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Abstract 14 

Wheat crops are highly sensitive to elevated temperatures, particularly during pollen meiosis and 15 

early grain filling. As the impact of heat stress greatly depends on the developmental stage of a crop, 16 

wheat germplasm ranking for heat tolerance in field experiments may be confounded by variation in 17 

developmental phase between genotypes at the time of heat events. Deploying an artificial-18 

photoperiod-extension method (PEM) has allowed screening of diverse genotypes at matched 19 

developnemtal phases during natural heat events despite phenological varations. Irrigated 20 

experiments with 32 wheat genotypes were conducted in south-east Queensand, Australia with either 21 

(i) the PEM or (ii) conventional field plots. The paired PEM and conventional field plot trials were 22 

sown at different?? with serial sowing dates from June to September. In the PEM, plants were sown in 23 

single rows or in small plots and artificial supplemental lighting was installed at one end of each 24 

row/plot, extending day length to 20 h close to the lights. The intensity of supplementary lighting 25 

diminished as the distance from the lights increased, and induced a gradient of flowering times along 26 

each row/plot. Spikes of each genotype were tagged when they flowered. Late-sown crops received 27 

more heat shocks during early and/or mid-grain filling than earlier sowings, and suffered significant 28 

yield losses. Significant genotypic differences in heat tolerance ranking were observed between PEM 29 

versus conventional plot screening. Individual grain weight of the tested wheat genotypes was 30 

strongly correlated in the PEM plots experiencing a similar degree of heat, but the correlation was 31 

either poor or negative in conventional plot trials. With PEM, we successfully quantified the impact 32 

post-flowering heat on individual grain weight of wheat genotypes with the heat events occurring 33 

precisely at a specific developmental stage. The PEM results produced  robust field based 34 

rankings of genotypes for heat tolerance within trials experiencing similar heat events. This 35 
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method promises to improve the efficiency of heat tolerance field screening, particularly when 36 

comparing genotypes of different maturity types. 37 

Keyword: Phenotyping, heat stress, genotype x environment interaction, crop improvement, 38 

photoperiod extension. 39 

Introduction 40 

Climate variability is among the major determinants of global crop yields, including wheat 41 

(Najeeb et al., 2019; Ray et al., 2015) and strongly impedes plant breeding (Chapman et al., 42 

2012). A significant increase in the frequency of extreme temperatures, particularly during 43 

grain filling has been recorded in the major wheat production regions such as Australia 44 

during the past 30 years (Ababaei and Chenu, 2020). These extreme heat events have 45 

substantially affected the growth, development and ultimately, yield of wheat crops (e.g. 46 

Collins et al., 2021; Collins and Chenu, 2021; Zheng et al., 2016). With the recent rate of 47 

climate change, a further increase in the frequency of these heat events is projected in the 48 

near future both in Australia (Ababaei and Chenu, 2020) and globally (Field et al., 2012). 49 

Thus, developing wheat genotypes with superior heat tolerance during grain filling is critical 50 

for sustaining wheat grain yields and maintaining food security in future hot climates.  51 

Wheat crops are highly sensitive to elevated temperatures with the impact of heat stress is 52 

highly dependent on the crop developmental stage (e.g. Chenu and Oudin, 2019; Farooq et 53 

al., 2011; Prasad and Djanaguiraman, 2014). Reproductive and grain filling phases of wheat 54 

crops are extremely sensitive to heat and even a mild increase in the atmospheric temperature 55 

during these stages can significantly reduce grain yield. For example, high temperature 56 

during double-ridge stage significantly damages spikelet primordia development reducing the 57 

potential grain number (Slafer and Rawson, 1994). Similarly a single hot day (>30◦C) during 58 

early reproductive stage during the onset of meiosis in pollen or micro / megaspore 59 

development, can completely sterilise the developing wheat pollen (Saini and Aspinall, 60 

1982). The effect of high temperature on pollen typically translates into a poor grain set and 61 

grain yield loss (Guo et al., 2016). Each degree increase (from 15–22°C) in mean temperature 62 

during pollen developmental can reduce grain number per unit area by 4%, while 10°C 63 

increase in maximum temperature at mid anthesis can result in a 40% reduction in grain 64 

number in wheat spikes (Wheeler et al., 1996). 65 

Post-anthesis heat reduces grain yield primarily by limiting assimilate synthesis, 66 

translocation, and starch deposition to developing grains (Sofield et al., 1977). Grain weight 67 
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is most sensitive to heat during early grain filling and becomes progressively less sensitive as 68 

grain filling proceeds (Stone and Nicolas, 1998). A single hot day (maximum day 69 

temperature 40°C) occurring 10–13 days after anthesis can reduce individual grain weight 70 

(IGW) by 14% (Stone and Nicolas, 1998). With each day delay in exposure to heat stress 71 

during this period (15-35 days after anthesis), 0.5% reduction in individual grain weight of 72 

wheat has been recorded (Stone and Nicolas, 1998). Reduction in individual grain weight of 73 

heat stressed plants is strongly linked with a shortened grain filling duration ((Girousse et al. 74 

2021; Stone and Nicolas, 1998); Girousse et al., 2021) and for each °C rise in temperature 75 

above optimum (15–20°C), a two to eight day reduction in grain filling duration has been 76 

reported in wheat crop (reviewed by Streck, 2005). In the Australian wheatbelt, a steady 77 

increase in the frequency of hot days (Tmax > 26°C) during the grain filling period of wheat 78 

crops has been recorded over the past 30 years (Ababaei and Chenu, 2020). With grain yield 79 

losses largely the results of reduced grain weight (18.1%) rather than reduced grain number 80 

