against phenotypic responses (e.g., cell phenotypes or clinical outcomes) to establish associations 106	
between particular clusters and response (Figure 1B). Regression using the clusters instead of each 107	
peptide ensures that the model can be developed despite relatively few samples, with minimal loss of 108	
information since each peptide within a cluster varies in a similar manner. 109	

In parallel or independently, one can interrogate the resulting Position-Specific Scoring Matrices 110	
(PSSMs) to describe the overall sequence features of that cluster. These outputs can be readily compared 111	
to other information such as experimentally generated profiles of putative upstream kinases via Position 112	
Specific Scanning Libraries (PSPL) (14–18). We extracted a collection of 62 kinase specificity profiles to 113	
identify which cluster motifs most resemble the optimal motif of putative upstream kinases (Figure 1C) 114	
(17–19). However, as kinase-substrate specificity is also dictated by features outside of the immediate 115	
substrate region, we also note that our approach is more general than strictly assembling kinase-substrate 116	
predictions as non-enzymatic specificity information may be present in the DDMC sequence motifs. 117	
Overall, this overview demonstrates how DDMC can take complex, coordinated signaling measurements 118	
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and find patterns in the phosphorylation signals to reconstruct signaling networks and associate particular 119	
clusters and phenotypes. 120	

Dual data-motif clustering strategy robustly imputes missing values 121	

A major limitation of multiplexed MS-based large-scale phosphoproteomic data is the presence of 122	
missing values due to (i) the limited number of samples processed at a time per TMT experiment and (ii) 123	
the stochastic signaling coverage in each experiment. Consequently, upon concatenation of the different 124	
TMT experiments, many phosphosites are observed in groups of samples. To evaluate the robustness of 125	
our combined dual data-motif clustering (DDMC) method in analyzing incomplete data sets, we designed 126	
a computational experiment wherein we removed specific observations and predicted them using the 127	
cluster centers corresponding to the peptides those missing values belonged to (Figure 2A). The resulting 128	
mean squared errors between the actual and predicted values were compared to commonly used 129	
imputation strategies such as the peptides’ mean or minimum signal, constant zero, or matrix completion 130	
by PCA. Furthermore, we evaluated the imputation performance of our method when clustering the data 131	
using a different number of clusters. We observed that increasing the number of clusters improved the 132	
imputation of missing values (Figure 2B-F). Additionally, we performed the same experiment by 133	
clustering the data with different weights. Weight changes barely affected imputation performance, 134	
indicating that cluster centers based on sequence only imputed missing values as accurately as when using 135	
the phosphorylation signal (Figure 2F-I). These results indicate that DDMC clearly outperforms standard 136	
imputation strategies such as using constant zero or the peptides’ mean or minimum signal and imputes 137	
missing values with similar accuracy to matrix completion by PCA. 138	

DDMC correctly identifies AKT1 and ERK2 as upstream kinases of signaling clusters containing 139	
their substrates 140	

DDMC is a tailored method that clusters MS-generated phosphosites using its phosphorylation behavior 141	
and sequence information. A major benefit of modeling the sequence information is the construction of 142	
cluster motifs which can be useful to infer what putative upstream kinases might preferentially target 143	
peptides of a specific cluster. To validate its ability to make upstream kinase predictions, we used DDMC 144	
to cluster the phosphoproteomic measurements of MCF7 cells treated with a panel of 61 drug inhibitors 145	
reported by Hijazi et al (20). PCA analysis of the resulting cluster centers clearly identified an inverse 146	
correlation between the scores of AKT/mTOR targeted inhibitors and the loading of cluster 1, indicating 147	
that the cluster’s overall signal is attenuated by the presence of these compounds (Figure 3A-B). 148	
Additional inhibitors targeting PDK1, FLT3, and S6K were also negatively correlated with cluster 1. 149	
While these do not directly inhibit AKT1/mTOR, they are all known regulators of the pathway. A 150	
heatmap displaying cluster’s 1 phosphorylation signal across treatments corroborates that the abundance 151	
of these peptides is substantially decreased when treated with AKT/mTOR/PIK3 inhibitors (Figure 3C). 152	
Encouragingly, the specificity profile of AKT—within a collection of 55 different kinase PSPL 153	
matrices—most closely matches the PSSM of cluster 1 (Figure 3D). Additionally, NetPhorest identified 154	
AKT as the second top scoring upstream kinase of cluster 1, further corroborating DDMC’s prediction. 155	

Next, we extracted the sequences of ERK2 substrates identified in Carlson et al to create an “artificial” 156	
ERK2-specific PSSM positive control (ERK2+ motif) (Figure 3F). As expected, ERK2 was predicted to 157	
be the upstream kinase with the highest preference for the cluster’s motif (Figure 3G). As an additional 158	
test, given the consistent enrichment of hydrophobic and polar residues throughout the entire ERK2 target 159	
motif (Figure 3F), we asked whether randomly shuffling all cluster PSSM positions surrounding the 160	
phosphoacceptor residue would affect the upstream kinase prediction. This experiment led to a 2-fold 161	
increase in the distance between ERK2 specificity profile and the ERK2+ motif (Figures 3G and H). We 162	
subjected those clusters from the CPTAC data set that were preferentially favored by ERK2 to the same 163	
experiment. As expected, we observed a similar decline in specificity between the clusters PSSMs and 164	
ERK2 PSPL matrix (Figures 3H). Note that the noticeable difference in prediction between the ERK2+ 165	
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motif and the CTPAC ERK2 motifs is not surprising given that while the former group contains only 26 166	
peptides, the CPTAC clusters contain ~500–2000 phosphosites. Overall, this experiment generally shows 167	
that despite the homogenous biophysical properties of ERK2 target motif across positions, the relative 168	
enrichment of hydrophobic and polar residues in each position determines the extent to which ERK2 169	
favors a particular motif (Figures 3G and H). Altogether, these results illustrate two different validation 170	
scenarios in which DDMC successfully identifies the upstream kinases regulating clusters. 171	

