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Patterns of land-use can affect the transmission of many infectious diseases with human health im-1

plications; yet, applied ecosystem service models have rarely accounted for disease transmission risk. A2

mechanistic understanding of how land-use changes alter infectious disease transmission would help to3

target public health interventions and to minimize human risk of disease with either ecosystem degrada-4

tion or restoration. Here, we present a spatially explicit model of disease transmission on heterogeneous5

landscapes that is designed to serve as a road map for modeling the multifaceted impacts of land-use on6

disease transmission. We model the transmission of three vector-borne diseases with distinct transmission7

dynamics (parameterized using published literature to represent dengue, yellow fever, and malaria) on8

simulated landscapes of varying spatial heterogeneity in tree cover and urban area. Overall, we find that9

these three diseases depend on the biophysical landscape in different nonlinear ways, leading to tradeoffs10

in disease risk across the landscape; rarely do we predict disease risk to be high for all three diseases in11

a local setting. We predict that dengue risk peaks in areas of high urban intensity and human population12

density, yellow fever risk peaks in areas with low to moderate human population density and high tree13

cover, and malaria risk peaks where patchy tree cover abuts urban area. To examine how this approach can14

inform land use planning, we applied the model to a small landscape to the northwest of Bogotá, Colombia15

under multiple restoration scenarios. We predict that in an area inhabited by both Aedes aegypti and Ae. al-16

bopictus, any increase in overall tree cover would increase dengue and yellow fever risk, but that risk can be17

minimized by pursuing a large contiguous reforestation project as opposed to many small, patchy projects.18

A large contiguous reforestation project is also able to both reduce overall malaria risk and the number of19

malaria hotspots. As sustainable development goals make ecosystem restoration and biodiversity conser-20

vation top priorities, it is imperative that land use planning account for potential impacts on both disease21

transmission and other ecosystem services.22
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Introduction27

Land-use change, such as the conversion of forest to cropland, rangeland, or urban area, often has negative28

and long-lasting (or irreversible) impacts on biodiversity (Huston, 2005, Mattison and Norris, 2005, Hansen29

et al., 2012, Cunningham et al., 2013) and ecosystem services (e.g., water quality: Ren et al. 2003; carbon30

sequestration: Guo and Gifford 2002; nitrogen cycling and soil quality: Mirza et al. 2014). Though trade-31

offs between economic productivity (e.g., crop yield) and environmental values are sometimes inevitable,32

careful a priori planning can help to reduce the severity of these trade-offs and thus minimize environmen-33

tal degradation (Green et al., 2005, Polasky et al., 2008, Nelson et al., 2009, Carreño et al., 2012, Goldstein34

et al., 2012, Kennedy et al., 2016, Pennington et al., 2017). For example, alternative land-use change scenar-35

ios can be compared using an optimization framework where the economic driver of the land-use change36

(e.g., crop yield), biodiversity, and ecosystem services (such as water quality, carbon sequestration, nutri-37

ent retention, and recreation opportunities) are estimated for each scenario and plotted against each other38

relative to a hypothetically achievable “efficiency frontier” (e.g., see Pennington et al., 2017). The search39

for optimal land-allocation decisions (e.g., location, patch size, and configuration) using this method is in-40

creasing in applied research and contributing to policy decisions (Viglizzo and Frank, 2006, Goldstein et al.,41

2012, Geneletti, 2013, Kennedy et al., 2016, Pennington et al., 2017).42

Land-use change can also affect the transmission of infectious diseases, which are one of the leading43

global health burdens, as measured by lost disability adjusted life years (DALYs). In 2018, malaria alone44

accounted for over 228 million cases (with approximately 1/3 - 1 DALY lost per case: Abdalla et al. 2007,45

Gunda et al. 2016) and an estimated 405,000 deaths (WHO, 2019). Land-use change such as deforestation46

can increase malaria transmission (Coluzzi, 1994, Sharma, 2002, Hahn et al., 2014), while landscape frag-47

mentation increases human risk of Lyme disease (Ward and Brown, 2004), and dengue transmission tends48

to increase with urbanization (Vanwambeke et al., 2007). Despite this longstanding knowledge, the health49

burden of infectious diseases, and decades-old suggestions that infectious disease transmission should be50

considered when making land-use decisions (e.g., Patz et al., 2004), disease transmission has rarely been51

accounted for explicitly in applied ecosystem services research. Recently, Castro et al. (2019) provided52

guidelines for how planning decisions in the Amazon basin could consider infectious disease transmis-53

sion (with a focus on malaria and dengue) and McClure et al. (2019) identified land-use change-mediated54

alterations to human population density, human-wildlife contact rates, vector abundance, and human ex-55

posure to vectors as the primary mechanisms altering infectious disease transmission. While these works56

will hopefully bring increased attention to infectious disease transmission in ecosystem services research,57

neither provided direct advice on how to quantify disease transmission as a function of land-use change.58
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Given the high rates of land-use change globally (e.g., deforestation: Runyan and D’Odorico 2016; urban-59

ization: Seto et al. 2013) and the growing momentum of efforts to accelerate the pace of restoration and60

protection globally (e.g., the “UN decade on Ecosystem Restoration”: UN 2019; the Global Deal For Na-61

ture: Dinerstein et al. 2019), it is a critical time to seek a more quantitative understanding of how land-use62

changes will impact infectious disease transmission.63

How should infectious disease transmission be modeled in order to optimize land-use decisions? Ide-64

ally, a model would have three characteristics. First, it should be constructed using a mechanistic under-65

standing of disease dynamics in order to estimate a priori how alternative proposed land-use scenarios66

would affect transmission. Previous research has investigated links between land-use characteristics and67

disease transmission in a variety of disease systems (e.g., malaria: Vittor et al. 2006, Chaves et al. 2018, San-68

tos and Almeida 2018, MacDonald and Mordecai 2019; dengue: Ziemann et al. 2018; Lyme disease: Jackson69

et al. 2006, MacDonald et al. 2019; multiple diseases: Vanwambeke et al. 2007, Sheela et al. 2017); however,70

these works rely primarily on regression frameworks that are not appropriate for predicting responses to71

new environmental regimes that have not yet been observed, which is needed to evaluate alternative poten-72

tial land-use scenarios. Second, a suitable model should be able to link spatially-explicit land-use patterns73

to disease transmission in order to understand which populations would experience the highest infection74

risk for planning targeted control efforts and to map tradeoffs or synergies between disease transmission75

and other important outcomes (e.g., ecosystem services). Finally, flexible, generalizable model frameworks76

can allow us to compare land use change impacts on multiple diseases, and to capture tradeoffs among77

them.78

Because different infectious diseases often have strikingly different transmission dynamics, predicting79

the effects of land-use on the transmission of any single disease could require its own modeling study.80

For example, both cholera, caused by a bacteria passed from an infected to susceptible person through81

fecal contamination of water, and malaria, a Plasmodium parasite transmitted between humans by Anopheles82

(Nyssorhynchus) mosquito vectors, may respond to landscape features such as the location, density, and size83

of human settlements, water bodies, and forest patches. However, because cholera is environmentally84

transmitted and malaria vector transmitted, the data and modeling techniques required to predict how85

land-use change would affect the transmission of these two diseases will differ. Even within a smaller class86

of diseases such as mosquito-borne diseases, the disease-causing pathogens vary in the number of species87

of hosts and mosquito they use for transmission (altering how humans become infected), which changes the88

data requirements to model transmission and can promote alternative modeling strategies. For example,89

Zika virus exploits humans as its primary host and is transmitted primarily by Aedes aegypti mosquitoes,90

which allows single-host single-vector differential equation models to have moderate success (e.g., Bonyah91
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et al., 2017, Riou et al., 2017). On the other hand, Ross River virus circulates in dozens of vertebrate host92

and mosquito species (Stephenson et al., 2018), which requires data on a much broader array of species in93

order to parameterize a mechanistic model (e.g., Kain et al., 2021). Further, because the host and vector94

community of any vector-borne disease will vary across space and time, modeling even a single disease95

requires, at a minimum, location-specific parameter values; transmission predictions in one community96

are unlikely to translate well to a different community. The dominant agent of malaria in most of Latin97

America (Plasmodium vivax), for example, is transmitted by Nyssorhynchus darlingi (previously Anopheles98

darlingi), which breeds in standing water at forest boundaries (Tadei et al., 1998, Vittor et al., 2006, Zeilhofer99

et al., 2007, Vittor et al., 2009), whereas the dominant agent of malaria in sub-Saharan Africa (Plasmodium100

falciparum) is transmitted primarily by Anopheles gambiae, which readily breeds in urban and peri-urban101

areas in artificial containers, roadside ditches, and a variety of other small water bodies (Minakawa et al.,102

2004, Awolola et al., 2007, Gnémé et al., 2019).103

A single spatially explicit mechanistic model will not be able to make predictions for a wide variety104

of diseases given that each disease depends on disease-by-location-specific parameter values. However,105

general modeling scaffolds exist to quantify the transmission of a broad range of infectious diseases using106

a common strategy. Once established, such a model framework can be modified and parameterized as107

needed to capture the transmission dynamics of the most relevant infectious diseases in a given location.108

