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Abstract 
 
Whole genome sequencing (WGS) becomes increasingly important for advancing personalized 

cancer care, driving not only basic science studies but also entering into clinical applications. 

Translating raw WGS data into the right clinical decision requires high accuracy of somatic variant 

detection, therefore novel data analysis methods have to be carefully evaluated.  

In this work we tested the performance of well-established somatic variant detection 

workflows: GATK, CPG-WGS, DRAGEN and Strelka2. By utilizing both real data, with well-defined 

mutations, and synthetic mutations spiked-in into real data, we were able to assess sensitivity and 

precision of each workflow, for various coverage and tumor purity levels. 

Individual tools excelled in different evaluation approaches, however the results 

demonstrated that DRAGEN has the highest overall performance when sensitivity is preferred over 

precision, and the opposite is true for CGP-WGS. The differences in results obtained using 

synthetic and real datasets, indicate that benchmarks based only on a single reference set may 

provide an incomplete picture. 
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Introduction 
 
Next-generation sequencing (NGS) technologies have become invaluable for the development of 

cancer therapies, driving not only the basic science studies [1, 2] but also translating to clinical 

applications, influencing the selection of best treatment strategy [3]. DNA sequencing, based on 

short-read approaches, have been widely used for the detection of somatic variants, which allow to 

determine tumor driving genomic alterations and changes that help to predict the effectiveness of 

anticancer therapies [4, 5]. It is therefore important that DNA sequencing provides accurate 

information which will translate to the right clinical decision. Financial constraints favor the use of 

gene-panel or whole exome sequencing (WES) in studies focusing only on short variants, located 

in the coding regions [6], however, whole genome sequencing (WGS) is superior by providing 

unbiased and uniform read coverage, insights into variants located in intronic and intergenic 

regions, greater sensitivity in detecting structural variants and copy number changes [7].  

 While the decreasing costs of whole genome-sequencing (WGS) experiments gradually 

make it applicable to characterize the mutational landscape of tumors on a routine basis [8], the 

precision of variant discovery methods are still insufficient to rely on the provided results without a 

proper validation [9], capabilities of which are significantly limited not only by the costs of validating 

a single variant but by the dependence on similar error prone DNA handling protocols [10]. The 

accuracy of somatic variant detection methods depends on their ability to deal with current 

technological limitations associated with NGS approaches, including uneven coverage [7], 

sequencing error rate [11], strand bias [12], deamination artifacts [13], PCR amplification errors 

[14] and incorrect local alignments of reads [15]. Tumor heterogeneity and clonality leading to 

multiallelic variants or low variant allele frequency levels (VAF) [16], DNA copy number 

aberrations, as well as contaminants in both tumor and reference sample [17, 18], make this 

process even more challenging.  

 The problem of somatic variant discovery was addressed many times by the scientific 

community resulting in a high number of dedicated tools, which were designed using various 

statistical models or machine learning approaches [19]. The choice of an individual tool, which 

would deliver the most accurate detection results is extremely difficult, due lack of high quality gold 

standards. In contrast to a number of reference germline genomes [20] no tumor genome has been 

fully characterized for the purpose of benchmarking variant discovery methods.  The most typical 

approach to developing a validated truth-set of reference variants is to confirm the NGS-derived 

variant calls using target DNA capture, followed by high coverage NGS approaches (e.g. Ampli-

seq), RT-qPCR, Sanger sequencing [21-23], or manual curation [24], using read visualization tools 

[25, 26]. However, while this is a viable method of validating individual variants it is not the best 

choice for the development of a gold standard set, for the purpose of comparing variant callers. 

The main limitation results from the fact that the validation will include only those variants which 

were successfully detected in the NGS experiment, using one or few variant callers in the process, 

and at the same time biasing the benchmarking results towards them. Another limitation is 

associated with the fact that the validation methods are not applicable for all variants e.g. Sanger 

sequencing is not suited for the detection of low VAF variants [27]. The inability to validate all 

detected positions due to technical reasons of financial constraints can lead to underestimated 

true-positive (TP) rate and overestimated false-positive (FP) rate potentially biasing the results 

towards methods that favor precision above sensitivity. 