A dual data-motif strategy improves prediction of different phenotypes and provides more robust 172	
clustering 173	

As shown later in this study (Figures 5, 6, 7), we utilized DDMC to analyze the phosphoproteomes of 110 174	
treatment-naïve LUAD tumors and 101 paired normal adjacent tissues (NATs) from the NCI’s CPTAC 175	
LUAD study. We used DDMC with the binomial sequence distance method and 24 clusters (Figure 1, 176	
2B). We were able to include 30,561 peptides that were not observed in every tumor through our ability to 177	
handle missing data, but still filtered out 11,822 peptides that were only captured in one 10-plex TMT 178	
run. We used this fitting result throughout the rest of this study. The resulting 24 cluster motifs can be 179	
found in Figure S2. 180	

To evaluate the benefit of incorporating the peptide sequence information into the clustering criterion, we 181	
asked whether utilizing DDMC with different sequence weights would affect the performance of a 182	
regularized logistic regression model that predicts the mutational status of STK11, whether a patient 183	
harbors a mutation in EGFR and/or a gene fusion in ALK (EGFRm/ALKf), and the level of tumor 184	
infiltration (“Hot” versus “Cold”). We found that for all three phenotypes, when the method only uses the 185	
phosphorylation signal (weight=0), the patient samples are classified with lesser accuracy compared with 186	
when a combination of both data and sequence is used. In the case of STK11, the use of the largest weight 187	
wherein mainly the sequence motifs are used for clustering provided the best prediction performance. 188	
Likewise, EGFRm/ALKf samples were best classified with a mix weight of 15 or 50. Finally, the 189	
regression model classifying whether a sample is “hot-tumor-enriched” (HTE) or “cold-tumor-enriched” 190	
(CTE) showed the best fitness with a weights of 10, 35, and 40. Together, these results indicate that 191	
observing the motif information during clustering leads to final clusters that enhance the performance of 192	
downstream phenotype prediction models (Figures 4A and S3). 193	

Next, we explored how using different weights affects the overall phosphorylation signal and sequence 194	
information of the resulting clusters. To do so, we compared the model behavior after clustering the 195	
CPTAC data with a weight of 0 (peptide abundance only), 20 (mix), and 50 (mainly sequence). First, we 196	
hypothesized that the abundance-only model would generate clusters wherein its members would show 197	
less variation in phosphorylation signal and thus a lower mean squared error (MSE). To test this, we 198	
computed the average peptide-to-cluster MSE of 2000 randomly selected peptides for each model across 199	
all clusters. Although the differences were not significant, we did observe a direct correlation between 200	
weight and MSE (Figure 4B). Next, we calculated the cumulative PSSM enrichment by summing the 201	
sequence information (bits) of all cluster PSSMs per model. As expected, increasing the weight led to a 202	
corresponding increase in the cumulative sequence information (Figure 4C). To further illustrate the 203	
clustering behavior, we tracked the phosphosite TBC1D5 S584-p in the three models. Consistent with the 204	
general trend, the abundance-only and mixed models generated lower p-signal MSE when compared to its 205	
cluster center than the Sequence model whereas weight correlated with the total PSSM enrichment 206	
(Figures 4D-E). Next, we quantified whether in addition to an increase in absolute enrichment, the mixed 207	
and sequence-only models generated more similar cluster motifs to TBC1D5 S584-p sequence than the 208	
abundance-only model. To do so, we computed the mean of all pairwise PAM250 scores between the 209	
query sequence and all cluster sequences across models which clearly confirmed that as the sequence 210	
prioritization of the model increases, the cluster PSSM is not only more enriched across all positions but 211	
also displays a more representative sequence of TBC1D5 phosphosite (Figures 4F-I). These results show 212	
that using a mixed weight that similarly prioritizes both information sources—peptide abundance and 213	
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sequence—leads to more robust clustering of phosphosites through a tradeoff between phosphorylation 214	
abundance and sequence motifs. 215	

Widespread, dramatic signaling differences exist between tumor and normal adjacent tissue 216	

We explored whether DDMC could recognize conserved signaling patterns in tumors compared to normal 217	
adjacent tissue (NAT). The signaling difference between tumors and NAT samples was substantial, 218	
highlighting the significant signaling rewiring that tumor cells must undergo (Figure 5A). Using principal 219	
components analysis, we could observe that NAT samples were more similar to one another than to each 220	
tumor sample (Figure 5B/C). Nearly every cluster was significantly different in its average abundance 221	
between tumor and NAT (Figure 5D). Not surprisingly given these enormous differences, samples could 222	
be almost perfectly classified using their phosphopeptide signatures, with or without DDMC (Figures 5E; 223	
S4). Using the DDMC clusters, a logistic regression model identified that NAT versus tumor status could 224	
be predicted with cluster 11 alone (Figure 5C). 225	