(3.6%). This highlights the importance of developing wheat germplasm more tolerant to heat 81 

post-flowering. 82 

Conventionally, wheat genotypes are screened for heat tolerance by serial sowing, using heat 83 

chambers in the field, or in controlled environments (Thistlethwaite et al., 2020). Ranking for 84 

heat tolerance is typically based on physiological or morphological traits associated with 85 

plant function and performance (Bennett et al., 2012). However, changes in these traits are 86 

strongly influenced by the environment and the methodology used (Limpens et al., 2012; 87 

Poorter et al., 2016). Field-based screening methods are generally considered more 88 

representative of the plant response to natural environments (Passioura, 2006). However, 89 

screening of wheat genotypes with varying maturity types may be further complicated by the 90 

unpredictability of heat events under field conditions. Given that the impact of heat events is 91 

highly dependent on the developmental phase specific in wheat test line (e.g. Chenu and 92 

Oudin, 2019; Djanaguiraman et al., 2014; Tashiro and Wardlaw, 1990), ranking of wheat 93 

genotypes for heat tolerance may be confounded by variation in developmental stage during a 94 

natural heat event. An improved technique to screen for high temperature stress at matched 95 

developmental stages of wheat genotypes in the field could accelerate the selection of heat 96 

tolerant genotypes. 97 

Here, we developed and tested an artificial-photoperiod-extension method (PEM) that allows 98 

comparison of the performance of wheat genotypes with varying maturity types at a common 99 
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developmental stage during natural heat events.  The method was tested across three different 100 

locations over three consecutive years. Rankings of wheat genotypes with varying maturity 101 

type and heat tolerance were compared using PEM and conventional plots. 102 

Materials and Methods 103 

Growth conditions and experimental design 104 

Field experiments were conducted over three consecutive years (2018 to 2020) at three 105 

locations across southern Queensland, Australia.  Conventional serial sowing field plots were 106 

estabilished adjacent trials using a newly developed photoperiod extension method (PEM). 107 

Randomised block design experiments with two times of sowing blocks and four replicates 108 

were established each year. To maximise the likelihood of heat during grain filling, the 109 

experiments were planted later in the cropping season than industry practice (Table 1). The 110 

first sowings (s1) were established between late May or early July and the second sowings 111 

(s2) between late August or early September at The University of Queensland Research 112 

Farm, Gatton (27°34′50″S, 152°19′28″E). At the Hermitage Research Station, Warwick 113 

(28°12'40''S, 152°06'06''E), experiments were sown early June or mid-July (s1) or mid-114 

August and mid-September (s2). At the Tosari Crop Research Centre, Tummaville 115 

(27°49'09.1"S 151°26'14.9"E), the crops were sown mid-July (s1) and early September (s2). 116 

All experiments were fully irrigated at sowing (except at Tosari) and cultivated under non-117 

limiting fertiliser conditions (Table 1). A boom irrigator (centre pivot sprinkler) was used for 118 

irrigating plot trials at Gatton and Tosari, while wobbler sprinklers were set up for irrigating 119 

PEM trials at Gatton and Hermitage (in 2018). In 2020, both PEM and plots trials at the 120 

Hermitage were irrigated using a drip irrigation system. At Tosari, the crops were irrigated at 121 

sowing and pre-flowering, but no post flowering irrigation was applied. Standard crop 122 

management practices including weed, disease and pest control were adopted during the 123 

season. 124 

With the PEM method, wheat genotypes were either hand sown in a 5 m single row in 2018 125 

and 2019 or machine planted in a four row plot (1×5 m, 2020).  126 

Conventional field plots were planted at the same time and with similar management to the 127 

PEM trials. In 2018 and 2020, the conventional yield (2×6 m) plots were set up in Gatton and 128 

Hermitage, while in 2019 genotypes were tested in smaller plots (1×6 m) at Tosari and 129 

Gatton. All conventional plots were planted at a 25 cm row spacing with a population density 130 

of 130 plants m–2 and in four independent replications. 131 
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Genotypes 132 

Thirty-five wheat (Triticum aestivum L.) genotypes with contrasting phenology and 133 

adaptation (Table S1, supplementary) were used in the study. These included three high-134 

performing spring cultivars Suntop, Mace and Scout widely cultivated in the northern, 135 

western, and southern regions of Australia, respectively. A set of eight CIMMYT genotypes 136 

described as heat tolerant under Australian environments was obtained from the University of 137 

Sydney (Thistlethwaite et al., 2020). Other genotypes used in these experiments included 138 

donors of a multi-reference parent nested association mapping (NAM) population developed 139 

for screening for drought tolerant wheat (Christopher et al., 2015, 2021; Richard, 2017). In 140 

total, 35 wheat genotypes were tested under PEM and plot experiments, with 32 genotypes 141 

each year and site, except PEM plots in 2020 when only 20 selected genotypes were used 142 

(Table S1, Supplementary). In conventional plot experiments, 32 genotypes were used each 143 

year.   144 

The photoperiod extension method 145 

The novel photoperiod extension method (PEM), was based on a method described by 146 