 Another approach is to derive a gold standard based on concordance between multiple 

callers [28-30], assuming that variants identified only by a single caller are likely false positives. 

The main limitation of this approach is that methods based on similar assumptions are likely to 

have a leading vote on what is an actual variant. Additionally the tools used to create the gold 
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standard will have an advantage above the rest, which potentially biases the results of a 

benchmarking experiment. 

 Third possibility is to utilize synthetic data generated by either mixing two samples, with 

known germline variants in various proportions [31-33], by introducing variants into existing reads 

[34, 35], or by generating synthetic reads [36]. The main advantage of this approach is that the 

dataset creation results in the exact coordinates of all variants. The main weakness is that such 

synthetic dataset might not well represent a typical cancer genome due to sequencing error rate of 

artificial characteristics, unrealistic distribution of VAF, lack or unrealistic structural variants and 

copy number events, or other potential factors which we are unaware of, that affect the detection 

accuracy. 

 Different strategies to the creation of gold standards were adopted in existing 

benchmarking studies, leading to significantly different outcomes, which in many cases lack clear 

recommendations. The majority of benchmarking studies focus on exome or amplicon sequencing 

[22-24, 31, 32, 37, 38], which provides high but uneven coverage, biased by the target enrichment 

strategies utilized. Only few studies focus on whole genome sequencing, using a gold standard 

originating from PCR/Sanger validation [21], gold standard based on method concordance [39, 40], 

or synthetic data [40]. The number of compared tools is usually limited to only the most popular 

approaches, with the total number per study varying between two [37] and nine [24], however most 

studies focus on four callers only, testing their performance using the default parameters. 

 In this work we aimed to assess the accuracy of methods used to identify somatic single 

nucleotide variants (SNVs) and short insertions/deletions (indels), specifically in WGS experiments. 

For this purpose we used two distinct truth sets based on concordance between multiple detection 

methods as described in [30], and based on synthetic variants inserted into reads obtained by 

sequencing a germline genome [20]. We focused not on accuracy of individual somatic callers but 

rather well-established workflows: GATK (based on Mutect2) [41] developed at the Broad Institute; 

CGP-WGS (based on CaVEMan [42] and Pindel [43]) developed by Cancer IT at Sanger; Dynamic 

Read Analysis for GENomics (DRAGEN) [44], a platform developed by Illumina, which was shown 

to have high accuracy of germline variant detection [45]; and standalone Strelka2 [46] variant 

caller, also developed by Illumina. The main goals of this work were therefore 1) to evaluate the 

performance of each workflow; 2) compare the outcomes between the two selected gold 

standards; 3) determine the characteristics of method-specific variants. 

 

 

Results and discussion 
 
Selection of datasets 
 
Due to the limitations of methods used to evaluate accuracy of variant detection we decided to 

include three distinct approaches. The first one is based on data provided by the Somatic Working 

Group of SEQC-II Consortium, described in the Fang et al. article [30], which is based on the truth 

set generated using multiple high coverage sequencing replicates and various combinations of 

data analysis algorithms, including six variant callers. We used the high confidence set which 

comprises 39632 SNVs and 1939 indels. We refer to this dataset as Fang2019 in this manuscript. 

The second dataset was created by inserting randomly generated variants into reads of the HG001 

genome, thoroughly studied by the Genome in a Bottle Consortium [20]. In total we inserted 16995 

SNVs and 1700 indels (see materials and methods for details). We refer to this dataset as 

Synthetic in this manuscript. The third dataset was based on reads obtained purely from normal 

tissues which we used in normal-to-normal sample analyses, to evaluate the false positive rate of 

each workflow. 
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 The datasets were used to test the association between sequencing coverage and cancer 

sample purity on the sensitivity and precision of both SNVs and indel detection, using 4 data 

analysis workflows, summarized on Fig.1. Additionally, we included in the comparison a tumor-only 

analysis offered by the DRAGEN pipeline (not shown in Fig.1). In total, we analyzed 63 SNV and 

indel callsets. 

