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Abstract 26 

Skeletal muscle fibers rely upon either oxidative phosphorylation or glycolytic pathway to 27 

achieve muscular contractions that power mechanical movements. Species with energy-28 

intensive adaptive traits that require sudden bursts of energy have a greater dependency on 29 

fibers that use the glycolytic pathway. Glycolytic fibers have decreased reliance on OXPHOS 30 

and lower mitochondrial content compared to oxidative fibers. Hence, we hypothesized that 31 

adaptive gene loss might have occurred within the OXPHOS pathway in lineages that largely 32 

depend on glycolytic fibers. The protein encoded by the COA1/MITRAC15 gene with 33 

conserved orthologs found in budding yeast to humans promotes mitochondrial translation. 34 

We show that gene disrupting mutations have accumulated within the COA1/MITRAC15 35 

gene in the cheetah, several species of galliforms, and rodents. The genomic region 36 

containing COA1/MITRAC15 is a well-established evolutionary breakpoint region in 37 

mammals. Careful inspection of genome assemblies of closely related species of rodents and 38 

marsupials suggests two independent COA1/MITRAC15 gene loss events co-occurring with 39 

chromosomal rearrangements. Besides recurrent gene loss events, we document changes in 40 

COA1/MITRAC15 exon structure in primates and felids. The detailed evolutionary history 41 

presented in this study reveals the intricate link between skeletal muscle fiber composition 42 

and dispensability of the chaperone-like role of the COA1/MITRAC15 gene. 43 

Keywords: Cytochrome C Oxidase Assembly Factor 1, COA1, MITRAC15, Chicken, gene 44 

loss, rodent 45 

1. Introduction 46 

Skeletal muscles control numerous locomotor functions in vertebrates (Weeks, 1989). The 47 

hundreds of different muscles in the body consist of highly organized heterogeneous bundles 48 

of fibers. These muscle fibers are classified based on contractile properties, power source, 49 

and myosin component into type-1, 2A, 2B, and 2X (Talbot and Maves, 2016). Muscles with 50 

type-1 and type-2A fibers rely on the oxidative phosphorylation (OXPHOS) pathway, the 51 

primary source of ATP needed for locomotion and other energy-intensive tasks (Shen et al., 52 

2010). The energy releasing electron transport chain (ETC) coupled with the energy-requiring 53 

chemiosmosis is known as (OXPHOS) (Hatefi, 1985; Mitchell, 1961). A chain of 54 

mitochondrial inner membrane-embedded proteins encoded by both mitochondrial and 55 

nuclear genes form four large complexes that transport electrons through redox reactions. The 56 

energy released during these reactions results in a proton gradient, which uses a fifth 57 

membrane-embedded complex to generate ATP through chemiosmosis. Optimization of 58 

crucial steps in the OXPHOS pathway leads to improved locomotor performance (Conley, 59 

2016). Origin of novel energetically demanding phenotypes has been possible through 60 

adaptations in the OXPHOS pathway (Doan et al., 2004; Garvin et al., 2015; Wu et al., 2000; 61 

Zhang and Broughton, 2015). Multiple genes of the OXPHOS pathway are under positive 62 

selection in mammalian species with high energy demanding adaptations such as powered 63 

flight in bats (Shen et al., 2010), survival of polar bears in cold Arctic environment (Welch et 64 

al., 2014), high altitude adaptation in yak (Qiu et al., 2012), hypoxia tolerance in cetaceans 65 
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(Tian et al., 2018), ecotype specific divergence in killer whales (Foote et al., 2011) and 66 

evolution of large brains in anthropoid primates (Grossman et al., 2004).  67 

 68 

The loss of energetically demanding phenotypes reduces the strength of purifying selection 69 

acting on the OXPHOS pathway. For instance, the domestication of dogs (Björnerfeldt et al., 70 

2006) and degeneration of locomotor abilities in birds (Shen et al., 2009) resulted in relaxed 71 

selective constraint on the OXPHOS pathway proteins. Among other carnivores and rodents, 72 

the great diversity of functionally important locomotor habits have variations in energy 73 

requirements and corresponding differences in the magnitude of purifying selection (Samuels 74 

and Van Valkenburgh, 2008; Taylor, 1989). Even within the same species, mitochondrially 75 

encoded protein components of the OXPHOS pathway are under stronger purifying selection 76 

than those protein components encoded by the nuclear genome (Popadin et al., 2013). These 77 

differing purifying selection levels are due to gene expression level differences between 78 

nuclear and mitochondrial OXPHOS genes (Nabholz et al., 2013). Despite the movement of 79 

most genes from the ancestral mitochondria to the nucleus in eukaryotes, a separate 80 

mitochondrial organelle is well conserved with scarce exceptions (Karnkowska et al., 2016; 81 

Sloan et al., 2018). Turnover in the content of mitochondrial protein complexes has mainly 82 

occurred before the emergence of eukaryotes with few gene gain/loss events reported in 83 

vertebrates (Adams and Palmer, 2003; Cardol, 2011; Gabaldón et al., 2005; Gabaldón and 84 

Huynen, 2007; Huynen et al., 2013; van Esveld and Huynen, 2018). However, lineage-85 

specific gene loss from the mitochondria has occurred in nonbilaterian organisms (Lavrov 86 

and Pett, 2016), other metazoan lineages (Gissi et al., 2008), and plants (Depamphilis et al., 87 

1997; Palmer et al., 2000). The duplication of mitochondrial genes in bird lineages followed 88 

by gene loss and genomic rearrangement events is relatively unique (Akiyama et al., 2017; 89 

Mackiewicz et al., 2019; San Mauro et al., 2006; Urantówka et al., 2020).  90 

The proton gradient established by the ETC also powers the generation of heat in mammalian 91 

Non-Shivering Thermogenesis (NST) (Nedergaard et al., 2001). Thermogenin or uncoupling 92 

protein 1 (UCP1) expressed in the inner mitochondrial membrane facilitates the regulated 93 

leakage of protons to generate heat in brown adipose tissue (Krauss et al., 2005). The UCP1 94 

gene is absent in all birds (Newman et al., 2013) and some mammals (Emre et al., 2007; 95 

Mcgaugh and Schwartz, 2017) despite its presence in fish (Jastroch et al., 2005), amphibians 96 

(Hughes et al., 2009), and marsupials (Polymeropoulos et al., 2012). The integration of UCP1 97 

in the thermogenic pathway is considered a eutherian-mammal-specific adaptation unrelated 98 

to its ancestral innate immune functions (Jastroch, 2017). The exceptional repeated loss of 99 

this mitochondrial membrane protein in vertebrate lineages appears to result from its 100 

changing functional roles (Gaudry et al., 2017; Mcgaugh and Schwartz, 2017). In contrast to 101 

UCP1, most OXPHOS pathway genes are highly conserved, and defective protein 102 

components generally result in clinical phenotypes (Hock et al., 2020). The proteins 103 

TMEM186 and COA1/MITRAC15 are chaperones interacting with the Mitochondrial 104 

Complex I Assembly (MCIA) complex, and defects in these genes do not result in any 105 

clinical phenotypes (Hock et al., 2020; Signes and Fernandez-Vizarra, 2018).  106 
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Functional studies have implicated a role for COA1/MITRAC15 in promoting mitochondrial 107 

translation and complex I and IV biogenesis (Wang et al., 2020). However, overexpression of 108 

other genes easily compensates for the mild effect of COA1/MITRAC15 gene knockout (Hess 109 

et al., 2009; Pierrel et al., 2007). Notably, the COA1/MITRAC15 gene was also identified as a 110 

positively selected gene in a genome-wide screen in primates (Van Der Lee et al., 2017) and 111 

suggests that despite its mild phenotype, COA1/MITRAC15 can contribute to fitness increases 112 

through its role as a chaperone. COA1/MITRAC15 resembles TIMM21, a subunit of the 113 

TIM23 complex (Mick et al., 2012). Such TIMM21 gene duplicates interacting with the 114 

mitochondrial import apparatus and respiratory chain complexes occur in Arabidopsis 115 

(Murcha et al., 2014). Diversification of the mitochondrial import system has benefitted from 116 

gene duplication events that have contributed new members to the Translocase of the Inner 117 

Membrane (TIM) and Translocase of the Outer Membrane (TOM) protein complexes 118 

(Fukasawa et al., 2017). Hence, it is plausible that COA1/MITRAC15 results from a 119 

duplication of the TIMM21 gene followed by divergence.  120 

Divergence of conventional or class-2 myosin genes after duplication has led to the 121 

diversification of the MYH gene family (Moore et al., 1993; Weiss and Leinwand, 1996). 122 

These myosin genes have distinct functions defined by their contractile properties and 123 

ATPase activity (Resnicow et al., 2010). While MYH7 and MYH2 expressing fibers rely upon 124 

the OXPHOS pathway, MYH1 and MYH4 expressing fibers are dependent on the glycolytic 125 

pathway. The protein encoded by the MYH7 gene occurs in both cardiac muscles and the 126 

slow-contracting type-1 fibers (Schiaffino and Reggiani, 2011). However, the MYH genes 127 

expressed in type-2 fibers are restricted mainly to skeletal muscles. The fast-contracting type-128 

2 fibers power explosive movements like jumping and sprinting. Such rapid movements form 129 

an essential component of hunting strategies used by terrestrial predators and the escape 130 

strategy of the prey (Kohn, 2014; J. W. Wilson et al., 2013). Felids, small-bodied rodents, 131 

marsupials, certain cervids, and galliform birds have exceptional adaptations for rapid 132 

locomotion.  133 

The world's fastest mammal, the cheetah (Acinonyx jubatus), epitomizes the relevance of 134 

speed and acceleration (A. M. Wilson et al., 2013). In general, felids are adept at sprinting 135 

and can accelerate more rapidly than canids but cannot sustain it for a prolonged period 136 

(Bailey et al., 2013). The predominance of type-2X fibers in felid species provides the ability 137 

to achieve rapid acceleration (Hyatt et al., 2010; Kohn et al., 2011; Williams et al., 1997). 138 

Compared to canids, felids have a greater reliance on glycolytic fibers. Glycolytic fibers have 139 

decreased reliance on OXPHOS and lower mitochondrial content than oxidative fibers 140 

(Mishra et al., 2015; Picard et al., 2012). Hence, the OXPHOS pathway might be under 141 

stronger selective constraint in canids than felids. Like these predators, prey species like 142 

antelopes are fast sprinters but have the added advantage of resistance to fatigue. The high 143 

speed of these species relies on type-2X fibers with high glycolytic capacities, and the added 144 

resistance to fatigue is possible due to the remarkable oxidative ability of these fibers (Curry 145 

et al., 2012). The use of both glycolytic and oxidative pathways suggests the OXPHOS 146 

pathway in these antelope species and other cervids would be under strong purifying 147 

selection.  148 
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Despite drastic variation in body size within mammals, the relative speed of locomotion is 149 

thought to be largely independent of body mass, at least in small mammals (Iriarte-Díaz, 150 

2002). The higher relative speed of small mammals results from faster constriction made 151 

possible by the higher proportion of fast fibers (mostly 2X and 2B) in each muscle 152 

(Schiaffino and Reggiani, 2011). For instance, rodent limb muscles are known to have more 153 

abundant type 2B fibers compared to larger mammals (including humans, which have no type 154 

2B fibers in the limb muscles) (Kohn, 2014; Kohn and Myburgh, 2007). Marsupial species 155 

also have high relative speeds and possess muscle fibers equivalent to eutherian mammals 156 

(Zhong et al., 2001). The smaller marsupial species have type-2B and 2X muscle fibers in 157 

several important muscles (Zhong et al., 2008). The higher proportion of fast glycolytic fibers 158 

in rodents and marsupials potentially results in relaxed selection on the OXPHOS pathway 159 

genes in these species. 160 

The ability to fly is a distinctive feature of birds except for lineages that have become entirely 161 

flightless or retain only a limited flying capacity (Harshman et al., 2008; Pan et al., 2019; 162 

Sackton et al., 2019; Sayol et al., 2020). The large amount of energy required for flight has 163 

necessitated a high metabolic rate in birds (Holmes and Austad, 1995). Increased ATP 164 

generation fulfills these energy demands through metabolic adaptations in the OXPHOS 165 

pathway (Das, 2006). The set of flight muscles possessed by a bird species determine several 166 

aspects of flight performance and strongly influences life history and ecology (DuBay et al., 167 

2020). Avian flight is possible through a combination of flight muscles that consist of white 168 

