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Abstract: 

Immunotherapies, especially immune checkpoint blockade therapy have shown unprecedented clinical benefits in several 

malignancies, however, responses are variable emphasizing the need for effective biomarkers for patient stratification1. 

Phenotyping of tumors into hot, altered, or cold2 based on T-lymphocyte infiltration in tumor biopsies fails to explain and/or 

predict response to immunotherapy seen in a subset of patients3,4. One of the primary reasons for this suboptimal prediction 

by a single immune marker could be attributed to the fact that additional mechanisms within the tumor microenvironment 

modulate anti-tumor immunity and outcomes, including dynamic events such as tumor-angiogenesis and leukocyte 

trafficking2,5,6. We report novel tumor phenotypes through non-invasive spatially-resolved cellular-level analysis of the 

tumor immune microenvironment (TiME) and major determinants of anti-tumor immunity. Using skin cancers as a model 

and optical imaging using reflectance confocal microscopy (RCM)7, we determined four major phenotypes based on 

unsupervised clustering for relative prevalence of vasculature (Vasc) and inflammation (Inf) features: VaschighInfhigh, 

VaschighInflow, VasclowInf(intratumoral)high and VascmodInflow. The VaschighInfhigh phenotype correlate with high immune and 

vascular signatures while VaschighInflow with endothelial anergy. Automated quantification of TiME features demonstrates 

moderate accuracy and high correlation with corresponding gene expression. Prospective testing of TiME features prior to 

topical immunotherapy response shows highest response in the VasclowInf(IT)high phenotype, and revealing the added value 

of vascular features in predicting treatment response. This novel in vivo phenotyping combining dynamic immune and 

vascular features has the potential to advance fundamental understanding of the highly dynamic TiME, identify novel 

druggable pathways and develop robust predictors for immunotherapy outcomes.  

Main: 

Immunotherapy, especially immune checkpoint blockade therapy, has revolutionized cancer management by providing near 

durable responses in several cancers. However, only a subset of patients derives clinical benefit, highlighting a clinical need 

to develop effective biomarkers for patient stratification1,8. Phenotyping of tumors into hot, cold or altered based on 

quantifying T-lymphocyte infiltration at the tumor center and margin, along with PD-L1 expression on 

immunohistochemistry (IHC) and tumor mutation burden are important determinants for immunotherapy in solid cancers9,10. 

Although hot versus cold tumor phenotyping has shown some association with response, clinical response is not assured in 

the inflamed phenotypes, suggesting immune-cell infiltration is necessary but insufficient for inducing anti-tumor 

immunity4,11. Thus, tumors likely use additional mechanisms for evading immune response while establishing an immune-

suppressive microenvironment, further complicating patient stratification strategies through dynamic tumor/host immune 

interactions and baseline tumor biology9,12,13.  

Tumor vasculature (both blood and lymphatic vessels) serve important immunomodulatory roles, and contribute to the 

immune evasion of tumors14. Angiogenesis promotes immune evasion through induction of a highly immunosuppressive 

TiME by inhibiting dendritic cell (DC) maturation, inhibiting T-cell development and function, and very importantly, 

limiting access of effector immune cells15 to tumors by modulating leukocyte trafficking.  In addition, tumor vasculature 

can display decreased expression of adhesion molecules, and non-responsiveness to inflammatory cytokines leading to 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 10, 2021. ; https://doi.org/10.1101/2021.06.10.447835doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.10.447835


4 

 

endothelial anergy. By downregulating trafficking of effector immune cells, vascular endothelial anergy contributes to 

ineffective anti-tumor immune responses and immune evasion16-18.  