 

 

 
Fig.1: Overview of the analysis methods and dataset utilized in this study 

 

 
 
Accuracy of somatic variant detection 
 
The performance of all utilized somatic variant detection workflows was evaluated using sensitivity 

and precision metrics obtained by comparing the calls to corresponding truth sets. The 

comparisons were carried out for four coverage levels of the tumor sample, ranging from 20x to 

60x, and four tumor sample purity levels. 

         Fig. 2A shows the association between sensitivity and precision for various coverage levels 

of the tumor sample, separately for SNVs and indels. The differences in performance levels of 

individual workflows between both datasets were substantial and variability between workflows for 

individual datasets considerably higher in the Fang2019 compared to the Synthetic set. It is worth 

noting that the overall precision of SNV detection in the Synthetic dataset was higher than 0.8, 

while analyses on Fang2019 showed a generally higher sensitivity. In all tests precision was only 

marginally affected by the reduced coverage levels, while sensitivity was more significantly 

affected in the Synthetic dataset. This likely results from a higher number of variants with low VAFs 

(see further on). 

         On the Fang2019 dataset GATK showed the lowest sensitivity but highest precision of SNV 

detection, despite variable coverage levels. However, on the Synthetic dataset GATK showed the 

highest SNV sensitivity for 60X coverage but performed worse for lower coverage levels, although 

the differences were not substantial. Surprisingly, the precision of GATK at 30x coverage in the 

Fang2019 set was worse compared to 20x coverage. Similar trend was not observable for other 

workflows. 
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         Comparable performance metrics, obtained by the DRAGEN and Strelka2 pipelines for the 

Fang2019 dataset, indicates that the two tools developed by Illumina share some similarity. This 

concordance in accuracy disappears in the results obtained for the Synthetic set where DRAGEN 

clearly outperforms Strelka2, in both indel and SNV detection for lower coverages (20-40), 

indicating that the pipeline is better tuned for detection of low frequency variants. Generally, 

DRAGEN achieved the highest precision and sensitivity for SNVs and indels in the Synthetic 

dataset (highest F1 score), showing only marginally worse sensitivity at 60x coverage and smaller 

F1 for indels at 20x and 30x coverage levels, compared to GATK. 

 
 

 
 
Fig.2: Performance of variant detection workflows on real and synthetic data: A) Precision and sensitivity of SNV and 

indel detection obtained for various coverage levels; Gray lines mark specific F1 statistic values  B) Total number of false 

positives obtained by comparing two replicates of GIAB samples (HG001 and HG002); C) Sensitivity and precision of 

variant detection obtained for different cancer purity levels. 

 

 

DRAGENTumorOnly was an outlier in all comparisons. It showed the highest sensitivity among all 

methods, but due to absence of the normal/reference sample, the pipeline was not able to 
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discriminate a large portion of germline variants, resulting in very low precision in all tests (on 

average 0.006 for SNVs and 0.002 for indels). To better capture somatic variation, results of this 

pipeline would need additional filtering based on e.g. population frequency of the variants. 

         CGP-WGS, which utilizes CaVEMan for SNV detection and Pindel for indels, showed high 

precision in both datasets but at the cost of low sensitivity. This is especially evident for indel 

detection where the differences in the numbers of identified variants between all methods were 

substantial. CGP-WGS provided 2707 indels at 60x coverage in Fang2019 set, which is three 

times less compared to GATK, and eight times less compared to Strelka2 and DRAGEN. In the 

synthetic set CGP-WGS also provided the smallest number of indels, however the differences 

were not as large, since at the 60x coverage the numbers of indels identified by individual methods 

ranged between 701 and 1301. Detailed results, used to create Fig.2A, are available in the 

supplementary table S1. 