With the abundance changes and regression results we observed, we decided to further explore clusters 11 226	
and 12. Cluster 11 shows a PSSM motif that might correspond to NEK1, 2, and 4, and an enrichment of 227	
peptides involved in gas and oxygen transport, as well as cytoskleleton remodeling or migration-related 228	
phenotypes according to a Gene Ontology (GO) analysis (Figure 5G/I). Even though NEKs are a largely 229	
understudied family of serine/threonine kinases, NEK1/2 have an established role in the formation and 230	
disassembly of cilia and NEK4 has also been implicated in regulating microtubule dynamics and stability 231	
(22, 23). The primary cilium serves as a signaling hub via the local expression of cell surface receptors 232	
and signaling molecules to sense environmental stimuli and thus promote a handful of phenotypes 233	
including adaptation to hypoxia, migration, and escape from apoptosis (24, 25). Cancer cells typically 234	
lack cilia which could promote the emergence of these malignant phenotypes. Cluster 11 displays a 235	
striking phosphorylation decrease in tumor samples compared with NATs which could be representative 236	
of the presence or lack of NEK1/2 signaling, respectively. Within this group of peptides, there is a notable 237	
overrepresentation of hemoglobin subunits (HBG1, HBD, HBB, and HBA2) which could illustrate the 238	
different oxygenation status of NATs versus malignant tissues. Moreover, several cytoskeletal-239	
remodeling proteins are present in cluster 11 such as PEAK1, FLNA, GAS2L2, MARCKS, PEAK1, and 240	
ARHGEF7. The abundance of all these signaling molecules is substantially decreased in tumor compared 241	
to NAT samples (Figure 5K). 242	

On the other hand, cluster 12 was clearly identified as a CK2-like motif (Figure 5G). This association was 243	
also established by NetPhorest which identified multiple experimentally validated CK2 substrates in this 244	
cluster (Figure 5J). GO analysis of cluster 12 identified a substantial enrichment of negative regulators of 245	
DNA duplex unwinding and pre-replicative complex assembly involved in cell cycle DNA replication 246	
(Figure 5G, I-J). DNA duplex unwinding and replication are important processes that play a major role in 247	
maintaining genome stability. DNA helicases are the enzymes responsible for unwinding the DNA and 248	
thus are essential for DNA replication. As such, they have been widely associated with DNA damage 249	
response (DDR) and cancer development (26). CK2 has been widely implicated in modulating DNA 250	
repair signaling pathways in response to DNA damage to promote cell survival in cancer (27–29). In fact, 251	
a study found that the CK2 inhibitor CX-4945 blocked DDR induced by gemcitabine and cisplatin and 252	
synergizes with these compounds in ovarian cancer cell lines (30). Cluster 12 contains several signaling 253	
proteins related to DNA replication and genome stability such as MCM3/4, the p53 interactor TP53BP1, 254	
BRCA1, ATRX, CENPF, and CDKs whose signal is strikingly decreased in NATs and increased in tumor 255	
samples (Figure 5L). These results, therefore, suggest that CK2 might activate signaling molecules within 256	
cluster 12 involved in DNA repair pathways to induce the survival of cancer cells. Taken together, 257	
DDMC builds phosphoproteomic clusters that present signaling dysregulation common to tumors 258	
compared to NATs and identifies putative upstream kinases modulating them. These features can help to 259	
interpret phosphoproteomic results and inform the generation of hypotheses for follow up experiments. 260	
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Genetic driver mutations are associated with more targeted phosphoproteomic rewiring 261	

Inactivating somatic mutations in STK11 lead to increased tumorigenesis and metastasis (31). Thus, we 262	
aimed to identify the phosphoproteomic aberrations triggered by this genetic event. The majority of 263	
clusters were significantly altered, generally toward higher abundances with a mutation (Figure 6A). The 264	
cluster centers corresponding to each patient’s tumor and NAT samples could successfully predict the 265	
STK11 mutational status by regularized logistic regression (Figure 6B). The tumor phosphoproteomic 266	
signal of cluster 7 greatly contributed to classify mutant STK11 samples, whereas the tumor signal of 8 267	
and 14 helped classify WT STK11 specimens. (Figure 6C). These results motivated further exploration of 268	
clusters 7 and 8 which present sequence motifs favored by ERK2, and CK1/BRCA1/PKD, respectively 269	
(Figure 6D). 270	

