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Abstract 1 

More than a decade of genome-wide association studies (GWASs) have identified genetic 2 

risk variants that are significantly associated with complex traits. Emerging evidence 3 

suggests that the function of trait-associated variants likely acts in a tissue- or cell-type-4 

specific fashion. Yet, it remains challenging to prioritize trait-relevant tissues or cell types 5 

to elucidate disease etiology. Here, we present EPIC (cEll tyPe enrIChment), a statistical 6 

framework that relates large-scale GWAS summary statistics to cell-type-specific omics 7 

measurements from single-cell sequencing. We derive powerful gene-level test statistics 8 

for common and rare variants, separately and jointly, and adopt generalized least squares 9 

to prioritize trait-relevant tissues or cell types while accounting for the correlation 10 

structures both within and between genes. Using enrichment of loci associated with four 11 

lipid traits in the liver and enrichment of loci associated with three neurological disorders 12 

in the brain as ground truths, we show that EPIC outperforms existing methods. We 13 

extend our framework to single-cell transcriptomic data and identify cell types underlying 14 

type 2 diabetes and schizophrenia. The enrichment is replicated using independent 15 

GWAS and single-cell datasets and further validated using PubMed search and existing 16 

bulk case-control testing results. 17 

 18 

Keywords: genome-wide association studies, single-cell gene expression, trait-relevant 19 

tissues and cell types, risk loci, enrichment, prioritization.  20 
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Introduction 21 

Many years of genome-wide association studies (GWASs) have yielded genetic risk 22 

variants associated with complex traits and human diseases. Emerging evidence 23 

suggests that the function of trait-associated variants likely acts in a tissue- or cell-type-24 

specific fashion1-5. Recent advances in transcriptomic sequencing, including bulk RNA 25 

sequencing (RNA-seq)6 and single-cell RNA sequencing (scRNA-seq)7-9, enable 26 

characterization of tissue- and cell-type-specific gene expression. Combining the tissue- 27 

or cell-type-specific gene expression profiles with GWAS summary statistics provides a 28 

better understanding of genetic regulatory effects with increased resolution10-13. Along 29 

this line of research, recent studies have identified specific brain cell types that underlie 30 

neuropsychiatric disorders, such as schizophrenia14 and Parkinson's disease15, revealing 31 

that scRNA-seq data can offer finer-resolution insights that help to elucidate disease 32 

etiology. 33 

Several methods16-20 have been developed to integrate tissue- or cell-type-specific 34 

gene expression profiles with GWAS summary statistics to prioritize trait-relevant tissues 35 

and cell types. One set of methods, including RolyPoly16 and LDSC-SEG18, develops 36 

models on the single-nucleotide polymorphism (SNP) level and derives SNP-wise 37 

annotations from the transcriptomic data. RolyPoly adopts a polygenic model, and the 38 

effect sizes of all SNPs associated with a gene have a covariance that is a linear 39 

combination of the gene expressions across all tissues or cell types. RolyPoly, therefore, 40 

captures the effect of the cell-type-specific gene expression on the covariance of GWAS 41 

effect sizes. LDSC-SEG also constructs SNP annotations from tissue- or cell-type-42 

specific gene expressions and then carries out a one-sided test using the stratified LD 43 

score regression framework18,21-23. It tests whether trait heritability is enriched in regions 44 

surrounding genes that have the highest specific expression in a given tissue or cell type. 45 

Another set of methods, such as CoCoNet19 and MAGMA14,15,17,24, does not devise 46 

the SNP-level framework. These methods first derive gene-level association statistics 47 

since this more naturally copes with the gene-level expression measurements; they then 48 

prioritize risk genes in a specific tissue/cell type. Specifically, CoCoNet models gene-level 49 

association statistics as a function of the tissue-specific adjacency matrices inferred from 50 

gene expression studies. While CoCoNet is the first method to evaluate the gene co-51 
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expression networks, its rank-based method does not allow hypothesis testing due to the 52 

strong correlation among gene co-expression patterns constructed from different tissues 53 

and cell types. Like CoCoNet, MAGMA17 and MAGMA-based approaches14,15,24 also 54 

begin by combining SNP-level GWAS summary statistics into gene-level statistics. This 55 

step is followed by a second "gene-property" analysis, where the tissue- and cell-type-56 

specific gene expressions are regressed against the genes' GWAS test statistics. The 57 

various versions of the methods adopt different ways to select genes, transform the 58 

outcome and predictor variables, and include different sets of additional covariates14,15,24. 59 

While MAGMA-based methods have been successfully used in several studies25-27, Yurko 60 

et al.28 examined the statistical foundation of MAGMA, and they identified an issue: type 61 

I error rate is inflated because the method incorrectly uses the Brown's approximation 62 

when combining the SNP-level 𝑝-values. In addition to this problem, we noticed that the 63 

MAGMA’s implementation uses squared correlations between SNPs, which masks the 64 

true LD structure. 65 

When modeling on the gene level, one needs to account for the gene-gene 66 

correlations. RolyPoly ignores proximal gene correlations but implements a block 67 

bootstrapping procedure as a correction. MAGMA approximates the gene-gene 68 

correlations as the correlations between the model sum of squares from the second-step 69 

gene-property analysis. However, the gene-gene correlation of the effect sizes should be 70 

a function of the LD scores (i.e., the correlations between the SNPs within the genes). 71 

CoCoNet does not take account of this either, instead using LD information only to 72 

calculate the gene-level effect sizes and assuming that gene-gene covariance is a 73 

function solely of gene co-expression. A statistically rigorous and computationally efficient 74 

method to derive the gene-gene correlation structure while incorporating the SNP-level 75 

LD information is needed. 76 

These existing methods either focus on common variants (e.g., RolyPoly and 77 

LDSC-SEG) or do not differentiate between common and rare variants (e.g., MAGMA 78 

with only summary statistics) due to the limited statistical power for rare variants. While 79 

methods for rare-variant association analysis have been developed (e.g., sequence 80 

kernel association test29 and burden test30), to our best knowledge, no methods are 81 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 10, 2021. ; https://doi.org/10.1101/2021.06.09.447805doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.09.447805
http://creativecommons.org/licenses/by-nc/4.0/


5 
 

currently available to detect tissue and/or cell-type enrichment of GWAS risk loci using 82 

summary statistics for both common and rare variants. 83 

Here, we propose EPIC, a statistical framework to identify trait-relevant tissues or 84 

cell types by integrating tissue- or cell-type-specific gene expression profiles and GWAS 85 

summary statistics. We adopt gene-based generalized least squares to identify 86 

enrichment of risk loci. For the prioritized tissues and cell types, EPIC further carries out 87 

a gene-specific influence analysis to identify significant genes. We demonstrate EPIC on 88 

multiple tissue-specific bulk RNA-seq and scRNA-seq datasets, along with GWAS 89 

summary statistics of four lipid traits, three neuropsychiatric disorders, and type 2 90 

diabetes, and successfully replicate and validate the prioritized tissues and cell types. 91 

Together, EPIC's integrative analysis of cell-type-specific expressions and GWAS 92 

polygenic signals help to elucidate the underlying cell-type-specific disease etiology and 93 

prioritize important functional variants. EPIC is compiled as an open-source R package 94 

available at https://github.com/rujinwang/EPIC. 95 

 96 

Material and Methods 97 

Overview of methods 98 

The goal of EPIC is to identify disease- or trait-relevant tissues or cell types. An overview 99 

of the framework is outlined in Figure 1. EPIC takes as input single-variant summary 100 

statistics from GWAS, which is used to aggregate SNP-level associations into genes, and 101 

gene expression datasets from either bulk tissue or single-cell RNA-seq. An external 102 

reference panel is adopted to account for the linkage disequilibrium (LD) between SNPs 103 

and genes. We first perform gene-level testing based on GWAS summary statistics from 104 

the single-variant analysis. The multivariate statistics for both common and rare variants 105 

can be recovered using covariance of the single-variant test statistics, which can be 106 

estimated from either the participating study or from a public database. We then develop 107 

a gene-based regression framework that can prioritize trait-relevant cell types from gene-108 

level test statistics and cell-type-specific omics profiles while accounting for gene-gene 109 

correlations due to LD. The underlying hypothesis is that if a particular cell type influences 110 

a trait, then more of the GWAS polygenic signals would be concentrated in genes with 111 

greater cell-type-specific gene expression. For significantly enriched tissue or cell type, 112 
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we further carry out a gene-specific influence analysis to identify genes that are highly 113 

influential in leading to the significance of the prioritized tissue or cell type. 114 

 115 

Gene-level associations for common variants 116 

Let 𝛽 = (𝛽1, ⋯ , 𝛽𝐾)𝑇 be the effect sizes of 𝐾 common variants within a gene of interest. 117 

Let �̂� = (�̂�1, ⋯ , �̂�𝐾)
𝑇

be the estimators for 𝛽,  with corresponding standard errors �̂� =118 

(�̂�1, ⋯ , �̂�𝐾)𝑇 .  Let �̂� = (�̂�1, ⋯ , �̂�𝐾)𝑇  be the 𝑧 -scores, where �̂�𝑗 = �̂�𝑗 �̂�𝑗⁄  is the standard-119 

normal statistic for testing the null hypothesis of no association for SNP 𝑗 . We 120 

approximate the correlation matrix of �̂� (equivalent to the covariance matrix of �̂�) by the 121 

LD matrix 𝑅 = {𝑅𝑗𝑙; 𝑗, 𝑙 = 1, … , 𝐾}, where 𝑅𝑗𝑙  is the Pearson correlation between SNP 𝑗 122 

and SNP 𝑙. We further define 𝑉 = cov(�̂�) = diag(�̂�)𝑅diag(�̂�) as the covariance matrix of 123 