Here we construct transmission matrices composed of the transmission rates between all pairs of species109

that participate in transmission (which can be parameterized using both laboratory infection data and field110

data on contact rates among species). We make these transmission matrices spatially dependent by mod-111

eling species contact rates as a function of landscape features. Explicitly accounting for the transmission112

rates between all pairs of species can be data intensive, but has the advantage of being able to flexibly113

model diseases with a variety of transmission modes including directly transmitted diseases (e.g., chick-114

enpox: Ogunjimi et al., 2009), environmentally transmitted diseases (e.g., chronic wasting disease: Jennelle115

et al., 2014, Samuel and Storm, 2016), and vector-borne diseases with all forms of transmission strategies116

(including host-to-vector and vector-to-host transmission: Dobson 2004, as well as vector-to-vector verti-117

cal transmission: Lequime and Lambrechts 2014; and direct host-to-host transmission, which can occur for118

some vector-borne pathogens such as Rift Valley fever virus and Zika virus: Wichgers Schreur et al. 2016,119

D’Ortenzio et al. 2016).120

We use the spatially explicit model to capture the transmission of several vector-borne diseases. We121

analyze patterns of vector-borne disease risk as a function of land-use in two stages. First, we explore122

general patterns of vector-borne disease transmission as a function of landscape features using simulated123

landscapes in order to better isolate how landscape features drive disease risk. For this stage we simulate124
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landscapes of tree cover and urban area (i.e., percent impermeable surface, which we will refer to as urban125

“intensity”). These landscapes are simulated to vary along a gradient of spatial heterogeneity from one126

extreme of highly segregated landscape features to one of highly integrated features; along this continuum127

the average of each landscape feature is constrained to remain the same. This continuum is akin to the128

“land-sparing” vs. “land-sharing” dichotomy, which draws a comparison between a land allocation strat-129

egy that separates or integrates production and conservation, respectively (Green et al., 2005, Phalan et al.,130

2011, Tscharntke et al., 2012). This paradigm has been used extensively to compare methods for conserving131

biodiversity (Phalan et al., 2011, Melo et al., 2013, Edwards et al., 2014, Goulart et al., 2016), but has not yet132

been applied to human health and vector-borne disease transmission, despite its utility (see McClure et al.,133

2019, Table 1 for a list of studies that have used this conceptual paradigm). For each simulated level of spa-134

tial heterogeneity we also predict how disease risk will change depending on human population density in135

an effort to separate the effects of the spatial configuration of urban intensity from human density. Second,136

we apply the model in a specific case study to predict how potential vector-borne disease risk would change137

with alternative strategies of partial reforestation on a region of mixed urban area and farmland northwest138

of Bogotá Colombia, once again using a range from extremes of “land-sparing” to “land-sharing”. This139

region has been identified as being within a broader area of high restoration importance (Strassburg et al.,140

2020), and has recent curated MODIS vegetation indices (e.g., NDVI: Normalized Difference Vegetation141

Index) available (Gerard et al., 2020). Further, this is a high-elevation region that may experience a higher142

overall vector-borne disease burden with climate warming (Ryan et al., 2019, Mordecai et al., 2020)143

In both stages we model the transmission of three mosquito-borne diseases that differ in which land-144

scape features promote transmission, in order to capture the types of tradeoffs that are likely to occur on real145

landscapes. Specifically, we model the transmission of: (i) a human-to-human specialist that is transmitted146

by urban-dwelling mosquitoes (e.g., dengue), (ii) a human-to-human specialist that is instead transmitted147

by mosquitoes that prefer non-built environments (e.g., malaria), and (iii) a disease that both spills over148

from non-human hosts but also has the potential for human-to-mosquito-to-human transmission (e.g., yel-149

low fever). We use published literature to parameterize each transmission model for dengue transmitted by150

Ae. aegypti and Ae. albopictus, malaria transmitted by Ny. darlingi, and yellow fever transmitted by Ae. ae-151

gypti, Ae. albopictus, and Haemagogus spp. We present our results as applying to the transmission of dengue,152

malaria, and yellow fever for brevity, though we suggest caution when interpreting our results as direct153

estimates for these three diseases because of a relatively poorly defined quantitative relationship between154

many components of each disease’s transmission and land-use. For the first stage of analysis we exam-155

ine how the configuration of landscape features (urban intensity and tree cover) and absolute abundance156

of humans alters human infection risk for diseases with these transmission modes and explore tradeoffs157
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in risk among them. For the second stage of analysis we focus on what strategy of landscape restoration158

minimizes post-restoration disease risk. In an effort to guide future research, we also identify key empir-159

ical gaps in the understanding of the underlying mechanistic disease transmission pathway that strongly160

affect predictions, as well as suggest strategies for better integration of disease transmission into ecosystem161

services research in the future.162

Methods163

Model Overview164

Model outcomes165

We calculated two summary metrics of disease transmission on each landscape in order to map disease166

metrics spatially, both of which rely on R0, which describes the number of new infections a single source167

infection would generate in an otherwise susceptible population. The first metric is R0 itself, which we168

calculated for each landscape cell (computationally, each cell [i, j] of a matrix) assuming that an infected169

individual were to appear in that cell at the beginning of their infectious period. Thus, R0 measures the170

epidemic potential of a disease if it were to emerge in a specific location on a landscape and can be thought171

of as the potential of that landscape region to serve as a source of infection for the wider region. R0 has172

a storied history of providing sufficient criteria for affecting change (e.g., the R0 of malaria was used to173

identify sufficient vector control for the completion of the Panama Canal: Coleman-Jones 1999), but also has174

some known drawbacks as an epidemic metric, including assuming a fully susceptible population with no175

heterogeneity in transmission (within classes, i.e., host species) and a temporally constant environment. The176

second metric, which we call force of infection (FOI), also depends on a calculation of R0, but summarizes177

transmission in the opposite direction by quantifying the flow of infection into a given location. Akin but178

not identical to, the classic definition of FOI (the rate at which susceptible individuals acquire an infectious179

disease), here we use FOI to describe the conversion of susceptible to infected individuals cell by cell after180

one infection generation. Thus, FOI can be interpreted as a measure of the overall infection burden a181

specific landscape region would experience from transmission on the broader landscape. We calculated182

FOI by summing the number of new human cases a given location on the landscape would experience if183

infection were to arise in all possible locations on the landscape.184

To calculate R0 in a given landscape cell for the two human-to-human specialists (parameterized to185

represent dengue and malaria), we assumed a single human infection appeared in that cell. For these186

diseases we calculated R0 as the total number of second generation human infections generated from the187
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source human infection. To calculate FOI in cell [i, j] for these diseases (which we write as FOIh for FOI188

on humans) we summed the number of second generation human infections in cell [i, j] across all possible189

disease emergence locations (all landscape cells). For the disease capable of being transmitted by humans190

and non-human hosts (yellow fever) we calculated both R0 and FOI arising from either a source human191

infection or a source non-human primate infection. To explore the multiple transmission pathways of this192

disease, our model separates each R0 and FOI value into its component parts, i.e., the number of second193

generation human and non-human primate infections arising from a source non-human primate infection194

(the sum of which would be the overall R0 attributable to a starting non-human primate infection). We note195

that these are R0-like quantities as they are not calculated using the traditional dominant eigenvalue of the196

pairwise transmission matrix (Diekmann et al., 2010) (which gives the expected number of secondary cases197

in a heterogeneous community arising from a typical infection).198

Model structure199

To better characterize the spatial dependence of R0 and FOI of these diseases (for efficiency we will hence-200

forth refer to these three diseases simply as dengue, malaria, and yellow fever) on the landscape and to201

evaluate the role of different mosquito vectors, we separated transmission into two components: host-to-202

mosquito transmission, which considers the number of mosquitoes the source host infects, and mosquito-203

to-host transmission, which considers the number of new (second generation) host infections generated204

from the mosquitoes infected in the host-to-mosquito transmission step. We first describe the overall cal-205

culation of host-to-mosquito and mosquito-to-host transmission and then describe in detail the data and206

statistical models used to parameterize each of the components of these calculations. Figure 1 provides a207

visual model schematic meant to aid the interpretation of the equations for host-to-mosquito (Eq. 1) and208

mosquito-to-host (Eq. 2) transmission.209
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• Mosquito infection probability | host pathogen load

• Mosquito biting preference

• Mosquito biting rate

• Mosquito abundance 
• Host abundance 
• Host movement

• Mosquito transmission probability

• Mosquito survival

• Mosquito biting rate

• Mosquito biting preference

• Mosquito movement 
• Host abundance

Host-to-Mosquito Transmission Mosquito-to-Host TransmissionA B

Figure 1: The transmission of a mosquito-borne disease on a landscape starting from a source infection
in a human. Red outlined hosts and mosquitoes designate infected individuals, solid black/black outlined
individuals are susceptible, and the faded host is recovered. Red arrows show transfer of infection from
infected to susceptible individuals. Colored circles in A and B represent the movement distributions of
hosts and mosquitoes on the gridded landscape; boxed cells show the center of these distributions. The
text lists the components considered in each transmission step; components that are bolded depend on
landscape features. We use the total number of second generation human infections (solid human receiving
infection from the red boxed mosquito in B) as the R0 of an infection originating in the boxed cell in A. For
dengue and malaria, blood feeding by the infected mosquito on non-human hosts (e.g., the non-human
primate in B) do not contribute to onward transmission (but do so for yellow fever). Force of infection
looks at the problem in the opposite direction, measuring the burden each cell experiences from infections
beginning in all possible cells (for which the boxed cell in A is one possibility). That is, the transmission
pathway pictured here provides one entry in the calculation of FOI for each landscape cell.