Frederiks et al. (2012) to test for frost damage and was adapted to for screening wheat 147 

genotypes for heat tolerance under field conditions. At one end of each row or plot, LED 148 

lamps (CLA LT401, 9W T40 LED LAMP, 3000K 760LM) with a lumen efficiency ≥ 80, 149 

were set up approximately 1 m above the ground level and at spacing of 0.8 m. These lamps 150 

supplement light as the sunset by extending the day length to 20 h (Fig. 1). The intensity of 151 

light diminishes with the square of the distance from the lights along test row, with maximum 152 

effect closest to the lights and minimum or no impact at the other end of the row. This 153 

variation in light intensity across the rows induced a gradient of flowering times within each 154 

row with the plants closest to the light developing more rapidly. 155 

Plant measurements 156 

For each PEM trial and sowing date in 2018 and 2019, approximately 20 stems of the each 157 

genotypes were tagged at flowering (Zadoks decimal growth stage 65; Zadoks et al., 1974). 158 

The induced gradient in phenology along the rows allowed tagging of genotypes multiple 159 

times for plants in rows or plots from each sowing time. One-to-three cohorts of stems at 160 

precisely matched for developmental stage  at flowering (Zadoks decimal growth stage 65 161 

were tagged in rows or plots from each sowing time and location. These sequentially tagged 162 

coherts were termed as tagging 1, tagging 2 and tagging 3. The tagged spikes were manually 163 
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harvested at maturity and processed for grain yield components. In addition, in each test row, 164 

a 0.5 m section of row that originally contained the heads from first tagging was manully 165 

harvested for harvest index and crop yield estimation. In 2020, ~ 0.5 m section of each plot 166 

was tagged at flowering (Zadoks 65), and two centr0al rows (0.5 m each) within the tagged 167 

region were manually harvested at crop maturity.  168 

All yield plots from the conventional method were harvested using a small plot amchine 169 

harvester at maturity when grain moisture was approximately 11%. Grain samples were 170 

maunally counted to calculate individual grain weight (IGW).    171 

Environment variables  172 

Local weather stations (Campbell Scientific) were set up at each site to record weather data. 173 

Light sensors (Apogee SP-110 pyranometers, and Apogee SQ-110 for radiation and PAR 174 

measurements, respectively) were installed at 1.5 m height, collecting light interception data 175 

for each 10 min. period.  Average daily intercepted radiations (mean daily radiations (MJ m-2) 176 

are presented (Table 1).  HMP60 (Vaisala INTERCAP®) probes were used for air 177 

temperature (Tair) and relative humidty (RH) measurements installed 1.5 high.  178 

Thermal time was calculated in degree days using the following equation: 179 

������ ���	 
 �0.0032 � ����� � 0.1369 � ����� � 0.3968 � ���� � 0.993         (Eq 1) 180 

Where Tair is the hourly air temperature data  181 

Day-time vapour pressure deficit (VPD) was calculated as in (Alduchov and Eskridge, 1996), 182 

by the following equation 183 

��� 
  0.61094 �� ����
���

��
��.
���
���/�
�������.���

                                                              (Eq 2) 184 

Where Tair and RH are the hourly air temperature and hourly relative humidity, respectively, 185 

during the daytime. 186 

Statistical analysis  187 

Data were analysed using R (Team, 2018). Individual and interaction effects of genotype and 188 

environments (sowing, location and tagging), were determined by analysis of variance 189 

(ANOVA). Statistical differences were tested with student’s t-tests at a 5% level (Condon et 190 

al., 2004). Principal component analysis was computed to rank genotypes in different 191 

environments. 192 
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Results 193 

Wheat crops experienced a wide range of heat events across locations and sowing times   194 

Wheat genotypes at each location, season, sowing and tagging experienced varying air 195 

temperatures and VPD (vapour pressure deficit) in the pre- and post-flowering periods (Table 196 

1, Fig. 2 & Table S2 supplementary data). In all trials, the plants from sowing 2 experienced 197 

significantly higher temperatures and VPD than crops from the first sowing. For example, 198 

post-flowering mean air temperature was 20% higher for s2 than s1 crops across the trials 199 

(Table 1). Similar differences in post-flowering maximum air temperature of s1 and s2 crops 200 

were also observed, with the exception of in the 2020 Warwick trial (WAR20), where the 201 

difference between the maximum temperature during s1 and s2 was only 10%. The number 202 

of hot days (with max temperature >30○C) across these experiments also varied greatly, with 203 

second sowing (s2) in 2019 receiving the maximum number (22) of post flowering hot days. 204 

Higher temperature during s2 shortened the duration of both pre- and post-flowering periods, 205 

although the reduction in time to flowering was relatively greater than the reduction in post-206 

flowering duration across all the tested locations (Table 1).  207 

At TOS19, crops received pre-flowering supplementary irrigation, but water was unavailable 208 

for post-flowering irrigation. Thus, these crops experienced a degree of post-flowering 209 

drought. With optimal pre flowering temperature (Table S2, supplementary data), s1 plant at 210 

TOS19 produced potential number of grains (spike-1) but significant reduction in grain size 211 

was confounded by post-flowering heat and drought.    212 
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Table 1. Field experiment environmental characteristics and management including the trial identifier (Trial), site, irrigation treatment and sowing date. Also 
presented are the mean of pre- and post-flowering periods, as well as post-flowering temperature, day-time vapour pressure deficit (VPD) and radiation for 
experiments with photoperiod extension method (PEM). Days to flowering and grain filling duration were calculated from sowing to flowering and flowering 
to maturity, respectively, for the 1st tagging 1 (T1) at each location and sowing time. 