(fast glycolytic), intermediate/red-pink (fast oxidative), and red (slow oxidative) muscle 169 

fibers (Barnard et al., 1982; Butler, 2016; Ogata and Yamasaki, 1997). Birds with strong 170 

flight abilities, such as long-distant migrants and small passerines, contain mostly fast 171 

oxidative fibers (Welch and Altshuler, 2009). In contrast to this, Galliformes contain mostly 172 

glycolytic fibers that only allow short bursts of activity (Dial, 2003). Hence, the OXPHOS 173 

pathway is under stronger selective constraint in non-Galliform bird species than Galliform 174 

birds due to the functional specialization of mitochondria to different muscle fibers (Picard et 175 

al., 2012).  176 

 177 

This study evaluates whether the protein encoded by the COA1/MITRAC15 gene, a 178 

mitochondrial complex I translation factor with a chaperone-like role, is dispensable when 179 

the OXPHOS pathway is under relaxed selective constraints. We hypothesized that the 180 

OXPHOS pathway might have experienced reduced purifying selection in felids, rodents, 181 

marsupials, and galliform birds based on increased glycolytic muscle fibers in these species. 182 

Duplicate copies or alternative metabolic pathways compensate for gene function and decide 183 

gene dispensability (Gu et al., 2003). Hence, to evaluate our hypothesis, we aim to (1) 184 

investigate whether COA1/MITRAC15 has any homologs that could compensate its function, 185 

(2) screen the genomes of vertebrate species to identify and track the evolutionary history of 186 

COA1/MITRAC15 orthologs, (3) identify evidence of gene disruptive changes within the 187 

COA1/MITRAC15 locus and (4) reconstruct the sequence of events associated with the 188 

potential erosion of the COA1/MITRAC15 locus due to chromosomal rearrangement events at 189 

the evolutionary breakpoint region spanning the COA1/MITRAC15 gene. We extensively 190 
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screened publicly available genomes and transcriptomes of more than 200 vertebrate species 191 

to establish recurrent loss of the widely conserved COA1/MITRAC15 gene. 192 

2. Materials and methods 193 

2.1 Finding homologs of COA1/MITRAC15 194 

The amino acid sequence of the human COA1/MITRAC15 gene was used as a query in PSI-195 

BLAST (Altschul et al., 1997) against the nr database with eight iterations to identify 196 

homologs. Similarly, the human COA1/MITRAC15 amino acid sequence was the query in the 197 

program HHblits of HHsuite (Remmert et al., 2012; Steinegger et al., 2019) with the flags "-e 198 

1e-3 -n 8 -p 20 -Z 5000 -z 1 -b 1 -B 5000 -d UniRef30_2020_06". The output from HHblits 199 

was used as input to the CLANS program (Frickey and Lupas, 2004) with an e-value cut-off 200 

of 1e-4 to cluster the blast hits using the MPI Bioinformatics Toolkit (Gabler et al., 2020; 201 

Zimmermann et al., 2018). We ran the CLANS java application for more than 50,000 rounds 202 

on the webserver output to ensure stable clusters. Manually inspection of gene annotations 203 

allowed identification of each of the groups. Subsequently, we performed the HHblits search 204 

again with different settings such as "-glob" to perform global alignments and "-loc" to 205 

conduct local alignments. The PFAM database was the alternative to the Uniclust 30 206 

database. Manually curated multiple sequence alignment of COA1/MITRAC15 open reading 207 

frames from 24 primate species was also separately used to query for better sensitivity. The 208 

protein TIMM21 provides a consistent hit with different search settings and databases. 209 

To further verify whether the database matches are homologous, we evaluated the biological 210 

function, secondary structure similarity, relationship among top hits, and occurrence of 211 

conserved motifs. To obtain secondary structure predictions for the proteins 212 

COA1/MITRAC15 and TIMM21, we used the PROTEUS2 webserver (Montgomerie et al., 213 

2008). The HeliQuest webserver (Gautier et al., 2008) provided each predicted helix's 214 

physicochemical properties and amino acid compositions. While the three-dimensional (3-D) 215 

structure of the COA1/MITRAC15 protein is not available yet, multiple structures of the 216 

TIMM21 protein are available in the Protein Data Bank (PDB). It is possible to use 217 

comparative/homology modeling to predict the 3-D structure based on the protein structure of 218 

a related protein (Webb and Sali, 2016). Hence, we used the comparative modeling approach 219 

implemented in Modeller (v10.0) software to model the structure of COA1/MITRAC15 based 220 

on the homologous structures available in PDB. The Phyre2 (Kelley et al., 2015) and Expasy 221 

Swiss-Model (Waterhouse et al., 2018) webservers also predicted homologous 3-D structures 222 

of COA1/MITRAC15. All the top hits were from 3-D structures of the IMS (Inter Membrane 223 

Space) domain of TIMM21 protein. The IMS domain of TIMM21, whose 3-D structures are 224 

available on PDB, contains only the part of the protein that occurs after the membrane-225 

spanning helix. To model the structure of COA1/MITRAC15 using these existing 3-D 226 

structures, we used the COA1/MITRAC15 amino acid sequence that occurs after the 227 

membrane-spanning domain. We visualized the structure of TIMM21 and the predicted 228 

COA1/MITRAC15 structure using (UCSF Chimera v1.15) ChimeraX (Pettersen et al., 2021). 229 

2.2 Validation of COA1/MITRAC15 annotation 230 
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Despite being a fast-evolving gene, orthologs of COA1/MITRAC15 can be identified based on 231 

gene synteny and sequence identity. However, identifying COA1/MITRAC15 orthologs 232 

between distantly related species is challenging (Szklarczyk et al., 2012). We screened the 233 

genome assemblies and annotations available on NCBI and Ensembl for COA1 (C7orf44 or 234 

MITRAC15) protein-coding transcripts. The COA1/MITRAC15 gene orthologs have been 235 

annotated in almost 300 vertebrate species (see Supplementary Table S1). However, the 236 

number of exons and the length of the ORF is highly variable between species. We validated 237 

the annotation of the COA1/MITRAC15 gene relying upon gene synteny in the genomic 238 

vicinity of the COA1/MITRAC15 gene, multiple sequence alignments, and RNA-seq data. 239 

Annotation across most species endorses the existence of four coding exons that produce a 240 

~130 to 140 amino acid (aa) protein. The COA1/MITRAC15 annotation in the human genome 241 

(see Supplementary Figure S1) has multiple isoforms with seven exons. The additional 242 

three exons annotated in the human genome upstream from the widely conserved four exons 243 

need further investigation. Bird species such as Nipponia nippon, Cuculus canorus, Pterocles 244 

gutturalis, Gavia stellate, Buceros rhinoceros silvestris, Anser cygnoides domesticus, Anas 245 

platyrhynchos (corrected in XM_027451320.2), and Fulmarus glacialis have annotation for a 246 

fifth exon upstream from the widely conserved four exons. Annotation for multiple isoforms 247 

of the COA1/MITRAC15 gene also exists in Athene cunicularia, Tyto alba, Calidris pugnax, 248 

Serinus canaria, Corvus moneduloides, Corvus brachyrhynchos, Egretta garzetta, Aquila 249 

chrysaetos, Pipra filicauda, Corvus cornix, Cygnus atratus, and Parus major. We examined 250 

RNA-seq datasets of multiple species to evaluate the expression of the isoforms. RNA-seq 251 

data in Colius striatus and Eurypyga helias (which had partial sequences annotated) allowed 252 

reconstruction of full-length ORFs. In addition to bird genomes, the COA1/MITRAC15 gene 253 

ortholog is annotated in lizards (Zootoca vivipara, Podarcis muralis, Lacerta agilis, Anolis 254 

carolinensis, Gekko japonicus, Thamnophis sirtalis, Pantherophis guttatus, Notechis 255 

scutatus, Pseudonaja textilis and Python bivittatus), turtles (Trachemys scripta elegans, 256 

Chelonia mydas, Chelonoidis abingdonii, Chrysemys picta, Gopherus evgoodei and 257 

Pelodiscus sinensis), alligators (Gavialis gangeticus, Alligator sinensis, Alligator 258 

mississippiensis and Crocodylus porosus), Even-toed ungulates (Bos taurus, Sus scrofa, 259 

Odocoileus virginianus texanus, Bison bison bison, Bos indicus x Bos taurus, Bos mutus, 260 

Bubalus bubalis, Capra hircus, Ovis aries, Vicugna pacos, Camelus ferus, Camelus 261 

bactrianus, Camelus dromedarius, Neophocaena asiaeorientalis asiaeorientalis, 262 

Balaenoptera acutorostrata scammoni, Lipotes vexillifer, Lagenorhynchus obliquidens, 263 

Globicephala melas, Orcinus orca, Tursiops truncatus, Phocoena sinus, Monodon 264 

monoceros, Delphinapterus leucas, Physeter catodon and Balaenoptera musculus), Odd-toed 265 

ungulates (Equus caballus, Equus asinus, Equus przewalskii and Ceratotherium simum 266 

simum), Pangolins (Manis pentadactyla and Manis javanica), Galeopterus variegatus, Tupaia 267 

chinensis and Primates (Homo sapiens, Macaca mulatta, Pan troglodytes, Chlorocebus 268 

sabaeus, Callithrix jacchus, Colobus angolensis palliatus, Cercocebus atys, Macaca 269 

fascicularis, Macaca nemestrina, Papio anubis, Theropithecus gelada, Mandrillus 270 

leucophaeus, Trachypithecus francoisi, Rhinopithecus bieti, Rhinopithecus roxellana, 271 

Piliocolobus tephrosceles, Gorilla gorilla, Pan paniscus, Pongo abelii, Nomascus 272 

leucogenys, Hylobates moloch, Saimiri boliviensis, Sapajus apella, Cebus imitator, Aotus 273 
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nancymaae, Carlito syrichta, Propithecus coquereli, Microcebus murinus and Otolemur 274 

garnettii).  275 

We screened the synteny pattern of the candidate COA1/MITRAC15 gene in Galliformes and 276 

Anseriformes using five upstream genes (STK17A, HECW1, TNS3, PSMA2, MRPL32) and 277 

the five downstream genes (BLVRA, VOPP1, LANCL2, EGFR, SEC61G). The chicken 278 

(Gallus gallus) has a chromosome level assembly, and the gene occurs on Chromosome 2, 279 

and its region is syntenic with human (Homo sapiens) chromosome 2 (Supplementary 280 

Figure S2-S3). The gene synteny is mostly conserved in these species and is present on the 281 

same scaffold/chromosome. The blast search of the genome using the query gene sequence of 282 

closely related species identified genes missing in the annotation. Anas platyrhynchos has 283 

chromosome level assembly with the same gene order as Gallus gallus (Supplementary 284 

Figure S4). Anser cygnoides and Anseranas semipalmata also contain this conserved gene 285 

order. Anas platyrhynchos, Numida meleagris, Coturnix japonica, Meleagris gallopavo show 286 

syntenic blocks aligning with the human chromosome 7 (Supplementary Figure S5-S8). 287 

Synteny-based verification was done clade-wise in birds (see Supplementary Table S2), 288 

rodents (Supplementary Table S3), carnivores (Supplementary Table S4), and primates 289 

(Supplementary Table S5). Gene order and synteny relationships for representative species 290 

from each of the clades are in Supplementary Figure S9-S230. 291 

Vertebrate species have a conserved COA1/MITRAC15 gene intron/exon organizational 292 

structure. However, two lineages (primates and carnivores) with evidence of intron/exon 293 

organization changes have also had COA1/MITRAC15 gene duplication events. To ensure 294 

that the observed differences were not a result of incorrect annotation, alignment artifacts, or 295 

duplicated copies, we compared the COA1/MITRAC15 gene organization across diverse 296 

vertebrate species. Subsequently, we validated the annotations from NCBI and Ensembl 297 

using RNA-seq datasets. Sequencing read haplotypes from the functional and pseudogenised 298 

copy can be distinguished as their sequences have diverged. 299 

2.3 Verification of COA1/MITRAC15 gene disrupting changes in raw read data 300 

We used a previously published 5-pass strategy to verify gene loss events (S. Sharma et al., 301 

2020). Briefly, to verify the correctness of the genome assembly nucleotide sequence, we 302 

used the COA1/MITRAC15 gene sequence of multiple species as a query for a blastn search 303 

of the raw short-read database. The details of short-read datasets (both DNA and RNA) used 304 

to validate gene sequence are in Supplementary Table S6. Manual inspection of the blast 305 

search results ensured concordance between gene sequence and raw read data. All the blast 306 

output files are in Supplementary File S1. In the chicken genome, we also verified the 307 

correctness of genome assembly in the vicinity of the COA1/MITRAC15 gene by evaluating 308 

Pacbio long-read data (see Supplementary Figure S231-S234).  309 

2.4 Assessing the transcriptional status of COA1/MITRAC15 310 

We analyzed transcriptomic datasets for evidence of transcription of COA1/MITRAC15 locus. 311 

The RNA-seq reads were mapped to the genome assemblies using the STAR read mapper 312 