�̂�. We have �̂� ∼ MVN(0, 𝑉) under the null. To perform gene-level association testing for 124 

common variants, we construct a simple and powerful chi-square statistic for testing the 125 

null hypothesis of 𝛽 = 0: 126 

𝑄𝑐 = �̂�𝑇𝑉−1�̂� = �̂�𝑇𝑅−1�̂� ∼ 𝜒𝐾
2 . 127 

The correlation matrix 𝑅 can be estimated from either the participating study or a publicly 128 

available reference panel. In this study, we utilize the 1000 Genomes Project European 129 

panel31, which comprises genotypes of ~500 European individuals across ~23 million 130 

SNPs. 131 

An effective chi-square test described above requires the covariance matrix to be 132 

well-conditioned. For most GWASs, the ratio of the number of SNPs and the number of 133 

subjects is greater than or close to one, making the sample covariance matrix ill-134 

conditioned32,33. In these cases, smaller eigenvalues of the sample covariance matrix are 135 

underestimated32, leading to inflated false positives in the gene-level association testing. 136 

To solve this issue, we choose to adopt the POET estimator34, a principal orthogonal 137 

complement thresholding approach, to obtain a well-conditioned covariance matrix via 138 

sparse shrinkage under a high-dimensional setting. The estimator of 𝑉 = {𝑉𝑗𝑙; 𝑗, 𝑙 =139 

1, … , 𝐾}  is defined as �̂�𝐻 = ∑ �̂�𝑗𝑣𝑗𝑣𝑗
𝑇𝐻

𝑗=1 + �̂�𝐻
∗ , where �̂�𝑗  is the 𝑗 th eigenvalues of the 140 

covariance matrix with corresponding eigenvector 𝑣𝑗 , �̂�𝐻
∗  is obtained from applying 141 

adaptive thresholding on �̂�𝐻 = ∑ �̂�𝑗𝑣𝑗𝑣𝑗
𝑇𝐾

𝑗=𝐻+1 , and 𝐻 is the number of spiked eigenvalues. 142 
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The degree of shrinkage is determined by a tuning parameter, and we choose one so that 143 

the positive definiteness of the estimated sparse covariance matrix is guaranteed. Notably, 144 

other sparse covariance matrix estimators32,33,35,36 can also be used in a similar fashion. 145 

 146 

Gene-level associations for rare variants 147 

Recent advances in next-generation sequencing technology have made it possible to 148 

extend association testing to rare variants, which can explain additional disease risk or 149 

trait variability37-39. Previous work40 has demonstrated that the gene-level testing of rare 150 

variants is powerful and able to achieve well-controlled type I error as long as the 151 

correlation matrix of single-variant test statistics can be accurately estimated. Here, we 152 

recover the burden test statistics from GWAS summary statistics for the gene-level 153 

association testing of rare variants. Suppose that a total of 𝑀 rare variants residing in a 154 

gene are genotyped. Let 𝑈 = {𝑈𝑗;  𝑗 = 1, … , 𝑀} and 𝐶 = {𝐶𝑗𝑙; 𝑗, 𝑙 = 1, … , 𝑀} be the score 155 

statistic and the corresponding covariance matrix for testing the null hypothesis of no 156 

association. Under 𝐻0 , the burden test statistic 𝑇 = 𝜉𝑇𝑈 √𝜉𝑇𝐶𝜉⁄  follows a standard 157 

normal distribution, where 𝜉𝑀×1 = (1, ⋯ ,1)𝑇. We approximate 𝑈𝑗 and 𝐶𝑗𝑙 by 158 

�̂�𝑗 = 𝑤𝑗 �̂�𝑗 �̂�𝑗⁄ = 𝑤𝑗�̂�𝑗 159 

�̂�𝑗𝑙 = 𝑤𝑗𝑅𝑗𝑙𝑤𝑙,  160 

where 𝑅  is the correlation or covariance matrix of �̂�  and 𝑤𝑗 = 1 �̂�𝑗⁄  is an empirical 161 

approximation to √𝐶𝑗𝑗 . Denote 𝑤 = (𝑤1, … , 𝑤𝑀)𝑇. The burden test uses 𝑄𝑟 =162 

(𝑤𝑇�̂�)2 𝑤𝑇𝑅𝑤⁄ , which follows a chi-square distribution with one degree of freedom under 163 

the null 𝑄𝑟 ∼ 𝜒1
2. 164 

 165 

Joint analysis for common and rare variants 166 

Existing methods either remove rare variants from the analysis16,18 or do not differentiate 167 

common and rare variants when only summary statistics are available17. Yet, existing 168 

GWASs have successfully uncovered both common and rare variants associated with 169 

complex traits and diseases15,37-39, and rare variants should therefore not be ignored in 170 

the enrichment analysis. To incorporate rare variants into the common-variant gene 171 

association testing framework, we collapse genotypes of all rare variants within a gene to 172 
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construct a pseudo-SNP. We then treat the aggregated pseudo-SNP as a common 173 

variant and concatenate the 𝑧-scores �̂�∗ = (�̂�1, ⋯ , �̂�𝐾, �̂�𝑟)𝑇 , where the first 𝐾 elements are 174 

from the common variants and �̂�𝑟 = 𝑤𝑇�̂� √𝑤𝑇𝑅𝑤⁄  is from the burden test statistic for the 175 

combined rare variants. A joint chi-square test for common and rare variants is performed 176 

as below: 177 

𝑄 = �̂�∗𝑇𝑅∗−1�̂�∗ ∼ 𝜒𝐾+1 
2 , 178 

where 𝑅∗ can be estimated using POET shrinkage with the pseudo-SNP included. 179 

 180 

Gene-gene correlation 181 

Proximal genes that share cis-SNPs inherit LD from SNPs and result in correlations 182 

among genes. Since the correlations between genes are caused by LD between SNPs, 183 

which quickly drops off as a function of distance, we adopt a sliding-window approach to 184 

only compute correlations for pairs of genes within a certain distance from each. It is worth 185 

noting that this also significantly reduces the computational burden. Specifically, let 𝑁 be 186 

the number of genes from the same chromosome, and we adopt a sliding window of size 187 

𝑑  to estimate the sparse covariance matrix among genes {𝐺1, … , 𝐺𝑑} , 188 

{𝐺2, … 𝐺𝑑+1}𝐺𝑁−𝑑+1, … , 𝐺𝑁, respectively. By default, we set 𝑑 = 10 so that gene-wise 189 

correlations can be recovered for a gene with its 18 neighboring genes (see 190 

Supplementary Figure S1 for the effect of sliding window size on EPIC’s performance). 191 

Similar to MAGMA, correlations are only computed for pairs of genes within 5 megabases 192 

by default. 193 

Recall that the gene-level association statistics are chi-square statistics in a 194 

quadratic form. Within a specific window, the gene-wise correlations are obtained via 195 

transformations of the SNP-wise LD information. Let �̂�(𝑠)  and �̂�(𝑡)  be the SNP-wise 𝑧-196 

scores for genes 𝑠 and 𝑡, respectively. Let 𝑅(𝑠) = {𝑅𝑗𝑙
(𝑠)

; 𝑗, 𝑙 = 1, … , 𝐾𝑠}, 𝑅(𝑡) = {𝑅𝑗𝑙
(𝑡)

; 𝑗, 𝑙 =197 

1, … , 𝐾𝑡}, and 𝑅(𝑠,𝑡) = {𝑅𝑗𝑙
(𝑠,𝑡)

; 𝑗 = 1, … , 𝐾𝑠, 𝑙 = 1, … , 𝐾𝑡} = cor(�̂�(𝑠), �̂�(𝑡)) be the within- and 198 

between-gene correlation matrices obtained from the POET shrinkage estimation. We 199 

take advantage of the Cholesky decomposition to obtain the gene-gene correlation 200 

between 𝑄𝑠 = (�̂�(𝑠))
𝑇

(𝑅(𝑠))
−1

�̂�(𝑠) and 𝑄𝑡 = (�̂�(𝑡))
𝑇

(𝑅(𝑡))
−1

�̂�(𝑡): 201 
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𝜌𝑠𝑡 = cor(𝑄𝑠, 𝑄𝑡) =
∑ ∑ 𝐿𝑖𝑗

2𝐾𝑠+𝐾𝑡
𝑖=1

𝐾𝑠
𝑗=1

√𝐾𝑠𝐾𝑡

,  202 

where 𝐿𝑖𝑗 ’s are entries of a lower triangular matrix 𝐿 such that �̃�(𝐾𝑠+𝐾𝑡)×(𝐾𝑠+𝐾𝑡) = 𝐿𝐿𝑇 and  203 

�̃�(𝐾𝑠+𝐾𝑡)×(𝐾𝑠+𝐾𝑡) = (
𝐼𝐾𝑠

𝑅(𝑠)−1/2
𝑅(𝑠,𝑡)𝑅(𝑡)−1/2

𝑅(𝑡)−1/2
𝑅(𝑡,𝑠)𝑅(𝑠)−1/2

𝐼𝐾𝑡

),  204 

𝐼𝐾 is the identity matrix with dimension 𝐾. The full derivation is detailed in Supplementary 205 

Note S1. When rare variants are included in the framework, gene-gene correlations are 206 

calculated similarly by aggregating all rare variants that reside in a gene as a pseudo-207 