Cluster 7 is highly enriched with peptides involved in regulation of the cell cycle by cohesin loading 271	
(Figure 6E). Cohesin is a protein complex that mediates sister chromatid cohesion by directly binding 272	
with DNA. This interaction holds both chromatids together after DNA replication until anaphase wherein 273	
cohesin is removed to facilitate chromosome segregation during cell division. Cluster 7 contains the 274	
inhibitor phosphosite of the tumor suppressor RB1 S795-p, the member of the cohesin loading complex 275	
NIPBL (S280-p, S280-p;S284-p, and S350-p), and the cohesin release factor WAPL (S221-p and S221-276	
p;S223-p). Studies have shown that RB1 inactivation can lead to defects in chromosome cohesion that in 277	
turn compromises chromosome stability (32, 33). Manning et al demonstrated that depletion of WAPL in 278	
RB1-deficient cells promoted cohesin association with chromatin (33). Among these phosphosites, we 279	
observed strong opposing signals between STK11 WT and mutant patients in NIPBL S280-p; WAPL 280	
S221-p, S223-p; and RB1 S795-p (Figure 6E) which reinforces the association between STK11 activity 281	
and chromatin instability. Moreover, CDCA5 is key regulator of sister chromatid cohesion by stabilizing 282	
cohesin complex association with chromatin and was identified as a prognostic factor of lung cancer 283	
through a tumor tissue microarray analysis of 262 non–small cell lung cancer (NSCLC) patients (34). 284	
They showed that CDCA5 phosphorylation of S209 by ERK2 enhanced cell proliferation (34). Therefore, 285	
these results might suggest that mutations inactivating mutations in STK11 might correlate with signaling 286	
defects in sister chromatid cohesion during the cell cycle which in turn lead to chromosome instability 287	
and cell cancer growth. In fact, STK11 inactivation has been associated with genomic instability, 288	
although the signaling mechanism underlying this phenotypic response remains elusive (35). 289	

The signal of phosphosites in cluster 8, specifically in tumor samples, largely contributes to predict the 290	
signaling differences between STK11 WT and mutant samples (Figure 6C). This cluster presents a clear 291	
enrichment of peptides involved in the regulation of the Golgi apparatus such as GOLGA2-5, GOLGB1, 292	
and GOLPH3 (Figure 6F). Cancer cells commonly undergo fragmentation of the Golgi which has been 293	
shown to drive several malignant molecular signatures including the hyperactivity of motor proteins and 294	
kinase signaling dysregulation (37). Myosin 18A and 1E pertain to cluster 18 and the former has been 295	
reported to interact with GOLPH3 to induce Golgi dispersal. Moreover, a series of studies uncovered that 296	
GOLPH3 promotes cell proliferation in cancer (38–40). The phosphorylation behavior of GOLPH3, 297	
Myosin 18A, and GOLGA2 in STK11 WT compared with STK11 mutant patients shows a dramatic 298	
increase of abundance in the latter which supports the association between STK11 activity and an 299	
oncogenic role of the Golgi apparatus in these patients (Figure 6E). Together, these results suggest that 300	
STK11 mutations in tumor samples could affect the dispersion of the Golgi apparatus compared with 301	
STK11 WT samples. 302	

Tyrosine kinase inhibitors (TKIs) targeting the receptor tyrosine kinases (RTKs) EGFR and ALK are 303	
effective treatments in cancer patients with EGFR mutations and/or ALK translocations (EGFRm/ALKf). 304	
However, these treatments are limited by drug resistance which in some cases can be mediated by the 305	
concomitant signaling of both RTKs activated by driver mutations (41, 42). Once again, the signaling 306	
cluster centers allowed a regularized logistic regression model to more accurately classify samples 307	
according to its EGFRm/ALKf status (Figure S5). 308	
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Finally, we compared the classification performance of four regularized logistic regression models fit to 309	
either the DDMC clusters, clusters generated by the standard methods GMM and k-means, or the raw 310	
phosphoproteomic data directly. It is worth noting that unlike DDMC, methods such as GMM, k-means, 311	
or direct regression cannot handle missing values and thus for these strategies we used the 1,311 peptides 312	
that were observed in all samples, whereas DDMC was fit to the entire data set comprising 30,561 313	
phosphosites. We found that samples were classified with higher accuracy using DDMC compared to a 314	
GMM and with similar performance to k-means, especially with STK11 (Figure S6A). Direct regression 315	
to the raw signaling data yielded excellent performance; however, this strategy assigns thousands of 316	
coefficients to different peptides that vary every time the model is run, rendering this approach unable to 317	
establish a consistent link between mutations and signaling (Figure S6). In contrast, our analysis identifies 318	
a consistent association between STK11 activity with two novel phenotypes, namely chromosome 319	
cohesion during cell cycle and Golgi fragmentation, and proposes putative signaling mechanisms to 320	
support it. 321	

Exploration of immune infiltration-associated signaling patterns in tumors 322	

Immune checkpoint inhibitors (ICIs) have emerged as effective treatment options for NSCLC patients. 323	
However, there still is a need to identify or influence which patients will respond to these therapies. 324	
Patients that do not respond to ICIs often have tumors with poor immune infiltration either inherently or 325	
via an adaptive process after long exposure to the drug. However, the signaling mechanism by which 326	
malignant cells prevent tumor infiltration remains elusive. We used our DDMC clusters to explore the 327	
shared signaling patterns that differentiate “hot-tumor-enriched” (HTE) from “cold-tumor-enriched” CTE 328	
LUAD patients (11, 43). HTE and CTE status per patient was determined using xCell by Gilette et al 329	
(11). 330	

We observed that four clusters were significantly different in their average abundance between HTE and 331	
CTE samples (Figure 7A). Cluster 17, 18, and 20 display significantly higher abundances in HTE 332	
compared to CTE samples whereas cluster 21 presents the opposite trend. Samples could be accurately 333	
classified using the DDMC clusters (Figure 7B). This predictive performance was mainly explained by a 334	
positive association of cluster 2 with HTE status and cluster 6 with CTE. Other clusters contributed to 335	
explain the signaling differences between both groups but to a lesser extent (Figure 7C). 336	