All of the mosquitoes across the landscape that become infected by a single infection emerging in land-210

scape cell [i, j] (e.g., the red boxed cell in Figure 1A) can be written as:211

Imij =
D∑
d=1

∑
φij

(pIm|θdIh) · Smφij
· δφij

, (1)

where h and m refer to hosts and mosquitoes, I and S refer to infected and susceptible individuals, and terms212

with the subscripts ij designate specific landscape cells. For ease of interpretation we write this equation213

for one susceptible mosquito species; multiple species could be represented with an additional subscript on214

each term. The outcome matrix Imij contains the total number of mosquitoes with a home landscape cell215

[i, j] (the center of a mosquito’s flight distribution, see Figure 1A) that get infected by feeding on the source216
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infected host as it moves about the landscape (in Figure 1A, cells within the infected host’s red circle). We217

use φij to represent the cells that the infected host enters. The total number of mosquitoes that become218

infected (Figure 1A) is given by a pair of sums: a sum over the host’s movement on the landscape (sum219

over φij), and a sum over the host’s infectious period (sum over d). Internal to these two sums are three220

terms that define host-to-mosquito transmission within the φij cells: (pIm|θdIh), the probability of host-to-221

mosquito transmission during blood feeding; Smφij
, the number of susceptible mosquitoes in cell φij ; and222

δφij , the biting rate of each mosquito on the infected host in cell φij . We now unpack these three terms.223

Susceptible mosquitoes can become infected by feeding on the infected host within any cell φij that224

is found within the mosquitoes’ flight distribution (e.g., in Figure 1A both the blue mosquito’s distribu-225

tion and the yellow mosquito’s distribution overlap some portion of the infected host’s red distribution).226

A greater overlap in the host’s and mosquito’s distributions increases their contact rate, leading to more227

opportunities for blood feeding and thus transmission. While the infected host is in a given cell φij , a228

susceptible mosquito can, but is not guaranteed to, become infected during a blood feeding event on the229

infected host. The transmission probability during a feeding event is a function of the host’s pathogen230

load (which varies over the course of their infection) and the intrinsic ability of the mosquito species to231

become infected. We write this as (pIm|θdIh), where θdIh describes the host’s pathogen load on day d of232

their infectious period.233

The total number of feeding events (and thus potential mosquito infections) that occur while the host234

is in cell φij is first an increasing function of the total number of mosquitoes in that cell. We use Smφij
to235

designate the number of susceptible mosquitoes in cell φij , which is a function of the landscape suitability236

in and around φij . We note that in the model we keep track of the home cell origin of each of the mosquitoes237

that make up Smφij
in order to accurately calculate Imij; however, we write Smφij

as a total number of238

mosquitoes here for simplicity instead of including additional subscripts designating the home origin of239

each of these mosquitoes. The total number of feeding events is also a function of the feeding rate of each240

mosquito on the infected individual, which is a decreasing function of the number of susceptible hosts241

which pull bites away from the infected host; an increasing function of the mosquitoes’ intrinsic feeding242

preference on the species identity of the infected host; and finally an increasing function of mosquitoes’243

general feeding rate. We collapse these three terms into δφij
, but detail each of these terms, as well as all of244

the other Eq. 1 components after Eq. 2.245

All of the second generation hosts across the landscape that become infected (Ihij) by the mosquitoes246

calculated in the host-to-mosquito transmission step (Imij; Eq. 1), can be written as:247
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Ihij =
∑
Imij

T∑
t=1

(pIh|t) · ψt · Imij,ωij · δωij

(2)

where, once again, h and m refer to hosts and mosquitoes and I and S refer to infected and susceptible248

individuals, respectively. For ease of interpretation we write this equation for one susceptible host species;249

multiple species could be represented with an additional subscript on each term. The outcome matrix250

Ihij gives the total number of second generation hosts in each landscape cell [i, j] that become infected by251

the mosquitoes infected in Eq. 1. One mosquito-to-host transmission event is shown with the red arrow252

between the yellow mosquito and the solid human in Figure 1B. The total number of infected hosts in each253

cell [i, j] is given by two sums: a sum over the infected mosquitoes (Imij) and a sum over these mosquitoes’254

infectious period (t). Internal to these two sums are three terms that define mosquito-to-host transmission255

across the ωij cells: (pIh|t), the probability of mosquito-to-host transmission during blood feeding; Imij,ωij
,256

the number of infected mosquitoes from Imij in ωij ; and δωij , the biting rate of each infected mosquito on257

susceptible hosts of a given species. We now unpack these three terms.258

Susceptible hosts in ωij (we use ωij to refer to the cell and Ihij to the number of hosts that become259

infected in that cell) can become infected by being fed upon by infected mosquitoes. The mosquitoes from a260

given home cell (one entry of Imij) will have the opportunity to feed on, and potentially infect, susceptible261

hosts in ωij if their flight distribution includes ωij (e.g., the yellow mosquito in Figure 1B includes the solid262

boxed cell with the human). The probability a mosquito infects a host during a feeding event increases263

over the mosquito’s infectious period because of the extrinsic incubation period of the virus within the264

mosquito; we write this as (pIh|t), where t refers to the day post infection in the mosquito. The total number265

of feeding events (and thus potential host infections) by mosquitoes from Ihij (one entry in the sum over266

Ihij) on susceptible hosts in cell ωij is first an increasing function of the number of infected mosquitoes267

(Imij,ωij ). The total number of feeding events by these mosquitoes on individuals of a given species of268

susceptible host (e.g., humans) is also a function of the feeding rate of each mosquito on that host species.269

This feeding rate is an increasing function of: the relative abundance of that species relative to other species,270

the mosquito’s intrinsic feeding preference on that species, and the mosquitoes’ general feeding rate. We271

collapse these three terms into δωij
.272

Our R0-like quantity is calculated for the cell in which the source infection originates (e.g., the red boxed273

cell in Figure 1A) as the sum of Ihij across all host types that become infectious (which varies by disease,274

see details below). Thus, equations Eq. 1 and Eq. 2 show the complete calculation for R0 for one landscape275
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cell. Conversely, the FOI for a specific landscape cell [i,j] (a cell defined by ωij in Eq. 2) is calculated as the276

total number of hosts that become infected in that cell from infections starting in all landscape cells (for277

which Eq. 1 and Eq. 2 provide one example). Note that when calculated in this way, FOI is a breakdown of278

R0 values that are spatially reorganized and summed. Thus, over an entire landscape the sum of all R0 and279

all FOI values are identical.280

We parameterized each component of Eq. 1 and Eq. 2 using estimates from either statistical models fitted281

to data extracted from published literature, or directly from parameter estimates in published literature;282

we describe all statistical models, data, and assumptions below. For all components of both transmission283

steps for all three diseases we searched the literature for raw data and quantitative parameter estimates284

(all references and raw data are available in the online supplement); when data were not available we285

relied upon qualitative, and occasionally anecdotal, descriptions (additional detail is available in the online286

supplement).287

We considered the transmission of dengue by Aedes aegypti and Ae. albopictus and the transmission of288

malaria by Nyssorhynchus darlingi. An extensive literature search (details in the online supplement) made289

it clear that while many host species are fed upon by these mosquito species, and some of them are possi-290

bly able to become infected and transmit dengue and malaria, we know definitively very little about which291

non-human host species become infected with these pathogens and how competent they are in transmitting292

infection to susceptible mosquitoes. Further, the disease strains that non-human hosts are able to transmit293

are generally different than the strains that infect humans (Prugnolle et al., 2011, Maeno et al., 2015, Rondón294

et al., 2019), which makes modeling the spillover of dengue and malaria a separate modeling task. Thus,295

for both of theses diseases we consider humans as the only host capable of transmission. However, because296

blood feeding by infected mosquitoes on non-human hosts will reduce disease burden on humans, it is297

important to consider non-humans in the model for these diseases. This is especially true for spatial esti-298

mates of disease risk as a function of landscape features because the proportion of an infectious mosquito’s299

bites on humans and non-humans will depend in part on the relative densities of these hosts (in addition300

to intrinsic mosquito preferences), which will vary across the landscape. For simplicity, computational ef-301

ficiency, and data limitations we group all non-human species into a single type which we call “other”302

hosts.303

We modeled both urban and sylvatic spillover of yellow fever by considering transmission by Ae. ae-304

gypti, Ae. albopictus, and Haemagogus spp.. To capture the predominant form of sylvatic transmission, which305

occurs between non-human primates and Haemagogus spp. (also Sabethes spp.) mosquitoes, we use humans306

as the primary host species, primates as a secondary host species, and “others” as hosts that mosquitoes307

feed upon but are unable to transmit the disease.308
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Model components independent of landscape features309