 GAT18s1 and GAT18s2, sowing 1 and sowing 2 at Gatton in 2018, respectively; GAT19s1 and GAT19s2, sowing 1 and sowing 2 at Gatton in 2019, 

respectively; GAT20s1 and GAT20s2, sowing 1 and sowing 2 at Gatton in 2020, respectively; WAR18s1 and WAR18s2, sowing 1 and sowing 2 at Warwick 

in 2018, respectively; WAR20s1 and WAR20s2, sowing 1 and sowing 2 at Warwick in 2019, respectively; TOS19s1 and TOS19s2, sowing 1 and sowing 2 at 

Tummaville in 2018, respectively.  

TOS19 crops had supplementary pre-flowering irrigation and had experienced a mild post-flowering water stress. 

Trial * Site Irrigation Sowing date Mean 

temp. 

(○C) 

Mean daily 

max temp.  

(○C) 

Mean 

VPD 

(kPa) 

Mean daily 

radiation 

(MJ m-2) 

Days to 

flowering 

(days) 

Post-flowering 

duration 

(days) 

Days with post-

flowering max 

temp. >30○C  

GAT18s1 Gatton Full** 03/07/2018 19.3 26.3 0.74 23.8 73 42 1 

GAT18s2 Gatton Full  31/08/2018 23.1 31.4 1.38 23.2 53 39 11 

WAR18s1 Warwick Full  16/07/2018 18.6 25.6 0.84 17.7 73 39 2 

WAR18s2 Warwick Full 12/09/2018 22.0 30.3 1.52 21.2 52 37 9 

GAT19s1 Gatton Full  09/07/2019 19.5 28.7 1.40 16.8 71 39 5 

GAT19s2 Gatton Full  03/09/2019 23.7 33.8 2.23 20.8 59 35 20 

TOS19s1 Tummaville Supplementary 16/07/2019 21.1 30.2 1.26 17.7 79 35 12 

TOS19s2 Tummaville Supplementary 06/09/2019 26.5 36.7 2.27 16.2 62 35 22 

GAT20s1 Gatton Full  26/05/2020 17.9 26.8 1.08 17.3 79 49 0 

GAT20s2 Gatton Full  04/08/ 2020 22.2 31.2 1.35 19.7 65 37 14 

WAR20s1 Warwick Full  08/06/ 2020 19.3 26.3 0.74 13.6 73 42 1 

WAR20s2 Warwick Full  12/08/2020 23.1 31.4 1.38 11.6 53 39 4 
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Late-sown crops had lower individual grain weight and grain yield  1 

Individual grain weight and grain yield significantly varied across experiments but generally 2 

s2 crops produced significantly smaller grains and lower grain yield compared with s1 crops 3 

(Fig. 3). No significant variation in grain number (spike-1) of the tested wheat genotypes were 4 

observed in this study, except s2 trials of TOS19 and GAT19 (Table S8, Supplementary 5 

data), where significant pre-flowering heat events (Fig. 2) impacted the grain set. 6 

The wheat genotypes (averaged across all tested genotypes) produced maximum IGW (44.7 7 

mg grain-1) and grain yield (516 g m-2) under PEM-GAT18s1. Across the plots, genotypes 8 

produced maximum IGW (37.7 mg grain-1) and grain yield of (478 g m-2) under WAR20s1. 9 

Trial-mean reduction in IGW between s2 and s1 crops were maximum at GAT19 for PEM 10 

(71%) and conventional plot trials (32%) (Fig 3a & c). In contrast, grain yield reduction 11 

varied across PEM and conventional plots i.e. grain yield loss in s2 compared with s1 was 12 

maximum at GAT18 and TOS19 for PEM and conventional plots, respectively (Fig 3b & d). 13 

 Extending the photoperiod with lights increased opportunities to tagged plants from 14 

contrasting genotypes at matched development stage, especially in earlier sown crops 15 

Phenology data were collected from plants 0.5 m from each end and of each experimental 16 

row or plot in the PEM, from next to the supplemented light or at the far end away from the 17 

supplemental lights (Fig. 4-5). The phenology of the different genotypes significantly varied 18 

both under natural and supplemented light. The supplemented light accelerated flowering by 19 

8.5 days (164 growing degree days) and 5.6 days (120 growing degree days) on average in s1 20 

and s2 crops, respectively. This gap between flowering times of plants under natural and 21 

supplemented light allowed multiple tagging of the genotypes at matched developmental 22 

phases (Zadok 65 in this study) within rows or plots from single time of sowing.  23 

Supplemented light had a weaker effect in late sowings when the natural photoperiod was 24 

already longer (Fig. 5). Under the shortest studied photoperiods (~10.5 h at sowing), plants 25 

closer to the light source flowered approximately 8 days earlier than the plants away from 26 

light source (averaged across genotypes and sites). The phenology effect of supplemented 27 

light nearly halved when crops were planted under longer photoperiod (11.5 h or more at 28 

sowing).  29 

 30 

A reduction in individual grain weight by 1.5 mg for every post-flowering heat day  31 
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A strong correlation (r2 = 0.903) between the number of post-flowering hot days (days with 1 

maximum temperature >30oC) and individual grain weight was observed across PEM plots 2 

(Fig. 6a). This suggested that number of post-flowering hot days is a critical determinant of 3 

the final grain weight of wheat crops.  4 

Plots receiving 0-4 post flowering hot days, produced largest grains (40-45 g grain-1). Given 5 

that heat event (if any) during these plots were very brief (~30 min, Fig. 2), IGW produced 6 

during this period was categorised as potential grain weight. In contrast, GAT19s2 and 7 

TOS19s2 experienced significant pre- and post- flowering heat (i.e. more than 20 post 8 

flowering hot days) and suffered maximum reduction in grain size. On average, plants under 9 

these extremely hot plots produced 2.7 times smaller grains than the potential IGW (Fig. 6a).  10 