These results prompted us to further investigate clusters 6, 17, 20, and 21 which our model predicts to be 337	
regulated by CK1/PKA, STK11/p38, CK2/STK11, and ERK2, respectively (Figure 7D). When exploring 338	
immunologically relevant phenotypes in the GO analysis of each cluster, we observed that clusters 6, 17, 339	
and 20 showed a substantial over-representation of immunological processes. Conversely, neither of these 340	
were present in the GO analyses of cluster 2 nor cluster 21 wherein the former substantially contributes to 341	
predict CTE samples and the latter shows a significant increase of phosphorylation abundance in CTE 342	
over HTE samples (Figures 7A and C). A gene ontology analysis indicates that cluster 6 members are 343	
particularly involved in mediating B cell homeostasis, but also T cell differentiation, T cell receptor 344	
signaling, and regulation of T cell activation. These processes are promoted, at least in part, by ABL1, 345	
LCK, PAK1, and DOCK10/11 which show an increased abundance in HTE and are attenuated in CTE 346	
samples (Figures 7E & H). Cluster 17 GO analysis unveiled an over-representation of several innate and 347	
adaptive immune response pathways possibly involving CD44, SDK1, PKC, PLD1, CAPN1 and GSTP1. 348	
For instance, CD44 is expressed in both endothelial and immune cells and its regulation plays a key role 349	
in enabling neutrophil and lymphocyte recruitment into tissues (44, 45) (Figures 7F & I). A study found 350	
that the osteopontin (OPN)/CD44 interaction is an immune checkpoint that controls CD8+ T cell 351	
activation and tumor immune evasion in which elevated expression of OPN correlated with decreased 352	
patient survival and conferred host tumor immune tolerance. Cluster 20 is enriched in responses 353	
orchestrated by the innate immune system (Figures 7G and J). The transcription factor NFATC crucially 354	
promotes T cell activation and proliferation, and several studies show that the predicted upstream kinase 355	
of cluster 20 CK2 directly phosphorylates this protein and enhances its gene expression (46, 47). In 356	
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addition, CK2 has also been shown to phosphorylate Regulators of Calcineurin (RCAN) proteins, which 357	
indirectly inhibit NFATC function (48). Several RCAN and NFATC peptides are present in cluster 20, 358	
however S210-p and S366-p, respectively show the largest abundance difference between HTE and CTE. 359	
Unexpectedly, RCAN1 S210-p shows a higher signal in HTE than in CTE whereas NFATC3 S366-p 360	
presents the opposite trend which might indicate that both phosphorylation events are inhibitory. 361	
Together, these results reinforce the role of CK2 in promoting immune infiltration in lung cancer patients. 362	
Intriguingly, inactivating mutations in STK11 have been reported to promote anti-PD1/PD-L1 resistance 363	
in KRAS-mutant LUAD suggesting a key role of STK11 in promoting tumor immune infiltration (49). 364	
Overall, these data demonstrate that the presence or lack of tumor immune infiltration can be accurately 365	
predicted by the DDMC clusters which in turn help identify putative upstream kinases modulating 366	
immune evasion. 367	

Discussion 368	

Phosphorylation-based cell signaling through the coordinated activity of protein kinases enables cells to 369	
swiftly integrate environmental cues and orchestrate a myriad of biological processes. MS-based global 370	
phosphoproteomic data provides the unique opportunity to globally interrogate signaling networks to 371	
better understand cellular decision-making and its therapeutic implications. However, these data also 372	
present challenging issues as a consequence of their incomplete and stochastic coverage, high-content but 373	
low-sample throughput, and variation in coverage across experiments. Here, we propose a clustering 374	
method, Dual Data and Motif Clustering (DDMC), that untangles highly complex coordinated signaling 375	
changes by grouping phosphopeptides based on their phosphorylation behavior and sequence similarity 376	
(Figure 1). To test the utility of DDMC, we clustered the phosphoproteomes of LUAD patients and used 377	
the resulting groups of peptides to decipher signaling dysregulation common to tumors, genetic 378	
backgrounds, and tumor infiltration status (Figures 5, 6, 7). 379	

Previous efforts in regressing mass spectrometry-based phosphorylation measurements against 380	
phenotypic or clinical data have been based on the ability of certain regression models such as PLSR or 381	
LASSO to robustly predict using high-dimensional and correlated data (50). While these models can 382	
generally be predictive with such data, they are not easily interpretable (Figure S4B). Hence, we 383	
hypothesized that clustering large-scale MS measurements based on biologically meaningful features and 384	
utilizing the cluster centers to fit regression methods could enhance the predictive performance of the 385	
model while providing highly interpretable results wherein clusters constitute signaling nodes distinctly 386	
correlated with cell patient phenotypes. Here, we demonstrate that DDMC enhances model prediction and 387	
interpretation (Figures 4A, S6, 3). 388	