We parameterized most model components that we assumed to be independent of landscape features using310

estimates from statistical models fit to data extracted from the literature, including: host infection (titer) pro-311

files over time (Eq. 1: θdIh ), mosquito infection probability (Eq. 1: pIm), mosquito transmission probability312

(Eq. 2: (pIh), and mosquito survival (Eq. 2: ψt). For host infection profiles, mosquito infection probabil-313

ity, and mosquito transmission probability we fit regression models to host and mosquito physiological314

responses to laboratory experimental infections. These models included fixed effects such as days since315

experimental exposure, infectious dose, and species. For host pathogen load we used a linear model and316

included a quadratic term for days since exposure to capture the rise and fall of pathogen load over a host’s317

infectious period; for mosquito infection and transmission probability we used generalized linear models318

with binomial error distributions. For all models we estimated responses (host pathogen load, mosquito319

infection and transmission probabilities) for host–pathogen and mosquito–pathogen pairs for which data320

were available, and relied upon qualitative descriptions in literature when quantitative data were unavail-321

able. We show all fitted and assumed host infection profiles in Figure S1, mosquito infection probability322

curves in Figure S2, and transmission probability curves in Figure S3, and describe in the online supplement323

the data and assumptions used to generate each estimated response.324

We used a simple exponential decay function to model the lifetime of infected mosquitoes (survival325

probability up to day X = λX ), where λ is daily survival probability. We gathered data from a small number326

of papers on the survival of each mosquito species (see Bates, 1947, Galindo, 1958, Dégallier et al., 1998, Muir327

and Kay, 1998, Niebylski and Craig Jr, 1994, Kiszewski et al., 2004, Maciel-De-Freitas et al., 2007, Lacroix328

et al., 2009, de Barros et al., 2011). Mosquito survival curves are shown in Figure S3; all raw extracted329

quantitative data for all mosquito species are available in the supplemental data files.330

For mosquito feeding preference behavior (Eq. 1 and Eq. 2: part of the δ term) we simply used raw331

outcomes from blood meal analyses of wild-caught mosquitoes instead of fitting a model for mosquito332

biting preference. Specifically, given our approach of collapsing non-human host types, we collapsed the333

proportion of blood meals in wild mosquitoes into human and non-human sources. This approach does334

conflate mosquito species-specific intrinsic biting preference with the raw abundance of hosts, which could335

result in biased biting rates on our simulated landscapes; however, our simplified host model and lack of336

data made this simplification necessary. This simplifying assumption could be relaxed in a system with337

more species-specific mosquito biting behavior data available. For data sources and raw blood meal data338

see the online supplement.339
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Model components dependent on landscape features340

Host abundance and mosquito abundance341

We assumed that human population density was directly proportional to urban intensity and that the den-342

sity of non-human species (primates and “others”) were directly proportional to tree cover, with a scaling343

factor that can vary in order to adjust the absolute abundance of each host type on the landscape (ad-344

ditional detail available in the online supplement). While assuming different proportional relationships345

between urban intensity and human population density maybe somewhat unrealistic, we explore differ-346

ent proportional relationships so that we are able to isolate changes in human population density from347

landscape heterogeneity.348

We modeled the relationship between the abundance of each mosquito species and both tree cover349

and human population density using details on the preferred breeding habitat of mosquitoes and where350

mosquitoes tend to be observed/collected in the wild (Braks et al., 2003, Scott and Morrison, 2010, Sarfraz351

et al., 2012, 2014, de Moura Rodrigues et al., 2015, Mucci et al., 2015, de Camargo-Neves et al., 2005, Lin352

et al., 2016, Tátila-Ferreira et al., 2017, Pereira dos Santos et al., 2018, Delatorre et al., 2019, Koyoc-Cardeña353

et al., 2019, Hendy et al., 2020, Silva et al., 2020). We assumed that each landscape cell supports a given354

resident population of each mosquito species (which could be thought of as their breeding location) based355

on the composition of that cell (in the case of Ny. darlingi also on the surrounding cells given their preference356

for forest edge: Tadei et al. 1998, Vittor et al. 2006, Zeilhofer et al. 2007, Vittor et al. 2009). We describe in357

detail the relationship between mosquito species abundance and individual landscape features in the online358

supplement and show mosquito densities on an example simulated landscape in Figure S4 (Ae. aegypti),359

Figure S5 (Ae. albopictus), Figure S6 (Ny. darlingi), and Figure S7 (Haemagogus spp.).360

Mosquito movement and host movement361

Our model for mosquito abundance assumes that each cell contains a resident population of mosquitoes of362

each species. It also assumes that each mosquito disperses from its home cell into the surrounding land-363

scape cells during its lifetime for the purposes of blood feeding. We modeled the dispersal of mosquitoes364

from their home cells using a Gaussian spatial kernel with radius based on mark recapture experiments365

and observational field data (Causey and Kumm, 1948, Charlwood et al., 1995, Muir and Kay, 1998, Har-366

rington et al., 2005, Russell et al., 2005, Achee et al., 2007, Vanwambeke et al., 2007, Hiwat and Bretas, 2011,367

Verdonschot and Besse-Lototskaya, 2014). We also included the option to weight this dispersal kernel by368

the habitat preference of each mosquito species (e.g., an Aedes aegypti mosquito with high human feeding369

preference that has a home cell on the border of a patch of urban area and a patch of high tree cover will370
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spend more of its flight time in the urban area than under the high density tree canopy). However, we371

do not use this option in analyses presented here because: 1) we set the diameter of each landscape cell372

to equal the flight radius of an Ae. aegypti, which means that Ae. aegypti do not leave their cell; 2) we373

lack enough information on the remaining mosquitoes to accurately parameterize this weighting function.374

We also modeled the movement of the original infected host using a Gaussian kernel weighted in direct375

proportion to fraction urbanized.376

Landscapes377

Simulated Landscapes378

For the first stage of our analysis, we simulated landscapes composed of continuous values of tree cover379

and urban intensity on a scale of zero to one. To simulate varying degrees of landscape heterogeneity380

(measured with spatial auto-correlation: i.e., low landscape heterogeneity is simulated with high spatial381

auto-correlation) we used the ”midpoint displacement neutral landscape model“ (Barnsley et al., 1988), im-382

plemented in the package NLMR (Sciaini et al., 2018) (function nlm mpd) in R (R Core Team, 2020). With high383

spatial auto-correlation in each landscape feature, large areas of high tree cover are segregated from large384

areas of urban intensity (a land-sparing approach); with low spatial-auto-correlation features are highly385

spatially mixed (a land-sharing approach). For each desired level of landscape heterogeneity we generated386

landscapes with ecologically realistic patterns of tree cover and urban intensity using the following proce-387

dure: 1) simulate two individual landscape matrices with values ranging from zero to one, one matrix of388

tree cover and one matrix of urban area; 2) check if the average value for each matrix falls outside of x± εx,389

where we set x = 0.50 (a balanced landscape) and εx = 0.02 (as narrow as possible while maintaining390

computational efficiency); 3) check if the correlation between the values in the two matrices falls outside of391

y± εy , where we set y = −0.50 and εy = 0.02 (with this range, the highest values of forest cover will tend to392

not occur in highly urbanized cells, though urban areas and tree cover will overlap to a moderate degree);393

4) if any of the values fall outside of the desired ranges, repeat from step one. Four example simulated394

landscapes across the full range of auto-correlations we used are pictured in Figure S8.395

Although we did not directly simulate additional types of landscape features (such as agriculture), areas396

of our simulated landscape with minimal urban intensity and minimal tree cover can be interpreted as an397

agriculture-like habitat. We took this approach for two reasons. First, little quantitative information exists398

on the relationship between the abundance of Ae. aegypti, Ae. albipictus, and Ny. darlingi and other landscape399

features that could be abstracted in a simulation but still be used to parameterize mosquito abundance.400

Second, simulating three matrices with appropriate levels of spatial auto-correlation, negative correlation401
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with each other, and average values would be difficult.402

Empirical Landscapes403

For the second stage of our analysis we selected a small landscape (approximately 400 km2) just to the404

northwest of Bogotá, Colombia, which is part of a larger area of Latin America that is of high restoration405

importance (Strassburg et al., 2020) (Figure S9). This region contains a portion of a major city, intensive406

agriculture, towns, rural homesteads, and forest. For this landscape we extracted human population den-407

sity as of 2010 (Sorichetta et al., 2015, WorldPop, 2016), and leaf area index (LAI) in 2013 as a proxy for tree408

cover (Gerard et al., 2020).409

We simulated habitat restoration on this landscape, modeled as an increase in LAI in three different410

ways: 1) reforestation of a single large contiguous area (simulated with NLMR using high spatial auto-411

correlation); 2) patchy reforestation across the landscape (e.g., reforestation on individual farms; simulated412

with low spatial auto-correlation); and 3) “flat” reforestation which we modeled as an increase in the LAI413

in all cells in proportion to their sampled values. For both restoration scenarios one and two, we simulated414

reforestation under the constraint that the post-restoration simulated landscapes had a minimum nega-415

tive correlation between human population density and tree cover of -0.45 (as we did with the simulated416

landscapes in stage one of our analysis). For each scenario we modeled an increase in average LAI on the417

whole landscape from baseline (0.17) to a value of 0.50, the same average used in our stage one simulated418

landscapes.419

To predict how disease transmission would change as a function of restoration strategy, we compared420

estimated FOI on the baseline landscape to FOI estimated for each restoration scenario. This simulation421

ignores the complex ecological process (and time lag) of colonization of the newly restored forest by hosts422

and mosquitoes, and simply assumes that the newly restored forest contains “other” hosts, non-human423

primates, and forest associated mosquitoes in proportion to the assumed relationship between tree cover424

and host and mosquito abundance used to predict baseline disease transmission.425