         Fig.2B shows a different workflow evaluation approach (Normal-normal on Fig.1), which 

was based on false positive (FP) rates obtained by comparing two subsets of reads of the same 

sample. The comparison was performed on two samples, HG001 (GM12878) and HG002 

(GM24385), and while the differences between both samples are substantial some trends are 

evident. For the GATK, the false positive rate increases significantly with the increasing tumor 

coverage level. This trend for the GATK was also observed on Fig.2A where the precision 

decreased with increasing tumor coverage. The reverse trend was observed in the case of 

Strelka2 - the increasing coverage of the tumor sample allowed to reduce the FP-rate. 

Interestingly, while GATK showed low FP-rates for the HG001 genome, and highest in case of 

HG002, Strelka2 performed well in the HG002 and worst in HG001. In general the lowest FP rate, 

largely unaffected by the coverage levels, was observed for the DRAGEN pipeline. DRAGEN 

showed the best performance for SNVs and was only marginally worse for indels compared to 

CGP-WGS. For detailed results see Supplementary Table S2. 

         Significant differences between results obtained using the Synthetic and Fang2019 

datasets likely stem from different assumptions made during the creation of the gold standard, but 

also from the specificity of the samples themselves. Fang2019 truth set was created based on 

concordance between multiple methods, including six mutation callers (MuTect2 [33], 

SomaticSniper [47], VarDict [48], MuSE [49], Strelka2 [46], TNscope [50]). It is therefore potentially 

biased towards MuTect2, Strelka2, and possibly DRAGEN used in our comparison. The Synthetic 

dataset compensates this potential bias as it was created independently of variant detection 

algorithms. Additionally, while Fang2019 dataset included only high confidence variants with 

relatively high average VAF, which are expected to be more easily detected, it also included a very 

high number of copy number alterations and loss of heterozygosity regions (data not shown) 

making the detection more difficult. The Synthetic dataset, although based on a more realistic 

distribution of VAFs observable in cancer genomes, did not contain any copy number changes, nor 

structural variants frequently found in tumors. It is also worth noting that, while the read sampling 

for low coverage levels was conducted in the same way for the Fang2019 and the Synthetic sets, 

the true coverage obtained after read processing differed substantially (supplementary figure S1A). 

While the fraction duplicate reads was roughly 2x higher in the Synthetic set leading to higher data 

loss (Fig. S1C), the insert size distribution in this set had a higher mean resulting in lower data loss 

caused by read overlaps in paired-end sequencing (Fig. S1B). Also, the coverage uniformity in the 

Synthetic set is much higher compared to the Fang2019 dataset, leading to the higher median 

coverage across all genomic positions. 

 

Tumor sample purity 

 

Contamination of the tumor sample with normal cells is a common problem which affects variant 

detection sensitivity resulting from a lower number of reads that support the existence of a 
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particular variant [32]. To test the influence of tumor sample purity on the detection accuracy we 

created synthetic dilutions of the tumor sample by mixing-in normal sample reads to the tumor in 

various proportions, resulting in 20, 50 and 80% purity levels. 

         Fig.2C shows the sensitivity and precision obtained for various tumor purity levels of 

Fang2019 at 30x coverage (for detailed results see Supplementary Table S3). Not surprisingly 

tumor purity has the highest impact on the sensitivity of variant detection. The results indicate that 

sensitivity of all tools is similarly affected by reduced tumor purity, and all tools perform relatively 

well for 50% and higher purity. The impact on precision was more variable, although we observed 

that precision of indel detection was more significantly affected by the tumor purity, than SNV 

detection. Changes in the purity levels generally did not have a significant impact on the relative 

performance of each tool. An exception is CGP-WGS which was more sensitive for high purity 

samples (80% and 100%), and showed lower sensitivity in more contaminated samples (20 and 

50%), when compared to GATK. An interesting fact is that precision of GATK drops as the purity 

increases, a trend which can be also observed only for the indels identified using CGP-WGS 

(Pindel). Notably, sensitivity of GATK drops at 100% purity compared to 80%, which results from a 

15% higher number of FN and slightly lower TP rate. For the 80% purity GATK identified 4326 

more variants compared to the 100% purity sample. 