Model interpretation is enhanced by comparing the resulting cluster PSSMs with kinase specificity data 389	
such as PSPL to identify putative upstream kinases modulating signaling clusters. Computational 390	
validations showed that DDMC was able to correctly associate AKT1 and ERK2 with clusters of their 391	
respective substrates (Figure 3). It is worth noting, however, that kinase specificity is defined by 392	
additional features beyond the phosphosite motif such as kinase-substrate co-localization, regulation by 393	
phosphosite-binding domains (e.g., SH2, PTB domains), or docking. In addition, a major limitation of 394	
PSPL experiments is that since they do not provide docking information, the real affinity between the 395	
string of identified peptide residues as key determinants of specificity of a sequence motif and the 396	
interacting kinase domain is unknown. This limitation could also compromise kinase-cluster associations 397	
established by DDMC. A method combining bacterial surface-display of peptide libraries with next-398	
generation sequencing tackles this limitation by quantifying the specificity of a kinase to virtually all 399	
possible motif combinations (51). Thus, as the number of profiled kinases with this technique increases, 400	
these measurements could be used to rank cluster peptides by magnitude of specificity to a specific kinase 401	
to make better upstream kinase predictions. 402	
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 A key benefit of DDMC is that the identified clusters are not limited to pre-existing motifs and are 403	
therefore not dependent on prior experimentally validated kinase-substrate interactions. Thereby, this 404	
method could improve our understanding of the signaling effects of understudied kinases. For instance, 405	
our model predicts NEK1&2 promote, at least in part, a cluster with strikingly increased signaling in 406	
NATs compared to tumors. Further exploration of this cluster led us to hypothesize that the lack of NEK 407	
signaling in tumor samples might associated with the absence of ciliagenesis and adaptation to hypoxia in 408	
lung tumors (Figure 5G-H). Additionally, we show that cluster 8, which greatly contributes to explain the 409	
signaling differences between STK11 WT and mutant samples in tumors (Figure 6C), is enriched with 410	
proteins such as GOLPH3 and Myosin 18A that have been shown to promote Golgi fragmentation in 411	
cancer (38–40). This prompts us to consider the novel interaction between CK1 and these signaling 412	
molecules. 413	

An additional major challenge being faced during the analysis of large-scale signaling data is 414	
missingness. Given that statistical tools often require complete data sets, researchers use standard 415	
methods to impute missing values such as the peptides’ mean or minimum signal, constant zero, or PCA 416	
imputation only in peptides wherein at least 50% of their samples were required to have non-missing 417	
values as excessive missing values can result in poor imputation (10, 11, 52). In this study we show that 418	
DDMC can model a data set of 30,561 peptides after filtering out any phosphosites that were not captured 419	
in at least 2 TMT (up to ~80% of missingness) by ignoring unobserved values during EM distribution 420	
estimation and calculation of GMM probabilities (see methods). Therefore, this method enables clustering 421	
of signaling data despite a remarkable number of missing values. Furthermore, DDMC clearly 422	
outperforms the imputation performance of using the peptides’ mean, minimum signal, or constant zero 423	
and provides similar results to PCA imputation. This important feature could offer the possibility of 424	
conducting pan-cancer phosphoproteomics studies using readily available large-scale clinical 425	
phosphoproteomic data. 426	

The benefit of building algorithms combining different information sources is evident in previously 427	
published approaches. For instance, INKA predicts active kinases by integrating scores reflecting both 428	
phosphorylation status and substrate abundance (53). In another study, Exarchos et al. formulated a 429	
decision support system that integrates clinical, imaging, and genomic data to identify the factors that 430	
contribute to oral cancer progression and predict relapses. The authors found that combining the more 431	
accurate individual predictors yielded better predictions than those generated by other strategies reported 432	
in the literature (54). Finally, BOADICEA is a method that allows systematic risk stratification of breast 433	
cancer patients by incorporating the effects of lifestyle, hormonal and reproductive risk factors, 434	
mammographic density, and of the common breast cancer susceptibility genetic variants into the 435	
prediction model (55). 436	

In total, in this study we show that combining the information about the sequence features and 437	
phosphorylation abundance leads to more robust clustering of global signaling measurements. Use of the 438	
DDMC clusters to regress against cell phenotypes led to enhanced model predictions and interpretation. 439	
Thus, we propose DDMC as a general and flexible strategy for phosphoproteomic analysis. 440	

Materials and Methods 441	

All analysis was implemented in Python v3.9 and can be found at https://github.com/meyer-442	
lab/resistance-MS. 443	

Expectation-maximization (EM) algorithm architecture 444	

We constructed a modified mixture model that clusters peptides based on both their abundance across 445	
conditions and sequence. The model is defined by a given number of clusters and weighting factor to 446	
prioritize either the data or the sequence information. Fitting was performed using expectation-447	
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maximization, initialized at a starting point. The starting point was derived from k-means clustering the 448	
abundance data after missing values were imputed by PCA with a component number equal to the number 449	
of clusters. During the expectation (E) step, the algorithm calculates the probability of each peptide being 450	
assigned to each cluster. In the maximization (M) step, each cluster’s distributions are fit using the 451	
weighted cluster assignments. The peptide sequence and abundance assignments within the E step are 452	
combined by taking the sum of the log-likelihood of both assignments. The peptide log-likelihood is 453	
multiplied by the user-defined weighting factor immediately before to influence its importance. Both 454	
steps repeat until convergence as defined by the increase in model log-likelihood between iterations 455	
falling below a user-defined threshold. 456	