Results426

Simulated Landscapes427

On simulated landscapes of urban area and tree cover, average human infection risk (FOIh) for dengue and428

yellow fever is driven primarily by human population density (Figure 2, with effects in differing directions),429

while malaria risk is a function of both human population density and the spatial configuration of urban430
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area and tree cover (Figure 2). Here, and in the rest of the results we focus on spatial patterns and summaries431

of FOIh instead of R0 (or FOI on non-human primates or ”others“) to focus on those landscape regions for432

which the potential disease flow into humans is highest (recall that FOI is just a spatial reorganization of433

R0 values and that across an entire landscape total FOI is equal to total R0 as both metrics rely on the434

assumption of a source infection appearing in each landscape cell).435
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Figure 2: Human density drives variation in the average force of infection on humans for dengue,
malaria, and yellow fever; landscape configuration affects malaria FOIh nonlinearly. Colors show av-
erage human population density on the landscape. The clustering of landscape features (x-axis) refers to
the values of the spatial auto-correlation used in simulating landscape-features; more clustering equates to
decreasing landscape spatial heterogeneity (larger contiguous areas of high urban intensity and tree cover).
The FOIh shown here is an average of the FOIh on all landscape cells, each of which is calculated by sum-
ming the FOIh from source infections appearing in each landscape cell.

Dengue436

Average dengue FOIh across a landscape is a non-monotonic function of the human population density on437

that landscape (Figure 2). This pattern arises because of the combined transmission from Ae. aegypti, whose438

abundance is strongly tied to human population density and who prefer to feed on humans, and Ae. albopic-439

tus, whose abundance we assumed to be tied to tree cover but who also prefer to bite humans. As human440

population density increases, the abundance of Ae. aegypti increases, leading to a larger FOIh attributable to441

Ae. aegypti (Figure 3). At the same time, however, because Ae. albopictus abundance is assumed to be inde-442

pendent of human population density, the single source human dengue infection becomes “lost” in a sea of443

susceptible humans to the constant population of blood feeding Ae. albopictus, leading to fewer infected Ae.444

albopictus (Figure S10) and subsequently fewer second-generation human infections (Figure 3). However, at445
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very low human population densities the FOIh from Ae. albopictus increases because of a higher proportion446

of infectious bites on humans relative to “other” species. Considering transmission by both Ae. aegypti and447

Ae. albopictus, average dengue infection risk is maximized at an intermediate human population density448

(Figure 3), though FOIh decreases very minimally after the maximum. This highlights that, depending on449

the relative abundance and importance of Ae. aegypti versus Ae. albopictus in a given landscape, different450

levels of human density and forest cover could maximize dengue transmission.451
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Figure 3: Aedes aegypti and Aedes albopictus combine to drive dengue FOIh on simulated landscapes
that vary in absolute human population density.. Total FOIh is the sum of the contributions made by
Aedes aegypti, which increases monotonically with human density, and Aedes albopictus, which peaks at low
human density. These results were calculated on a landscape with a spatial auto-correlation of 0.78.

The relative contribution Ae. aegypti and Ae. albopictus make to overall human dengue risk also depends452

strongly on the relationship between Ae. aegypti abundance and human abundance. In Figure 2 and Figure 3453

we assumed a linear relationship between human abundance and Ae. aegypti abundance; however, it has454

been suggested that this relationship may be exponential (Romeo-Aznar et al., 2018), such that the ratio455

of Ae. aegypti per human increases as human population size increases. Our simulations show that as456

this exponent increases from below one (a decreasing mosquito-to-human ratio with an increasing human457

population density) to above one (an increasing mosquito-to-human ratio), the contribution that Ae. aegypti458

make to FOIh increases (Figure 4). At low human population densities the importance of Ae. albopictus is459

greater than the importance of Ae. aegypti (Figure 3, Figure 4); however, as human population density and460

the exponent linking human and Ae. aegypti populations increase, the importance of Ae. aegypti overtakes461

that of Ae. albopictus.462
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Figure 4: The contribution Aedes aegypti and Aedes albopictus make to dengue FOIh as a function of hu-
man density and the exponential relationship between human abundance and Aedes aegypti abundance.
Panels show low (62.5), medium (500), and high (4000) human population density (humans/sq km). Total
FOIh is the sum of the contributions made by Aedes aegypti (solid line) and Aedes albopictus (dotted line).
Here we only manipulated the exponential relationship between human abundance and Aedes aegypti, thus
the FOIh attributed to Aedes albopictus remains constant. These results were calculated on a landscape with
a spatial auto-correlation of 0.78.

Yellow Fever463

Similar to dengue, yellow fever FOIh is a non-monotonic function of human population density assuming464

either a source infection in a human (Figure 2, solid lines) or a source infection in a non-human primate (Fig-465

ure 2, dotted lines). As with dengue, these patterns are due to the combined transmission by all mosquitoes466

involved; for yellow fever these mosquitoes include Ae. aegypti, Ae. albopictus, and Haemagogus spp. How-467

ever, unlike for dengue (where Ae. aegypti begins to dominate transmission at relatively low population468

densities: Figure 3), an overall higher relative contribution by Ae. albopictus to transmission paired with an469

overall declining importance with increasing human population density (except at the very lowest human470

population densities) makes yellow fever FOIh peak at a low human population density (Figure S11). As-471

suming a human source infection, yellow fever FOIh is higher in regions of higher forest cover because it472

is transmitted by two forest-dwelling mosquitoes, while dengue increases with increasing urban intensity473

(Figure S12).474

The number of spillover yellow fever infections from a source primate infection into humans is smaller475

than from a human infection (Figure 2), as spillover requires an initial blood feeding event by a mosquito476

on the infected primate followed by a blood feeding event on a susceptible human, which is rare for477

mosquitoes that feed preferentially on either humans (Ae. aegypti and Ae. albopictus) or non-humans (Haem-478

agogus spp.). Similar to human-to-human yellow fever transmission, our model estimates that spillover479
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FOIh increases with decreasing human population density (though the effect size is quite small: Figure 2).480

Unlike for human-to-human transmission, increasing spillover transmission with decreasing human pop-481

ulation density is driven by a higher probability of an initial feeding event by Ae. aegypti and Ae. albopictus482

on the infected primate when humans are rare. The effect size is small because most transmission from483

primates to humans is driven by Haemagogus spp., for which this relationship does not hold. Spillover484

transmission is mostly independent of landscape heterogeneity because spillover tends to occurs within485

landscape cells with low to moderate tree cover and population density, which is approximately constant486

among the simulated landscapes. Although analyses based on R0 (including our FOIh calculation) that do487

not consider the impact of vaccination predict that human-originating infections have a larger FOIh, in pop-488

ulations with high yellow fever vaccination rates, spillover infections are likely to be the more important489

driver of infections in humans.490

Malaria491

Across all simulated landscapes we find a non-linear (and non-monotonic) relationship between land-492

scape heterogeneity and average malaria FOIh, such that average malaria FOIh is minimized at a high but493

sub-maximum spatial auto-correlation (∼0.70, see Figure 2). On individual landscapes we also find non-494

monotonic relationships between tree cover and malaria FOIh, and the shape of this relationship depends495

on the degree of landscape feature spatial auto-correlation (Figure 5D). On all landscapes, malaria FOIh496

is maximized in areas of higher urban intensity within or adjacent to a region of patchy tree cover (as Ny.497

darlingi abundance is driven strongly by forest edge: Methods: Mosquito abundance, Figure S6). However, the498

composition and spatial structure of this interface changes with landscape feature spatial auto-correlation.499

On landscapes with moderate or high spatial auto-correlation (moderate or large contiguous patches of tree500

cover and urban area), high tree cover occurs in large patches that are distant from urban areas, while low501

tree cover occurs in large patches of urban area; in both cases FOIh is low (Figure 5D). It is within the tran-502

sition zone between dense tree cover and low tree cover that “forest edge” near high urban intensity exists,503

and thus where FOIh is maximized. In contrast, on landscapes with low spatial auto-correlation (highly504

spatially integrated landscapes), which are characterized by small patchy urban areas and tree cover, small505

regions (even single cells) of high urban intensity can occur directly next to small patches of forest cover.506