SNP. 208 

 209 

Prioritizing trait-relevant tissue(s) and cell type(s) 210 

To detect tissue- or cell-type-specific enrichment for a specific trait of interest, we devise 211 

a regression framework based on generalized least squares to identify risk loci 212 

enrichment. The key underlying hypothesis is that if a particular cell type influences a trait, 213 

more GWAS polygenic signals would be concentrated in genes with greater cell-type-214 

specific gene expression. Under this hypothesis, genes that are significantly associated 215 

with lipid traits are expected to be highly expressed in the liver since the liver is known to 216 

participate in cholesterol regulation. This relationship between the GWAS association 217 

signals and the gene expression specificity is modeled as below. 218 

Let 𝑄𝑔  be the gene-level chi-square association test statistic for gene 𝑔 . To 219 

account for the different number of SNPs within each gene, we adjust the degree of 220 

freedom of 𝐾𝑔 + 1 to obtain 𝑌𝑔 = 𝑄𝑔 (𝐾𝑔 + 1)⁄ , which is included as the outcome variable. 221 

For each cell type 𝑐, to test for its enrichment we fit a separate regression using its cell-222 

type-specific gene expression 𝐸𝑐𝑔 (reads per kilobase million (RPKM) or transcripts per 223 

million (TPM)) as a dependent variable. To account for the baseline gene expression24, 224 

we also include another covariate 𝐴𝑔 =
1

𝑇
∑ 𝐸𝑐𝑔

𝑇
𝑐=1 , which is the average gene expression 225 

across all 𝑇 tissues/cell types. Taken together, we have 226 

𝑌 = 𝛾0 + 𝐸𝑐𝛾𝑐 + 𝐴𝛾𝐴 + 𝜖, 227 

where 𝜖 ∼ MVN(0, 𝜎2𝑊), 𝑊 = 𝐷𝑃𝐷𝑇 , 𝐷 = Diag(√2 𝐾𝑔⁄ ), and 𝑃 = {𝜌𝑠𝑡} is the gene-gene 228 

correlation matrix. We adopt the generalized least squares approach to fit the model and 229 
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perform a one-sided test against the alternative 𝛾𝑐 > 0,  under which the gene-level 230 

association signals positively correlated with the cell-type-specific expression. For a 231 

significantly enriched tissue or cell type, we further carry out a statistical influence test to 232 

identify a set of tissue- or cell-type-specific influential genes, using the DFBETAS 233 

statistics41—large values of DFBETAS indicate observations (i.e., genes) that are 234 

influential in estimating 𝛾𝑐.  With a size-adjusted cutoff 2 √𝑁⁄ , where 𝑁 is the number of 235 

genes used in the tissue- or cell-type-specific enrichment analysis, significantly influential 236 

genes allow for further pathway or gene set enrichment analyses. 237 

 238 

GWAS summary statistics and transcriptomic data processing 239 

We adopt GWAS summary statistics of eight traits, including four lipid traits42 (low-density 240 

lipoprotein cholesterol (LDL), high-density lipoprotein cholesterol (HDL), total cholesterol 241 

(TC), and triglyceride levels (TG)), three neuropsychiatric disorders39,43,44 (schizophrenia 242 

(SCZ), bipolar disorder (BIP), and schizophrenia and bipolar disorder (SCZBIP)), and type 243 

2 diabetes38 (T2D). The relevant tissues involved in these traits are well known/studied – 244 

liver for the lipid traits, brain for the neuropsychiatric disorders, and pancreas for the T2D 245 

– and we use this as ground truths to demonstrate EPIC and to benchmark against other 246 

methods. See Supplementary Table S1 for more information on the GWASs.  247 

For each trait, we obtain SNP-level summary statistics and apply stringent quality 248 

control procedures to the data. We restrict our analyses to autosomes, filter out SNPs not 249 

in the 1000 Genomes Project Phase 3 reference panel, and remove SNPs with 250 

mismatched reference SNP ID numbers. We exclude SNPs from the major 251 

histocompatibility complex (MHC) region due to complex LD architecture16,19,22. In 252 

addition to SNP filtering, we align alleles of each SNP against those of the reference panel 253 

to harmonize the effect alleles of all processed GWAS summary statistics. A gene window 254 

is defined with 10kb upstream and 1.5kb downstream of each gene14, and SNPs residing 255 

in the windows are assigned to the corresponding genes. 256 

In the analysis that follows, we uniformly report results using a minor allele 257 

frequency (MAF) cutoff of 1% to define common and rare variants (see Supplementary 258 

Figure S2 for enrichment results with different MAF cutoffs). To reduce the computational 259 

cost and to alleviate the multicollinearity problem, we perform LD pruning using PLINK45 260 
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with a threshold of 𝑟2 ≤ 0.8 to obtain a set of pruned-in common variants, followed by a 261 

second-round of LD pruning if the number of common SNPs per gene exceeds 200. See 262 

Supplementary Figure S3 for results with varying LD-pruning thresholds. For rare variants, 263 

we only carry out a gene-level rare variant association testing if the minor allele count 264 

(MAC), defined as the total number of minor alleles across subjects and SNPs within the 265 

gene, exceeds 20. We report the number of SNPs (common variants and rare variants), 266 

the number of genes, and the number of SNPs per gene for each GWAS trait in 267 

Supplementary Table S2. 268 

We adopt a unified framework to process all transcriptomic data. For scRNA-seq 269 

data, we follow the Seurat46 pipeline to perform gene- and cell-wise quality controls and 270 

focus on the top 8000 highly variable genes. Cell-type-specific RPKMs are calculated by 271 

combining read or UMI counts from all cells of a specific cell type, followed by log2 272 

transformation with an added pseudo-count. For tissue-specific bulk RNA-seq data from 273 

the Genotype-Tissue Expression project (GTEx), we first calculate a tissue specificity 274 

score for each gene19,47, and only focus on genes that are highly specific in at least one 275 

tissue. See Supplementary Note S2 for more details. We then perform log2 276 

transformation on the tissue-specific TPM measurements with an added pseudo-count. 277 

 278 

Benchmarking against RolyPoly, LDSC-SEG, and MAGMA 279 

We benchmarked EPIC against three existing approaches: RolyPoly16, LDSC-SEG18, and 280 

MAGMA17. For all methods, we used RPKMs for each cell type and TPMs for each GTEx 281 

tissue in the benchmarking analysis. We made gene annotations the same for RolyPoly, 282 

MAGMA, and EPIC by defining the gene window as 10kb upstream and 1.5kb 283 

downstream of each gene. For LDSC-SEG, as recommended by the authors18, the 284 

window size is set to be 100kb up and downstream of each gene's transcribed region. 285 

Since all methods adopt a hypothesis testing framework to identify trait-relevant tissue(s), 286 

for each trait-tissue pair, we reported and compared the corresponding 𝑝-values from the 287 

different methods. 288 

RolyPoly takes as input GWAS summary statistics, gene expression data, gene 289 

annotations, and LD matrix from the 1000 Genomes Project Phase 3. As recommended 290 

by the developer for RolyPoly16, we scaled the gene expression for each gene across 291 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 10, 2021. ; https://doi.org/10.1101/2021.06.09.447805doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.09.447805
http://creativecommons.org/licenses/by-nc/4.0/


12 
 

tissues/cell types and took the absolute values of the scaled expression values. We 292 

performed 100 block bootstrapping iterations to test whether a tissue- or cell-type-specific 293 

gene expression annotation was significantly enriched in a joint model across all tissues 294 

or cell types. We also benchmarked LDSC-SEG, which computes t-statistics to quantify 295 

differential expression for each gene across tissues or cell types. We annotated genome-296 

wide SNPs using the top 10% genes with the highest positive t-statistics and applied 297 

stratified LDSC to test the heritability enrichment of the annotations that were attributed 298 

to specifically expressed genes for each tissue. For MAGMA, we first obtained gene-level 299 

association statistics using MAGMA v1.08. We then carried out the gene-property 300 

analysis proposed in Watanabe et al.24, with technical confounders being controlled by 301 

default, to test the positive relationship between tissue- or cell-type specificity of gene 302 

expression and genetic associations. 303 

 304 

Results 305 

Inferring trait-relevant tissues using bulk RNA-seq from GTEx 306 

We started our analysis with tissue-specific transcriptomic profiles from the GTEx v86, 307 

which consists of bulk-tissue gene expression measurements of 17,382 samples from 54 308 

tissues across 980 postmortem donors (Supplementary Table S1). Tissues with fewer 309 

than 100 samples were removed from the analysis. After sample-specific quality controls, 310 

we obtained gene expression profiles of 45 tissues, averaged across samples. For 311 

subsequent analyses, we focused on a set of 8,708 genes with tissue specificity scores 312 

greater than 5. We applied EPIC to the GTEx data with GWAS summary statistics for 313 

eight diseases and traits, including four lipid traits, three neuropsychiatric disorders, and 314 

T2D. 315 

We first performed the gene-level chi-square association test with the shrinkage 316 

estimators and sliding-window approach. The quantile-quantile (Q-Q) plots of gene-level 317 

p-values are shown in Supplementary Figure S4, with a comparison against MAGMA. We 318 

observed elevated power in the Q-Q plots for four lipid traits. In Supplementary Table S3, 319 

we summarized a list of genes that have been shown to modulate lipid levels42 and 320 

compared the gene-level association testing results from EPIC and MAGMA. Significant 321 

gene-level associations were detected between all lipid traits and variants in APOB, 322 
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APOE, and CETP. Meanwhile, PCSK9, ABCG5, and ABCG8 exhibited significant 323 

associations with LDL and TC. For neuropsychiatric disorders, we examined genes that 324 

are relevant to the etiology of schizophrenia39, including genes that are targets of 325 

therapeutic drugs (DRD2 and GRM3), genes that participate in neuronal calcium signaling 326 