 

VAF-based filtering 

 
Precision of variant detection is expected to be affected by the variant allele frequency (VAF). The 

higher the VAF of a variant, the higher is the detection probability, since more potential evidence is 

available in a form of reads that support the modified allele. Also it is expected that the higher the 

VAF of the identified variant the lower the probability that a particular site is a false positive 

resulting from a sequencing error. Therefore, in theory, it should be easier to detect variants with 

high VAF. By focusing the performance evaluation on variants with high VAF, the FP- and FN-rates 

should decrease (compared to all-variants experiments) resulting in higher precision and sensitivity 

values.  

         Fig. 3A shows the distribution of VAF of all gold standard variants from both datasets. 

Fang2019 variants are pre-filtered by their authors, which is likely why low VAF variants are 

underrepresented in this set. It also includes a high number of variants with VAF~1, resulting from 

a large fraction of loss of heterozygosity regions in this cell-line sample. Distribution of VAFs in the 

Synthetic set reflects a distribution typically observed in tumor samples [51, 52], resulting from their 

subclonal architecture (in the absence of subclonal selection). Due to the high number of variants 

supported by a small number of reads, the detection process in this set should be more 

challenging, or even impossible in  sites with insufficient read depth (samples with coverage 

reduced below 60x). 

 Fig. 3B shows the association between precision and sensitivity for various VAF cutoff 

levels (only variants with VAF higher than the threshold are used to calculate both metrics). The 

filtering is carried out based on expected VAFs (using gold standard) for TP and FN variants and 

based on those provided by the callers for FP variants. VAF based filtering in the Fang2019 

dataset leads to a reduced sensitivity and precision, which is counter intuitive. This results from a 

high number of FP variants with high VAF, which might be associated with the way the variants 

were selected for the high confidence set. The same does not apply to the Synthetic set where in 

most cases sensitivity and precision obtained for variants with VAF>0.1 was substantially higher. 

Pindel is an exception from this rule, which may be associated with strict variant filtering criteria in 

the CGP-WGS pipeline, resulting in a significantly lower number of identified indels (Fig. 2). 

 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 14, 2021. ; https://doi.org/10.1101/2021.06.10.446467doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.10.446467


 
 
Fig.3: Effects of VAF-based variant filtration on the accuracy of variant detection: A) distributions of VAF estimates 

obtained for SNVs and indels in both datasets used; B) Precision–Sensitivity curves obtained for various VAF cutoff 
levels 

 
          

 

Characteristics of method-specific variants 

 

The lack of concordance between variant detection workflows results not only from various 

precision and recall levels but also from different filtering strategies that are utilized as a part of the 

post processing steps. For this reason it is important to assess what are the characteristics of 

variants identified by a single method and by the majority of methods. 

 Fig. 4 shows the number of variants identified by a specific group of workflows in both 

datasets and separately for SNVs and indels. In all cases VAF distribution of variants identified by 

all methods has a median in the vicinity of 0.5 representing a group which is likely the easiest to 

identify, due to the potentially relatively large number of reads that support them. Also, the variants 

which were not detected by any method have the lowest median VAF among all compared groups. 
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Interestingly the variants which were not detected only by the CPG-WGS workflow in the 

Fang2019 set have a VAF distribution similar to that observable for variants identified by all 

methods, with relatively high median. This could be due to the overly strict filtering employed in the 

CGP-WGS pipeline tuned for high precision. 

 

 
 
Fig.4: Total number, VAF distribution and indel length statistics, of true variants identified using a specific subset of 

workflows for tumor samples with 30X coverage. Light gray bars highlight variants which were not detected by any of the 

methods utilized (observed in the gold standard only). Boxplots below each of the bar plots show the distribution of VAFs 

and indel lengths for each of the variant groups. Red dashed line on the indel length plot marks the 50bp cutoff. 