(Dobin et al., 2013). We visualized the resulting bam files using the IGV browser (Robinson 313 
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et al., 2011; Thorvaldsdottir et al., 2013). For consistent representation across tissues and 314 

species, we used three different views: (1) Positions of all four exons of COA1/MITRAC15 315 

identified using blast search are shown as a bed record below the RNA-seq bam files, (2) 316 

Zoomed-in views of each of the four exons are presented in four panels within a single 317 

screenshot and (3) Zoomed-in view of the first and last exons of COA1/MITRAC15 are shown 318 

along with the adjacent genes on both sides. The adjacent genes in the IGV screenshot act as 319 

positive controls.  320 

No evidence for transcription of COA1/MITRAC15 gene in chicken exists in the RNA-seq 321 

data from 23 tissues consisting of blood, bone marrow, breast muscle, bursa, cerebellum, 322 

cerebrum, comb, eye, fascia, gallbladder, gizzard, gonad, heart, immature egg, kidney, liver, 323 

lung, mature egg, pancreas, shank, skin, spleen, uterus (Supplementary Figure S235-S304). 324 

Among other Galliformes species, we found no evidence for expression of the 325 

COA1/MITRAC15 gene. (The spleen and gonad of the peacock, the skin of golden pheasant, 326 

gonad, spleen, brain, muscle, liver, and heart of ring-necked pheasant, bursa, gonad spleen, 327 

blood and uterus of helmeted guineafowl, breast muscle, gonad, spleen, brain, liver, heart, 328 

and bursa of turkey, kidney, liver, muscle, lung, and heart of Japanese quail, the blood of 329 

Colinus virginianus and blood of Syrmaticus Mikado, see Supplementary Figure S305-330 

S373). The only Galliform species to have a transcribed COA1/MITRAC15 gene was 331 

Alectura lathami (blood tissue: Supplementary Figure S374-S376). 332 

In contrast to Galliformes, the COA1/MITRAC15 gene is intact in Anseriformes species. 333 

However, the COA1/MITRAC15 gene annotation in duck (Anas platyrhynchos platyrhynchos) 334 

contains two isoforms. The more extended isoform codes for a 265 amino acid protein and 335 

consists of five exons. The shorter isoform (139 amino acid) is orthologous to the Galliform 336 

ORF. Upon closer inspection of the first exon, only 24 of the 372 bases have RNA-seq read 337 

support (Supplementary Figure S377). Hence, this additional exon might be an annotation 338 

artifact or part of the untranslated region. The last four annotated exons, which correspond to 339 

the intact 139 amino acid encoding sequence, were found to be robustly expressed in the 340 

gonad, spleen, liver, brain, and skin (Supplementary figure S378-S385). A similar 341 

annotation of the fifth exon in Anser cygnoides domesticus appears to be an artifact. The 342 

gonad, liver, and spleen express the last four exons (see Supplementary Figure S386-S392). 343 

The RNA-seq data from blood tissue for magpie goose (Anseranas semipalmata) and 344 

southern screamer (Chauna torquata) also supported the transcription of the 345 

COA1/MITRAC15 gene (Supplementary Figure S393-S396).  346 

Having verified the expression of the COA1/MITRAC15 gene in multiple Anseriformes 347 

species, we screened additional bird RNA-seq datasets to evaluate the transcriptional activity 348 

of the intact ORF found in these species. Many other bird genomes have annotations for 349 

multiple isoforms of the COA1/MITRAC15 gene, like the duck genomes. These isoforms 350 

range in length from 136 to 265 amino acids and 4 to 7 exons. Based on careful examination 351 

of multiple RNA-seq datasets across several closely related species and sequence homology, 352 

we found that in most cases, the four-exon transcript coding for a 139 amino acid protein was 353 

the only correct annotation. However, in some rare cases, additional exons have robust 354 

expression and require further investigation. In the Corvidae group, annotation exists for 355 
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transcripts of lengths 170 and 139 aa. The first exon of the longer transcript lacked 356 

expression. 357 

In comparison, all four transcripts of the shorter transcript are present in the blood tissue of 358 

western Jackdaw (Corvus monedula) as well as gonad, brain, spleen, and liver of hooded 359 

crow (Corvus cornix) (Supplementary Figure S397- S402). The common canary (Serinus 360 

canaria) has three transcripts with 177, 154, and 139 aa (Supplementary Figure S403-361 

S404). We checked the expression using liver and skin tissue and found support for all three 362 

transcripts. However, upon closer inspection, the transcript with 139 aa was strongly 363 

expressed, and the other two transcripts are potentially artifacts. Great tit (Parus major) has 364 

two transcripts of lengths 169, 139 aa. While the kidney and liver express both transcripts, the 365 

first exon has feeble expression and appears artefactual (Supplementary Figure S405-S406). 366 

The golden eagle (Aquila chrysaetos) has four annotated transcripts with lengths of 219, 180, 367 

159, and 139 aa. Transcript of 219 aa length contains six exons, transcripts of length 180 aa, 368 

and 159 aa have five exons, and 139 aa transcript contains four exons. We found that exon 1 369 

showed negligible expression, and exons 2 to 6 have high expression levels. However, exon 1 370 

and 2 both have an in-frame stop codon (Supplementary Figure S407-S411). Hence, we 371 

consider that the 139 aa long transcript expressed in the liver and muscle is correct. Red-372 

throated loon (Gavia stellata) has a single five exon transcript of length 155 aa annotated. We 373 

discovered a lack of expression in the first exon compared to the last four exons that are 374 

orthologous to the transcript of length 139 aa (Supplementary Figure S412-S413). 375 

The ruff (Calidris pugnax) genome annotates three transcripts with lengths of 233, 229, and 376 

139 aa. Transcript one and two contain seven exons each, and the third transcript contains 377 

four exons. Exons 1 and 2 lack expression in the first two transcripts, and the third exon did 378 

not have any start codon explaining the transcript. The last four exons have transcripts and 379 

are orthologous to other species' COA1/MITRAC15 gene (Supplementary Figure S414-380 

S418). In the little egret (Egretta garzetta), transcripts of lengths 212 and 203 are annotated 381 

and contain five exons. We found evidence of expression of COA1/MITRAC15 in blood 382 

tissue (Supplementary Figure S419-S420). Although the first exon has a lower level of 383 

expression than the last four exons, the consistent occurrence of the fifth exon across many 384 

species suggests it might be part of the untranslated region. We annotated and verified the 385 

expression of COA1/MITRAC15 in Phalacrocorax carbo, Phaethon lepturus, Opisthocomus 386 

hoazin, Leptosomus discolor (Supplementary Figure S421-S428). Eurypyga helias has an 387 

unverified transcript length of 121 aa. Hence, we screened the genome and RNA-seq data and 388 

found its transcript length is 139 aa (Supplementary Figure S429-S431). We verified the 389 

COA1/MITRAC15 gene expression using RNA-seq data in Strigops habroptilus as it had less 390 

than 100 percent RNA-seq coverage (Supplementary Figure S432-S433). We also 391 

examined the RNA-seq data from few other bird species to verify the COA1/MITRAC15 gene 392 

(see Supplementary Figure S434-S481). Bird species share this conserved gene order 393 

(Supplementary Figure S482). The Anolis lizard (Anolis carolinensis) liver also expresses 394 

the COA1/MITRAC15 gene (Supplementary Figure S483-S485). 395 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 10, 2021. ; https://doi.org/10.1101/2021.06.09.447812doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.09.447812
http://creativecommons.org/licenses/by/4.0/


11 

 

RNA-seq datasets from the European rabbit (Oryctolagus cuniculus) heart and liver showed 396 

no evidence of transcription of COA1/MITRAC15 (see Supplementary Figure S486-S489). 397 

In contrast to the rabbit, intact COA1/MITRAC15 gene is present in the Royle's pika 398 

(Ochotona roylei) and Daurian pika (Ochotona dauurica) with blood RNA-seq datasets 399 

showing robust expression (see Supplementary Figure S490). Screening of RNA-seq 400 

datasets from the root ganglion, spinal cord, ovary, liver, spleen, and testis in the naked mole-401 

rat (Heterocephalus glaber) revealed no transcription of COA1/MITRAC15 locus (see 402 

Supplementary Figure S491). The closely related Damaraland mole-rat (Fukomys 403 

damarensis) has robust COA1/MITRAC15 expression in the brain, liver, and testis (see 404 

Supplementary Figure S492-S497). The Brazilian guinea pig (Cavia aperea), the guinea pig 405 

(Cavia porcellus), and the long-tailed chinchilla (Chinchilla lanigera) were all found to 406 

express the COA1/MITRAC15 gene robustly (see Supplementary Figure S498-S505). The 407 

thirteen-lined ground squirrel (Ictidomys tridecemlineatus), the Arctic ground squirrel 408 

(Urocitellus parryii), the groundhog (Marmota monax), and the Himalayan marmot 409 

(Marmota himalayana) do not express the COA1/MITRAC15 locus (see Supplementary 410 

Figure S506-S520). In contrast to these species, the Eurasian red squirrel (Sciurus vulgaris) 411 

has an intact COA1/MITRAC15 expressed in the skin (see Supplementary Figure S521-412 

S522). Despite gene disrupting mutations, the North American beaver (Castor canadensis) 413 

COA1/MITRAC15 locus is expressed in the blood and spleen (see Supplementary Figure 414 

S523-S524). Other tissues such as the brain, liver, stomach, ovarian follicle, skeletal muscle, 415 

and kidney do not show any expression at the COA1/MITRAC15 locus (see Supplementary 416 

Figure S525-S530). The expressed transcript might represent a new long non-coding RNA 417 

that cannot produce a functional COA1/MITRAC15 protein due to the presence of premature 418 

stop codons. 419 

Chromosomal rearrangement in rodent species has resulted in the movement of genes 420 

flanking COA1/MITRAC15 to new locations. The BLVRA gene is transcriptionally active in 421 

the mouse (Mus musculus) liver and heart even though it has translocated to an entirely 422 

different location between AP4E1 and NCAPH (see Supplementary Figure S531). Genes on 423 

the left flank consisting of HECW1, PSMA2, and MRPL32 are now located beside ARID4B 424 

and are expressed in the mouse (see Supplementary Figure S532-S533). The genes from the 425 

right flank (MRPS24 and URGCP) are also transcriptionally active in the mouse at their new 426 

location beside ANKRD36 (see Supplementary Figure S534). Remnants of 427 

COA1/MITRAC15 occur between the PTPRF and HYI genes. However, no transcriptionally 428 

activity is seen in the mouse in the region between PTPRF and HYI genes (see 429 

Supplementary Figure S535). The new gene order and gene expression patterns are shared 430 

by rat (Rattus norvegicus) (see Supplementary Figure S536-S540), steppe mouse (Mus 431 

spicilegus) (see Supplementary Figure S541-S545), Gairdner's shrewmouse (Mus pahari) 432 

(see Supplementary Figure S546-S550), Ryukyu mouse (Mus caroli) (see Supplementary 433 

Figure S551-S555), Algerian mouse (Mus spretus) (see Supplementary Figure S556-S560), 434 

deer mouse (Peromyscus maniculatus) (see Supplementary Figure S561-S565), prairie vole 435 

(Microtus ochrogaster) (see Supplementary Figure S566-S570), golden hamster 436 

(Mesocricetus auratus) (see Supplementary Figure S571-S575), Mongolian gerbil or 437 

Mongolian jird (Meriones unguiculatus) (see Supplementary Figure S576-S579), Chinese 438 
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hamster (Cricetulus griseus) (see Supplementary Figure S580-S584), Northern Israeli blind 439 

subterranean mole rat (Nannospalax galili) (see Supplementary Figure S585-S589), white-440 

footed mouse (Peromyscus leucopus) (see Supplementary Figure S590-S594) and fat sand 441 

rat (Psammomys obesus) (see Supplementary Figure S595-S599). The banner-tailed 442 

kangaroo rat (Dipodomys spectabilis) (see Supplementary Figure S600-S601) has a 443 

different gene order and appears to represent one of the pre-EBR species. However, we 444 

cannot rule out the possibility of genome assembly errors. 445 

The genome assemblies of rodents such as the mouse and rat are well-curated and represent 446 

some of the highest-quality reference genomes (Rhie et al., 2021). To ensure that the 447 

chromosomal rearrangements identified are correct, we evaluated the correctness of genome 448 

assemblies of the mouse (see Supplementary Figure S602-S608) and white-footed mouse 449 

(Peromyscus leucopus) (see Supplementary Figure S609-S616) using PacBio long-read 450 

sequencing datasets. The mouse genome assembly has been finished to a very high quality 451 

using artificial clones of genome fragments (Osoegawa et al., 2000). We further verified the 452 

mouse genome assembly by visualizing the coverage of assembly fragments across the 453 

genomic regions of interest (see Supplementary Figure S618-S623). Repeat regions occur at 454 

the boundaries of the evolutionary breakpoint regions (see the last row of screenshots). 455 