(CACNA1I), and genes that are involved in synaptic function (CNTN4 and SNAP91) and 327 

other neuronal pathways (FXR1, CHRNA3, CHRNB4, and HCN1). EPIC's chi-square test 328 

approach demonstrates higher power than MAGMA. We also compared the number of 329 

significant genes for eight traits – after Bonferroni correction, EPIC detected more genes 330 

than MAGMA (Supplementary Figure S5). Additionally, we report gene-level association 331 

tests for a set of housekeeping genes48 and demonstrate that, while powerful, EPIC also 332 

controls for type I error (Supplementary Figure S6). 333 

We next applied EPIC to identify the trait-relevant tissues by performing tissue-334 

specific regression for each trait, with results shown in Figure 2, Figure 3A, and Figure 335 

4A. All four lipid traits are significantly enriched in the liver, which plays a key role in lipid 336 

metabolism. Specifically, LDL, TC, and TG showed strong enrichment in the liver (Figure 337 

2A, Figure 2C, and Figure 2D), suggesting that these three traits are embedded in a 338 

similar genetic architecture and share the same relevant tissue. The small intestine was 339 

marginally significant for TC – it has been shown that the small intestine plays an 340 

important role in cholesterol regulation and metabolism49-51. On the other hand, HDL 341 

exhibited a slightly different enrichment pattern (Figure 2B): liver and two adipose tissues 342 

are identified as being significantly enriched by both EPIC and MAGMA. Both LDSC-SEG 343 

and RolyPoly suffer from low power, although the liver was one of the top-ranked tissues 344 

for the lipid traits. 345 

Neuropsychiatric disorders exhibited strong brain-specific enrichments, as 346 

expected. The frontal cortex of the brain was detected as being the most strongly enriched 347 

for SCZ, BIP, and SCZBIP (Figure 4A). The pituitary also demonstrated strong 348 

enrichment signals with SCZ and SCZBIP, while the spinal cord was found to be an 349 

irrelevant tissue with these three neuropsychiatric disorders.  In comparison, LDSC-SEG 350 

identified part of the brain tissues as trait-relevant, while RolyPoly failed to return 351 

enrichment in any of the brain tissues (Figure 4A). 352 
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As a final proof of concept, we sought to infer T2D-relevant tissue(s) using the 353 

tissue-specific gene expression data GTEx. The pancreas and the liver were prioritized 354 

as the T2D-relevant tissues by EPIC, while MAGMA yielded significant results in the 355 

pancreas as well as the stomach (Figure 3A). RolyPoly identified the pancreas as the 356 

second most relevant tissue; LDSC-SEG reported liver as the only significantly enriched 357 

tissue (Figure 3A). For validation, we adopted a similar strategy as proposed by Shang 358 

et al.19 – we carried out a PubMed search, resorting to previous literatures studying the 359 

trait of interest in relation to a particular tissue or cell type. Specifically, we counted the 360 

number of previous publications using the key word pairs of trait and tissue/cell type and 361 

calculated the Spearman’s rank correlations between the number of publications and 362 

EPIC’s tissue-/cell-type-specific 𝑝-values (Figure 5). Across all traits, we found strong 363 

positive correlations between EPIC’s enrichment results and PubMed search results 364 

(Figure 5A). 365 

 366 

Cell-type enrichment for T2D by scRNA-seq data of pancreatic islets 367 

We next analyzed pancreatic islet scRNA-seq data to identify trait-relevant cell types for 368 

T2D. To assess reproducibility, EPIC was separately applied to two scRNA-seq datasets 369 

consisting of multiple endocrine cell types (Supplementary Table S1 and Supplementary 370 

Figure S7). The scRNA-seq data were generated using two different protocols: the Smart-371 

seq2 protocol on six healthy donors from Segerstolpe et al.9 and the InDrop protocol on 372 

three healthy individuals from Baron et al.7. Following the pre-processing step as 373 

described in Materials and Methods, we retained a total of 5,488 genes to prioritize 374 

pancreatic cell types for T2D. In both datasets, beta cells were identified as the trait-375 

relevant cell types by EPIC (Figure 3B). This finding was supported by known biology, in 376 

that beta cells participate in insulin secretion and are gradually lost in T2D52-54. We also 377 

found that gamma cells were marginally associated with T2D in the Segerstolpe dataset. 378 

Pancreatic polypeptide, which is produced by gamma cells, is known to play a critical role 379 

in endocrine pancreatic secretion regulation55-57. However, neither MAGMA nor LDSC-380 

SEG detected significant enrichment in beta cells, even though the enrichment was top-381 

ranked. RolyPoly, on the other hand, did not report any enrichment of the beta cells 382 

compared to the other types of cells. 383 
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To identify specific genes that drive the significant enrichment in beta cells, we 384 

carried out the gene-specific influence test as outlined in Materials and Methods and 385 

identified 142 highly influential genes (Figure 3C). We then performed KEGG pathway 386 

analysis and Gene Ontology (GO) biological process enrichment analysis using the 387 

DAVID bioinformatics resources58,59. Beta-cell-specific influential genes are enriched in 388 

GO terms including glucose homeostasis and regulation of insulin secretion, as well as 389 

KEGG pathways including insulin secretion, maturity-onset diabetes of the young, and 390 

type II diabetes mellitus (Figure 3C and Supplementary Table S4). Additionally, the cell-391 

type ranks obtained from EPIC’s beta-cell-specific 𝑝-values was highly consistent with 392 

those from the PubMed search results (Figure 5B). We demonstrate the effectiveness of 393 

EPIC in identifying tissue-relevant cell types using scRNA-seq datasets generated by 394 

different protocols.  395 

 396 

Cell-type enrichment for neuropsychiatric disorders by scRNA-seq data of brain 397 

To further test EPIC in a more complex tissue, we sought to prioritize trait-relevant cell 398 

types in the brain. While the brain tissues are significantly enriched using the GTEx bulk-399 

tissue RNA-seq data (Figure 4A), the relevant cell types in the brain for neuropsychiatric 400 

disorders are not as well defined and studied. We obtained droplet-based scRNA-seq 401 

data8, generated on frozen adult human postmortem tissues from the GTEx project 402 

(Supplementary Table S1), to infer the relevant cell types. After pre-processing and 403 

stringent quality controls, the scRNA-seq data contains gene expression profiles of 404 

17,698 genes across 14,137 single cells collected from the human hippocampus and 405 

prefrontal cortex tissues. The cells belong to ten cell types (Figure 4B), and we focused 406 

on the top 8,000 highly variable genes for subsequent analyses. 407 

We evaluated EPIC’s cell-type-specific enrichment results and found that all three 408 

neuropsychiatric disorders were significantly enriched in GABAergic interneurons (GABA), 409 

excitatory glutamatergic neurons from the prefrontal cortex (exPFC), and excitatory 410 

pyramidal neurons in the hippocampal CA region (exCA). Excitatory granule neurons from 411 

the hippocampal dentate gyrus region (exDG) were identified as relevant cell types for 412 

SCZ and SCZBIP (Figure 4C). EPIC successfully replicated the previously reported 413 
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association of neuropsychiatric disorders with interneurons and excitatory pyramidal 414 

neurons14,15.  415 

We employed three strategies to validate the trait-relevant cell types for the 416 

neuropsychiatric disorders. First, we again found positive Spearman correlations with 417 

PubMed search results and EPIC’s enrichment results for SCZ and SCZBIP (Figure 5C). 418 

Second, we adopted additional independent GWAS summary statistics for SCZ (SCZ2)60 419 

(Supplementary Table S1) and observed highly concordant enrichment results between 420 

SCZ and SCZ2 (Figure 4C). Third, we tested whether genes that are 421 

upregulated/downregulated for SCZ were enriched in the identified cell types to 422 

additionally implicate cell types involved in SCZ. Specifically, we performed differential 423 

expression (DE) analysis from an independent case-control study of SCZ using bulk RNA-424 

seq61, retaining 287 significant DE genes that also overlap the scRNA-seq data 425 

(Supplementary Figure S8). We reasoned that, if SCZ-relevant risk loci were enriched in 426 

a particular cell type, genes that are differentially expressed between SCZ cases and 427 

controls would demonstrate greater cell-type specificity in this cell type. We calculated 428 

cell-type specificities using the set of DE genes and observed GABA, exCA, exDG, and 429 

exPFC were the top four cell types with the lowest gene-specificity ranks (Figure 4D). 430 

Using three different strategies by querying external databases and adopting additional 431 

and orthogonal datasets, we validated the trait-cell-type relevance results. 432 

 433 

Discussion 434 

Over the last one and half decades, GWASs have successfully identified and replicated 435 

genetic variants associated with various complex traits. Meanwhile, bulk-tissue and 436 

single-cell transcriptomic sequencing allow tissue- and cell-type-specific gene expression 437 

characterization and have seen rapid technological development with ever-increasing 438 

sequencing capacities and throughputs. Here, we propose EPIC to address the problem 439 

of how GWAS summary statistics should be integrated with bulk-tissue or single-cell 440 

transcriptomic data to prioritize trait-relevant tissue or cell types and to elucidate disease 441 

etiology. To our best knowledge, EPIC is the first method that prioritizes tissues and/or 442 

cell types for both common and rare variants with a rigorous statistical framework to 443 

account for both within- and between-gene correlations. We demonstrate EPIC’s 444 
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effectiveness and outperformance compared to existing methods with extensive 445 

benchmark and validation studies. 446 

For scRNA-seq data, all existing methods, including EPIC, resort to pre-447 

clustered/annotated cell types and average across cells to obtain cell-type-specific 448 

expression profiles. However, scRNA-seq goes beyond the mean measurements62,63, 449 

and how to make the best use of gene expression dispersion, nonzero fraction, and other 450 

aspects of its distribution needs further method development64. Additionally, while many 451 

efforts have been devoted to identifying enrichment of discretized cell types, how to carry 452 

out enrichment analysis for transient cell states needs further investigation. Last but not 453 

least, when multiple scRNA-seq datasets are available across different experiments, 454 

protocols, or species, borrowing information from additional sources can potentially boost 455 

the performance and increase the robustness of the enrichment analysis65. While it is 456 

nontrivial to directly perform gene expression data integration, a cross-dataset conditional 457 

analysis workflow was proposed by Watanabe et al.24 to evaluate the association of cell 458 

types based on multiple independent scRNA-seq datasets. However, the linear 459 

conditional analysis may not be sufficient to capture the nonlinear batch effects46,66. 460 