 
 
            In both sets there are very few variants which were detected by only a single method, 2.6% 

and 3.2% for SNVs and indels respectively in the Fang2019 dataset, and 1.9% and 4.5% in the 

Synthetic set. In both datasets Strelka2 contributed the most to the percentage for SNVs by 

providing the highest number of variants which were not detected by any other method, with 

DRAGEN taking the second position. For indels the results differ between both sets, for Fang2019 

the highest number of method specific variants were provided again by Strelka2 and DRAGEN, 

however in the Synthetic set, GATK took the lead. 

         In both datasets, indels not detected by Strelka2 but found by all other methods, are all 

longer than 50nt. This is the result of the maximum indel length which in Strelka2 is set to strict 
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50nt. The constraint is not present in the DRAGEN pipeline which, although showing similar 

performance, was not affected by this limitation. 

 

Summary 
 
In this work we tested the performance of well-established somatic variant detection workflows 

GATK [41], CPG-WGS [42, 43], DRAGEN [44], and standalone Strelka2 [46], using several 

evaluation approaches. Estimates of sensitivity and precision, for various coverage and tumor 

purity levels, were obtained using two reference datasets: the Fang2019 gold standard derived 

using concordance between multiple detection tools [30], and a synthetic dataset generated by 

spiking-in randomly generated variants to real sequencing data from a well characterized HG001 

genome [20]. We also investigated the impact of tumor sequencing depth on the variant calling 

false positive rate by comparing two pairs of well-known germline reference samples [20]. While 

the results obtained using different approaches showed significant differences, favoring various 

tools at specific categories, in our opinion DRAGEN showed the highest overall performance when 

favoring sensitivity above precision, and CGP-WGS when precision is of higher importance. In the 

Synthetic dataset DRAGEN showed the highest precision among all tools, both for SNVs and 

indels and only marginally worse sensitivity compared to GATK. In the Fang2019 dataset it showed 

significantly lower precision, but the highest sensitivity for all tested coverage and tumor purity 

levels. DRAGEN also showed the overall lowest false positive rate in the comparison of two control 

samples when considering both SNVs and indels, although for indels alone it was slightly worse 

than CGP-WGS.  

Inclusion of two reference datasets in our experiments allowed us to observe the impact of 

the truth set on the general conclusions regarding accuracy of the benchmarked tools, as well as 

their relative performance. While all tools showed similarly high precision, and comparable recall 

on the Synthetic dataset, Dragen and Strelka2 were significantly more sensitive, and less precise 

than GATK, when evaluated on the Fang2019 dataset. The overall sensitivity in Fang2019 was 

relatively high for all workflows, indicating that the top tools detect almost 90% of somatic variants. 

On the other hand, when compared on the Synthetic set, the sensitivity of variant detection was 

generally lower and precision was very high, suggesting that false-positive calls for SNV detection 

tools are a marginal problem. While both datasets have their own weaknesses we believe that by 

including them both in our study we were able to show the performance of all workflows in vastly 

different situations. Our results show that benchmarks based only on one dataset might be biased 

and methods fine-tuned on one dataset might perform badly on others. 

The main weakness of our study, similarly to other benchmarking studies mentioned in the 

introduction, is that it focuses only on a single set of parameters of each tool, while fine tuning each 

method  for optimal performance could potentially lead to better results. Most tools are highly 

parameterized allowing to affect the detection sensitivity and specificity levels, however the 

complexity of underlying statistical models and ad-hoc filters make them very difficult to safely 

manipulate by the scientists not involved in their development process. This makes the comparison 

process very difficult, limiting it to the default parameter set only, which in many cases are modified 

between individual releases resulting in significantly different accuracy levels. This was the main 

motivation behind focusing the study on established workflows, which as we assume, are already 

fine-tuned and represent a state in which the tool would be typically used by the end-user.  
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Materials and methods 

