Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Monod model is insufficient to explain biomass growth in nitrogen-limited yeast fermentation

View ORCID ProfileDavid Henriques, Eva Balsa-Canto
doi: https://doi.org/10.1101/2021.06.09.447824
David Henriques
aBioprocess engineering group, IIM-CSIC, Vigo, Spain
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for David Henriques
  • For correspondence: davidh@iim.csic.es
Eva Balsa-Canto
aBioprocess engineering group, IIM-CSIC, Vigo, Spain
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

Abstract

The yeast Saccharomyces cerevisiae is an essential microorganism in food biotechnology; particularly, in wine and beer making. During wine fermentation, yeasts transform sugars present in the grape juice into ethanol and carbon dioxide. The process occurs in batch conditions and is, for the most part, an anaerobic process. Previous studies linked limited-nitrogen conditions with problematic fermentations, with negative consequences for the performance of the process and the quality of the final product. It is, therefore, of the highest interest to anticipate such problems through mathematical models. Here we propose a model to explain fermentations under nitrogen-limited anaerobic conditions. We separated the biomass formation into two phases: growth and carbohydrate accumulation. Growth was modelled using the well-known Monod equation while carbohydrate accumulation was modelled by an empirical function, analogous to a proportional controller activated by the limitation of available nitrogen. We also proposed to formulate the fermentation rate as a function of the total protein content when relevant data are available. The final model was used to successfully explain experiments taken from the literature, performed under normal and nitrogen-limited conditions. Our results revealed that Monod model is insufficient to explain biomass formation kinetics in nitrogen-limited fermentations of S. cerevisiae. The goodness-of-fit of the herewith proposed model is superior to that of previously published models, offering the means to predict, and thus control fermentations.

Importance Problematic fermentations still occur in the winemaking industrial practise. Problems include sluggish rates of fermentation, which have been linked to insufficient levels of assimilable nitrogen. Data and relevant models can help anticipate poor fermentation performance. In this work, we proposed a model to predict biomass growth and fermentation rate under nitrogen-limited conditions and tested its performance with previously published experimental data. Our results show that the well-known Monod equation does not suffice to explain biomass formation.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license.
Back to top
PreviousNext
Posted June 10, 2021.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Monod model is insufficient to explain biomass growth in nitrogen-limited yeast fermentation
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Monod model is insufficient to explain biomass growth in nitrogen-limited yeast fermentation
David Henriques, Eva Balsa-Canto
bioRxiv 2021.06.09.447824; doi: https://doi.org/10.1101/2021.06.09.447824
Digg logo Reddit logo Twitter logo Facebook logo Google logo LinkedIn logo Mendeley logo
Citation Tools
Monod model is insufficient to explain biomass growth in nitrogen-limited yeast fermentation
David Henriques, Eva Balsa-Canto
bioRxiv 2021.06.09.447824; doi: https://doi.org/10.1101/2021.06.09.447824

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Systems Biology
Subject Areas
All Articles
  • Animal Behavior and Cognition (4086)
  • Biochemistry (8757)
  • Bioengineering (6477)
  • Bioinformatics (23336)
  • Biophysics (11746)
  • Cancer Biology (9145)
  • Cell Biology (13244)
  • Clinical Trials (138)
  • Developmental Biology (7412)
  • Ecology (11366)
  • Epidemiology (2066)
  • Evolutionary Biology (15085)
  • Genetics (10397)
  • Genomics (14006)
  • Immunology (9116)
  • Microbiology (22038)
  • Molecular Biology (8777)
  • Neuroscience (47350)
  • Paleontology (350)
  • Pathology (1420)
  • Pharmacology and Toxicology (2480)
  • Physiology (3703)
  • Plant Biology (8048)
  • Scientific Communication and Education (1431)
  • Synthetic Biology (2207)
  • Systems Biology (6015)
  • Zoology (1249)