 It is also worth noting that CoCoNet, MAGMA, and EPIC first carry out a gene-level 461 

association test, so that the summary statistics and expressions are unified to be gene-462 

specific. They adopt different methods to integrate SNP-wise summary statistics, and 463 

SNPs need to be annotated to genes based on a window surrounding each gene. While 464 

RolyPoly and LDSC-SEG model on the SNP level directly, each SNP still needs to be 465 

assigned to a gene so that the gene expression can be used as a SNP annotation. There 466 

is not a consensus on how to most accurately assign SNPs to genes, and more 467 

importantly, one would only be able to do so for SNPs that reside in gene bodies or 468 

promoter regions. Meanwhile, a large number of GWAS hits are in the non-coding regions, 469 

and their functions are yet to be fully understood. EPIC’s framework can be easily 470 

extended to infer enrichment of non-coding variants when combined with the single-cell 471 

assay for transposase-accessible chromatin using sequencing (ATAC-seq) data67,68. 472 

Additionally, cell-type-specific expression quantitative trait loci from the non-coding 473 

regions69 can also be integrated with the second-step gene-property analysis to boost 474 

power and to infer enrichment of non-coding variants. 475 
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 476 

Data Availability 477 

GWAS summary statistics are downloaded from public repositories listed in 478 

Supplementary Table S1. Genotypes from the 1000 Genomes Project reference panel 479 

are available at https://ctg.cncr.nl/software/magma. Bulk RNA-seq and scRNA-seq data 480 

are downloaded from GTEx v8 at http://www.gtexportal.org/. ScRNA-seq read counts 481 

from two pancreatic islet studies are publicly available with accession GSE814337 and E-482 

MTAB-50619. We obtain a list of human housekeeping genes from the Housekeeping and 483 

Reference Transcript Atlas48 at https://housekeeping.unicamp.br/. 484 

 485 

Code Availability 486 

EPIC is compiled as an open-source R package available at 487 

https://github.com/rujinwang/EPIC. 488 
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Figure Legends 505 

Figure 1. Overview of EPIC framework. EPIC starts from GWAS summary statistics 506 

and an external reference panel to account for LD structure. To ensure that the correlation 507 

matrix is well-conditioned, EPIC adopts the POET estimators to obtain a sparse shrinkage 508 

correlation matrix. EPIC performs LD pruning, computes the gene-level chi-square 509 

statistics for common variants, and calculates burden test statistics for rare variants. EPIC 510 

then integrates gene-level association statistics with transcriptomic profiles and prioritizes 511 

trait-relevant tissues or cell types using a regression-based framework while accounting 512 

for the gene-gene correlation structure. 513 

 514 

Figure 2. Tissue enrichment for four lipid traits using GTEx bulk RNA-seq data. (A) 515 

LDL; (B) HDL; (C) TC; and (D) TG. The dashed line is the Bonferroni-corrected p-value 516 

threshold. 517 

 518 

Figure 3. Tissue and cell-type enrichment of T2D risk loci. (A) T2D-relevant tissue 519 

identification using GTEx tissue-specific RNA-seq data. (B) T2D-relevant cell type 520 

identification using scRNA-seq data of human pancreatic islets. The dashed line is the 521 

Bonferroni-corrected p-value threshold. (C) Gene-specific influence analysis for the 522 

significantly enriched beta cells using scRNA-seq data of human pancreatic islets from 523 

Baron et al.. DFBETA measures the difference in the estimated coefficients in the gene-524 

property analysis with and without each gene. Red lines are the size-adjusted cutoffs 525 

± 2 √𝑁⁄ ≈ ±0.03, where 𝑁 is the number of genes. 526 

 527 

Figure 4. Tissue and cell-type enrichment for three neuropsychiatric disorders. (A) 528 

Beeswarm plot of –log10(p-value) from the tissue enrichment analysis using GTEx bulk 529 

RNA-seq data. The dashed line is Bonferroni corrected p-value threshold (0.05/45). (B) 530 

Heatmap of –log10(p-value) from the cell-type enrichment analysis using GTEx scRNA-531 

seq brain data. Bonferroni-significant results are marked with red asterisks (p<0.05/10). 532 

GABA: GABAergic interneurons; exPFC: excitatory glutamatergic neurons in the 533 

prefrontal cortex; exDG: excitatory granule neurons from the hippocampal dentate gyrus 534 

region; exCA: excitatory pyramidal neurons in the hippocampal Cornu Ammonis region; 535 
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OPC: oligodendrocyte precursor cells; ODC: oligodendrocytes; NSC: neuronal stem cells; 536 

ASC: astrocytes; MG: microglia cells; END: endothelial cells. (C) Boxplots of gene 537 

specificity ranks across ten brain cell types for differentially expressed genes from SCZ 538 

case-control studies. 539 

 540 

Figure 5. Correlations of tissue or cell type ranks from enrichment analysis and 541 

PubMed Search. Spearman correlations are calculated between the PubMed search and 542 

EPIC’s results. Trait-relevant tissues/cell types with statistical significance after 543 

Bonferroni correction are highlighted in red, where the top-ranking tissues/cell types are 544 

labeled.   545 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 10, 2021. ; https://doi.org/10.1101/2021.06.09.447805doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.09.447805
http://creativecommons.org/licenses/by-nc/4.0/


21 
 

References 546 

1. Lang, U.E., Puls, I., Muller, D.J., Strutz-Seebohm, N., and Gallinat, J. (2007). Molecular mechanisms of 547 
schizophrenia. Cell Physiol Biochem 20, 687-702. 548 

2. Ongen, H., Brown, A.A., Delaneau, O., Panousis, N.I., Nica, A.C., Consortium, G.T., and Dermitzakis, E.T. 549 
(2017). Estimating the causal tissues for complex traits and diseases. Nat Genet 49, 1676-1683. 550 

3. Raj, T., Rothamel, K., Mostafavi, S., Ye, C., Lee, M.N., Replogle, J.M., Feng, T., Lee, M., Asinovski, N., 551 
Frohlich, I., et al. (2014). Polarization of the effects of autoimmune and neurodegenerative risk 552 
alleles in leukocytes. Science 344, 519-523. 553 

4. Uhlhaas, P.J., and Singer, W. (2010). Abnormal neural oscillations and synchrony in schizophrenia. Nat 554 
Rev Neurosci 11, 100-113. 555 

5. Xiao, X., Chang, H., and Li, M. (2017). Molecular mechanisms underlying noncoding risk variations in 556 
psychiatric genetic studies. Mol Psychiatry 22, 497-511. 557 

6. Consortium, G.T. (2020). The GTEx Consortium atlas of genetic regulatory effects across human tissues. 558 
Science 369, 1318-1330. 559 

7. Baron, M., Veres, A., Wolock, S.L., Faust, A.L., Gaujoux, R., Vetere, A., Ryu, J.H., Wagner, B.K., Shen-Orr, 560 
S.S., Klein, A.M., et al. (2016). A Single-Cell Transcriptomic Map of the Human and Mouse Pancreas 561 
Reveals Inter- and Intra-cell Population Structure. Cell Syst 3, 346-360 e344. 562 

8. Habib, N., Avraham-Davidi, I., Basu, A., Burks, T., Shekhar, K., Hofree, M., Choudhury, S.R., Aguet, F., 563 
Gelfand, E., Ardlie, K., et al. (2017). Massively parallel single-nucleus RNA-seq with DroNc-seq. Nat 564 
Methods 14, 955-958. 565 

9. Segerstolpe, A., Palasantza, A., Eliasson, P., Andersson, E.M., Andreasson, A.C., Sun, X., Picelli, S., 566 
Sabirsh, A., Clausen, M., Bjursell, M.K., et al. (2016). Single-Cell Transcriptome Profiling of Human 567 
Pancreatic Islets in Health and Type 2 Diabetes. Cell Metab 24, 593-607. 568 

10. Gormley, P., Anttila, V., Winsvold, B.S., Palta, P., Esko, T., Pers, T.H., Farh, K.H., Cuenca-Leon, E., 569 
Muona, M., Furlotte, N.A., et al. (2016). Meta-analysis of 375,000 individuals identifies 38 570 
susceptibility loci for migraine. Nat Genet 48, 856-866. 571 

11. Hu, X., Kim, H., Stahl, E., Plenge, R., Daly, M., and Raychaudhuri, S. (2011). Integrating autoimmune 572 
risk loci with gene-expression data identifies specific pathogenic immune cell subsets. Am J Hum 573 
Genet 89, 496-506. 574 

12. Pers, T.H., Karjalainen, J.M., Chan, Y., Westra, H.J., Wood, A.R., Yang, J., Lui, J.C., Vedantam, S., 575 
Gustafsson, S., Esko, T., et al. (2015). Biological interpretation of genome-wide association studies 576 
using predicted gene functions. Nat Commun 6, 5890. 577 

13. Slowikowski, K., Hu, X., and Raychaudhuri, S. (2014). SNPsea: an algorithm to identify cell types, tissues 578 
and pathways affected by risk loci. Bioinformatics 30, 2496-2497. 579 

14. Skene, N.G., Bryois, J., Bakken, T.E., Breen, G., Crowley, J.J., Gaspar, H.A., Giusti-Rodriguez, P., Hodge, 580 
R.D., Miller, J.A., Munoz-Manchado, A.B., et al. (2018). Genetic identification of brain cell types 581 
underlying schizophrenia. Nat Genet 50, 825-833. 582 