Although repeat regions are a major contributing factor for the misassembly of genomes, the 456 

conserved gene orders across several species and concordance in the timing of the 457 

chromosomal rearrangement and support from long-read data support the presence of a 458 

genuine change in gene order. 459 

The COA1/MITRAC15 gene is intact and robustly expressed in the platypus 460 

(Ornithorhynchus anatinus) heart and brain (see Supplementary Figure S624-S627). Gene 461 

order in the short-beaked echidna (Tachyglossus aculeatus) matches the platypus and other 462 

outgroup species (see Supplementary Figure S628). In contrast to the monotreme species, 463 

all marsupial genomes analyzed have a different gene order following chromosomal 464 

rearrangements. The gray short-tailed opossum (Monodelphis domestica) has the gene 465 

ACVR2B beside the new location of right flank genes of COA1/MITRAC15. The left flank 466 

genes are beside GPR141B. No traces of the COA1/MITRAC15 gene are found either in the 467 

genome assembly or raw read datasets. The opossum brain expresses these adjacent genes 468 

with no transcripts in the intergenic regions (see Supplementary Figure S629-S631). The 469 

gene order and transcriptional activity were the same in the tammar wallaby (Notamacropus 470 

eugenii) (Uterus: see Supplementary Figure S632-S633), koala (Phascolarctos cinereus) 471 

(Liver and PBMC: see Supplementary Figure S634-S636), the Tasmanian devil 472 

(Sarcophilus harrisii) (Lung and Spleen: see Supplementary Figure S637-S639), and the 473 

common brushtail (Trichosurus vulpecula) (Liver: see Supplementary Figure S640-S642). 474 

Long-read sequencing data in the koala supports the correctness of genome assembly (see 475 

Supplementary Figure S643-S645). 476 

The NCBI annotation documents the presence of transcripts, and the COA1/MITRAC15 gene 477 

is remarkably well conserved in ungulate species (see Supplementary Table S1). Within 478 

ungulate species, certain Cervid species have remarkable sprinting abilities that allow them to 479 

escape from predators. However, in addition to sprinting ability, these species are resistant to 480 
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fatigue. Hence, the prediction from our hypothesis is that gene loss would not occur in Cervid 481 

species. The white-tailed deer (Odocoileus virginianus) liver and retropharyngeal lymph node 482 

and the red deer (Cervus elaphus) blood transcriptomes express COA1/MITRAC15 (see 483 

Supplementary Figure S646-S649).  484 

The COA1/MITRAC15 gene has undergone duplication within the primate lineage. We 485 

screened the genomes of 27 primate species to track down when the gene duplication event 486 

occurred. Based on the presence of the duplicate copies, the duplication event is estimated to 487 

have happened in the last 43 million years (see Supplementary Figure S650-S651). 488 

Subsequent duplications have also occurred in Nancy Ma's night monkey (Aotus nancymaae) 489 

and a shared duplication in the black-capped squirrel monkey (Saimiri boliviensis) and the 490 

Panamanian white-faced capuchin (Cebus imitator). Concurrent with the gene duplication, 491 

the intron-exon structure of the COA1/MITRAC15 gene has also changed (see 492 

Supplementary Figure S652). The functional copy of the COA1/MITRAC15 gene is 493 

transcriptionally active in the gray mouse lemur (Microcebus murinus) (Kidney and Lung: 494 

see Supplementary Figure S653-S654), the northern greater galago (Otolemur garnettii) 495 

(Liver: see Supplementary Figure S655), Coquerel's sifaka (Propithecus coquereli) (see 496 

Supplementary Figure S656), Nancy Ma's night monkey (Aotus nancymaae) (Liver, Heart, 497 

and Kidney: see Supplementary Figure S657-S659), the common marmoset (Callithrix 498 

jacchus) (Lung, Liver, and Kidney: see Supplementary Figure S660-S661), the Panamanian 499 

white-faced capuchin (Cebus imitator) (Blood: see Supplementary Figure S662-S664), the 500 

black-capped squirrel monkey (Saimiri boliviensis) (Ovary and Heart: see Supplementary 501 

Figure S665-S668), the sooty mangabey (Cercocebus atys) (Liver: see Supplementary 502 

Figure S669-S670), the olive baboon (Papio anubis) (Kidney and Heart: see Supplementary 503 

Figure S671-672), the crab-eating macaque (Macaca fascicularis) (Blood and Liver: see 504 

Supplementary Figure S673-S674), the golden snub-nosed monkey (Rhinopithecus 505 

roxellana) (Heart and Blood: see Supplementary Figure S675-S676), human (Homo 506 

sapiens) (Liver : see Supplementary Figure S677-S682) and the Philippine tarsier (Carlito 507 

syrichta) (see Supplementary Figure S683). 508 

The intron/exon structure of the COA1/MITRAC15 gene has undergone several changes in the 509 

carnivore lineage (see Supplementary Figure S684-S685). However, outgroup species such 510 

as the horse (Equus caballus) and pangolin (Manis javanica) lack intron/exon structure (see 511 

Supplementary Figure S686-S687). We screened the RNA-seq dataset of multiple carnivore 512 

species to validate the annotation and evaluate the intron/exon structure changes. Alternative 513 

exon usage was also carefully analyzed to quantify the transcriptional status of 514 

COA1/MITRAC15 in different carnivore species. The COA1/MITRAC15 gene is 515 

transcriptionally active in the meerkat (Suricata suricatta) (testis and liver: see 516 

Supplementary Figure S688-S690), dog (Canis lupus familiaris) (spleen and skeletal 517 

muscle: see Supplementary Figure S691-S702), ferret (Mustela putorius furo) (heart and 518 

kidney: see Supplementary Figure S703-S704), Giant panda (Ailuropoda melanoleuca) 519 

(heart and liver: see Supplementary Figure S705-S706), American black bear (Ursus 520 

americanus) (liver, kidney, and the brain: see Supplementary Figure S707-S708), and 521 

Weddell seal (Leptonychotes weddellii) (lung and muscle: see Supplementary Figure S709-522 
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S712). Detailed investigation of the splice junctions and actual positions of splice sites in dog 523 

transcriptome also supports the COA1/MITRAC15 gene annotation. 524 

Skipping of the dog-like-exon-3 occurs in the transcriptomes of tiger (Panthera tigris 525 

altaica), lion (Panthera leo persica), cat (Felis catus), and puma (Puma concolor) (see 526 

Supplementary Figure S713-S738). Although annotation for the COA1/MITRAC15 locus 527 

exists in the cheetah (Acinonyx jubatus), we found no transcripts in the skin RNA-seq data 528 

(see Supplementary Figure S739-S740). Close inspection of the COA1/MITRAC15 locus in 529 

cheetah suggests gene loss. We further compared the splice isoforms found in canine and 530 

felid species through sashimi plots of the COA1/MITRAC15 locus. The sashimi plot shows 531 

the links between the splice sites and the number of reads that are splice mapped between 532 

these sites (see Supplementary Figure S741-S745). Changes in the splice enhancers and 533 

splice silencer elements were also compared between cat and dog (see Supplementary 534 

Figure S746). 535 

Co-expressed genes tend to perform related functions and are lost together. Hence, to identify 536 

the loss of genes related to COA1/MITRAC15, we identified the top 50 genes co-expressed 537 

with human ortholog based on the correlation values in COXPRESdb ver. 7.3 (Obayashi et 538 

al., 2019). The presence of orthologs of these co-expressed genes in the high-quality genomes 539 

of chicken and mouse using ENSEMBL BioMart (Supplementary Table S7). None of these 540 

co-expressed genes appear lost in Galliformes or rodents.  541 

 542 

2.5 Molecular evolutionary analyses 543 

2.5.1 Relaxed selection signatures 544 

Molecular signatures of relaxation in the degree of purifying selection generally accompany 545 

the loss of gene functionality and have been used as evidence of gene loss (Hecker et al., 546 

2017; Sharma and Hiller, 2018; Shinde et al., 2019). Based on the gene sequence of 547 

COA1/MITRAC15, we could identify eleven Galliform species with gene-disrupting 548 

mutations (see Supplementary Table S8 and S9). Two other Galliform species 549 

(Chrysolophus pictus and Phasianus colchicus) do not express the COA1/MITRAC15 gene. 550 

Hence, we looked for signatures of relaxed selection in each of the terminal branches leading 551 

to each Galliform species. We quantified branch-specific selection patterns using the program 552 

RELAX (Wertheim et al., 2015) from the HyPhy package and the codeml program from the 553 

PAML (Yang, 2007) package. To test for relaxed selection in the terminal branches, we 554 

labeled the focal species as the foreground and used the Anseriformes species as the 555 

background species. We downloaded the phylogenetic tree with branch lengths from the 556 

TimeTree website. Although we found some evidence of relaxed selection in some of the 557 

Galliform species, the RELAX program also reported intensification of selection (see 558 

Supplementary Table S10). None of the internal branches were under relaxed selection.  559 

We used the same phylogenetic tree and multiple sequence alignment to obtain branch-560 

specific estimates of ω using the codeml program. The branch-specific estimates of ω are all 561 

greater than 1 in Odontophorus gujanensis, Coturnix japonica, Meleagris gallopavo, 562 
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Tympanuchus cupido, Pavo cristatus, Chrysolophus pictus, Phasianus colchicus, and Numida 563 

meleagris. In the case of Galliform species (Alectura lathami, Callipepla squamata, and 564 

Penelope pileata) with intact COA1/MITRAC15 gene, the values of ω are all less than 1. 565 

Except for chicken (Gallus gallus), species with gene-disrupting changes are not under 566 

purifying selection (see Supplementary Table S10 and S11). We evaluated the internal 567 

nodes leading to the terminal branches for signatures of relaxed selection to ascertain whether 568 

gene loss had occurred in the common ancestor of the Galliform species with gene-disrupting 569 

mutations. However, all the ancestral branches appear to be under purifying selection and 570 

support the idea of recurrent lineage-specific gene loss suggested by the lineage-specific gene 571 

disrupting mutations seen in the Galliform species. Based on this branch-by-branch analysis 572 

of selection signatures, we could identify the approximate time frame in which gene loss 573 

might have occurred. To get a more accurate estimate of the gene loss timing, we used the 574 

method described by (Meredith et al., 2009). 575 

We relied upon multiple sequence alignments of carnivores (see Supplementary Table S12), 576 

rodents (see Supplementary Table S13), and primates (see Supplementary Table S14) to 577 

identify gene disrupting mutations and changes in intron-exon structure. We evaluated each 578 

taxonomic group for lineage-specific relaxed selection (see Supplementary Table S15). 579 

Based on previous reports (Van Der Lee et al., 2017) of positive selection in primates, we 580 

additionally identified positively selected sites among primate species (see Supplementary 581 

Table S16).  582 

2.5.2 Time of gene loss 583 

Different ω values were estimated for both of these labels (see Supplementary Table S17). 584 

The ω values for mixed(ωm) and functional(ωf) branches were estimated using two different 585 

codon substitution models (F1X4 and F3X4) to ensure the robustness of the estimates. The 586 

calculation of gene loss timing relies upon estimates of Tp (time for which the gene has been 587 

pseudogenic) using the method proposed by Meredith et al. (2009) by considering ωp as 1. 588 

Based on the assumptions of 1ds and 2ds, we could get a confidence interval for the 589 

estimated time of gene loss (see Supplementary Table S17). Gene loss timing was estimated 590 

separately in rodents and carnivores (see Supplementary Table S17).  591 

2.5.3 GC content range and kmer abundance 592 

The GC content range (minimum and maximum possible values of GC% for a given amino 593 

acid sequence) was calculated (see Supplementary Table S18) for COA1/MITRAC15 and 594 

PDX1 amino acid sequences in rodent and primate species using the window-based tool 595 

CodSeqGen (Al-Ssulami et al., 2020). The ContMap function in the R package phytools 596 

extrapolates the evolution of GC content along the phylogeny for both genes (see 597 

Supplementary Figure S747-S749). The program jellyfish (v2.2.8) (Marçais and Kingsford, 598 

2011) was used to get the kmers (count command with the flags -C -m 21 -s 1000M and -t 599 

16) and their abundance (dump command). The seqkit fx2tab (v0.10.1) (Shen et al., 2016) 600 

option calculated the abundance of kmers at different GC content bins and the GC content of 601 

each of the COA1/MITRAC15 gene exons (see Supplementary Table S19). 602 
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2.5.4 Quantification of gBGC 603 

We calculated the (gBGC) for COA1/MITRAC15 gene sequences of more than 200 species 604 

using the program mapNH(v1.3.0) implemented in the testNH package (Dutheil, 2008). In 605 

mapNH, we used multiple sequence alignments of the COA1/MITRAC15 gene and species 606 

tree as input with the flag model=K80. A single gene-wide estimate of gBGC termed GC* is 607 

obtained for each species (see Supplementary Table S20). These estimates of GC* (GC* > 608 