Plots with intermediate/a moderate numbers of heat events i.e. 5 - 13 post flowering hot days 11 

and showed significant variations in mean grain weights and grain yield. On average, IGW of 12 

the tested wheat genotypes in HET2 trials was reduced by 2.1 mg for every post-flowering 13 

heat day. Similarly, significant variations in mean grain weights were observed among 14 

different tagging within a single sowing time, particularly when plants experienced varying 15 

number of hot days. For instance, m2 plants of GAT19s1 produced 14% smaller grains 16 

compared with m1 plants.  17 

The photoperiod-extension method provided a stable genotype ranking within heat 18 

environment type  19 

Genotypic rankings with the PEM were consistent between environments experiencing 20 

similar heat stress (Fig. 7). Trials were divided in three heat environment types (HET; Fig. 6): 21 

HET1 corresponded to environments with no or only late grain-filling heat stress (i.e. less of 22 

4 cumulated hours of temperature >30○C between 0 and 500oCd after flowering), HET2 23 

included all environments with moderate heat stress during grain fill (5 to 13 days with a 24 

maximum temperature >30oC in our set of trials), and HET3 corresponded to environments 25 

severely stressed during grain fill (20 to 22 days with a maximum temperature >30oC in our 26 

set of trials). In addition to post flowering heat, HET3 trials experienced high pre flowering 27 

temperatures (Table S2) along with multiple hot days around stem elongation and meiosis 28 

(Fig. 2). These pre flowering heat shocks significantly reduced the grain set (Fig S1, 29 

supplementary data).  30 
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For single spike harvests with the PEM, correlations for the plants experiencing mild or no 1 

heat stress during grain-filling (maximum temperature >30○C between 0 and 500oCd after 2 

flowering), i.e. HET1, ranged from 0.64 to 0.89 (Figure 2 & 7a). A range of positive 3 

correlations (excluding TOS19 which experienced a degree of post flowering drought) were 4 

observed for the moderately-stressed environments within HET2. These correlations were 5 

stronger (r2 = 0.57-0.9) among the irrigated trials with a similar number of hot days (i.e. 9-13) 6 

and became more variable with the trial with five hot days only (i.e. r2=0.2-0.57). A wide 7 

range of positive correlations was also observed among HET1 and HET2 trials, the strength 8 

of these correlations varied with the number of hot days observed in trials.  IGW of the two 9 

severely-stressed trials (HET3) was strongly correlated (r2 = 0.46) but correlations between 10 

HET3 and HET1 or HET2 trials varied (Fig 7a). 11 

IGW data collected from a PEM row meter was also positively correlated between different 12 

trials, and these correlations were particularly strong among the trials experiencing a similar 13 

number of hot days, Fig. 7b. For example, in HET1 these correlations were moderate to 14 

strong (r2=0.24-0.88) mainly because of a weaker correlation between GAT20s1 and 15 

WAR20s1 (r2 = 0.24). Similarly, all HET2 trials were positively correlated except drought-16 

stressed trial (i.e. TOS19s1). 17 

In the conventional method, based on comparison from plots sown at different sowing dates, 18 

genotype ranking for IGW varied widely across the environments, both between sowings and 19 

sites (Fig. 7c). Correlations were positive mainly under optimum environments, i.e. 0-4 hot 20 

days, but they were poor and sometimes negative across other environments. A maximum 21 

correlation of 0.78 was found between GAT20s1 and WAR20s1, with 0-2 hot days during 22 

grain filling. HET2 trials were either poorly or even negatively correlated i.e. GAT19s1 has a 23 

strong correlation (r2 = 0.48) only with TOS19s. Similarly, HET3 trials GAT19s2 and 24 

TOS19s2 had a correlation of 0.1. 25 

Irrigated trials were also positively correlated for grain yield (g m-2) data collected from row 26 

harvest in PEM trials. The correlations ranged (r2 = 0.2-0.72) and (r2 = 0.33-0.63) under 27 

HET1 and HET2, respectively (Fig. S2, supplementary data). Under conventional plots, 28 

correlations for grain yield were either poor or negative for most of these trials.  29 

IGW grain weight data collected from the two trial methods were also compared. A strong positive 30 

correlation (r2=0.94) was observed between the IGW data collected under PEM trials by 31 

collecting single spike or by row meter harvest (Fig. 8a). In contrast, when IGW data of row 32 

meter harvest and plot trials are plotted, this correlation was poor (r2=0.147) and non-33 

significant, except between GAT18s2 trials (Fig. 8b & Fig. S4, supplementary data).  34 
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The photoperiod extension method allows a distinct clustering of wheat genotypes 1 

across the tested environments   2 

Performance of wheat genotypes in terms of IGW and grain yield (grain weight g spike-1 for 3 

spike harvest data) for the studied environments were explored using principle component 4 

analysis (PCA) biplots. The first two principle components (PC) explained maximum 5 

variance (~ 60% for IGW and grain yield across different trial types), thus the data from PC1 6 

and PC2 are presented here (Fig. 9).  7 

Under PEM, a strong positive correlation was observed between HET1 (GAT18s1 and 8 

WAR18s1) and HET2 (GAT18s2 and WARs2) trials, except TOS19s1 (Fig. 9 a & d).  This 9 

correlation was stronger within HETs (site, sowing and tagging). In contrast, a wider angle 10 

between HET3 (GAT19s2 and TOS19s2) and HET1/HET2 for IGW and HET1 for grain 11 

weight loadings suggested a weaker correlation between these trials (Fig. 9 a & d).  12 