Datasets used 

HG001 and HG002: Raw WGS data for HG001 and HG002 genomes were downloaded from the 

Sequence Read Archive (SRA). For HG001, we combined data from multiple runs deposited by the 

Hartwig Medical Foundation in study ERP115966: ERR3607783, ERR3610392, ERR3610755, 

ERR3610808, ERR3582426, ERR3582714, ERR3584441, ERR3585465 (785.5M read-pairs). For 

HG002 we merged reads from 4 runs (SRR8861483, SRR8861484, SRR8861485, and 

SRR8861486; a total of 894.8M read-pairs) deposited by the Genome in a BottleConsortium [53] 

under experiment SRX5648942. In all cases the reads were paired-end, 2x150bp sequenced on 

Illumina Novaseq 6000 platform.  

Fang2019: Fang et al. characterized a human triple-negative breast cancer cell line and a matched 

normal cell line as a reference set for somatic variants [30]. Illumina sequencing data deposited in 

the Sequence Read Archive under project SRP162370 available for each of the two samples 

exceeds 300x coverage. We selected two runs for the tumor T1 sample (SRR7890904, 

SRR7890905), hereafter and in Fig.1 referred to as T1, and two for the normal sample 

(SRR7890942, SRR7890943), referred to as N1. Combined runs had 1,245M and 1,387M trimmed 

2x150bp read-pairs for the tumor and normal samples, respectively.  Release 1.1 of the reference 

variants in the tumor sample, as well as high confidence regions used to limit the genomic regions 

considered in our analyzes, were downloaded from: 

https://ftp-trace.ncbi.nlm.nih.gov/seqc/ftp/Somatic_Mutation_WG/release/v1.1 

Generation of synthetic data 

Paired-end FASTQ files for the HG001 sample were mapped to the GRCh37 reference genome as 

detailed in the following section. Next, BAMSurgeon v1.2 [35] was used to generate and spike-in 

small variants (point mutations and indels) into the HG001 BAM file. Generation of random variants 

was performed with the help of randomsites.py script from the BAMSurgeon framework. We 

simulated 3 subclones with varying parameters of variant allele fraction distributions: C1 (--minvaf 

0, --maxvaf 0.5, --vafbeta1 2, --vafbeta2 10), C2 (--maxvaf 0.75, --minvaf 0.25), and C3 (-maxvaf 

0.6, --minvaf 0.4). A total of 16,995 SNVs (C1:13000; C2:2000; C3:2000) and 1,700 indels (C1: 

1300; C2: 200; C3: 200) were inserted into the reads within the high confidence regions as defined 

by the BED file in the 3.3.2 release of Genome-In-A-Bottle HG001 reference dataset (https://ftp-

trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/NA12878_HG001/NISTv3.3.2/GRCh37/HG

001_GRCh37_GIAB_highconf_CG-IllFB-IllGATKHC-Ion-10X-SOLID_CHROM1-

X_v.3.3.2_highconf_nosomaticdel.bed). In the end, reads from the resulting BAM file with mutation 

spike-ins, hereafter referred to as sHG001, were extracted using Picard v2.21.4 [54], and 

subjected to downsampling as shown in Fig.1 

Data pre-processing 

Quality of the downloaded raw data was confirmed using FastQC v0.11.7 [55]. The full-size 

FASTQ files for tumor (sHG001 and T1) and normal samples (HG001, HG002, N1) were 

downsampled to approx. 20x, 30x, 40x and 60x coverage datasets using seqtk v1.3 tool 

(https://github.com/lh3/seqtk). Numbers of pseudo-randomly drawn read-pairs were 246.7, 370, 

493.3, and 740M, for 20, 30, 40, and 60x respectively. The randomization seed was fixed for 

subsampling of each genome, so that lower coverage dataset was a subset of higher coverage 

dataset (e.g. all the read-pairs drawn for the 30x dataset were present in the 40x dataset). 
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 The T1 sample derived from a cell line was 100% pure tumor tissue. To simulate more 

natural conditions we mixed reads from the T1 and N1 samples in 4:1, 1:1, and 1:4 proportions to 

obtain tumor purity levels of 80, 50, and 20%. Read sampling was performed as above to extract a 

total of 370M reads-pairs (~30x) in each tumor dilution. 