Towards addressing the dynamic, complex and highly interdependent vascular-inflammation axis inside the TiME, in vivo 

phenotyping based on a combination of dynamic vascular and immune features, rather than ex vivo phenotyping based on 

static pathological evaluation of tumor infiltrating cells may facilitate a deeper understanding and achieve higher predictive 

power for patient stratification for immunotherapies. High-resolution non-invasive in vivo imaging is fundamental to this 

combination phenotyping, since static ex vivo analyses on patient tissue are limited in recapitulating dynamic vascular and 

immune attributes19. We report novel combination phenotypes detected in vivo using reflectance confocal microscopic 

(RCM) imaging. RCM is a high-speed (pixel times ~ 0.10 µsec, frame rates 10-30 per second) cellular-level label-free 

imaging approach based on backscattered light and endogenous tissue contrast7,20. Large image mosaics (64 mm2 in 50 

seconds) imaged to a depth of ~0.25 mm enables spatial resolution of TiME features. RCM is routinely used for real-time 

skin cancer diagnosis and management at the bedside. Few studies have demonstrated RCM imaging of vessels and 

leukocyte trafficking in humans21,22. Using skin cancer as a model, we define novel combination TiME phenotypes using 

six features: vessel diameter, vessel density, leukocyte trafficking, intratumoral inflammation, peritumoral inflammation 

and perivascular inflammation (Fig S1) and report their subsequent molecular correlation with inflammatory, angiogenic 

and trafficking signatures. We also  and, in a prospective pilot study, examine their investigated relative importance of 

TiME features in predicting response to topical immunotherapy. 

Results: 

Towards in vivo combination tumor phenotyping, agreement between RCM feature evaluation (Fig S1) by two independent 

readers was investigated, and correlated with same features on well-validated and gold-standard histopathology by a board-

certified dermatopathologist (Table 1). Substantial to almost perfect agreement (k=0.62-1.0) was observed for most RCM 

features. Good to very good agreement (AC1: 0.74-1.0) was found between histopathology and average RCM evaluation, 

confirming the visualization of validated histopathological TiME features on RCM. Unsupervised clustering on these TiME 

features using Principal Component Analysis (PCA) on 27 skin cancer patients revealed four major phenotypes (Fig 1A): 

VaschighInfhigh, VaschighInflow, VasclowInf(IT)high and VascmodInflow based on the PC loadings and vectors indicated in green 

arrows (Fig S2A). The largest loadings (PC1: dilated vessels, trafficking and PC2: peritumoral, perivascular inflammation) 

were used to establish the phenotypes on 27 patients. Patients between the PC1 and PC2 loading vectors were denoted as 

VaschighInfhigh (red), patients proximal to the PC1 loadings were denoted VaschighInflow (blue) while distal to PC1 loadings 

were VascmodInflow (light blue), and patients distal to main PC2 loadings but proximal to intratumoral (IT) inflammation 

loading vector were denoted as VasclowInf(IT)high .  For phenotyping, the 6 RCM features used for unsupervised clustering 

were grouped into Vasculature (dilated vessels, number of vessels and trafficking) and Inflammation (peritumoral, 

perivascular and intratumoral inflammation). The ‘high’ and ‘low’ indicate the prevalence of the feature in the phenotype, 

high corresponds to manual score of 2 or 3, low to 0 or 1 (on a scale of 0-3, Fig S1D) while ‘mod’ denotes moderate feature 

prevalence (between 1-2). The in vivo phenotypes were correlated with the total number of CD3+ T cells (to assess with 

respect to T-cell based pathological phenotyping2) and density of tertiary lymphoid structures (Fig S3), a recent hallmark 
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of an inflamed micro-environment and positive cancer outcomes23 on 27 patients (Fig 1A). The largest number of T-cells 

were seen in the VasclowInf(IT)high phenotype (mean: 783 cells/mm2, range: 148-1489) as compared to VaschighInfhigh (407 

cells/mm2, range: 69-704), VascmodInflow (429 cells/mm2, range: 236-623) and VaschighInflow (371 cells/mm2, range: 81-803). 

Higher TLS density was found in VasclowInf(IT)high phenotype (mean: 0.037 mm2, range:0-0.155) followed by VascmodInflow 

(0.037 mm2, range: 0.01-0.006) while comparable densities were found in VaschighInfhigh (0.01 mm2, range:0-0.04), and 

VaschighInflow (0.01 mm2, range:0-0.06). 