First, this leads to an overall higher average malaria FOIh across the landscape (Figure 5C) because of the507

larger number of humans within the flight radius of suitable Ny. darlingi habitat. Second, it causes FOIh to508

be maximized in landscape cells with low tree cover and high urban intensity (Figure 5D). On highly het-509

erogeneous landscapes (Figure 5, left column) these cells are commonly found within a broader region of510

19

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 10, 2021. ; https://doi.org/10.1101/2021.06.09.447801doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.09.447801
http://creativecommons.org/licenses/by-nd/4.0/


mixed tree cover, which increases Ny. darlingi abundance in the area. Within the local region of suitable Ny.511

darlingi habitat, human infections will be concentrated in cells with low tree cover and high urban intensity512

as infectious bites on humans by dispersing Ny. darlingi will be the highest where the ratio of humans to513

other potential blood meal sources is maximized. These cells can be seen as red pixels in Figure 5 (Panel C,514

left column) and the small cluster of data points in the top left of Figure 5 (Panel D, left column). Finally,515

given that a higher human population density leads to a higher proportion of infectious bites on humans516

on any landscape, average malaria FOIh (starting with a source infection in a human) is a monotonically517

increasing function of human population density (Figure 2, Figure 5D).518
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Figure 5: Malaria FOIh (Panel C) on simulated landscapes with low (0.18) medium (0.58) or high (0.98)
spatial autocorrelation for urban area (Panel A) and tree cover (Panel B). The relationship between urban
intensity (point color), tree cover (x-axis), and malaria FOIh (y-axis) for all landscape cells across the three
simulated landscapes are shown in Panel D. The relationship between tree cover and malaria FOIh changes
with the spatial autocorrelation, from monotonically negative in very patchy (low autocorrelation) land-
scapes to unimodal in moderate to high autocorrelation landscapes. The landscapes pictured here have an
average population density of 250 people per sq. km.
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Tradeoffs and synergies among diseases519

Considered together, the FOIh of dengue is positively correlated with malaria FOIh across landscapes,520

though the strength of this correlation depends on the degree of spatial auto-correlation of landscape fea-521

tures and on the amount of forest cover and urban intensity (Figure 6). On highly heterogeneous land-522

scapes (low spatial auto-correlation in Figure 6), dengue and malaria FOIh are strongly positively corre-523

lated, though this correlation decreases with decreasing heterogeneity (Figure 6). The correlation tends524

to be slightly weaker in regions of the landscape with lower tree cover. Alternatively, the FOIh of yellow525

fever and malaria is always moderately negatively correlated; decreasing heterogeneity reduces the size526

of this negative correlation only marginally, and subsetting to landscape regions with high or low urban527

intensity or tree cover has little effect (Figure 6). Finally, the correlation in FOIh between dengue and yel-528

low fever is often negative, but can be positive on landscapes of high spatial heterogeneity (low landscape529

feature spatial auto-correlation) in landscape cells with higher urban intensity and lower tree cover (Fig-530

ure 6, Figure S12). On highly heterogeneous landscapes, individual cells with high urban intensity and low531

tree cover are commonly found within a broader region of higher tree cover; these cells experience higher532

dengue FOIh because of larger Ae. aegypi populations and more yellow fever because of the dispersing Ae.533

albopictus and Haemagogus spp. from the surrounding area.534
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Figure 6: Malaria tends to be positively correlated with dengue and negatively correlated with yellow
fever, while the correlation between dengue and yellow fever varies across urban and forested land-
scapes. Black lines in all panels show correlations across all cells on the landscape, while the darker brown
and green lines in panels A and B show correlations between each disease in landscape cells with greater
than 0.50 urban intensity and tree cover, respectively. Similarly, lighter colored brown and green lines in
panels A and B show correlations between each disease in landscape cells with less than 0.50 urban intensity
and tree cover, respectively. All results pictured here are for landscapes with average human population
density of 250 people per sq.km. (Correlations are identical across densities; not pictured.)

While it is more difficult to parse the quantitative relationships among FOIh when viewed in the form535

of map layers, stacked map layers are useful to illustrate that each disease has its own spatial pattern and536

that single local regions of a heterogeneous landscape are unlikely to have a high FOIh for all diseases537

(Figure 7). For landscapes with either moderate (e.g., Figure 7), low, or high spatial heterogeneity, total538

disease risk (sum of FOIh values for each disease) is maximized at intermediate to high values of urban539

intensity and tree cover because of positive correlations between both dengue and yellow fever FOIh and540

urban intensity and tree cover (Figure S13). Though malaria is maximized at intermediate values of both541

landscape features (Figure S13), malaria has an overall smaller estimated FOIh and thus contributes less to542

total FOIh (Figure S14).543
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Figure 7: Simulated landscape features and estimated FOIh of each disease, aligned and stacked to aid
visualization of the overlap of features with high-risk and low-risk regions of the landscape. FOIh values
for each disease are on a relative scale (0, 1) to focus on the spatial patterns in disease risk (absolute FOIh
values are shown in Figure S14). This simulated landscape is the same as that with medium spatial auto-
correlation among landscape features (0.58) shown in Figure 5, which has an average human population
density of 250 people per sq.km.
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Reforestation Scenarios on a Real Landscape544

While estimates of FOIh on simulated landscapes can help to reveal general patterns in disease risk, it545

is unclear how well such patterns translate to real landscapes. To connect our model more strongly to a546

real-world scenario, we estimated the FOIh of each disease on a 23km x 18km landscape to the northwest of547

Bogotá, Colombia that is a heterogeneous mixture of urban area and farmland, and has some, but an overall548

low average tree cover (average LAI across the landscape of 0.18). From this baseline we calculated disease549

risk as a function of three reforestation scenarios: “Flat” increases tree cover evenly across the landscape550

(which serves as a null model), “Congtiguous” simulates the planting of a single large patch of forest (e.g.,551

a regional conservation effort), and “Patchy” simulates the planting of many small patches (e.g., subsidies552

to individual farms to replant trees).553

For both dengue and yellow fever we predict a small increase in FOIh under all reforestation scenarios554

(Figure 8), though we predict the largest increase in risk under patchy reforestation because of increased555

contacts between humans and Ae. albopictus and Haemagogus spp. All reforestation scenarios have a rela-556

tively small impact on average malaria FOIh across the whole landscape (because of large regions of low557

FOIh: Figure 8, Panel C, blue regions), though the “Flat” and “Patchy” scenarios do introduce a series of558

new risky host-spots (Figure 8C). For example, under a “Flat” scenario, these areas are concentrated in the559

southeastern and western part of the landscape, which are areas that at baseline are urban edges near sparse560

forests.561

As an alternative to the somewhat contrived assumption of infections arising on each landscape cell,562

FOIh can alternatively be modeled assuming that only a single infection of each disease were to appear563

somewhere on the landscape (where infection emergence is weighted by, for example, human population564

density). Assuming this alternative definition for FOIh produced qualitatively similar results (Figure S15)565

to those presented here.566
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Figure 8: Estimated FOIh of each disease on a 23km x 18km landscape to the northwest of Bogotá, Colom-
bia for three potential scenarios of reforestation. Panel A shows the estimated average FOIh of each dis-
ease (error bars show the central 50% of values while triangles show central 95% of values) on the landscape
as it appears (“Baseline”) (see the online supplement for details about the data and Figure S9 for a map of
the region) and for three reforestation scenarios: “Flat” increased tree cover evenly across the landscape
(which serves as a null-model), “Congtiguous” simulated the planting of a single large patch of forest (e.g.,
a regional conservation effort), and “Patchy” simulated the planting of many small patches (e.g., subsidies
to individual farms to replant trees). For all scenarios the average tree cover on the landscape is simulated
to be brought up from 0.14 (as measured by LAI; see supplemental methods) at baseline to 0.50. Panels B-D
show maps of the estimated FOIh of dengue, malaria, and yellow fever, respectively, for baseline and each
reforestation scenario; the shape in bottom right faintly outlined in red in panel B is the northwest corner
of Bogotá (see Figure S9).
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Discussion567

With high rates of land-use change globally (Seto et al., 2013, Runyan and D’Odorico, 2016, Dinerstein568

et al., 2019, UN, 2019) and mounting evidence that land-use change affects the transmission of infectious569

diseases (Sharma, 2002, Ward and Brown, 2004, Vanwambeke et al., 2007, Hahn et al., 2014, Sheela et al.,570

2017, Ziemann et al., 2018, MacDonald and Mordecai, 2019), it is important to seek a stronger mechanistic571

understanding of the link between land-use patterns and disease risk. The ability to predict how future572

land-use change will affect human health would help to inform interventions (e.g., where to apply mosquito573

control) and to design restoration strategies that minimize risk. Here, we designed and analyzed a spatially574

explicit model of disease transmission to predict how the spatial configuration and density of tree cover575

alongside urban area and human population density affects the potential for disease transmission (using576