15. Bryois, J., Skene, N.G., Hansen, T.F., Kogelman, L.J.A., Watson, H.J., Liu, Z., Eating Disorders Working 583 
Group of the Psychiatric Genomics, C., International Headache Genetics, C., andMe Research, T., 584 
Brueggeman, L., et al. (2020). Genetic identification of cell types underlying brain complex traits 585 
yields insights into the etiology of Parkinson's disease. Nat Genet 52, 482-493. 586 

16. Calderon, D., Bhaskar, A., Knowles, D.A., Golan, D., Raj, T., Fu, A.Q., and Pritchard, J.K. (2017). Inferring 587 
Relevant Cell Types for Complex Traits by Using Single-Cell Gene Expression. Am J Hum Genet 101, 588 
686-699. 589 

17. de Leeuw, C.A., Mooij, J.M., Heskes, T., and Posthuma, D. (2015). MAGMA: generalized gene-set 590 
analysis of GWAS data. PLoS Comput Biol 11, e1004219. 591 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 10, 2021. ; https://doi.org/10.1101/2021.06.09.447805doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.09.447805
http://creativecommons.org/licenses/by-nc/4.0/


22 
 

18. Finucane, H.K., Reshef, Y.A., Anttila, V., Slowikowski, K., Gusev, A., Byrnes, A., Gazal, S., Loh, P.R., 592 
Lareau, C., Shoresh, N., et al. (2018). Heritability enrichment of specifically expressed genes 593 
identifies disease-relevant tissues and cell types. Nat Genet 50, 621-629. 594 

19. Shang, L., Smith, J.A., and Zhou, X. (2020). Leveraging gene co-expression patterns to infer trait-595 
relevant tissues in genome-wide association studies. PLoS Genet 16, e1008734. 596 

20. Zhu, H., Shang, L., and Zhou, X. (2020). A Review of Statistical Methods for Identifying Trait-Relevant 597 
Tissues and Cell Types. Front Genet 11, 587887. 598 

21. Bulik-Sullivan, B.K., Loh, P.R., Finucane, H.K., Ripke, S., Yang, J., Schizophrenia Working Group of the 599 
Psychiatric Genomics, C., Patterson, N., Daly, M.J., Price, A.L., and Neale, B.M. (2015). LD Score 600 
regression distinguishes confounding from polygenicity in genome-wide association studies. Nat 601 
Genet 47, 291-295. 602 

22. Finucane, H.K., Bulik-Sullivan, B., Gusev, A., Trynka, G., Reshef, Y., Loh, P.R., Anttila, V., Xu, H., Zang, 603 
C., Farh, K., et al. (2015). Partitioning heritability by functional annotation using genome-wide 604 
association summary statistics. Nat Genet 47, 1228-1235. 605 

23. Jagadeesh, K.A., Dey, K.K., Montoro, D.T., Gazal, S., Engreitz, J.M., Xavier, R.J., Price, A.L., and Regev, 606 
A. (2021). Identifying disease-critical cell types and cellular processes across the human body by 607 
integration of single-cell profiles and human genetics. 2021.2003.2019.436212. 608 

24. Watanabe, K., Umicevic Mirkov, M., de Leeuw, C.A., van den Heuvel, M.P., and Posthuma, D. (2019). 609 
Genetic mapping of cell type specificity for complex traits. Nat Commun 10, 3222. 610 

25. Kalra, G., Milon, B., Casella, A.M., Herb, B.R., Humphries, E., Song, Y., Rose, K.P., Hertzano, R., and 611 
Ament, S.A. (2020). Biological insights from multi-omic analysis of 31 genomic risk loci for adult 612 
hearing difficulty. PLoS Genet 16, e1009025. 613 

26. Timshel, P.N., Thompson, J.J., and Pers, T.H. (2020). Genetic mapping of etiologic brain cell types for 614 
obesity. Elife 9. 615 

27. Tran, M.N., Maynard, K.R., Spangler, A., Collado-Torres, L., Sadashivaiah, V., Tippani, M., Barry, B.K., 616 
Hancock, D.B., Hicks, S.C., Kleinman, J.E., et al. (2020). Single-nucleus transcriptome analysis 617 
reveals cell type-specific molecular signatures across reward circuitry in the human brain. bioRxiv, 618 
2020.2010.2007.329839. 619 

28. Yurko, R., Roeder, K., Devlin, B., and G'Sell, M. (2021). H-MAGMA, inheriting a shaky statistical 620 
foundation, yields excess false positives. Ann Hum Genet 85, 97-100. 621 

29. Wu, M.C., Lee, S., Cai, T., Li, Y., Boehnke, M., and Lin, X. (2011). Rare-variant association testing for 622 
sequencing data with the sequence kernel association test. Am J Hum Genet 89, 82-93. 623 

30. Lin, D.Y., and Tang, Z.Z. (2011). A general framework for detecting disease associations with rare 624 
variants in sequencing studies. Am J Hum Genet 89, 354-367. 625 

31. Genomes Project, C., Abecasis, G.R., Auton, A., Brooks, L.D., DePristo, M.A., Durbin, R.M., Handsaker, 626 
R.E., Kang, H.M., Marth, G.T., and McVean, G.A. (2012). An integrated map of genetic variation 627 
from 1,092 human genomes. Nature 491, 56-65. 628 

32. Ledoit, O., and Wolf, M. (2004). A well-conditioned estimator for large-dimensional covariance 629 
matrices. Journal of Multivariate Analysis 88, 365-411. 630 

33. Cai, T., and Liu, W. (2011). Adaptive Thresholding for Sparse Covariance Matrix Estimation. Journal of 631 
the American Statistical Association 106, 672-684. 632 

34. Fan, J., Liao, Y., and Mincheva, M. (2013). Large Covariance Estimation by Thresholding Principal 633 
Orthogonal Complements. J R Stat Soc Series B Stat Methodol 75. 634 

35. Bickel, P.J., and Levina, E. (2008). Covariance Regularization by Thresholding. Ann Stat 36, 2577-2604. 635 
36. Ledoit, O., and Wolf, M. (2015). Spectrum estimation: A unified framework for covariance matrix 636 

estimation and PCA in large dimensions. Journal of Multivariate Analysis 139, 360-384. 637 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 10, 2021. ; https://doi.org/10.1101/2021.06.09.447805doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.09.447805
http://creativecommons.org/licenses/by-nc/4.0/


23 
 

37. Lange, L.A., Hu, Y., Zhang, H., Xue, C., Schmidt, E.M., Tang, Z.Z., Bizon, C., Lange, E.M., Smith, J.D., 638 
Turner, E.H., et al. (2014). Whole-exome sequencing identifies rare and low-frequency coding 639 
variants associated with LDL cholesterol. Am J Hum Genet 94, 233-245. 640 

38. Mahajan, A., Taliun, D., Thurner, M., Robertson, N.R., Torres, J.M., Rayner, N.W., Payne, A.J., 641 
Steinthorsdottir, V., Scott, R.A., Grarup, N., et al. (2018). Fine-mapping type 2 diabetes loci to 642 
single-variant resolution using high-density imputation and islet-specific epigenome maps. Nat 643 
Genet 50, 1505-1513. 644 

39. Schizophrenia Working Group of the Psychiatric Genomics, C. (2014). Biological insights from 108 645 
schizophrenia-associated genetic loci. Nature 511, 421-427. 646 

40. Hu, Y.J., Berndt, S.I., Gustafsson, S., Ganna, A., Genetic Investigation of, A.T.C., Hirschhorn, J., North, 647 
K.E., Ingelsson, E., and Lin, D.Y. (2013). Meta-analysis of gene-level associations for rare variants 648 
based on single-variant statistics. Am J Hum Genet 93, 236-248. 649 

41. Belsley, D.A., Kuh, E., and Welsch, R.E. (1980). Regression diagnostics : identifying influential data and 650 
sources of collinearity.(New York: Wiley). 651 

42. Willer, C.J., Schmidt, E.M., Sengupta, S., Peloso, G.M., Gustafsson, S., Kanoni, S., Ganna, A., Chen, J., 652 
Buchkovich, M.L., Mora, S., et al. (2013). Discovery and refinement of loci associated with lipid 653 
levels. Nat Genet 45, 1274-1283. 654 

43. Bipolar, D., Schizophrenia Working Group of the Psychiatric Genomics Consortium. Electronic address, 655 
d.r.v.e., Bipolar, D., and Schizophrenia Working Group of the Psychiatric Genomics, C. (2018). 656 
Genomic Dissection of Bipolar Disorder and Schizophrenia, Including 28 Subphenotypes. Cell 173, 657 
1705-1715 e1716. 658 

44. Stahl, E.A., Breen, G., Forstner, A.J., McQuillin, A., Ripke, S., Trubetskoy, V., Mattheisen, M., Wang, Y., 659 
Coleman, J.R.I., Gaspar, H.A., et al. (2019). Genome-wide association study identifies 30 loci 660 
associated with bipolar disorder. Nat Genet 51, 793-803. 661 

45. Chang, C.C., Chow, C.C., Tellier, L.C., Vattikuti, S., Purcell, S.M., and Lee, J.J. (2015). Second-generation 662 
PLINK: rising to the challenge of larger and richer datasets. Gigascience 4, 7. 663 

46. Stuart, T., Butler, A., Hoffman, P., Hafemeister, C., Papalexi, E., Mauck, W.M., 3rd, Hao, Y., Stoeckius, 664 
M., Smibert, P., and Satija, R. (2019). Comprehensive Integration of Single-Cell Data. Cell 177, 665 
1888-1902 e1821. 666 