 

Transcriptomic analysis on 14 patient samples harboring sufficient RNA quality and quantity for bulk RNA-sequencing 

(RNA-seq QC in Fig S4A) was performed to enable phenotype correlation with gene expression profiling. The RCM tumor 

phenotyping on this subset of patients reveals similar phenotypes, with clustering driven mainly by trafficking (PC2) and 

intratumoral trafficking (PC2) (Fig 1B).The phenotyping was correlated with gene expression of CD3E (T-cells) to mimic 

the comparison with CD3+ T cells on immunohistochemistry. Highest CD3E expression (7.7, 2.5-11 transcripts/million) 

was seen in VaschighInfhigh while lowest CD3E expression (0.9, 0.6-1.1 transcripts/million) was seen in VaschighInflow 

phenotype (Fig 1B). Unsupervised clustering to explore similar phenotypes in gene expression data was also explored using 

PCA for inflammation, angiogenesis24 and trafficking gene signatures. Similar tendency of classification (Fig 1C), 

especially between the red/pink and blue/light-blue phenotypes was observed in inflammation (driven mainly by TNFAIP2 

expression), angiogenesis (mainly SPARCL1) and trafficking (mainly CXCL12). Other major loadings or determinants 

driving classification in individual PCA included IL10RA, CD68, CD2, IFNGR1, JAML (inflammation), RGS5, CLEC3B, 

EDNRB, A2M and PDGFD (angiogenesis), Cav1, CD99, CXCL14, CCL 21 (trafficking) (Fig S2D-F). 

 

Next, we performed extensive group-level transcriptomic analysis using CIBERSORT25, DGEA and pathway analysis, gene 

set enrichment analysis (GSEA) and validated DGEA results using hierarchical cluster analysis (HCA). Owing to the small 

sample size, we merged the four phenotypes (Fig 1B) into two groups: Infhigh (red) and Vascmod/high (blue) (Fig 2A) to 

characterize molecular attributes specific to the prominent inflammation or vasculature groups. Subsequently, we performed 

additional unsupervised k-means clustering on CIBERSORT output (Fig 2B, Fig S4B) that two distinct Infhigh and 

Vascmod/high similar to RCM (Fig 2A), with one misclassified patient in each cluster (P21 and P22). DGEA on the 

CIBERSORT output on the Infhigh and Vascmod/high phenotypes found 11 significant differentially expressed genes (DEGs) 

with upregulated JAK-STAT signaling, NK-cell medicated cytotoxicity and chemokine signaling in the red cluster. Relative 

immune cell proportions in the red and blue clusters indicated higher CD4 memory resting, CD4 memory active and M1, 

M2 macrophages in the red cluster (Fig S4C, D). DGEA on the entire transcriptome guided by the RCM TiME phenotypes 

(Infhigh and Vascmod/high) found 114 differentially expressed genes that separated RCM phenotypes into the same 2 groups 

with hierarchical cluster analysis (HCA) (Fig 4F), 85 genes were overexpressed in the Infhigh while 29 genes in the 

Vascmod/high cluster (Fig 2C). Pathway analysis using available gene sets (MSigDB_Hallmark_2020, NCI_human, 

WikiPathways_2019_Human, Bioplanet_2019) and GO biological processes demonstrate enrichment of mainly pro-

inflammatory and anti-tumor genes in Infhigh while enrichment of leukocyte-endothelial interactions, ephrin B2 pathway, 

vasodilation and neovascularization in the Vascmod/high based on selected pathways (Fig 2D, Fig S6). Gene set enrichment 
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analysis (GSEA) for immune and angiogenesis signatures suggest higher scores in the Infhigh cluster suggesting a higher 

immune activation and vascular enrichment (Fig 2E). HCA on Nanostring Pancancer Immune Panel Genes26 (Fig S5E-F) 

indicates presence of four phenotypes of which P7, P14 and P17 (RCM Vascmod/high) were found to have comparatively 

lower expression of immune genes as compared to P5, P6, P21, P23, P36 (RCM Infhigh). These results suggested Infhigh may 

have more inflamed phenotypic attributes while Vascmod/high phenotype were associated with lower immune densities and 

immune activation in presence of high vessels and/or trafficking, suggestive of endothelial anergy18. After successfully 

verifying tumor phenotypes on RCM and gene expression datasets, we also investigated tumor phenotyping on 3 GEO 

datasets27-29 using PCA and differential gene expression analysis (DGEA) towards analyzing similar phenotypic trends in 

additional diverse cohorts (Fig S5).  