R0) and where human risk of disease (FOIh) is highest.577

This model was intended, first and foremost, to provide a road map for how the multifaceted impacts of578

land-use on disease transmission can be mechanistically modeled to understand and predict changes in dis-579

ease risk in response to land-use change, including both degradation and restoration. Our analysis sought580

to conceptualize how different types of diseases with different transmission strategies—parameterized to581

represent dengue, malaria, and yellow fever—would respond to different landscape configurations and582

land-use change scenarios. At the broadest level, our results serve as a valuable proof of concept that583

different, human-important diseases depend on the biophysical landscape in different nonlinear ways (Fig-584

ure 2, Figure 5, Figure S13), leading to correlations among diseases that are themselves not constant across585

the landscape (Figure 6, Figure 7). This complexity and nuance suggests that relying on simple “rules of586

thumb” for the relationship between land-use and disease could lead to sub-optimal or even dangerous587

planning/restoration decisions; a model that incorporates these nonlinear mechanisms, such as the one588

presented here, will be a prerequisite for applied research on ecosystem services for health. We found, for589

example, that both dengue and yellow fever were highly dependent on human population abundance and590

less so on the spatial configuration of the landscape, though dengue FOIh increases with urban intensity591

while yellow fever FOIh is maximized in areas of moderate urban intensity and high tree cover (Figure S13).592

In contrast, we estimated that malaria was highly dependent on the spatial configuration of urban area and593

tree cover, and that human risk of malaria peaked at the interface of urban areas and forest when there was594

a high variance in tree cover (forest edge and not large, high density swaths of forest).595

While we found that different forest restoration strategies can have different impacts on disease risk596

in a spatially heterogeneous way, we did also find similarities in how patchy vs contiguous reforestation597

impacted the landscape-level average risk for each disease (Figure 8). For example, we estimated that598
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patchy reforestation, akin to a “land-sharing” strategy, on a small landscape to the northwest of Bogotá,599

Colombia could increase the risk of all three diseases on average, though much of the increased risk would600

be borne by individuals living in small urban areas adjacent to the increased tree cover who would be601

expected to experience higher rates of infection from Ae. albopictus and Ny. darlingi. Alternatively, we602

showed that a single large contiguous patch of increased tree cover, akin to a “land-sparing” strategy, would603

decrease average malaria risk, reduce the number of high risk malaria hotspots (Figure 8), and lead to a604

smaller increase in dengue and yellow fever risk. While we have strong empirical evidence for increased605

forest fragmentation leading to increased malaria (Vittor et al., 2006, Hahn et al., 2014, MacDonald and606

Mordecai, 2019), our results suggest it will also be important to monitor the reverse of this trend.607

As with any model, a number of our underlying assumptions influenced model predictions: in particu-608

lar, the structure of the functional forms we assumed and the parameter values we used for those functional609

forms. Though we conducted an extensive literature search for each model parameter, we often failed to610

find quantitative estimates that would allow us to parameterize relationships between urban intensity or611

tree cover and transmission-related quantities like mosquito abundance. For example, in the absence of612

direct empirical data, we translated a qualitative understanding that Ny. darlingi prefer forest edge habitat613

into a quantitative link between spatial heterogeneity in tree cover and Ny. darlingi abundance. Even for614

Ae. aegypti, which is extensively studied because of its importance in transmitting dengue, Zika, chikun-615

gunya, and yellow fever, we still know little about the quantitative relationship between its abundance and616

human abundance (Romeo-Aznar et al., 2018). Given the strong dependence of dengue on the relationship617

between human abundance and Ae. aegypti abundance we find here (Figure 4), this is a priority area for618

future empirical work. Further, given a lack of sufficiently detailed mosquito blood meal data, we used a619

simplified representation of mosquito feeding behavior. Because mosquito feeding behavior affects both620

host-to-mosquito transmission and mosquito-to-host transmission, it has a large impact on results; further621

empirical work on the feeding preferences of these mosquitoes would help to improve model estimates.622

Given the uncertainty in functional forms and parameter values governing relationships between land623

use and disease, these assumptions should be refined within a local context before applying this approach624

directly to decision-making. In the meantime, we suggest that the model could be used as a tool for analyz-625

ing uncertain phenomena and forming hypotheses for future testing (Baker et al., 2018). For example, we626

have shown that the model can provide an early expectation for the broad range of effect sizes that various627

reforestation strategies could have (Figure 8). It can also be used to examine more nuanced patterns, such628

as the prediction that in the presence of both an urban-breeding mosquito and a forest-breeding mosquito629

that both prefer biting a host that dwells primarily in one landscape area (which are represented here by Ae.630

aegypti, Ae. albopictus, and humans), the FOIh attributable to each mosquito will be inverses of one another631
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leading to a peak in infection risk at intermediate host population density. However, it may also be possible632

to circumvent these data limitations if a time series of spatially explicit human disease incidence data is633

available (e.g., from health centers spread across the focal landscape). With these data, unknown model634

parameters could be calibrated by matching predictions to the spatial health records. Optimally, calibration635

would happen over time by running the model from some time in the past until the present using a time636

series of land-use snapshots (e.g., using remote sensing derived LAI). Following this calibration, the model637

could then be run into the future with various scenarios of potential land-use change.638

To realize this use, however, two roadblocks would need to be overcome. First, any parameter calibra-639

tion would require human disease notifications recorded spatially over time, such as from a detailed health640

surveillance system. Second, even with these data in hand, a modification may have to be made to link641

reported cases to R0 and FOI. Further, a few additional model caveats will be important to keep in mind.642

First, we assumed a simple Gaussian spatial pattern of movement of the infected host around a “home”643

landscape cell. If movement of the infected host or vector is more complicated (such as an infected human644

moving long distances along a road, between a few specific focal points of interest, or alternatively a sick645

individual not moving at all; e.g., see Stoddard et al. 2013, Kennedy et al. 2016), spatial FOI patterns could646

look very different (e.g., much flatter across the landscape if movement is much wider, or more patchy if647

movement is lower). We also assumed that the infected individual’s availability to mosquito feeding is648

constant over their infectious period, which is a simplified version of infection dynamics. For example,649

humans can transmit dengue to people inside or outside their households, and a varying proportion of650

transmission occurs before versus after symptom onset depending on how illness modifies behavior (Sch-651

aber et al., 2021). Finally, because the model is designed to calculate snapshots of risk on static landscapes,652

it assumes instantaneous ecological succession; that is, all that determines host and mosquito abundance653

on the landscape is the features of the current landscape and not the past history of the landscape. Real654

landscapes are more dynamic and can change over longer time scales.655

Given the ultimate goal of integrating disease outcomes into land-use planning and management de-656

cisions, the model presented here would optimally be run alongside other models in order to estimate657

tradeoffs between disease risk and ecosystem services that also vary spatially (e.g., see Kennedy et al.,658

2016). Doing so would allow planned restoration projects to simultaneously optimize over ecosystem ser-659

vices, disease transmission, and other priorities, hopefully helping to avoid a scenario of decreased human660

health. While data gaps may currently preclude this model’s use directly for decision-making in systems661

with many hosts and vector species or any understudied systems, its ability to model any number of host662

and vector species (a strength of the Next Generation Framework generally, which this model draws upon:663

Schenzle 1984, Anderson and May 1985, Dobson 2004) allows it to be used to predict metrics of disease risk664
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(R0 and FOI) in virtually any location where ecosystem services are also of interest or have already been665

modeled, and extended to land use types beyond urban areas and forest.666

It is clear and robust that different infectious diseases will respond differently to land-use changes. It667

is also highly unlikely that at a landscape scale a given change in tree cover or urban area will lead to668

an increase or decrease in all relevant infectious diseases. Thus, for any planned restoration project or669

intervention to combat disease transmission on a changing landscape, it will be paramount to identify670

which diseases are the most important human health priorities in a given area, as well as which diseases671

could possibly expand in a changing landscape. Doing so will not only allow public health resources to be672

targeted proactively as landscapes change, but also allow land-use decision-making to incorporate realistic673

estimates of the costs and benefits of different scenarios for human health and well-being.674
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[23] Chaves, L. S. M., J. E. Conn, R. V. M. López, and M. A. M. Sallum (2018). Abundance of impacted747

forest patches less than 5 km2 is a key driver of the incidence of malaria in Amazonian Brazil. Scientific748

Reports 8(1), 1–11.749

[24] Childs, M. L., N. Nova, J. Colvin, and E. A. Mordecai (2019). Mosquito and primate ecology predict hu-750

man risk of yellow fever virus spillover in Brazil. Philosophical Transactions of the Royal Society B 374(1782),751

20180335.752

[25] Christophers, S. R. (1960). Aedes aegypti: the yellow fever mosquito. Cambridge, England: Cambridge753

University Press.754

[26] Churcher, T. S., J.-F. Trape, and A. Cohuet (2015). Human-to-mosquito transmission efficiency increases755

as malaria is controlled. Nature communications 6(1), 1–8.756

[27] Cigarroa-Toledo, N., L. G. Talavera-Aguilar, C. M. Baak-Baak, J. E. Garcı́a-Rejón, S. Hernandez-757

Betancourt, B. J. Blitvich, and C. Machain-Williams (2016). Serologic evidence of flavivirus infections758

in peridomestic rodents in Merida, Mexico. Journal of Wildlife Diseases 52(1), 168–172.759