The projection of a genotype onto an environmental axis reflects the performance of that 13 

genotype in that environment. Based on their performance in different environments, the 14 

tested genotypes were grouped together. Biplot separated the tested genotypes into three 15 

distinct groups for IGW and grain weight (spike-1) under different environments (Fig. 9 a & 16 

d). For instance, the top performing genotypes such as ZWB10-37 project axis above the 17 

origin in HET1 and HET2 and show a positive interaction with these environments (green 18 

ellipse, Figure 9). In contrast, poorly performing genotypes such as Yitpi and EGA Wylie 19 

project below the origin on the same axis (red ellipse, Figure 9).  20 

For the row meter harvest of the PEM, PC loadings of HET1 and HET2 were also positively 21 

correlated particularly for IGW (Fig. 9 b & e). Clustering of genotypes based on their 22 

performance in the different environments was distinct both for IGW and grain yield (Figure 23 

9).  24 

Under conventional plots, environment types (HET), particularly for grain yield were more 25 

widely separated, indicating a weaker or even negative correlation among them (Fig. 9c & f). 26 

Compared with PEMs, genotype ranking was also greatly changed in the conventional plots. 27 

For instance, genotypes such as RIL114, EGA Gregory and Suntop_1 were ranked among the 28 

top performing genotypes for IGW under some of HET1 and HET2 (Fig. 9c). This ranking 29 

under the plot trials was further complicated when the tested genotypic performance was 30 

compared for grain yield under plot trials (Fig. 9f).   31 
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Discussion 1 

A new method to screen for heat tolerance at matched development stages 2 

The reproductive developmental stages of wheat are highly susceptible to elevated 3 

temperatures, with heat events heat events can significantly impair grain set and final grain 4 

size. During the grain filling phase, sensitivity of developing grains to heat events can change 5 

over a period a short as a few days (Stone and Nicolas, 1995). Since field-based techniques 6 

for screening heat tolerant germplasm generally rely serial sowing, it is hard to optimise 7 

sowing time for given the unpredictable timing of heat events. Field-based screening for heat 8 

tolerance using this conventional method is further complicated when genotypes with varying 9 

maturity types are tested together. These genotypes are likely to receive heat events across 10 

different developmental stages with heat escape confounding true heat tolerance. Thus, for 11 

yield assessments, the development of plots needed to be synchronised and timed to 12 

occurrence during heat events, which is hard to achieve in practice (Single, 1991).  13 

We developed a new method, which allows screening of wheat genotypes at matched 14 

developmental phases with greater flexibility in the timing of natural heat events. As quality 15 

and quantity (photon flux density) of intercepted light  determine phenological development 16 

in wheat (Fischer and Stockman, 1980), we manipulated wheat phenology by altering the 17 

intensity of intercepted light. This was achieved using supplemental lights, which extended 18 

photoperiod at one end of the test rows to 20 h.  The light intensity diminishes with the 19 

square of distance (Niinemets and Keenan, 2012), generating a series of flowering times 20 

along the length of the test rows (Fig. 1). The range of flowering times within a single row of 21 

individual genotype, allowed tagging and comparison of the performance of genotypes with 22 

varying maturity types at precisely matched developmental stages (flowering). The impact of 23 

supplemented light for phenology manipulation was complemented by using a wide range of 24 

sowing dates from late May to mid-September. Our study showed that the impact of extended 25 

photoperiod is strongly (r2=0.54) associated with the natural photoperiod during vegetative 26 

crop growth. For instance, a wide gap in flowering across the test rows, of up to 10 days 27 

when averaged across all tested genotypes, was recorded in the crops planted during longer 28 

(photoperiod ≥11.50 h) and this gap narrowed by 3.5 days with each increasing hour in 29 

photoperiod at sowing (cite data figures and tables). In our PEM plots, a wider flowering time 30 

gradient allows multiple tagging within a single time of sowing improving the efficiency to 31 

trials.  Thus, if resources are limited a single sowing at, or a bit later than the first sowing 32 

times used in this study may be sufficient for reliable screening of a range of spring habit test 33 
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wheat lines. Arguably, s2 was planted too late in the season and receive too many heat events 1 

to be representative i.e. HET3 in our experiments, it may be hard to accurately rank 2 

genotypes using PEM.  3 

Our study demonstrated that heat intensity during the grain filling period of irrigated wheat 4 

are the major determinant final grain size and grain yield. A threshold maximum daily 5 

temperature of 30°C was critical during grain filling phase of wheat crops (Porter and 6 

Gawith, 1999). In this study, tested wheat genotypes did not experience any significant IGW 7 

or grain yield loss in response to 0-4 hot days (max daily temperature >30○C) during grain 8 

filling (HET1, Fig. 6). This could be because most of these heat events were either very brief 9 

(1-2 h only, Fig. 1) or the heat event occurred late in development when grain-filling was 10 

already well advanced (Fig. 2).  11 

Significant variation in the timing and intensity of natural heat events across sowing times 12 

and locations were recorded and consequently the effect on grain yield was highly variable in 13 

the conventional system (Fig. 2 & 3). Our data showed that reduction in IGW was highly 14 

influenced by the intense and number of heat shocks during early to mid-grain filling 15 

(HET2). A significant and strong effect of the timing of heat has also been recorded on grain 16 

weight of wheat during this sensitive period under controlled environmental conditions 17 