Read mapping 

All reads were mapped to the GRCh37 reference genome. Variant calls in the DRAGEN pipeline 

were obtained on alignments produced by the DRAGEN Alignment pipeline v.3.7.5. Alignments in 

all other pipelines were generated using the Sanger’s CGPMAP pipeline v3.0.0 

(https://github.com/cancerit/dockstore-cgpmap), including BWA MEM [56] mapping, and alignment 

post processing with SAMtools [57] and biobambam2 [58]. Picard v2.18.26 [54] was used to 

produce mapping metrics. 

Variant detection 

SNVs and indels were called on matched tumor and normal, as well as normal-normal samples 

using DRAGEN Somatic Analysis Pipeline v.3.7.5, CGP-WGS pipeline v2.0.1 

(https://github.com/cancerit/dockstore-cgpwgs) developed by Cancer IT at the Wellcome Trust 

Sanger Institute, GATK somatic analysis pipeline v4.1.9.0  [41], and Strelka2 v.2.9.2 [46]. In 

addition, DRAGEN calls in tumor-only analysis (without normal sample) were generated. In all 

cases default parameters were used, and (unless noted otherwise) only variants with the PASS 

flag were used for the analysis. GATK pipeline was based on MuTect2, and the analysis was 

carried out according to the GATK recommendations: reads aligned as described above were 

processed using MarkDuplicates algorithm from the Picard tool set [54] and BaseRecalibrator 

which is a part of the Genome Analysis Toolkit (GATK v4.1.9.0) [41]. Somatic mutations were 

identified using MuTect2 (v4.1.9.0) [33] and filtered using GATK’s FilterMutectCalls, as well as 

sample contamination estimates obtained using CalculateContamination tool and read orientation 

bias statistics obtained with LearnReadOrientationModel tool. 

Accuracy of variant detection 

Variant calls obtained with each of the tools were compared to the gold standard using the som.py 

tool from the hap.py package developed by Illumina [59]. The metrics used in the basic 

comparison, illustrated on Fig.1, were obtained by eliminating variants outside of the defined 

regions and without the PASS filtering flag. From the Synthetic set we used only variants identified 

in the autosomal and sex chromosomes. For the Fang2019 set only variants from the high 

confidence regions, as defined in the High-Confidence_Regions.bed file, were included in the 

study. Since the gold standard for Fang2019 set was based on hg38, prior to the comparison we 

converted all variant calls to GRCh37 using the liftOver tool provided by the UCSC [60] with the 

b37ToHg38.over.chain file. On average 1.85% of positions could not be converted due to location 

inside contig that existed only in the hg38 reference. While the percentage of unconverted 

positions differed between individual tools almost all were located outside of the high confidence 

regions defined in the Fang2019 set, and therefore would not be used as a part of the comparison, 

eliminating the conversion bias. 

         Precision-recall curves were obtained by running som.py with the --keep-scratch option 

which allowed us to extract individual variant positions that were later processed in R. The VAF 

cutoff levels used to create the curves were selected by dividing the VAF distribution into 0-90th 

percentiles. This allowed us to calculate the precision and sensitivity after iteratively excluding 1% 

of lowest VAF variants, making sure that the last point contained at least 10% variants of the entire 

set (reducing information noise). The filtering was carried out based on expected VAFs (defined in 
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the gold standards) for TP and FN variants, and based on those provided by the callers for FP 

variants. 

         Fig. 4 was created using the UpSetR package [61] which shows a stratification of variants 

from the reference sets, along with information on which group of variants was identified by specific 

subset of workflows.  
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