0.9 is significant) help understand the evolution of gBGC along the phylogeny using the 609 

ContMap function of the phytools package. Additionally, we also calculated the gBGC for 610 

taxonomic group-wise alignments using the programs phastBias and phyloFit implemented in 611 

the PHAST (v1.3) package (Capra et al., 2013; Hubisz et al., 2011). In the first step, we use 612 

the phyloFit program to fit phylogenetic models to multiple sequence alignments using the 613 

specified tree topology (--tree flag with species tree as argument) and substitution model (--614 

subst-mod flag with HKY85 model as argument). Next, the phastBias program with the –bgc 615 

flag identified gBGC tracts using the ".mod" file output from phyloFit (see Supplementary 616 

Table S21, see Supplementary Figure S750-S778). The gBGC tracts are positions along the 617 

gene with posterior probability >0.5. 618 

2.5.5 Computational prediction of RNA binding sites 619 

The regulation of gene expression and splicing tends to be determined by the RNA binding 620 

sites present within the exons or introns of a gene (Fu and Ares, 2014). A combination of 621 

such splice enhancers and splice silencer elements work in concert to facilitate the expression 622 

of different isoforms (Dassi, 2017). The COA1/MITRAC15 gene has changed the intron-exon 623 

organization and has acquired novel splice isoforms in felid species. These changes in 624 

splicing could result from changes in the RNA binding motifs present within the exons or 625 

introns of the gene. In contrast to felids, the splicing pattern in canid species matches the 626 

ancestral state. Hence, we compared the COA1/MITRAC15 gene sequences of canid and felid 627 

species to identify differences in the RNA binding motifs. We used the RBPmap (Paz et al., 628 

2014) webserver to predict the RNA binding sites in each exon and intron separately (see 629 

Supplementary Table S22).  630 

3. Results 631 

3.1 COA1/MITRAC15 is a distant homolog of TIMM21 632 

We identified that the TIMM21 gene is a distant homolog of COA1/MITRAC15 based on PSI-633 

Blast and HHblits iterative profile-profile search of the uniport database. Of the 500 top 634 

search results from HHblits, 59 have annotation as "Cytochrome C oxidase assembly factor" 635 

or "Cytochrome C oxidase assembly protein" or "COA1", and 120 as "TIMM21" homologs. 636 

The annotation of 13 proteins are "hypothetical", nine are "membrane" proteins, eight are 637 

"DUF1783 domain-containing" proteins, and 27 proteins are from diverse proteins. The 638 

remaining 264 of the 500 hits are "Uncharacterized". The large number of "Uncharacterized" 639 

proteins identified are challenging to interpret. Hence, to trace the relationships between the 640 

proteins identified as homologs of COA1/MITRAC15, we investigated the sequence identity-641 

based clusters established by CLANS (see Fig. 1A). The large group of red dots consists of 642 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 10, 2021. ; https://doi.org/10.1101/2021.06.09.447812doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.09.447812
http://creativecommons.org/licenses/by/4.0/


17 

 

proteins annotated as TIMM21, and the collection of blue dots contains proteins annotated as 643 

COA1/MITRAC15. Homologs of COA1/MITRAC15 from bacterial species form two clusters, 644 

a distinct light blue cluster consisting of predominantly Planctomycetes bacteria and a diffuse 645 

bunch of brown dots that consists of largely proteobacterial species. The group of orange dots 646 

consists of proteins annotated as COA1/MITRAC15 in fungal genomes. The 647 

COA1/MITRAC15 homologs in plants consist of a yellow cluster consisting of Arabidopsis 648 

thaliana homolog At2g20390 and the magenta cluster of TIMM21-like proteins containing 649 

Arabidopsis thaliana homolog At2g37940. The distinct COA1/MITRAC15 and TIMM21 650 

groups found by the cluster analysis suggest that TIMM21 is a very distant homolog of 651 

COA1/MITRAC15. 652 

The list of proteins identified as homologs of human COA1/MITRAC15 (Supplementary 653 

File S2-S3) and primate COA1/MITRAC15 orthologs (Supplementary File S4) contain 654 

several TIMM21 like proteins. Iterative PSI-BLAST search identified TIMM21 homologs 655 

from the second iteration onwards and found an increasing number of TIMM21 hits in each 656 

subsequent iteration (see Supplementary File S5). The pairwise alignment of the human 657 

COA1/MITRAC15 protein sequence with the TIMM21 protein with the best alignment (i.e., 658 

TIMM21 from Amblyomma cajennenseis) shows that regions with the most substantial 659 

homology include the membrane-spanning domain and covers >100 residues (see Fig. 1B). 660 

In addition to the primary sequence-homology detected, both TIMM21 and COA1/MITRAC15 661 

are known to play prominent roles in the mitochondria and have comparable secondary 662 

structures (see Fig. 1C, 1D). The strong homology between these proteins also allows for 663 

homology-based modeling of the tertiary structure of the COA1/MITRAC15 protein using 664 

TIMM21 as a model (see Supplementary Figure S779-S783). Despite the lack of well-665 

conserved motifs, we found three well-matching columns (marked with a '|' sign in Fig. 1B) 666 

between residues 91 to 95 in COA1/MITRAC15. Two consecutive conserved residues occur 667 

at residues 57-58, 64-65, and 67-68 of COA1/MITRAC15. The similar sequence, structure, 668 

and function of COA1/MITRAC15 and TIMM21 strongly support that these genes are 669 

homologs. 670 

3.2 COA1/MITRAC15 gene duplication, pseudogenisation, and exon reorganization 671 

The sequence divergence between COA1/MITRAC15 and TIMM21 appears to result from 672 

changes in the COA1/MITRAC15 gene intron/exon organization. The COA1/MITRAC15 gene 673 

has undergone independent gene duplications followed by pseudogenisation and degeneration 674 

of the duplicated copy in both primates and carnivores. Consequently, the functional and 675 

pseudogene copies of COA1/MITRAC15 have diverged considerably and formed distinct 676 

haplotypes. For example, the blast search of sequencing raw read data from the human 677 

genome with COA1/MITRAC15 gene sequence as a query results in two distinct haplotypes. 678 

One set of reads correspond to the intact COA1/MITRAC15 gene in humans, and the other set 679 

of reads are from the pseudogenic copy (see Fig. 2A). Comparative analysis of primate 680 

genome assemblies suggests that the pseudogenic copy results from a duplication of 681 

COA1/MITRAC15 within the primate lineage (see Supplementary Figure S651). After 682 

duplication of the COA1/MITRAC15 gene in primates, an extension of the N-terminal region 683 

has occurred in Cercopithecidae and Catarrhini and is transcriptionally active (see 684 
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Supplementary Figure S652). However, new world monkeys do not have this N-terminal 685 

extension denoted as exon-1a. Both Cercopithecidae and Catarrhini have an additional start 686 

codon in exon-1a upstream from the original start codon in the ancestral exon-1 denoted as 687 

exon-1b in species with N-terminal extension. A striking difference between Cercopithecidae 688 

and Catarrhini is the lack of the internal start codon in Cercopithecidae, where Catarrhini has 689 

a start codon. Since proteome level data is not available for these species, we rely solely on 690 

the RNA-seq datasets and start and stop codons within the expressed transcripts to evaluate 691 

the exon/intron structure changes. Using these carefully annotated primate sequences of 692 

COA1/MITRAC15, we verified (see Supplementary Table S16) a previous report (Van Der 693 

Lee et al., 2017) of positive selection in this gene among primates.  694 

Independent duplication of COA1/MITRAC15 has occurred in carnivores (see 695 

Supplementary Figure S685). However, similar to primates, the duplicated copy has 696 

undergone pseudogenization and diverged from the functional gene sequence. For example, 697 

sequencing raw read data in the tiger consist of two distinct haplotypes corresponding to the 698 

intact and pseudogene copies (see Fig. 2B). While the intact copy is located at a genomic 699 

region (STK17A & HECW1 upstream and BLVRA & VOPP1 downstream) with conserved 700 

synteny across other mammals, the pseudogene copy occurs adjacent to the PRR32 gene. 701 

Outgroup species such as horse (Equus caballus) and pangolin (Manis javanica) have a 702 

single copy of the COA1/MITRAC15 gene with all raw reads supporting a single haplotype 703 

(see Supplementary Figure S686). Both sub-orders (Caniformia and Feliformia) within 704 

Carnivora share this duplication of the COA1/MITRAC15 gene (see Supplementary Figure 705 

S685).  706 

The intact COA1/MITRAC15 copy is expressed in diverse transcriptomes among Caniformia 707 

species, while the pseudogene copy lacks expression. The first and second exons are 708 

orthologous; however, the genomic location of the transcribed third exon is different between 709 

Feliformia (cat-like-exon-3) and Caniformia species (dog-like-exon-3) (see Fig. 3). The final 710 

exon of the COA1/MITRAC15 gene in Feliformia extends to 163 base pairs (Panthera tigris 711 

altaica, Panthera leo, Panthera pardus, and Lynx lynx) and 160 base pairs (Puma concolor 712 

and Felis catus) compared to the 100 base pairs in Caniformia species. A single deletion 713 

event causes the difference of three base pairs between these two groups of Feliformia at the 714 

24th base of exon-4. The extended final exon shared by all Feliformia species results from a 715 

two-base frameshift deletion before the erstwhile stop codon in exon-4. Despite the extended 716 

last exon in Feliformia species, the full-length open reading frames of Feliformia (130/131 717 

amino acids) and Caniformia (135 amino acids) are comparable.  718 

The shorter reading frame in Feliformia results from the majority of COA1/MITRAC15 719 

transcripts skipping the dog-like-exon-3, whose inclusion results in premature stop codons in 720 

all the seven Feliformia species. The dog-like-exon-3 is present in all COA1/MITRAC15 721 

transcripts of Caniformia species and does not contain gene-disrupting changes. A single base 722 

deletion in all Feliformia species changes the end phase of exon-2 to maintain an intact 723 

reading frame while skipping the dog-like-exon-3. Transcriptomes of the cat (Felis catus) 724 

from the spleen (see Supplementary Figure S744) and puma (Puma concolor) from blood 725 

(see Supplementary Figure S745) exhibit expression of a proto cat-like-exon-3 which gets 726 
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spliced into some of the COA1/MITRAC15 transcripts. However, the majority of transcripts 727 

skip this proto cat-like-exon-3 which contains premature stop codons. These changes in exon 728 

splicing patterns between Caniformia and Feliformia species appear to result from changes in 729 

splice factor binding sites at the COA1/MITRAC15 locus (see Supplementary Figure S746).  730 

Except for the cheetah (Acinonyx jubatus), intact transcribed open reading frames are 731 

discernible in all carnivore species at the COA1/MITRAC15 locus identified based on 732 

conserved synteny across mammals (see Fig. 3). The gene disrupting premature stop codon in 733 

the cheetah is due to a single base C->T substitution at the 27th base of exon-2 assembled at 734 

the COA1/MITRAC15 locus. The duplicated copy of COA1/MITRAC15 also contains a 735 

premature stop codon at the 49th base of exon-2 caused by a single base insertion at the 11th 736 

base of exon-2. The COA1/MITRAC15 gene transcripts are missing in the skin transcriptome 737 

of the cheetah. Hence, multiple lines of evidence support COA1/MITRAC15 gene loss in the 738 

cheetah. Gene loss in the cheetah occurred between 2.98-3 MYA (Supplementary Table 739 

S17).  740 

 741 

In contrast to primates and carnivores, reads support multiple haplotypes of 742 

COA1/MITRAC15 only in the second exon of naked mole-rat (see Fig. 2C). Hence, the 743 

duplicated copy of COA1/MITRAC15 in naked mole-rat appears to have mostly degraded. 744 

However, we cannot rule out the possibility that the reads from other haplotypes spanning the 745 

remaining three exons are missing due to high GC content. The sequencing reads support the 746 

presence of a single intact open reading frame in the red squirrel (see Fig. 2D) and platypus 747 

(see Fig. 2E). Although a single haplotype occurs in the raw read dataset of chicken, this 748 

haplotype has gene-disrupting changes (see Fig. 2F). The gene-disrupting modifications 749 

identified in the chicken COA1/MITRAC15 gene were investigated further by screening long-750 

read datasets, transcriptomes, and genomes of various Galliform species.  751 

3.3 COA1/MITRAC15 gene loss in Galliform species 752 

We found evidence of eight independent gene-disruption events in the COA1/MITRAC15 753 

gene in the galliform group (see Fig. 4A). The chicken (Gallus gallus) and Amazonian wood 754 

quail (Odontophorus gujanensis) have single-base G to T substitutions at the 69th base of 755 

exon-2 and the 72nd base of exon-4 in the COA1/MITRAC15 gene, respectively (see 756 