47. Sonawane, A.R., Platig, J., Fagny, M., Chen, C.Y., Paulson, J.N., Lopes-Ramos, C.M., DeMeo, D.L., 667 
Quackenbush, J., Glass, K., and Kuijjer, M.L. (2017). Understanding Tissue-Specific Gene 668 
Regulation. Cell Rep 21, 1077-1088. 669 

48. Hounkpe, B.W., Chenou, F., de Lima, F., and De Paula, E.V. (2021). HRT Atlas v1.0 database: redefining 670 
human and mouse housekeeping genes and candidate reference transcripts by mining massive 671 
RNA-seq datasets. Nucleic Acids Res 49, D947-D955. 672 

49. Field, F.J., Kam, N.T., and Mathur, S.N. (1990). Regulation of cholesterol metabolism in the intestine. 673 
Gastroenterology 99, 539-551. 674 

50. Ko, C.W., Qu, J., Black, D.D., and Tso, P. (2020). Regulation of intestinal lipid metabolism: current 675 
concepts and relevance to disease. Nat Rev Gastroenterol Hepatol 17, 169-183. 676 

51. Kruit, J.K., Groen, A.K., van Berkel, T.J., and Kuipers, F. (2006). Emerging roles of the intestine in control 677 
of cholesterol metabolism. World J Gastroenterol 12, 6429-6439. 678 

52. Cerf, M.E. (2013). Beta cell dysfunction and insulin resistance. Front Endocrinol (Lausanne) 4, 37. 679 
53. Donath, M.Y., Ehses, J.A., Maedler, K., Schumann, D.M., Ellingsgaard, H., Eppler, E., and Reinecke, M. 680 

(2005). Mechanisms of beta-cell death in type 2 diabetes. Diabetes 54 Suppl 2, S108-113. 681 
54. Maedler, K., and Donath, M.Y. (2004). Beta-cells in type 2 diabetes: a loss of function and mass. Horm 682 

Res 62 Suppl 3, 67-73. 683 
55. Chandra, R., and Liddle, R.A. (2009). Neural and hormonal regulation of pancreatic secretion. Curr Opin 684 

Gastroenterol 25, 441-446. 685 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 10, 2021. ; https://doi.org/10.1101/2021.06.09.447805doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.09.447805
http://creativecommons.org/licenses/by-nc/4.0/


24 
 

56. Chandra, R., and Liddle, R.A. (2014). Recent advances in the regulation of pancreatic secretion. Curr 686 
Opin Gastroenterol 30, 490-494. 687 

57. Washabau, R.J. (2013). Chapter 1 - Integration of Gastrointestinal Function. In Canine and Feline 688 
Gastroenterology, R.J. Washabau and M.J. Day, eds. (Saint Louis, W.B. Saunders), pp 1-31. 689 

58. Huang da, W., Sherman, B.T., and Lempicki, R.A. (2009). Systematic and integrative analysis of large 690 
gene lists using DAVID bioinformatics resources. Nat Protoc 4, 44-57. 691 

59. Huang da, W., Sherman, B.T., and Lempicki, R.A. (2009). Bioinformatics enrichment tools: paths toward 692 
the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37, 1-13. 693 

60. Pardinas, A.F., Holmans, P., Pocklington, A.J., Escott-Price, V., Ripke, S., Carrera, N., Legge, S.E., Bishop, 694 
S., Cameron, D., Hamshere, M.L., et al. (2018). Common schizophrenia alleles are enriched in 695 
mutation-intolerant genes and in regions under strong background selection. Nat Genet 50, 381-696 
389. 697 

61. Fromer, M., Roussos, P., Sieberts, S.K., Johnson, J.S., Kavanagh, D.H., Perumal, T.M., Ruderfer, D.M., 698 
Oh, E.C., Topol, A., Shah, H.R., et al. (2016). Gene expression elucidates functional impact of 699 
polygenic risk for schizophrenia. Nat Neurosci 19, 1442-1453. 700 

62. Jiang, Y., Zhang, N.R., and Li, M. (2017). SCALE: modeling allele-specific gene expression by single-cell 701 
RNA sequencing. Genome Biol 18, 74. 702 

63. Korthauer, K.D., Chu, L.F., Newton, M.A., Li, Y., Thomson, J., Stewart, R., and Kendziorski, C. (2016). A 703 
statistical approach for identifying differential distributions in single-cell RNA-seq experiments. 704 
Genome Biol 17, 222. 705 

64. Wang, J., Huang, M., Torre, E., Dueck, H., Shaffer, S., Murray, J., Raj, A., Li, M., and Zhang, N.R. (2018). 706 
Gene expression distribution deconvolution in single-cell RNA sequencing. Proc Natl Acad Sci U S 707 
A 115, E6437-E6446. 708 

65. Dong, M., Thennavan, A., Urrutia, E., Li, Y., Perou, C.M., Zou, F., and Jiang, Y. (2021). SCDC: bulk gene 709 
expression deconvolution by multiple single-cell RNA sequencing references. Brief Bioinform 22, 710 
416-427. 711 

66. Haghverdi, L., Lun, A.T.L., Morgan, M.D., and Marioni, J.C. (2018). Batch effects in single-cell RNA-712 
sequencing data are corrected by matching mutual nearest neighbors. Nat Biotechnol 36, 421-713 
427. 714 

67. Urrutia, E., Chen, L., Zhou, H., and Jiang, Y. (2019). Destin: toolkit for single-cell analysis of chromatin 715 
accessibility. Bioinformatics 35, 3818-3820. 716 

68. Granja, J.M., Corces, M.R., Pierce, S.E., Bagdatli, S.T., Choudhry, H., Chang, H.Y., and Greenleaf, W.J. 717 
(2021). ArchR is a scalable software package for integrative single-cell chromatin accessibility 718 
analysis. Nat Genet 53, 403-411. 719 

69. van der Wijst, M.G.P., Brugge, H., de Vries, D.H., Deelen, P., Swertz, M.A., LifeLines Cohort, S., 720 
Consortium, B., and Franke, L. (2018). Single-cell RNA sequencing identifies celltype-specific cis-721 
eQTLs and co-expression QTLs. Nat Genet 50, 493-497. 722 

 723 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 10, 2021. ; https://doi.org/10.1101/2021.06.09.447805doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.09.447805
http://creativecommons.org/licenses/by-nc/4.0/


SNP
rs1
...

rsK

se
se(β1)

...
se(βK )

β
β1
...
βK

pval
p1
...
pK

GWAS summary statistics External reference genotype matrix

Individuals

SNPs

β β ~ 2 
Common Variants: 

ˆ ~ 2
Rare Variants:
Burden test statistic 

gene ...CellType1

scRNA-seq gene expression

Y

Figure 1

+

Regression-based association testing
(one tissue at a time): γ c > 0 

X

Baseline expression

EA

~ Ecγc EAγA+

E11 ET1

E1N ETN

g1

gN

gene
g1

gN

... ... ... ...... ...

Y1

YN

EA1

EAN

...

Gene-level test statistics

CellTypeT

cov(Y)

γ0 + + ε

V = cov(β)

LD pruning + covariance sparse shrinkage
 (gene-gene covariance)

 (corr. as LD matrix)
+

Gene-speci c in uence analysis
for enriched cell type c*

Sliding window

K 1

Y = Q / (K+1)

Y

Q: joint chi-square test statistic

ˆ

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 10, 2021. ; https://doi.org/10.1101/2021.06.09.447805doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.09.447805
http://creativecommons.org/licenses/by-nc/4.0/


Figure 2

0

5

10

15

Liv
er

Sm
all

_I
nt

es
tin

e

Ad
re

na
l_G

lan
d

Pr
os

ta
te

Br
ea

st

Co
lon

_T
ra

ns
ve

rse
St

om
ac

h

Es
op

ha
gu

s_
Muc

os
a

W
ho

le_
Bl

oo
d

Ova
ry

Sp
lee

n
Lu

ng

Ad
ipo

se
_V

isc
er

al
Pa

nc
re

as

Mino
r_

Sa
liv

ar
y_

Glan
d

Ne
rv

e_
Tib

ial

Sk
in_

No
t_

Su
n_

Ex
po

se
d

Va
gin

a
Th

yro
id

Sk
in_

Su
n_

Ex
po

se
d

Ad
ipo

se
_S

ub
cu

ta
ne

ou
s

Es
op

ha
gu

s_
Gas

tro
es

op
ha

ge
al

Co
lon

_S
igm

oid

Es
op

ha
gu

s_
Mus

cu
lar

is

He
ar

t_
Le

ft_
Ve

nt
ric

le
Ut

er
us

Mus
cle

_S
ke

let
al

Ar
te

ry
_T

ibi
al

Ar
te

ry
_C

or
on

ar
y

Ar
te

ry
_A

or
ta

Br
ain

_A
myg

da
la

He
ar

t_
At

ria
l_A

pp
en

da
ge

Pi
tu

ita
ry

Br
ain

_H
ipp

oc
am

pu
s

Br
ain

_H
yp

ot
ha

lam
us

Br
ain

_A
nt

er
ior

Br
ain

_C
au

da
te

Br
ain

_C
or

tex

Br
ain

_S
pin

al_
co

rd

Br
ain

_F
ro

nt
al_

Co
rte

x

Br
ain

_N
uc

leu
s_

ac
cu

mbe
ns

Br
ain

_S
ub

sta
nt

ia_
nig

ra

Br
ain

_P
ut

am
en

Br
ain

_C
er

eb
ell

um

Br
ain

_C
er

eb
ell

ar
_H

em
isp

he
re

−l
og

10
(p

 v
al

ue
)