Phosphorylation site abundance clustering in the presence of missing values 457	

We modeled the log-transformed abundance of each phosphopeptide as following a multivariate Gaussian 458	
distribution with diagonal covariance. Each dimension of this distribution represents the abundance of 459	
that peptide within a given sample. For example, within a data set of 100 patients and 1000 peptides, 460	
using 10 clusters, the data is represented by 10 Gaussian distributions of 100 dimensions. 461	
Unobserved/missing values were indicated as NaN and ignored during both distribution estimation and 462	
when calculating probabilities. Any peptides that were detected in only one TMT experiment were 463	
discarded. 464	

Sequence-cluster comparison 465	

PAM250 466	

During model initialization, the pairwise distance between all peptides in the dataset was calculated using 467	
the PAM250 matrix. The mean distance from each peptide to a given cluster could then be calculated by: 468	

𝑤 =
1
𝑛
(𝑃 ⋅ 𝑣) 469	

Where 𝑃 is the 𝑛 × 𝑛 distance matrix, 𝑛 is the number of peptides in the dataset, 𝑣 is the probability of 470	
each peptide being assigned to the cluster of interest, and 𝑤 is the log-probabilities of cluster assignment. 471	

Binomial enrichment 472	

We alternatively used a binomial enrichment model for the sequence representation of a cluster based on 473	
earlier work (55). Upon model initialization, a background matrix 𝑖 × 𝑗 × 𝑘 was created with a position-474	
specific scoring matrix of all the sequences together. Next, an 𝑇 data tensor 𝑖 was created where 𝑗 is the 475	
number of peptides, 𝑘 is the number of amino acid possibilities, and 𝑘 is the position relative to the 476	
phosphorylation site. This tensor contained 1 where an amino acid was present for that position and 477	
peptide, and 0 elsewhere. 478	

Within each iteration, the cluster motif would be updated using 𝑣, the probability of each peptide being 479	
assigned to the cluster of interest. First, a weighted count for each amino acid and position would be 480	
assembled: 481	

𝑘 = (𝑇⊺ ⋅ 𝑣)⊺ 482	

Because peptides can be partially assigned to a cluster, the counts of each amino acid and position can 483	
take continuous values. We therefore generalized the binomial distribution to allow continuous values 484	
using the regularized incomplete Beta function: 485	

𝑀 = 𝐵(∥ 𝑣 ∥"− 𝑘, 𝑘 + 1,1 − 𝐺) 486	
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Finally, the log-probability of membership for each peptide was calculated based on the product of each 487	
amino acid-position probability. 488	

𝑤 = log(𝑇 × 𝑀) 489	

We confirmed that this provided identical results to a binomial enrichment model for integer counts of 490	
amino acids (55) but allowed for partial assignment of peptides to clusters. 491	

Quantifying the influence of sequence versus data 492	

The magnitude of the weight used to scale the sequence and data scores is arbitrary. We do know that 493	
with a weight of 0 the model only uses the phosphorylation measurements. Alternatively, with an 494	
enormously large weight the motif information is prioritized. However, we do not know to what extent 495	
each information source is prioritized in general. Therefore, to quantify the relative importance of each 496	
type of data, we calculated our clustering results at each weighting extreme, and then calculated the 497	
Frobenius norm of the resulting peptide assignments between those and the clustering of interest. 498	

Generating Cluster Motifs and Upstream Kinase Predictions 499	

For each cluster we computed a position-specific-scoring matrix (PSSM). To do so, we populated a 500	
residue/position matrix with the sum of the corresponding cluster probabilities for every peptide. Once all 501	
peptides were accounted for, the resulting matrix was normalized by averaging the mean probability 502	
across amino acids and log2-transformed to generate a PSSM. In parallel, we computed a PSSM 503	
including all sequences that served as background to account for the different amino acid occurrences 504	
within the data set. Then, we subtracted each cluster PSSM with the background PSSM and limited any 505	
large negative numbers to -3. Next, we extracted several kinase specificity profiling results from the 506	
literature (16, 18, 18, 19). The distance between PSSM and PSSL motifs was calculated using by the 507	
Frobenius norm of the difference. Motif logo plots were generated using logomaker (56). 508	

Evaluate clustering by imputation of values 509	

To evaluate the ability of our model to handle missing values, we removed random, individual TMT 510	
experiments for each peptide and used the model to impute these values. The number of missing values 511	
per peptide is highly variable. Therefore, in our error quantitation, we stratified peptides by their 512	
missingness percentage and computed the average mean squared error between the actual values and 513	
predictions—or imputed peptide average—in each group. We calculated the reconstruction error across 514	
different combinations of cluster numbers and weights using the same process. 515	

Associating clusters with molecular and clinical features 516	

To find clusters that tracked with specific molecular or clinical features we implemented two different 517	
strategies: logistic regression and hypothesis testing. For binary problems such as Tumor vs NAT samples 518	
or mutational status we used l1-regularized logistic regression and Mann-Whitney rank tests. In the 519	
former, we tried to predict the feature of interest using the phosphorylation signal of the cluster centers, 520	
whereas in the latter, for each cluster we split all patients according to their specific feature and tested 521	
whether the difference in the median signal between both groups was statistically different. We performed 522	
Bonferroni correction on the p-values computed by the Mann-Whitney tests. Gene ontology analysis was 523	
performed using the GENEONTOLOGY software (geneontology.org) (57, 58).  524	
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Figures 728	