Supplementary Table S9). These substitutions lead to (GAA→TAA) premature stop 757 

codons. Gene loss of COA1/MITRAC15 is estimated to have occurred between 23 MYA and 758 

29 MYA in chicken and between 17 MYA and 18 MYA in the Amazonian wood quail (see 759 

Supplementary Table S9 and S17). In the Indian peafowl (Pavo cristatus), two single-base 760 

deletions, one at 37th base of exon-1 and another at 31st base of exon-4, result in premature 761 

stop codons in exons 2, 3, and 4. The gene disrupting mutations identified in the Indian 762 

peafowl (Pavo cristatus) also occur in the green peafowl (Pavo muticus). Loss of the 763 

COA1/MITRAC15 gene is estimated to have occurred between 20 MYA and 29 MYA in the 764 

peafowls (see Supplementary Table S17). The exon-2 of Pinnated grouse (Tympanuchus 765 

cupido) and Helmeted guineafowl (Numida Meleagris) have independent 13 and 17 base 766 
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deletions. Changes in the reading frame resulting from these deletions lead to several 767 

premature stop codons (see Supplementary Table S9). The 13-base deletion in the exon-2 of 768 

the Pinnated Grouse (Tympanuchus cupido) also occurs in Gunnison grouse (Centrocercus 769 

minimus), Rock ptarmigan (Lagopus muta), and the black grouse (Lyrurus tetrix). The 770 

estimated time of gene loss in these four species is between 18 MYA and 20 MYA, and for 771 

Helmeted guineafowl, it is between 39 MYA and 40 MYA (see Supplementary Table S17). 772 

 773 

In Turkey (Meleagris gallopavo), a two-base substitution at bases 7 & 8 and a single base 774 

deletion at the 37th base of exon-2 result in a frameshift in the COA1/MITRAC15 gene leading 775 

to premature stop codons. Gene loss in Turkey is estimated to have occurred between 14 776 

MYA and 18 MYA. Two closely spaced single base substitutions (AAC→TAA) at 48th and 777 

50th positions of exon-2 result in a premature stop codon in the Japanese quail (Coturnix 778 

japonica). The time of gene loss in the Japanese quail is estimated between 35 MYA and 36 779 

MYA (see Supplementary Table S17). The Mikado pheasant (Syrmaticus mikado) has an 11-780 

base deletion in exon-4, and the time of gene loss is between 14 MYA and 16 MYA. Other 781 

Galliform species such as Australian brushturkey (Alectura lathami), Blue quail (Callipepla 782 

squamata), Ring-necked pheasant (Phasianus colchicus), Golden pheasant (Chrysolophus 783 

pictus), and White-crested guan (Penelope pileata) have intact COA1/MITRAC15 coding 784 

sequences. The coding region is intact in outgroup species such as Swan goose (Anser 785 

cygnoides), Duck (Anas platyrhynchos), and Magpie goose (Anseranas semipalmata). Five 786 

genes upstream (BLVRA, VOPP1, LANCL2, EGFR, and SEC61G) and downstream (STK17A, 787 

HECW1, MRPL32, PSMA2, and C7orf25) from COA1/MITRAC15 retain a conserved order in 788 

birds. We relied upon this conserved order to verify the 1 to 1 orthology of the 789 

COA1/MITRAC15 gene across species (see Fig. 4B). 790 

 791 

Signatures of relaxed selection in Galliform species with gene disrupting changes further 792 

support the loss of COA1/MITRAC15 in these lineages (see Supplementary Table S10). 793 

Despite intact coding regions, the Ring-necked pheasant (Phasianus colchicus) and Golden 794 

pheasant (Chrysolophus pictus) COA1/MITRAC15 sequences also have signatures of relaxed 795 

selection (see Supplementary Table S10). None of the four tissues (Brain, Spleen, Liver, and 796 

Gonad) for which RNA-seq data is available from the Ring-necked pheasant shows any 797 

COA1/MITRAC15 transcripts. Similarly, the one tissue (Skin) for which RNA-seq data is 798 

available in the Golden pheasant (Chrysolophus pictus) does not show COA1/MITRAC15 799 

expression. To evaluate the relevance of the gene disrupting mutations and signatures of 800 

relaxed selection identified in galliform species, the transcriptomes of Galloanserae species 801 

were screened to assess the transcriptional status of COA1/MITRAC15. We evaluated RNA-802 

seq datasets of several comparable tissues across species and found the COA1/MITRAC15 803 

gene is not transcribed in chicken despite screening more than 20 tissues (see Fig. 4C). Other 804 

Galloanserae species have RNA-seq data available for very few tissues. We evaluated the 805 

RNA-seq datasets from six tissues (Brain, Spleen, Skin, Liver, Gonad, and Blood) available 806 

in several species for the presence of COA1/MITRAC15 transcripts. Our search consistently 807 

revealed transcription of COA1/MITRAC15 gene in Anseriformes species in contrast to lack 808 
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of transcription in Galliform species except for Australian brushturkey (Alectura lathami) and 809 

northern bobwhite (Colinus virginianus), which have intact COA1/MITRAC15 gene that is 810 

under strong purifying selection (see Fig. 4C). The lack of gene expression and signatures of 811 

relaxed selection in the Ring-necked pheasant (Phasianus colchicus) and Golden pheasant 812 

(Chrysolophus pictus) suggests gene loss. The putative gene loss in both these species 813 

occurred between 12 MYA and 13 MYA. 814 

  815 

3.4 Complete erosion of COA1/MITRAC15 locus is challenging to prove 816 

Search for the COA1/MITRAC15 gene in the mammoth genome demonstrated striking 817 

heterogeneity in coverage of the four exons based on the Illumina ancient DNA sequencing 818 

datasets analyzed (see Fig. 5A-F). Despite having comparable genome-wide coverage, we 819 

could see that not all exons occur in all the datasets. For instance, the re-sequencing dataset 820 

from PRJEB29510 (162 Gb) does not have reads from any of the four COA1/MITRAC15 821 

exons. However, the datasets from PRJEB7929 (88.34 Gb) and PRJNA397140 (155 Gb) 822 

have reads covering three exons each despite having much lower genome-wide coverage. The 823 

third exon of COA1/MITRAC15 was also missing or had fewer reads than the other three 824 

exons in most of the datasets. The dataset from PRJEB42269 had no reads from the first exon 825 

but had a few reads from exons three and four. We reasoned that this heterogeneity in the 826 

coverage of various COA1/MITRAC15 exons was mainly a result of the well-established 827 

sequencing bias of Illumina that results in inadequate coverage of GC-rich regions (Chen et 828 

al., 2013). Quantification of GC content in each of the four COA1/MITRAC15 exons and 829 

kmer abundance in different GC content bins in each of the mammoth Illumina re-sequencing 830 

datasets explains most of the heterogeneity in coverage between datasets as well as exons 831 

(see Fig. 5G). In contrast to the COA1/MITRAC15 gene, we did not see heterogeneity in the 832 

sequencing coverage of TIMM21 exons despite comparable GC content for some of the exons 833 

(see Fig. 5G and Supplementary Figure S784-S791). 834 

The heterogeneity in sequencing coverage of COA1/MITRAC15 exons demonstrates the 835 

challenges of detecting its presence in Illumina sequencing datasets. GC-biased gene 836 

conversion (gBGC) plays a defining role in the base composition for any particular gene or 837 

genomic region. It preferentially fixes GC in AT/GC heterozygotes and increases the GC 838 

content. The GC content of the COA1/MITRAC15 exons can be driven to extreme values by 839 

gBGC. The magnitude of gBGC also varies across the genome within a species as well as 840 

between species. Therefore, COA1/MITRAC15 orthologs from closely related species or even 841 

duplicated copies of COA1/MITRAC15 within the same species can have very different GC 842 

content. Such differences in GC content can result in correspondingly different coverage of 843 

the gene sequence in Illumina data and masquerade as a gene loss event (Botero-Castro et al., 844 

2017; Hargreaves et al., 2017).  845 

A well-known example for high GC content impeding sequencing is the gene PDX1, which 846 

has striking differences in GC content between closely related rodent species and requires 847 

dedicated GC-rich DNA enrichment protocols for sequencing. We contrasted 848 

COA1/MITRAC15 with the PDX1 genes of rodents by comparing the minimum (see 849 
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Supplementary Table S20) and maximum (see Supplementary Table S20) GC contents 850 

possible given their amino acid sequence. Although COA1/MITRAC15 had lower GC content 851 

levels than PDX1, we could not rule out the possibility of gBGC affecting some of the exons. 852 

The values of GC* across more than 200 vertebrate species with intact COA1/MITRAC15 853 

reading frames suggested considerable heterogeneity between taxa (see Supplementary 854 

Figure S749). In each taxonomic group, the prevalence of gBGC was separately quantified 855 

(see Supplementary Figure S750-S772). Strong patterns of gBGC occur in the 856 

COA1/MITRAC15 sequence of several species (see Supplementary Figure S750-S772: 857 

elephant (Loxodonta africana), kagu (Rhynochetus jubatus), blue-crowned manakin 858 

(Lepidothrix coronata), Chilean tinamou (Nothoprocta perdicaria), American black bear 859 

(Ursus americanus), North American river otter (Lontra canadensis), meerkat (Suricata  860 

suricatta), California sea lion (Zalophus californianus), little brown bat (Myotis lucifugus), 861 

large flying fox (Pteropus vampyrus), southern pig-tailed macaque (Macaca nemestrina), 862 

Brazilian guinea pig (Cavia aperea), sheep (Ovis aries), eastern brown snake (Pseudonaja 863 

textilis) and the Goode's thornscrub tortoise (Gopherus evgoodei)). However, none of the 864 

rodent species with intact COA1/MITRAC15 show any striking gBGC patterns. The GC 865 

content vs. kmer abundance plots of Pacbio, BGI-seq, and Illumina datasets spans the entire 866 

range of GC contents seen in COA1/MITRAC15 exons (see Supplementary Figure S775). 867 

Since the GC content of individual COA1/MITRAC15 exons differs between species groups 868 

(see Supplementary Figure S775-S778), the high GC content of certain regions might result 869 

in inadequate sequencing coverage of the COA1/MITRAC15 gene in some species. Hence, the 870 

lack of sequencing reads covering COA1/MITRAC15 cannot serve as definitive evidence of 871 

gene loss. 872 

3.5 COA1/MITRAC15 occurs in an evolutionary breakpoint region 873 

We find evidence of COA1/MITRAC15 gene disrupting mutations and lack of gene 874 

expression in multiple RNA-seq datasets despite a conserved gene order in the rabbit 875 

(Oryctolagus cuniculus), naked mole-rat (Heterocephalus glaber), and four Sciuridae species 876 

(Urocitellus parryii, Spermophilus dauricus, Ictidomys tridecemlineatus, Marmota marmota 877 

marmota).  The gene disrupting mutations identified in the rabbit COA1/MITRAC15 gene 878 

includes a two-base pair deletion at the 22nd codon of exon-1 and single base pair deletions in 879 

exon-2 at the 13th and 37th codons. Gene disrupting changes in the third exon consist of a 880 

five-base insertion between the 11th and 12th codon, one base insertion at the 17th codon, and 881 

one base deletion in the 23rd codon (see Fig. 6 and Supplementary Table S13). These six 882 

gene-disrupting changes result in premature stop codons in exon-2 and exon-4. Gene loss in 883 

the rabbit is estimated to have occurred between 12 MYA and 17 MYA (see Fig. 6 and 884 

Supplementary Table S17). The lack of COA1/MITRAC15 RNA-seq reads in tissues such as 885 

the brain, liver, and testis that express COA1/MITRAC15 in closely related species supports 886 

the loss of the COA1/MITRAC15 gene in the naked mole-rat. Besides the lack of a start 887 

codon, a single gene disrupting mutation is found in the naked mole-rat COA1/MITRAC15 888 

gene and consists of a single base deletion at the 21st codon of exon-1. Gene loss in the naked 889 

mole-rat is estimated between 7 MYA and 11 MYA (see Supplementary Table S17 and Fig. 890 

6).  891 
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The presence of common gene disrupting changes such as a one base pair insertion at second 892 

codon of exon-1, two base pair insertion at 25th codon of exon-2, seven base pair deletion 893 

between 25th and 26th codon of exon-4, and a 2-base insertion at 33rd codon of exon-4 894 

supports a shared gene loss in four Sciuridae species (Urocitellus parryii, Spermophilus 895 

dauricus, Ictidomys tridecemlineatus, Marmota marmota marmota). The COA1/MITRAC15 896 

gene of alpine marmot has additional gene disrupting changes consisting of a 2-base insertion 897 

between the 8th and 9th codon of exon-1 and a single nucleotide substitution at the 26th codon 898 

of exon-2. The 2-base insertion at the 33rd codon of exon-4 has extended to a five-base pair 899 

insertion in the Daurian ground squirrel (Spermophilus dauricus). The estimated time of gene 900 

loss for this shared event is between 10 MYA and 30 MYA (see Supplementary Table S17 901 

and Fig. 6).  902 

The presence of intact open reading frames robustly expressed at syntenic locations in closely 903 

related (~30 to 50 million years) species strongly supports at least three independent 904 