[28] Coleman-Jones, E. (1999). Ronald Ross and the great malaria problem: historical reference in the760

biological sciences. Journal of Biological Education 33(4), 181–184.761

[29] Collins, W. E., J. S. Sullivan, D. Nace, T. Williams, J. J. Sullivan, G. G. Galland, K. K. Grady, and A. Boun-762

ngaseng (2002). Experimental infection of Anopheles farauti with different species of Plasmodium. Journal763

of Parasitology 88(2), 295–298.764

[30] Coluzzi, M. (1994). Malaria and the afrotropical ecosystems: impact of man-made environmental765

changes. Parassitologia 36(1-2), 223.766

[31] Couto-Lima, D., Y. Madec, M. I. Bersot, S. S. Campos, M. de Albuquerque Motta, F. B. Dos Santos,767

M. Vazeille, P. F. da Costa Vasconcelos, R. Lourenço-de Oliveira, and A.-B. Failloux (2017). Potential768

risk of re-emergence of urban transmission of yellow fever virus in Brazil facilitated by competent Aedes769

populations. Scientific Reports 7(1), 1–12.770

[32] Cunningham, S. A., S. J. Attwood, K. S. Bawa, T. G. Benton, L. M. Broadhurst, R. K. Didham, S. McIn-771

tyre, I. Perfecto, M. J. Samways, T. Tscharntke, J. Vandermeer, M.-A. Villard, A. G. Young, and D. B.772

34

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 10, 2021. ; https://doi.org/10.1101/2021.06.09.447801doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.09.447801
http://creativecommons.org/licenses/by-nd/4.0/


Lindenmayer (2013). To close the yield-gap while saving biodiversity will require multiple locally rele-773

vant strategies. Agriculture, Ecosystems & Environment 173, 20–27.774

[33] de Almeida, M. A., E. Dos Santos, J. d. C. Cardoso, L. G. da Silva, R. M. Rabelo, and J. C. Bicca-Marques775

(2019). Predicting yellow fever through species distribution modeling of virus, vector, and monkeys.776

EcoHealth 16(1), 95–108.777

[34] de Barros, F. S. M., N. A. Honorio, and M. E. Arruda (2011). Survivorship of Anopheles darlingi (diptera:778

Culicidae) in relation with malaria incidence in the Brazilian Amazon. PloS One 6(8), e22388.779

[35] de Camargo-Neves, V. L., D. W. Poletto, L. A. Rodas, M. L. Pachioli, R. P. Cardoso, S. A. Scandar,780

S. M. Sampaio, P. H. Koyanagui, M. V. Botti, L. F. Mucci, and A. de C. Gomes (2005). Entomological781

investigation of a sylvatic yellow fever area in São Paulo State, Brazil. Cadernos de Saude Publica 21(4),782

1278–1286.783

[36] De Figueiredo, M. L., A. de C Gomes, A. A. Amarilla, A. de S Leandro, A. de S Orrico, R. F. De Araujo,784

J. do SM Castro, E. L. Durigon, V. H. Aquino, and L. T. Figueiredo (2010). Mosquitoes infected with785

dengue viruses in Brazil. Virology Journal 7(1), 152.786

[37] de Moura Rodrigues, M., G. R. A. M. Marques, L. L. N. Serpa, M. de Brito Arduino, J. C. Voltolini, G. L.787

Barbosa, V. R. Andrade, and V. L. C. de Lima (2015). Density of Aedes aegypti and Aedes albopictus and its788

association with number of residents and meteorological variables in the home environment of dengue789

endemic area, São Paulo, Brazil. Parasites & Vectors 8(1), 1–9.790

[38] De Thoisy, B., P. Dussart, and M. Kazanji (2004). Wild terrestrial rainforest mammals as potential791

reservoirs for flaviviruses (yellow fever, dengue 2 and St. Louis encephalitis viruses) in French Guiana.792

Transactions of the Royal Society of Tropical Medicine and Hygiene 98(7), 409–412.793

[39] Dégallier, N., G. C. Sa Filho, H. A. Monteiro, F. C. Castro, O. Vaz Da Silva, R. C. Brandão, M. Moy-794

ses, and A. P. T. Da Rosa (1998). Release–recapture experiments with canopy mosquitoes in the genera795

Haemagogus and Sabeihes (diptera: Culicidae) in Brazilian Amazonia. Journal of Medical Entomology 35(6),796

931–936.797

[40] Delatorre, E., F. V. S. d. Abreu, I. P. Ribeiro, M. M. Gómez, A. A. C. Dos Santos, A. Ferreira-de Brito,798
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de Oliveira, E. A. G. Figueira, G. Moresco, L. Olı́vêr, C. J. Struchiner, L. Yakob, and E. Massad (2019).1060

Vector competence, vectorial capacity of Nyssorhynchus darlingi and the basic reproduction number of1061

44

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 10, 2021. ; https://doi.org/10.1101/2021.06.09.447801doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.09.447801
http://creativecommons.org/licenses/by-nd/4.0/


Plasmodium vivax in agricultural settlements in the Amazonian Region of Brazil. Malaria Journal 18(1),1062

117.1063

[135] Samuel, M. D. and D. J. Storm (2016). Chronic wasting disease in white-tailed deer: infection, mor-1064

tality, and implications for heterogeneous transmission. Ecology 97(11), 3195–3205.1065

[136] Santos, A. S. and A. N. Almeida (2018). The impact of deforestation on malaria infections in the1066

Brazilian Amazon. Ecological Economics 154, 247–256.1067

[137] Sarfraz, M. S., N. K. Tripathi, F. S. Faruque, U. I. Bajwa, A. Kitamoto, and M. Souris (2014). Mapping1068

urban and peri-urban breeding habitats of Aedes mosquitoes using a fuzzy analytical hierarchical process1069

based on climatic and physical parameters. Geospatial Health, S685–S697.1070

[138] Sarfraz, M. S., N. K. Tripathi, T. Tipdecho, T. Thongbu, P. Kerdthong, and M. Souris (2012). Analyzing1071

the spatio-temporal relationship between dengue vector larval density and land-use using factor analysis1072

and spatial ring mapping. BMC Public Health 12(1), 853.1073

[139] Schaber, K. L., T. A. Perkins, A. L. Lloyd, L. A. Waller, U. Kitron, V. A. Paz-Soldan, J. P. Elder, A. L.1074

Rothman, D. J. Civitello, W. H. Elson, et al. (2021). Disease-driven reduction in human mobility influ-1075

ences human-mosquito contacts and dengue transmission dynamics. PLoS Computational Biology 17(1),1076

e1008627.1077

[140] Schaer, J., S. L. Perkins, J. Decher, F. H. Leendertz, J. Fahr, N. Weber, and K. Matuschewski (2013). High1078

diversity of West African bat malaria parasites and a tight link with rodent Plasmodium taxa. Proceedings1079

of the National Academy of Sciences 110(43), 17415–17419.1080

[141] Schenzle, D. (1984). An age-structured model of pre-and post-vaccination measles transmission.1081

Mathematical Medicine and Biology: A Journal of the IMA 1(2), 169–191.1082

[142] Sciaini, M., M. Fritsch, C. Scherer, and C. E. Simpkins (2018). NLMR and landscapetools: An inte-1083

grated environment for simulating and modifying neutral landscape models in R. Methods in Ecology and1084

Evolution 9(11), 2240–2248.1085

[143] Scott, T. W. and A. C. Morrison (2010). Vector dynamics and transmission of dengue virus: impli-1086

cations for dengue surveillance and prevention strategies. In A. L. Rothman (Ed.), Dengue Virus, pp.1087

115–128. New York, New York: Springer.1088

[144] Seto, K. C., S. Parnell, and T. Elmqvist (2013). A global outlook on urbanization. In M. Fragkias and1089

T. Elmqvist (Eds.), Urbanization, biodiversity and ecosystem services: Challenges and opportunities, pp. 1–12.1090

New York, New York: Springer.1091

45

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 10, 2021. ; https://doi.org/10.1101/2021.06.09.447801doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.09.447801
http://creativecommons.org/licenses/by-nd/4.0/


[145] Sharma, V. P. (2002). Determinants of malaria in South Asia. The Contextual Determinants of Malaria,1092

110–32.1093

[146] Sheela, A., A. Ghermandi, P. Vineetha, R. Sheeja, J. Justus, and K. Ajayakrishna (2017). Assessment1094

of relation of land use characteristics with vector-borne diseases in tropical areas. Land Use Policy 63,1095

369–380.1096

[147] Silva, N. I. O., L. Sacchetto, I. M. de Rezende, G. de Souza Trindade, A. D. LaBeaud, B. de Thoisy, and1097

B. P. Drumond (2020). Recent sylvatic yellow fever virus transmission in Brazil: The news from an old1098

disease. Virology Journal 17(1), 9.1099

[148] Smetana, H. F. (1962). The histopathology of experimental yellow fever. Virchows Archiv für patholo-1100

gische Anatomie und Physiologie und für klinische Medizin 335(4), 411–427.1101

[149] Sorichetta, A., G. M. Hornby, F. R. Stevens, A. E. Gaughan, C. Linard, and A. J. Tatem (2015). High-1102

resolution gridded population datasets for Latin America and the Caribbean in 2010, 2015, and 2020.1103

Scientific Data 2(1), 1–12.1104
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