 729	
Figure 1: Schematic of the DDMC approach to cluster global signaling data and infer upstream 730	
kinases driving phenotypes. A) DDMC is run to cluster an input phosphoproteomic data set to generate 731	
4 clusters of peptides that show similar sequence motifs and phosphorylation behavior. B) Predictive 732	
modeling using clusters allows one to establish associations between specific clusters and features of 733	
interest. C) Putative upstream kinases regulating meaningful clusters can be predicted by computing the 734	
distance between a cluster motif and PSPL PSSM. PSSM; Position-specific scoring matrix, PSPL; 735	
Position scanning peptide library. 736	
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 737	
Figure 2: Benchmarking the robustness of motif clustering to missing measurements. A) A 738	
schematic of the process for quantifying robustness to missing values. Any peptides containing less than 7 739	
TMT experiments were discarded. For the remaining 15904 peptides, an entire random TMT experiment 740	
was removed per peptide and these values were stored for later comparison. Next, these artificial missing 741	
values were imputed using either a baseline strategy (peptide mean/minimum signal, constant zero, or 742	
matrix completion by PCA) or the corresponding cluster center. Once a mean squared error was computed 743	
for each peptide, the second iteration repeats this process by removing a second TMT experiment. A total 744	
of 5 random TMT experiments per peptide were imputed by clustering using a different number of 745	
clusters (B-E) or different weights (E-I). 746	
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 747	
Figure 3: Validation of upstream kinase predictions. (A-B) PCA analysis of the DDMC 748	
phosphoproteome clusters of MCF7 cells subjected to a drug screen (20). C) Heatmap showing the effect 749	
of inhibitors on the phosphorylation signal of cluster 1. D) DDMC upstream kinase prediction of cluster 750	
1. E) NetPhorest upstream kinase prediction of cluster 1. (F) Resulting PSSM generated using ERK2 751	
substrates reported by Carlson et al (21). (G) Upstream kinase predictions of CPTAC clusters 7, 9, 13, 752	
and 21 in addition to the ERK2 motif shown in (F). H) Upstream kinase predictions of the same PSSMs 753	
after randomly shuffling the motif positions. 754	
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 755	
Figure 4: Sequence information enhances model prediction and provides more robust clustering. A) 756	
Performance of a regression model predicting the mutational status of STK11 (blue) EGFR and/or ALK 757	
(yellow) and tumor infiltration (green) in LUAD patients using either only phosphorylation data 758	
(weight=0), mainly sequence information (50), or both (0 < w < 50). B) MSE between the 759	
phosphorylation signal of 2000 randomly selected peptides and the center of its assigned clusters using a 760	
weight of 0 (data), 20 (mix), or 50 (sequence). C) Cumulative PSSM enrichment across positions 761	
comparing the data, mix, and sequence clustering strategies. (D-H) TBC1D5 peptide p-signal MSE (D), 762	
cumulative PSSM enrichment (E), and PSSM logo plots (F-H). 763	
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 764	
Figure 5: Conserved tumor differences compared to normal adjacent tissue. A) Hierarchical 765	
clustering of DDMC cluster centers. B–C) Principal components analysis scores (B) and loadings (C) of 766	
the samples and phosphopeptide clusters, respectively. D) Phosphorylation signal of tumor and NAT 767	
samples per cluster and statistical significance according to a Mann Whitney rank test (* = p-value < 0.05 768	
and ** = p-value < 0.001). E) Receiver operating characteristic curve (ROC) of a regularized logistic 769	
regression model. F) Logistic regression weights per cluster. G) Upstream kinase predictions of clusters 770	
11 and 12. (H) NetPhorest kinase predictions of cluster 12. (I-J) Gene ontology analysis and (K-L) 771	
representative peptides of enriched biological processes of clusters 11 and 12. 772	

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 10, 2021. ; https://doi.org/10.1101/2021.06.09.447799doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.09.447799
http://creativecommons.org/licenses/by-nd/4.0/


	 	 	
	

   
	

23 

 773	
Figure 6: Phosphoproteomic aberrations associated with STK11 mutational status. A) 774	
Phosphorylation signal of STK11 WT and mutant samples per cluster and statistical significance 775	
according to a Mann-Whitney rank test (* = p-value < 0.05 and ** = p-value < 0.001). B) ROC of a 776	
logistic regression model predicting the STK11 mutational status and (C) its corresponding weights per 777	
sample type. (D) Putative upstream kinases of clusters 7, and 8. (E) Representative cohesin loading 778	
peptides in cluster 7. (F-G) GO analysis and representative Golgi fragmentation peptides of cluster 8. 779	
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 780	
Figure 7: Phosphoproteomic signatures driving tumor immune infiltration. (A) Phosphorylation 781	
abundance of CTE and HTE samples per cluster and statistical significance according to a Mann-Whitney 782	
rank test (* = p-value < 0.05 and ** = p-value < 0.001). (B–C) ROC and coefficients of a logistic 783	
regression model predicting infiltration status—cold-tumor enriched (CTE) versus hot-tumor enriched 784	
(HTE). (D) Putative upstream kinases of clusters 7, 17, 20, and 21. (E–G) GO enrichment analysis of 785	
select clusters. (H–J) Selected peptides driving the GO biological processes in HTE versus CTE samples. 786	
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