COA1/MITRAC15 gene loss events (see Fig. 6). Multiple gene-disrupting mutations in the 905 

COA1/MITRAC15 gene of the North American beaver (Castor canadensis) suggest a fourth 906 

independent gene loss event. Gene-disrupting mutations in the beaver result in at least two 907 

premature stop codons. In the first exon, single-base deletions occur in the 3rd and 20th codon, 908 

a four-base insertion occurs between 33rd and 34th codon. The second exon has a single-base 909 

deletion in the 33rd codon and a seven-base pair deletion between 29th and 30th codons. A 910 

single base deletion occurs at the 12th codon of exon-3 (see Supplementary Table S13 and 911 

Fig. 6). The genome assembly of the North American beaver is fragmented, and the synteny 912 

of the flanking regions cannot be verified. The Illumina sequencing raw reads support the 913 

gene disrupting mutations identified in the genome assembly (Supplementary File S1), and 914 

duplicate copies don't occur. The loss of the COA1/MITRAC15 gene in the beaver is 915 

estimated to have occurred sometime between 3 MYA and 23 MYA (see Supplementary 916 

Table S17 and Fig. 6).  917 

The North American beaver is phylogenetically closely related to the Ord's kangaroo rat 918 

(Dipodomys ordii) and the lesser Egyptian jerboa (Jaculus jaculus). The more contiguous 919 

genome assemblies of the jerboa and kangaroo rat allow verification of a conserved gene 920 

order likely to be shared by the North American beaver (see Fig. 6). The presence of 921 

repetitive elements and lack of long-read sequencing data in most rodent species prevents 922 

genome assembly verification. Hence, we have screened the genomes of several closely 923 

related rodent species and verified the genome assemblies using long-read sequencing data or 924 

cloned fragments that cover parts of the genome. Gaps in the genome assembly also hamper 925 

the identification of the correct gene order. Previous reports that examined genome 926 

assemblies and EST data have claimed loss of the STK17A gene in mice due to a 927 

chromosomal rearrangement spanning this genomic region (Fitzgerald and Bateman, 2004). 928 

Detailed examination of gene order flanking the COA1/MITRAC15 locus in several rodent 929 

genomes revealed the occurrence of this previously reported chromosomal rearrangement 930 

event (see Fig. 6).  931 

Identifying gene loss events coinciding with EBRs is notoriously challenging and has 932 

motivated nuanced inferences in both bird (Botero-Castro et al., 2017) and rodent species 933 
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(Hargreaves et al., 2017). Nonetheless, more than a dozen rodent species share the putative 934 

combined loss of STK17A and COA1/MITRAC15 (see Fig. 6). Based on the presence of 935 

adjacent genes, the rearranged regions could be tracked down to two different chromosomes 936 

(see Fig. 6, O6, and O9). Genes on the left flank of STK17A-COA1-BLVRA consist of 937 

PSMA2, MRPL32, and HECW1 in gene orders O1 to O5. After the chromosomal 938 

rearrangement, the same sequence of genes can be found in gene order O9 and occur adjacent 939 

to ARID4B and GGPS1. Genes on the right flank of STK17A-COA1-BLVRA consist of 940 

MRPS24, URGCP, and UBE2D4 in gene order O4. Several other gene orders (O1 to O5) 941 

occur on the right flank in various species. The sequence of genes found on the right flank in 942 

gene order O4 is also found sequentially in gene order O6 and occurs adjacent to ANKRD36 943 

and CCDC117 after the chromosomal rearrangement.  944 

We found that the BLVRA gene has translocated to an entirely new location and does not co-945 

occur with either the left or right flank. However, the new location of the BLVRA gene 946 

between the NCAPH and ITPRIPL1 genes on the left flank and AP4E1 and SPPL2A genes on 947 

the right flank is consistently conserved across all 14 post-EBR species and corresponds to 948 

gene order O7. Both COA1/MITRAC15 and STK17A are missing in the post-EBR rodent 949 

genome assemblies. The search of the genome assemblies, sequencing raw read datasets, and 950 

RNA-seq datasets also failed to find any evidence of an intact COA1/MITRAC15 or STK17A 951 

gene. All raw read and genome assembly hits for STK17A while using queries from pre-EBR 952 

rodent genomes could be traced back to the STK17B gene that matches with the STK17A gene 953 

at a short sequence stretch. The STK17A gene is lost or has sequence properties that prevent it 954 

from being sequenced with currently available technologies. The exon-1 region of 955 

COA1/MITRAC15 occurs in a gene desert region between PTPRF and HYI genes in post-956 

EBR species. Using blast search of COA1/MITRAC15 introns, we found strong support for 957 

the existence of COA1/MITRAC15 intron-2 close to the exon-1 hit. Pairwise genome 958 

alignments provide support for the presence of COA1/MITRAC15 gene remains at this 959 

location (see Supplementary File S6).  Notably, the COA1/MITRAC15 remnants of a 960 

truncated exon-1 and intron-2 occur in the gene desert located between PTPRF and HYI 961 

genes only in post-EBR species. None of the pre-EBR species had any such remains. Hence, 962 

the COA1/MITRAC15 remnants between PTPRF and HYI genes are unlikely to have resulted 963 

from duplicated copies of COA1/MITRAC15. The synteny of this region is well conserved 964 

with KDM4A and PTPRF on the left flank and HYI and SZT2 on the right side and 965 

corresponds to gene order O8. Careful examination of this region in RNA-seq datasets found 966 

no evidence of transcripts. 967 

Comparison of gene order in marsupial species with various outgroup species (including the 968 

platypus and short-beaked echidna from the order Monotremata) identified the presence of an 969 

independent chromosomal rearrangement event spanning the COA1/MITRAC15 locus (see 970 

Fig. 7). In contrast to the rodent-specific EBR, we found that the STK17A gene is intact in 971 

post-EBR (gene order O2 and O3 in Fig. 7) marsupial species. However, an extensive search 972 

of marsupial genomes, transcriptomes, and raw sequencing read datasets (including high 973 

coverage Pacbio datasets for the Koala) failed to find any evidence of COA1/MITRAC15 974 

orthologs or its remnants. Lack of sequencing reads from COA1/MITRAC15 in marsupial 975 
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species suggests either complete erosion of the gene or drastic change in sequence 976 

composition that eludes sequencing with currently available technologies.  977 

4. Discussion 978 

Our search of the sequence databases identified that COA1/MITRAC15 and TIMM21 are 979 

distant homologs with representative genes found in animals, plants, and fungi. The 980 

occurrence of COA1/MITRAC15 homologs in α-proteobacteria supports an ancestral role for 981 

these genes (Kurland and Andersson, 2000). Endosymbiotic theories explain the origin of 982 

eukaryotes and their mitochondria (Martin et al., 2015). Cells that lacked mitochondria never 983 

attained the complexity seen in eukaryotes. Hence, true intermediates to this transition from 984 

prokaryotes to eukaryotes are not available. The number of genes within mitochondria varies 985 

from five to over a hundred in different eukaryotes (Bevan and Lang, 2004). Species with a 986 

higher number of genes in the mitochondria provide a snapshot of the endocytosed bacteria-987 

like ancestral entity. The gene-rich mitochondrial genomes of Jakobid protists are models to 988 

study the evolution of mitochondria (Burger et al., 2013). Although TIMM21 homologs are 989 

present in the genome of the Jakobid Andalucia godoyi, the COA1/MITRAC15 gene is 990 

missing (Gray et al., 2020). The single-copy homologs of TIMM21 and COA1/MITRAC15 in 991 

bacterial species and Jakobid protist mitochondria suggest that duplication of TIMM21 might 992 

have occurred during the movement of TIMM21 homologs from the mitochondria to the 993 

nucleus. A sampling of more Jakobid genomes might resolve the timing of duplication of 994 

TIMM21 to COA1/MITRAC15.  995 

The COA1/MITRAC15 gene has undergone subsequent duplication events in carnivores and 996 

primates. The prevalence of such duplication events suggests that either a higher 997 

COA1/MITRAC15 protein dosage is not harmful or sophisticated regulatory machinery to 998 

maintain the correct dosage exists. Genes with duplicated copies have greater flexibility for 999 

subfunctionalization or neofunctionalisation (Taylor and Raes, 2004). In contrast to gene 1000 

duplication, the origin of new splice-isoforms increases the transcriptome complexity without 1001 

increasing the gene count. The evolution of phenotypic novelty through alternative splicing 1002 

has received greater attention thanks to the availability of large-scale transcriptomic and 1003 

proteomic datasets in diverse species (Bush et al., 2017). While positive selection has a role 1004 

in specific examples of alternative splicing (Parker et al., 2014; Ramensky et al., 2008), the 1005 

vast majority of splicing is probably noisy, and neutral processes may explain its evolution 1006 

(Pickrell et al., 2010). Alternative splicing also reduces premature protein truncation due to 1007 

purifying selection (Xing and Lee, 2004). In the case of felid species, the alternative splicing 1008 

of the third exon (see Fig. 2) may have evolved in response to the gene-disrupting changes. 1009 

Verifying the relevance of the alternative splicing observed at the transcriptional level would 1010 

require further scrutiny of the protein level isoforms of the COA1/MITRAC15 gene in felid 1011 

and canid species. In primate species, the potential addition of the extra coding-exon occurs 1012 

by a shift of the start codon into the untranslated region. Such changes at the reading frame 1013 

termini occur when the gene is under relaxed selective constraints (Shinde et al., 2019). 1014 

Acquisition of novel protein-coding sequences through changes in the exon length is also 1015 

known to occur (Kishida et al., 2018). We speculate that drastic lineage-specific changes in 1016 
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purifying selection have allowed for changes in intron-exon structure resulting in the 1017 

evolution of new splice-isoforms of COA1/MITRAC15. 1018 

Gene loss can be dealt with through compensation from another gene (Xiong and Lei, 2020) 1019 

or is associated with a biological pathway rewiring (Vijay, 2020). Large-scale changes in 1020 

gene content are associated with major evolutionary transitions that drastically alter the 1021 

fitness landscape. Prominent examples of such shifts are the origin of flight in birds 1022 

(Meredith et al., 2014) and the movement of mammals from land to water seen in cetaceans 1023 

(Huelsmann et al., 2019). Recurrent gene loss events following relaxed selective constraint in 1024 

various other lineages have also been documented (Schneider et al., 2019; Sharma and Hiller, 1025 

2018; Valente et al., 2020). Loss of genes in the Galliform lineage while being intact in the 1026 

Anseriformes lineage has been linked to differences in the immune response of these clades 1027 

(Barber et al., 2010; S. Sharma et al., 2020). The COA1/MITRAC15 gene is not known to 1028 

have any obvious immune functions, and its loss in Galliform birds appears to be a 1029 

consequence of relaxed selection on the OXPHOS pathway. Our computational analysis of 1030 

more than 200 vertebrate genomes has found that the COA1/MITRAC15 gene is intact and 1031 

transcribed in most species, except for the Cheetah, Galliformes, rodents, and marsupial 1032 

species. Notably, the detailed investigation of the COA1/MITRAC15 gene in other bird 1033 

species that are flightless or have a limited ability to fly has found an intact transcribed gene. 1034 

Therefore, the loss of the COA1/MITRAC15 gene appears to be associated with changes in 1035 

skeletal muscle fiber composition. The prominent role of mitochondria in skeletal muscles is 1036 

evident from diseases of the muscle tissue caused by defects in mitochondrial genes (Gan et 1037 

al., 2018).  1038 

 1039 

The correlation between recurrent gene loss and the presence of specific phenotypes has 1040 

provided crucial insights into the evolution of these traits. Stomach loss in gnathostomes co-1041 

occurs with the loss of several genes that code for digestive enzymes (Castro et al., 2013). 1042 

The loss of ketogenesis has occurred through the recurrent loss of the HMGCS2 gene (Jebb 1043 

and Hiller, 2018). Gene losses associated with dietary composition, the patterns of feeding, 1044 

and gut microbiomes have also been identified (Hecker et al., 2019). Recurrent loss of Toll-1045 

like receptors (TLRs), which play prominent roles in the innate immune system, is associated 1046 

with impaired ability to detect extracellular flagellin (V. Sharma et al., 2020). The repeated 1047 

loss of the cortistatin gene is related to modifications in the circadian pathway (Valente et al., 1048 