 

To characterize patients within each in vivo phenotype in terms of specific inflammation, vascular (angiogenesis, trafficking, 

endothelial anergy) and tumor intrinsic pathways driving the phenotypic classification, we investigated genes from critical 

pathways within each of these TiME components. All major inflammation genes were systematically upregulated in the 

VaschighInfhigh while downregulated in the VaschighInflow phenotype (Fig 3A). However, the VaschighInflow phenotype was 

characterized by the highest M2/M1 macrophage ratio (from CIBERSORT output). While the VascmodInflow showed 

comparable immune expression for most genes with the VasclowInf(IT)high phenotype, we found lower CD86 and lower CD8, 

GZMA/B expression. Both VaschighInfhigh and VasclowInf(IT)high showed similar degree of immune-inhibition (FOXP3, 

IDO1, TIGIT, CD274), higher than the remaining two phenotypes. In terms of vascular features, VaschighInfhigh as compared 

to VaschighInflow exhibited higher or similar expression of angiogenic genes such as CAV1, CAV2, VEGF-A and ALCAM 

(Fig 3B). We found highest VEGF-A expression in 1 patient (P17) in the VaschighInflow; most patients in this phenotype 

demonstrated higher VEGF-D and endothelin-2 expression than other phenotypes. VaschighInfhigh and VasclowInf(IT)high 

showed the highest VCAM, ICAM1, ICAM2, SEL-L, CXCL12 and CXCL9 levels. Relatively higher (or comparable to 

VaschighInfhigh) expression of ITGA3, FUT4 was observed in the VaschighInflow phenotype (Fig 3C). We also investigated 

tumor intrinsic pathway differences and found relatively higher β-catenin, PTEN, TP53 and COX11 and lower STAT1, NF-

κB1/2 and TLR7 expression in the VaschighInflow phenotype (Fig 3D). Immunohistochemical correlation of phenotypes with 

CD3+ T-cells, CD20+ B-cells and TLS number/density found least immune cells and absence of tertiary lymphoid structures 

in VaschighInflow phenotype (Fig 3E), additionally confirming the gene expression distribution pattern of immune cells and 

anti-tumor mechanisms in these phenotypes.   

 

Of thirteen patients who underwent prospective evaluation of TiME features for correlation of novel phenotypes with 

response to topical immunotherapy, 7 patients responded to the immunotherapy treatment while 6 were non-responders. 

Within this pilot study cohort, most responders (5 out of 7) belonged to the VasclowInf(IT)high phenotype (Fig 3F). Additional 

RCM features were investigated for modeling TiME features and tumor phenotypes with response to treatment. Higher 

frequency of leukocyte trafficking, greater number of stromal vessels and stromal macrophages were present in 50%, 100% 

and 86% of the non-responders.  Linear regression models for predicting responders and non-responders demonstrate low 

predictive power of inflammation as a variable, either as “tumor-infiltrating lymphocytes” or “intratumoral inflammation” 
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with accuracy of 46% and 61%, respectively (Fig 3F). The same regression models were used for identifying predictor 

variables from the TiME features using specificity or AIC coefficient as outcome measures. The best performance among 

the AIC prioritizing models was 85% sensitivity, 66% specificity and AIC=-15.06 with 8 variables while the best 

performance among the specificity prioritizing model was 71% sensitivity, 83% specificity and AIC= -15.06 with 13 

variables (Fig S6). Three of eight  features (stromal vessels, peritumoral vessels and stromal macrophages) overlapped 

between the two models. Linear separability plots also confirmed stromal vessels and stromal macrophages variables led to 

high separation between responders and non-responders. Addition of stromal vessels to intratumoral inflammation or tumor-

infiltrating lymphocytes (Fig 3F) as features in the linear regression model resulted in best model performance (71% 

sensitivity, 83% specificity and 76% accuracy). 