(Stone and Nicolas 1996).  18 

In this study, each additional hot day during grain filling (HET2) reduced IGW of tested 19 

wheat genotypes was by 1.57 mg (Fig. 6a). Interestingly, this significant (p<0.001) reduction 20 

in IGW was also recorded with plants exposed to varying heat in a single sowing. For 21 

example, in the Gatton 2019 first sowing (GAT19 s1) plants tagged one week later (tagging 22 

2) experienced four additional days of post flowering heat and consequently produced 14% 23 

smaller grains than tagging 1 (Fig. 6). Developmental phase-specific effects of heat shocks 24 

(particularly in HET2) on grain yield of wheat genotypes were observed in this study (Fig. 6) 25 

highlighting the importance of screening wheat germplasm at matched developmental phases.  26 

The PEM method allows reliable ranking of wheat genotypes under varying 27 

environments 28 

Strong correlations among different trials for IGW and grain yield with PEM (Fig. 7 a & c, 29 

S1, supplementary data) indicated a stable ranking of tested genotypes particularly within the 30 

environments receiving a similar degree of heat (Tables S3,S4 & S6 Supplementary data). 31 

For instance, the mean correlations for IGW of wheat genotypes across irrigated HET1, 32 

HET2 and HET3 trials were 0.81, 0.59 and 0.57, respectively, under PEM. In contrast, these 33 
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correlations were strong for HET1 (r2=0.57) but poor for HET2 (r2=0.11) and HET3 (r2=0.1) 1 

using conventional yield plots (Table S5 & S7 Supplementary data). This indicate that in 2 

conventional plots, ranking wheat genotypes was changed depending on the number of hot 3 

days, particularly during early grain filling (i.e. HET2). High heat sensitivity during this 4 

developmental phase has also been reported by Talukder et al. (2013), who observed a single 5 

hot day (maximum temperature > 35○C) during this period can significantly reduce grain 6 

weight of wheat crops. 7 

The stable genotype ranking within similar environments is also evident from the proximity 8 

of principal component (PC) loading in PEM trials (Figure 9). Despite variable correlations 9 

among various HET trials, PEM allowed the tested genotypes to be clustered into distinct 10 

groups based on their performance in these environments (Fig. 9a & d).  In contrast, this 11 

clustering was inconsistent with that found in conventional plots. The clustering in the 12 

conventional plots was also much less powerful at separating groups of genotypes as seen by 13 

the greater overlap of genotypes within each group (Figure 9e). This indicates that the PEM 14 

reliably ranked wheat genotype across a wide range of hot environments compared to the 15 

conventional plots. Given that the magnitude, timing and duration of heat strongly influences 16 

final grain weight in wheat (Stone and Nicolas, 1996; Tewolde et al., 2006), genotypes of 17 

contrasting maturity could experience varying intensity of post flowering when tested 18 

together in the conventional method. For instance, wheat genotypes tested in one of our trials 19 

GAT18s2, flowered at from 53 to 64 days after sowing (Fig. 4). In this trial, genotypes tagged 20 

at matched developmental stage in tagging 1 and 2 received a significant heat spike 21 

(maximum temperature >35○C) at 8 and 15 days after flowering, respectively (Fig. 2) and 22 

thus experienced different degree of damage. However, late flowering genotypes of 23 

GAT18s2 which were not flowering and so not tagged genotypes in the conventional plot 24 

trial could experience heat events significantly later (up to 11 days) than the quick flowering 25 

genotypes and consequently avoided heat stress. This indicates that genotype ranking for heat 26 

tolerance in conventional plots is prone to be more unreliable under HET2, where heat events 27 

occurred more frequently during early to mid-grain filling (Fig. 2) as well as in the projected 28 

future environment across Australia (Ababaei and Chenu, 2020).  29 

Implications for breeding 30 

A high throughput and accurate method for screening heat tolerance is necessary for 31 

sustaining food security under changing environments, particularly for the projected hot and 32 

dry environments. In our PEM experiments, we tested the performance of wheat genotypes 33 
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using single row and small plots. The plants were tagged either as individual spikes or as row 1 

segments (50 cm) of the plot at a matched developmental stage. Our data suggest that the 2 

most reliable genotype ranking can be achieved by tagging and harvesting individual spikes 3 

at matched developmental stage (Fig. 7 and 9). The PEM method described could be suited 4 

for fine tuning the ranking of subset of selected genotypes in the field, as the data from field 5 

grown plants are often more reliable than conventional controlled environment studies. Our 6 

study suggests that tagging part of a row or plot at a matched developmental phase give 7 

highly robust data.  This could potentially be used for large number of genotypes in the 8 

breeding programs with further adaptation of the method. Strong positive correlations 9 

between IGW (r2=0.94) and grain weight (r2=0.51) of spike and row meter harvest as 10 

observed in this study (Fig. 6, Fig. S1 and S2 Supplementary data) suggested that wheat 11 

genotypes can be reliably screened with plot sowing with quadrat (~50 cm) harvest.  12 

In our PEM trials, number of post-flowering hot days were strongly correlated (r2 = 0.90) 13 

with and grain weight per spike (Fig. 6 a & b) but not with the grain number per spike (r2 = 14 

0.01). This strongly suggests that grain yield reductions in these irrigated trials, particularly in 15 