2020). In the COA1/MITRAC15 gene, we record the independent occurrence of gene 1049 

disrupting changes in closely related species of Galliformes and rodents. However, we can 1050 

rule out the possibility of a common regulatory mutation that initially resulted in the loss of 1051 

gene expression followed by the independent accumulation of the gene disrupting changes 1052 

that we observe. Our hypothesis predicts gene loss following changes in skeletal muscle fiber 1053 

composition. The COA1/MITRAC15 gene does not directly alter the muscle fiber composition 1054 

and might have subsequently experienced relaxed selective constraint due to increased 1055 

glycolytic muscle fibers. Hence, it is tempting to speculate that the independent gene 1056 

disrupting changes reflect recurrent gene loss events. However, the mechanistic basis of 1057 

changes in muscle fiber composition between species is yet to be understood. Identifying the 1058 
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genetic changes that determine muscle fiber composition and the sequence of events would 1059 

provide greater clarity regarding when and why the COA1/MITRAC15 gene loss occurred. 1060 

Evolutionary Breakpoint Regions (EBRs) are genomic regions that have undergone one or 1061 

more structural changes resulting in altered karyotypes between lineages (Lemaitre et al., 1062 

2009). Recurrent non-random structural changes at the same regions in multiple lineages 1063 

potentially occur due to the presence of repeat elements (Farré et al., 2016; Schibler et al., 1064 

2006), chromosome fragile sites (Durkin and Glover, 2007; Ruiz-Herrera et al., 2006, 2005), 1065 

nucleotide composition, methylation level (Carbone et al., 2009) and chromatin state (Boteva 1066 

et al., 2020; Huvet et al., 2007). However, the prevalence of EBRs and their relevance to 1067 

evolutionary processes has been the focus of considerable debate (Alekseyev and Pevzner, 1068 

2007; Peng et al., 2006; Trinh et al., 2004). Several lineage-specific gene loss events near 1069 

EBRs in rodents are due to chromosomal rearrangements (Capilla et al., 2016; Fitzgerald and 1070 

Bateman, 2004). Notably, one of these lost genes, STK17A, is located adjacent to the 1071 

COA1/MITRAC15 gene. The co-occurrence of an EBR with putative COA1/MITRAC15 gene 1072 

loss in rodents and marsupials is very intriguing. However, rodent genomes have mutational 1073 

hotspots with high lineage-specific gBGC resulting in a substantial gene sequence divergence 1074 

(Hargreaves et al., 2017). Such highly diverged orthologs can be challenging to identify due 1075 

to difficulties in sequencing high GC regions. In COA1/MITRAC15, the magnitude of gBGC 1076 

is relatively low, especially in rodents. Moreover, we find remnants of COA1/MITRAC15 in 1077 

several post-EBR species that suggest actual gene loss, at least in rodents. Several pre-EBR 1078 

rodent species have also independently accumulated gene disrupting mutations in the 1079 

COA1/MITRAC15 gene. Hence, the COA1/MITRAC15 gene appears to be under relaxed 1080 

selective constraint even before the occurrence of the EBR.  1081 

Species with exceptionally large body sizes or extremely long lifespans have a greater 1082 

number of cell divisions. An increment in the number of cell divisions enhances cancer risk. 1083 

However, paradoxically, large-bodied animals like elephants and whales do not have a higher 1084 

incidence of cancer (Peto et al., 1975; Tollis et al., 2017). Cancer resistance due to lineage-1085 

specific changes in gene content may explain this paradox (Caulin et al., 2015; Caulin and 1086 

Maley, 2011; DeGregori, 2011). While specific genetic changes in mammalian species lead 1087 

to cancer resistance (Tollis et al., 2019; Vazquez et al., 2018), the reasons for lower cancer 1088 

incidence in birds compared to mammals are mostly unexplored (Møller et al., 2017). 1089 

Interestingly, the COA1/MITRAC15 gene is an oncogene with a role in colorectal cancer (Xue 1090 

et al., 2020), and its loss could reduce cancer risk. Silencing of COA1/MITRAC15 by 1091 

miRNAs strongly suppresses Giant cell tumors of the bone (Fellenberg et al., 2016; Herr et 1092 

al., 2017). Our discovery of COA1/MITRAC15 gene loss in Galliformes sets a precedent for 1093 

the indisputable identification of gene loss events in birds and might reveal other oncogenes 1094 

which are lost. We also identify COA1/MITRAC15 gene loss in the beaver and naked mole-1095 

rat genomes, species that are models to study longevity (Zhou et al., 2020). High-quality 1096 

near-complete vertebrate genomes with very few errors will further aid in the large-scale 1097 

identification of gene loss events across the vertebrate phylogeny (Rhie et al., 2021).  1098 

5. Conclusions 1099 
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COA1/MITRAC15 is a distant homolog of the TIMM21 gene that has undergone recurrent 1100 

gene loss in several Galliform and rodent species. Gene loss events occurred between 15 1101 

MYA and 46 MYA in Galliform species and between 2 MYA and 30 MYA in rodents. The 1102 

gene loss event occurs in species that rely primarily on glycolytic muscle fibers to achieve 1103 

short bursts of activity. We show that COA1/MITRAC15 and the adjacent STK17A gene are 1104 

located at an Evolutionary Breakpoint Region (EBR) and are missing from the genomes of 1105 

several rodent species following chromosomal rearrangement events. Pseudogenic and 1106 

functional copies of COA1/MITRAC15 are present in carnivores and primates, with the 1107 

functional copy diverging in its intron-exon structure. Prevalence of repeated gene loss and 1108 

duplication events in the history of COA1/MITRAC15 not only demonstrates the 1109 

dispensability of this gene but also hints at its ability to provide fitness increases in a context-1110 

dependent manner.  1111 
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 1702 

Figure legends 1703 

Figure 1: COA1/MITRAC15 and TIMM21 are distant homologs with similar amino acid 1704 

sequence profiles and secondary structures. (A) Cluster map of COA1/MITRAC15 homologs 1705 

identified using profile-profile search implemented in HHblits. The cluster of 1706 

COA1/MITRAC15: blue, TIMM21: red, homologs of COA1/MITRAC15 from species of 1707 

fungi: orange, homologs of COA1/MITRAC15 from bacterial species: light blue cluster and 1708 

diffuse brown cluster, COA1/MITRAC15 homologs in plants, represented by Arabidopsis 1709 

thaliana homolog At2g20390: yellow, TIMM21-like proteins that exist as duplicated copies 1710 

in plants, represented by Arabidopsis thaliana homolog At2g37940: magenta. (B) The output 1711 

of HHpred showing the alignment of human COA1/MITRAC15 with yeast TIMM21. The 1712 

region in the box highlights the predicted transmembrane helix. (C) The predicted secondary 1713 

structure of human (Homo sapiens) COA1/MITRAC15. (D) The predicted secondary structure 1714 
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of yeast (Saccharomyces cerevisiae) TIMM21. 1715 

Figure 2: Comparison of haplotypes of COA1/MITRAC15 gene inferred based on sequencing 1716 

reads in different species visualized in IGV browser. (A) Two haplotypes of 1717 

COA1/MITRAC15 in humans (Homo sapiens) corresponding to the functional and 1718 

pseudogene copies. (B) Two haplotypes of exon 1 to exon 4 of COA1/MITRAC15 in tiger 1719 

(Panthera tigris). (C) Two haplotypes in exon two and one haplotype of remaining exons of 1720 

COA1/MITRAC15 in naked mole-rat (Heterocephalus glaber). (D) The single haplotype of 1721 

COA1/MITRAC15 gene in chicken (Gallus gallus). (E) The single haplotype of 1722 

COA1/MITRAC15 in the platypus (Ornithorhynchus anatinus). (F) The single haplotype of 1723 

COA1/MITRAC15 in red squirrel (Sciurus vulgaris). 1724 

Figure 3: Loss of COA1/MITRAC15 gene in Feliform. (A) Gene loss event in Acinonyx 1725 

jubatus besides a time-calibrated phylogenetic tree downloaded from the time tree website. 1726 

(B) Gene order in the genomic region flanking the COA1/MITRAC15 gene and its exons in 1727 

genomes. Red and blue arrows depict the direction of gene transcription relative to the 1728 

COA1/MITRAC15 gene for consistency across species. Gray boxes represent the genes 1729 

located on short scaffolds with unknown orientation. 1730 

Figure 4: Recurrent loss of COA1/MITRAC15 gene in Galliform species. (A) Gene loss 1731 

events in ten Galliform species besides a time-calibrated phylogenetic tree downloaded from 1732 

the time tree website. Blue branches in the tree represent functional branches, and the 1733 

magenta-colored branches represent mixed (functional + pseudogenic) branches. The method 1734 

proposed by Meredith et al., 2009 was used to estimate the time of gene loss using two 1735 

different substitution rates (1ds and 2ds). Short colored bars depict the locations of the gene 1736 

disrupting mutations on the four exons of COA1/MITRAC15. (B) Gene order in the genomic 1737 

region flanking the COA1/MITRAC15 gene in bird genomes. Red and blue arrows depict the 1738 

direction of gene transcription relative to the COA1/MITRAC15 gene for consistency across 1739 

species. Gray boxes represent the genes located on short scaffolds with unknown orientation. 1740 

(C) The gene expression pattern of the COA1/MITRAC15 gene in six tissues (brain, spleen, 1741 

skin, liver, gonad, and blood) was assessed by screening RNA-seq datasets. The red-colored 1742 

blocks depict the robust expression of the COA1/MITRAC15 gene, the black-colored blocks 1743 

depict a lack of COA1/MITRAC15 gene expression in that particular tissue, and the white-1744 

colored blocks represent a lack of data for that tissue. 1745 

Figure 5: Comparison of different sequencing datasets of woolly mammoth (Mammuthus 1746 

primigenius) for COA1/MITRAC15 gene exons. Gray rectangles show the reads mapped to 1747 

each exon. Panels A to F shows the reads with sequence supporting each exon from different 1748 

woolly mammoth SRA bio projects [PRJDB4697 (182 Gb), PRJEB42269 (179 Gb), 1749 

PRJNA397140 (155 Gb), PRJEB7929 (88.34 Gb), PRJEB29510 (162 Gb), and 1750 

PRJNA281811 (210 Gb)]. Panel G indicates the GC percentage vs. K-mer abundance of 1751 

different project IDs mentioned in different colors. The vertical dotted lines in orange denote 1752 

the GC percentage of TIMM21 exons, and vertical solid lines in red indicate the GC 1753 

percentage of COA1/MITRAC15 exons.   1754 
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Figure 6: Recurrent loss of COA1/MITRAC15 gene in rodent species. (A) Gene loss events in 1755 

seven rodent species through four events are represented exon-wise beside the pink-colored 1756 

branches of the time-calibrated phylogenetic tree obtained from the time tree website. Blue 1757 

branches correspond to functional copies of COA1/MITRAC15, and black branches 1758 

correspond to the Evolutionary Breakpoint Region (EBR) (B). Gene order in the genomic 1759 

region flanking the COA1/MITRAC15 gene in rodent genomes. Arrows depict the direction of 1760 

gene transcription relative to the COA1/MITRAC15 gene for consistency across species. 1761 

Boxes represent the genes located on short scaffolds with unknown orientation. Each dotted 1762 

box contains one type of gene order, and the brown arrows highlighted in yellow emerging 1763 

from gene order O5 depict the EBR event that leads to gene orders O6, O7, O8, and O9. Gene 1764 

order O8 and O7 contain partial remains of the COA1/MITRAC15 gene and a functional 1765 

BLVRA gene, respectively. A solid red line within gene order O8 depicts the partial exon one 1766 

and intron 2 of COA1/MITRAC15 located between the PTPRF and HYI genes. The gene 1767 

order O6 and O9 correspond to the regions on the left and right flanks of the region 1768 

containing STK17A, COA1/MITRAC15, and BLVRA. 1769 

Figure 7: The genomic region spanning the COA1/MITRAC15 gene coincides with an 1770 

evolutionary breakpoint (EBR). (A) The phylogenetic relationship between marsupial species 1771 

along with few outgroup species. The phylogenetic tree is from the time tree website. (B) The 1772 

gene order in the region flanking the COA1/MITRAC15 gene. The arrows show the direction 1773 

of gene transcription relative to the COA1/MITRAC15 gene for consistency across species. 1774 

Each dotted box contains one type of gene order, and the red arrows from gene order O1 1775 

depict the EBR event that leads to gene orders O2 and O3 in the six marsupial species. The 1776 

outgroup species have the Pre-EBR gene order O1. In the post-EBR gene orders O2 and O3, 1777 

the COA1/MITRAC15 gene occurs in the EBR, and the gene order of flanking genes is 1778 

changed. A functional COA1/MITRAC15 can be identified in the outgroup species but is 1779 

presumably lost in marsupial species as it is missing in the genome assembly and raw read 1780 

datasets. 1781 
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