EPIC common only
EPIC common + rare
MAGMA v1.08
RolyPoly
LDSC−SEG

LDL

0

5

10

Liv
er

Ad
ipo

se
_V

isc
er

al

Ad
ipo

se
_S

ub
cu

ta
ne

ou
s

Sm
all

_I
nt

es
tin

e
Lu

ng

Ad
re

na
l_G

lan
d

Sp
lee

n

W
ho

le_
Bl

oo
d

Br
ea

st
Ova

ry
St

om
ac

h
Ut

er
us

Co
lon

_T
ra

ns
ve

rse
Pa

nc
re

as

Mus
cle

_S
ke

let
al

Ar
te

ry
_C

or
on

ar
y

Th
yro

id

Ne
rv

e_
Tib

ial

He
ar

t_
At

ria
l_A

pp
en

da
ge

Mino
r_

Sa
liv

ar
y_

Glan
d

Sk
in_

No
t_

Su
n_

Ex
po

se
d

Ar
te

ry
_A

or
ta

Pr
os

ta
te

Sk
in_

Su
n_

Ex
po

se
d

Es
op

ha
gu

s_
Gas

tro
es

op
ha

ge
al

Va
gin

a

He
ar

t_
Le

ft_
Ve

nt
ric

le

Es
op

ha
gu

s_
Mus

cu
lar

is

Ar
te

ry
_T

ibi
al

Es
op

ha
gu

s_
Muc

os
a

Co
lon

_S
igm

oid
Pi

tu
ita

ry

Br
ain

_S
ub

sta
nt

ia_
nig

ra

Br
ain

_S
pin

al_
co

rd

Br
ain

_P
ut

am
en

Br
ain

_C
au

da
te

Br
ain

_N
uc

leu
s_

ac
cu

mbe
ns

Br
ain

_C
er

eb
ell

um

Br
ain

_A
myg

da
la

Br
ain

_H
ipp

oc
am

pu
s

Br
ain

_C
er

eb
ell

ar
_H

em
isp

he
re

Br
ain

_H
yp

ot
ha

lam
us

Br
ain

_C
or

tex

Br
ain

_A
nt

er
ior

Br
ain

_F
ro

nt
al_

Co
rte

x

−l
og

10
(p

 v
al

ue
)

EPIC common only
EPIC common + rare
MAGMA v1.08
RolyPoly
LDSC−SEG

HDL

0

10

20

30

Liv
er

Sm
all

_I
nt

es
tin

e
Lu

ng

Ad
ipo

se
_V

isc
er

al
St

om
ac

h
Sp

lee
n

W
ho

le_
Bl

oo
d

Co
lon

_T
ra

ns
ve

rse
Ova

ry
Br

ea
st

Ad
ipo

se
_S

ub
cu

ta
ne

ou
s

Pa
nc

re
as

Ad
re

na
l_G

lan
d

Va
gin

a

Es
op

ha
gu

s_
Muc

os
a

Pr
os

ta
te

Th
yro

id

Ne
rv

e_
Tib

ial

Mino
r_

Sa
liv

ar
y_

Glan
d

Sk
in_

No
t_

Su
n_

Ex
po

se
d

Ar
te

ry
_C

or
on

ar
y

Ut
er

us

Sk
in_

Su
n_

Ex
po

se
d

Es
op

ha
gu

s_
Mus

cu
lar

is

Mus
cle

_S
ke

let
al

Es
op

ha
gu

s_
Gas

tro
es

op
ha

ge
al

Ar
te

ry
_A

or
ta

Pi
tu

ita
ry

He
ar

t_
Le

ft_
Ve

nt
ric

le

Ar
te

ry
_T

ibi
al

Co
lon

_S
igm

oid

He
ar

t_
At

ria
l_A

pp
en

da
ge

Br
ain

_H
ipp

oc
am

pu
s

Br
ain

_P
ut

am
en

Br
ain

_A
myg

da
la

Br
ain

_C
au

da
te

Br
ain

_H
yp

ot
ha

lam
us

Br
ain

_C
or

tex

Br
ain

_S
pin

al_
co

rd

Br
ain

_A
nt

er
ior

Br
ain

_N
uc

leu
s_

ac
cu

mbe
ns

Br
ain

_F
ro

nt
al_

Co
rte

x

Br
ain

_S
ub

sta
nt

ia_
nig

ra

Br
ain

_C
er

eb
ell

um

Br
ain

_C
er

eb
ell

ar
_H

em
isp

he
re

−l
og

10
(p

 v
al

ue
)

EPIC common only
EPIC common + rare
MAGMA v1.08
RolyPoly
LDSC−SEG

TC

0

5

10

15

20

Liv
er

Ad
re

na
l_G

lan
d

Ad
ipo

se
_V

isc
er

al

Sm
all

_I
nt

es
tin

e

Ad
ipo

se
_S

ub
cu

ta
ne

ou
s

Pa
nc

re
as

St
om

ac
h

Br
ea

st

Mus
cle

_S
ke

let
al

Sp
lee

n

W
ho

le_
Bl

oo
d

Lu
ng

Ova
ry

Ar
te

ry
_C

or
on

ar
y

Ut
er

us
Th

yro
id

Ar
te

ry
_A

or
ta

He
ar

t_
At

ria
l_A

pp
en

da
ge

Pr
os

ta
te

Co
lon

_T
ra

ns
ve

rse

Es
op

ha
gu

s_
Muc

os
a

He
ar

t_
Le

ft_
Ve

nt
ric

le
Pi

tu
ita

ry

Mino
r_

Sa
liv

ar
y_

Glan
d

Sk
in_

No
t_

Su
n_

Ex
po

se
d

Ne
rv

e_
Tib

ial

Ar
te

ry
_T

ibi
al

Va
gin

a

Sk
in_

Su
n_

Ex
po

se
d

Br
ain

_S
ub

sta
nt

ia_
nig

ra

Br
ain

_S
pin

al_
co

rd

Br
ain

_A
myg

da
la

Es
op

ha
gu

s_
Gas

tro
es

op
ha

ge
al

Es
op

ha
gu

s_
Mus

cu
lar

is

Br
ain

_C
or

tex

Br
ain

_H
yp

ot
ha

lam
us

Br
ain

_H
ipp

oc
am

pu
s

Br
ain

_P
ut

am
en

Br
ain

_N
uc

leu
s_

ac
cu

mbe
ns

Br
ain

_C
au

da
te

Br
ain

_A
nt

er
ior

Co
lon

_S
igm

oid

Br
ain

_F
ro

nt
al_

Co
rte

x

Br
ain

_C
er

eb
ell

um

Br
ain

_C
er

eb
ell

ar
_H

em
isp

he
re

−l
og

10
(p

 v
al

ue
)

EPIC common only
EPIC common + rare
MAGMA v1.08
RolyPoly
LDSC−SEG

TG

(C)

(B)

(D)

(A)
.CC-BY-NC 4.0 International licenseavailable under a

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 
The copyright holder for this preprintthis version posted June 10, 2021. ; https://doi.org/10.1101/2021.06.09.447805doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.09.447805
http://creativecommons.org/licenses/by-nc/4.0/


0

2

4

6
Pa

nc
re

as
Liv

er
Th

yr
oid

St
om

ac
h

Ad
ipo

se
_V

isc
er

al
Br

ea
st

Ad
re

na
l_G

lan
d

Sm
all

_I
nt

es
tin

e
Ova

ry

Co
lon

_T
ra

ns
ve

rs
e

Pi
tu

ita
ry

He
ar

t_
At

ria
l_A

pp
en

da
ge

He
ar

t_
Le

ft_
Ve

nt
ric

le

Ad
ipo

se
_S

ub
cu

ta
ne

ou
s

Pr
os

ta
te

Sk
in_

No
t_

Su
n_

Ex
po

se
d

Ne
rv

e_
Ti

bia
l

Sk
in_

Su
n_

Ex
po

se
d

Ut
er

us
Va

gin
a

M
us

cle
_S

ke
let

al

Es
op

ha
gu

s_
M

uc
os

a

M
ino

r_
Sa

liv
ar

y_
Glan

d
Sp

lee
n

Lu
ng

Ar
te

ry
_A

or
ta

Br
ain

_C
er

eb
ell

um

Ar
te

ry
_C

or
on

ar
y

Br
ain

_C
er

eb
ell

ar
_H

em
isp

he
re

Ar
te

ry
_T

ibi
al

W
ho

le_
Bl

oo
d

Co
lon

_S
igm

oid

Es
op

ha
gu

s_
Gas

tro
es

op
ha

ge
al

Es
op

ha
gu

s_
M

us
cu

lar
is

Br
ain

_C
or

tex

Br
ain

_N
uc

leu
s_

ac
cu

m
be

ns

Br
ain

_F
ro

nt
al_

Co
rte

x

Br
ain

_A
nt

er
ior

Br
ain

_C
au

da
te

Br
ain

_H
yp

ot
ha

lam
us

Br
ain

_P
ut

am
en

Br
ain

_S
pin

al_
co

rd

Br
ain

_A
m

yg
da

la

Br
ain

_H
ipp

oc
am

pu
s

Br
ain

_S
ub

sta
nt

ia_
nig

ra

−l
og

10
(p

 v
al

ue
)

EPIC common only
EPIC common + rare
MAGMA v1.08
RolyPoly
LDSC−SEG

T2Db

KEGG PATHWAY (BH adjusted p-values):
Insulin secretion (2.0E-3)
Maturity onset diabetes of the young (6.8E-3)
Type II diabetes mellitus (5.0E-2)

GO Biological Process (BH adjusted p-values):
Glucose homeostasis (1.2E-4)
Regulation of insulin secretion (5.8E-4)

Figure 3
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Figure 4
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(A) GTEx bulk RNA-seq: 

(B) Pancreatic islets scRNA-seq (C) GTEx scRNA-seq:

Figure 5
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