HET1 and HET2 were mainly the consequence of grain weight loss due to post-flowering 16 

heat stress rather than changes in grain number. With the projected increase in frequency and 17 

intensity of post flowering heat across the Australian wheatbelt (Ababaei and Chenu, 2020), 18 

the PEM described here offers an opportunity to select for heat tolerant wheat genotypes 19 

more reliably than can be done conventionally. 20 

Conclusions 21 

We developed and tested a new field-based method for screening wheat genotypes for heat 22 

tolerance under natural heat events. In this method, we used supplemental light to manipulate 23 

crop phenology in a way that genotypes with varying phenology could be tested at closely 24 

matched developmental stages when a heat event occurred. Significantly, strong correlation 25 

with the number (r2=0.84) and timing (r2=0.89) of post flowering hot days were observed in 26 

the PEM trials emphasised the importance of screening wheat genotypes at a matched 27 

developmental stage. With this method, we successfully quantified genotype × environment 28 

response for the heat events occurring precisely at a specific developmental stage. This 29 

method also allowed the comparison of genotype performance at multiple developmental 30 

stages within a single sowing time or location. The method provided robust heat tolerance 31 

ranks for the genotypes tested in similar heat-stress environments. This method promises to 32 
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improve the efficiency of heat tolerance field screening, particularly when comparing 1 

genotypes of different maturity types. 2 
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Figure 1: Example layout of the photoperiod extension method (PEM). Wheat genotypes were sown 
either in a single row (as in this picutre) or in narrow plots. In the centre of the trial at the end  of each 
test row, at the central axis of the experiment, LED lights were setup. These supplemental lights 
extend the photoperiod to 20 h. The intensity of light diminishes along the row and induces a gradient 
of flowering times within each test row. 
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Figure 2: The number of hours each day when air temperatures exceeded 26oC (blue lines), 30oC 
(orange lines) or 35oC (red lines) is plotted against degree days (oC days) post flowering. These are 
presented for each location, season and sowing time. The vertical lines represent tagging of wheat 
genotypes at flowering. m1: 1st coherent of plants tagged at flowering, m2: 2nd coherent of plants 
tagged at flowering), m3: 3rd coherent of plants tagged at flowering.  
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Figure 3: Effect of sowing time on (a & c) individual grain size and (b & d) grain yield of tested 
wheat genotypes for conventional and photoperiod extension method (PEM, row-metre harvest) 
plots. Each boxplot displays data from 32 genotypes and four independent replicates. TOS19 crops 
only had supplementary irrigation and experienced a mild post-flowering water stress. Horizontal 
black lines insides each box denote median values; boxes extend from the 25th to the 75th percentile of 
each group's distribution of values; vertical extending lines (upper and lower whiskers) indicate 
variability outside the upper and lower quartiles. Black dots represent outlier values. ** corresponds 
to significant differences at P< 0.001 among the treatments (sowing times) within each trial. 
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Figure 4: Flowering time of wheat genotypes with and without supplemented light. Horizontal dashed 
lines correspond to the day of tagging of all wheat genotypes at matched flowering. Data on flowering 
were collected for plants 0.5 m away from the light source (extended photoperiod) and plants 0.5 m 
from the end of the row (natural light). Values correspond to the mean of four independent replicates 
± confidence interval (95%).  

 
Figure 5: Delay in flowering time due to supplemented light in response to the photoperiod measured 
at sowing in all trials. The delay in flowering was calculated as the difference in flowering dates for 
plants located 0.5 m (i.e. extended light, 20 h) and 4.5 m (i.e. natural light) away from the light. Data 
correspond to the mean of 32 (2018 and 2019) or 20 (2020) genotypes and four independent replicates 
for all PEM plots. TOS19 crops only had supplementary irrigation and had experienced a mild post-
flowering water stress. 
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Figure 6: Changes in (a) individual grain weight and (b) spike grain weight, in response to number of post-flowering hot days (0-500oCd after flowering) 
across locations and sowing times. Each point represents the mean of all genotypes for individual grain weight of spikes that flowered the same day (four 
independent replicates of 20 stems each). Environments were classified into heat environment types, HET1, HET2 and HET3, based on the number of post-
flowering heat stress days (maximum temperature exceeding 30oC) between 0 and 500oCd after flowering and indicated by the horizontal bar at the top of 
each panel. TOS19 crops only had supplementary irrigation and experienced a mild post-flowering water stress.  
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Figure 7: Genetic Pearson’s correlation coefficients (r2) for individual grain weight between 
environments.  Correlations for mean individual grain weight of genotypes between each pair of 
tested environments. Individual grain weight was estimated from measurements at (a) spike level, and 
(b) at crop level with row meter harvests in the photoperiod extension method (PEM), as well as at (c) 
the plot level in the conventional plot trials. Below the heat maps, in blue, are indicated the number 
post-flowering hot days (days with a maximum temperature above 30oC 0-500oCd after flowering) for 
each environment, grouped by heat environment types (HET1, green; HET2, blue; HET3, red, boxes).  
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Figure 8: Correlations for individual grain weight of all studied genotypes between (a) data collected from individually tagged spikes and tagged linear row 
meter at the matched development phase with the photoperiod extension method (PEM), and (b) between conventional yield plots and row meter from PEM. 
Each data point represents mean value of four independent replicates.
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Figure 9: Principal component analysis biplot of individual grain weight (a-c) and grain weight per spike (d) or grain yield (e-f) of 32 wheat genotypes for all 
tested environments. Environments corresponded to combinations of sowing dates and locations (b, c, e, f) together with tagging for single-spike harvests (a, 
d). Principal component loadings (arrows) were coloured and grouped based on heat environment type i.e. brown: HET1, grey: HET2; orange: HET3. 
Genotype and eclipse colours correspond to performance of genotypes under different environments i.e. green: top performing genotypes, blue: genotypes 
with consistent performance across the tested environments; red: genotypes with poor performance across the tested environments. 
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