 

Finally, to enable objective quantitative comparisons between RCM Time features and phenotypes, immunohistochemical 

markers and gene expression, we investigated automated quantification of RCM TiME features— immune cells, leukocyte 

trafficking and vascular features using machine learning and image processing. Quantification of immune cell density was 

explored using a machine learning segmentation model, U-Net. Representative images and segmentations are shown in Fig 

S7. Image-processing was used for quantification of vascular features (vessel area, diameter and number) and leukocyte 

trafficking; vessel segmentation was performed using statistical filtering and component analysis-based algorithms while 

trafficking quantification was explored on a custom pipeline involving TrackMate (FIJI)30. Each analysis was validated on 

a subset of data (described in Methods), the results are summarized in Fig 4A. Correlation between manual evaluation and 

automated quantification demonstrated strong correlation of automated leukocyte area (green, Fig S7A) with inflammation 

(r=0.64), moderate correlation of automated total inflammation with inflammation (r=0.49) and weak correlation for 

trafficking (r=0.39) and vessel diameter with dilated vessels (0.29). Subsequently, correlation of RCM TiME features with 

corresponding gene expression show strong correlations between RCM total inflammation area with CSF1R (macrophage, 

r=0.73), CD1E (dendritic cells, r=0.64) and CD3E (lymphocytes, r=0.51), between total leukocyte area and CD8B (r=0.6) 

and GZMA (r=0.53). Vessel diameter correlated well with VEGF-D expression (r=0.45), PDGFD (r=0.538) and negatively 

corelated with VEGF-A (r=-.477) while leukocyte trafficking correlated positively with CCL18 (r=0.56), CAV-1 (r=0.468) 

and negatively with CCL25 (r=-0.771) (Fig 4D).  

 

Discussion and Conclusion: 

Predicting response/resistance immunotherapy as well as understanding how tumors escape immunity can facilitate effective 

treatment strategies. Currently known predictive mechanisms for immunotherapy including the IFN-G gene panel and the 

“Tumor Inflammation Signature” have shown some promise in predicting response to immune checkpoint blockade31,32. A 

more comprehensive and quantitative analysis of major determinants of anti-tumor immunity within the TiME will improve 

patient stratification, which will ultimately improve current cancer management paradigms and introduce a more 

personalized immunotherapy platform, similar to the IMPACTTM33. Dynamic, in vivo noninvasive imaging is crucial for 

studying these interactions within TiME, since active vascular processes such as leukocyte trafficking are optimally studied 

as a live dynamic process, and ex vivo tissue studies on vasculature have shown inconsistent vessel measurements19. We 
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demonstrate the proof-of-concept for unperturbed characterization and tumor phenotyping inside patients. Furthermore, 

feasibility of automated quantification to generate stronger quantitative correlations was also demonstrated.  

Our preliminary studies on a skin cancer cohort demonstrate presence of four unique in vivo tumor phenotypes based on 

their cumulative vascular and inflammatory attributes: VascHighInfLow, VaschighInflow, VasclowInf(IT)high and VascmodInflow 

where VaschighInfhigh demonstrates high immune and angiogenic signatures, including features characteristic of inflamed 

phenotypes such as CXCL9 (T-cell recruitment inside tumors)34, induction of suppressor pathways PD-L, FOXP3, IDO-1 

and exhaustion markers TIGIT35 and higher memory cells (associated with improved overall survival36). This phenotype 

likely had normalized vasculature, as seen in high expression of VCAM1, ICAM1, L-selectin, CCL2 and higher intratumoral 

inflammation14,16. Conversely, VaschighInflow show features characteristic of endothelial anergy and immunosuppression 

(poor immune infiltration in tumors) , including downregulation of major adhesion molecules (VCAM, ICAM1, ICAM2, 

SELL), higher VEGFD, relatively higher EDN2 and ITGA3 and higher tumor-intrinsic factors known to induce 

immunosuppression (CTNNB1, PTEN, COX11)37,38. VEGFD is implicated in blood and lymph vessel dilation and shows 

association with dilated vessels39, genes such as ITGA3, CCL-28, CAV-1 and EDN2 may likely be compensating for 

decreased adhesion molecule expression in patients with higher trafficking40. Higher CCL28 correlation was seen in the 

Vaschigh phenotype with high trafficking, suggesting the possible role of CCL-28 in trafficking of T-regulatory cells.   

Additionally, the upregulation of WNT/β-catenin pathway is one of the major factors associated with immune exclusion37 

and could be responsible for the endothelial anergy and immune suppression in the VaschighInflow phenotype. Alternatively,  

VasclowInf(IT)high corresponded to a highly inflamed phenotype with lower immunosuppressive vascular features, also 

reflected in the prospective imiquimod study where highest proportion of responders were found to belong to the 

VasclowInf(IT)high phenotype. Relatively higher expression of TLR7 (agonist of Imiquimod) in this phenotype could also 

explain higher Imiquimod response. Additionally, immunophenotyping to correlate RCM phenotypes in a pilot study on 3 

BCC tumors indicated higher activated CD8+GZMb+ and CD8+Ki-67+ cells in a patient with features of Infhigh as compared 

to a patient with Vaschigh also suggesting Infhigh phenotype are inflamed (Fig S8).  

Thus, these results suggest the feasibility of identifying not just the TiME phenotypes, but the mechanism of 

immunosuppression that can be exploited for treatment of cold, non-inflamed and non-responsive tumors. Anti-angiogenic 

agents can overcome endothelial cell anergy and reinduce EAM expression, resulting in increased leukocyte infiltration into 

tumours. For example, phenotypes with the VaschighInflow phenotype could benefit from additional synchronous treatment 

for vessel normalization or pharmacological targeting of the WNT/β-catenin pathway or using anti-angiogenic topical 

treatments (COX-2, bFGF inhibitors) towards treatment optimization41. Additionally, immune-cell infiltration into tumors 

does not necessarily warrant response, thus turning excluded anergized tumors into inflamed phenotypes may fail as a 

treatment strategy. As an alternative, longitudinal and non-invasive monitoring of the treatment-induced alterations in the 

TiME phenotype for such newer TiME targeting therapies can help assess response and resistance mechanisms and further 

treatment optimization.  

While this study demonstrates a combination of high-resolution spatially resolved and dynamic imaging, limitations 

included grayscale-limited specificity tissue contrast and imaging depth to 0.2-0.25 mm. The label-free approach enables 
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visualization of all TiME features, but is limited in specificity for functional phenotyping. This potential limitation may be 

overcome by accounting for the longitudinal spatio-temporal distributions in patients to monitor immune changes. The 

limited depth of imaging fails to capture deeper TiME features. With the current state of RCM devices and technology, this 

approach is currently restricted to accessible diseases and cancers, namely skin cancer, head-neck cancer, cervical cancers, 

cutaneous lymphomas, cutaneous metastasis. In the future, extensive validation with targeted molecular correlations on 

precision biopsies42 will enable better correlations. Exhaustive molecular validation using flow cytometry and single-cell 

RNA-seq and spatial transcriptomics43,44 on subsequent models will facilitate improved understanding of RCM phenotyping. 

Complementary multimodal approaches45 such as dynamic optical coherence tomography (OCT, for deeper imaging of 

blood vessels46), multiphoton microscopy (MPM, for better contrast and collagen delineation47), photoacoustic microscopy 

(PAM, for deeper vessels with oxygen saturation/desaturation) and fluorescence lifetime imaging (FLIM, for immune cell 

specificity and activation states48) may be necessary to further enhance in vivo TiME visualization and enhance current 

TiME phenotyping. Through robust prospective studies, fundamental basis of phenotyping and their correlation with 

variable treatment responses in cancer immunotherapy systems will be explored for better patient stratification.  These initial 

findings will enable hypothesis-driven research for developing novel druggable targets and gaining mechanistic insights 

regarding host anti-tumor immune response in various bedside cancer settings in human patients. 
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Methods: 

Methods: 

 

Patient recruitment and imaging 

Patients referred for physician consultation, Mohs surgery or wide local excision at Memorial Sloan Kettering 

Cancer Center (MSKCC), NY were prospectively enrolled for this study under MSKCC-IRB approved protocols. 

Patients (aged 18 or older) with either a previously biopsied or clinically suspected keratinocytic [basal cell 

carcinoma (BCC), squamous cell carcinoma (SCC), actinic keratosis(AK)] , melanocytic (melanoma) lesion or 

drug rash were accrued consecutively at Memorial Sloan Kettering Cancer Center (MSKCC) after written 

informed consent.  Patients with suspected BCC selected for topical immunotherapy Imiquimod (n=9) were also 

enrolled.   

 

In vivo imaging  

In vivo RCM imaging was performed prospectively on 97 lesions using an RCM (either VivaScope 1500 or 

a handheld VivaScope 3000, Caliber I.D., Rochester, NY) and/or an integrated handheld RCM-OCT prototype. 

Images were acquired and interpreted in real-time at the bedside to select representative areas with tumor, immune 

cells and blood vessels across the lesion by 2 investigators (M.C. and A.S.) having more than 4 years of RCM 

reading experience. Mosaics (large area sampling), stacks (depth sampling), scanning and  single field-of-view 

(FOV) videos were acquired and saved in an online database (Vivanet, Caliber ID) or on a local drive. Individual 

images (0.75 x 0.75 mm) from stacks and temporal single FOV frames with were used for automated 

quantification of immune cells, and vascular features, respectively. 

 

Patient tissue: 

Biopsies (targeted or non-targeted) taken as standard-of-care or for research use were used for 

histopathological, immunohistochemical, RNA-sequencing and flow cytometry correlations. Formalin-fixed 

paraffin embedded (FFPE) specimens from 34 lesions were used for histopathological and immunohistochemical 

correlations. Eight tissue sections were provided by a collaborator for tertiary lymphoid structure studies. RNA- 

extraction was on 25 lesions and RNA-seq was performed on 14 lesions. Imaging-guided targeted biopsy was 

performed on 7 lesions; frozen sections followed by pathology/IHC on 3 lesions and flow cytometry was 

performed on 4 lesions. 

 

RCM Data: 
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Stacks and videos from 97 lesions were analyzed in this study. Machine learning-based immune cell quantification 

was explored on 1026 frames from 93 cancer lesions. Each lesion contributed 5-27 independent images. The 

algorithm was tested on 652 independent images from 33 lesions at ~20 representative images/lesion. For vascular 

feature quantification, 438 single FOV videos (39, 813 frames) from 48 cancer lesions were selected. Each lesion 

contributed 1-31 videos. Quantified values from 270 videos in 31 patients in the analyzed set were used for 

subsequent correlations with manual evaluation and gene expression. 

 

Quantification: 

Machine learning for immune cell: A pixel-wise segmentation model was trained for 4 different 

morphological patterns (dendritic cells, macrophages, leukocytic round-ellipsoid cells and miscellaneous immune 

cells) imperative for TiME analysis. We binned them into 2 classes as class 1: Dendritic cells and Melanophages 

(macrophages), Class 2: Leukocytes and Miscellaneous immune cells. As a third class we also labelled areas that 

did not contain any of these patterns as background. 1026 RCM images from 93 lesions were labelled pixelwise 

for these 3 classes in a non-exhaustive manner, where we only labelled examples of these patterns (Fig S7A). A 

total of 12% of the pixels were labelled (6% Class 1, 3% Class 2 and 91% Class 3). We trained a 3 class 

UNet49segmentation model using the MONAI framework50. We used 926 images for training and 100 

independent images for testing the model.  Based on our former studies51,52, we downsampled the RCM images 

to 256 by 256 pixels (corresponding to 2 µm resolution) for the sake of computational efficiency. We use a 

learning rate of 5e-2, batch size of 64, and SGD optimizer with Nesterov momentum. We also used image 

augmentation such as random rotation, flipping, elastic-affine deformation, intensity scaling, to increase the 

training dataset size. The model is trained for 90 epoch using DICE loss. After 90 epochs we did not see any 

improvement in the loss. Dice similarity coefficient of 0.72 was found for these 3 classes (Fig 4A).  

Vascular features 

For all video frames, a two-step image stabilization procedure was used to remove the significant motion found 

in each movie segment. Firstly, a linear pre-alignment is performed to minimize large scale motion in Fiji53 using 

the SIFT feature plugin Plugins->Registration-> Linear Stack Alignment with SIFT and default parameters. 

Stabilized images are then automatically cropped in Matlab (mathworks.com) to remove black background and 

include only areas within the field of view during the entirety of the movie segment. The crop rectangle is 

computed automatically by iteratively removing the row or column of pixels which contains the most blank pixels 

in a temporal min image until all outer edge rows and columns that contain more than three quarters blank pixels 

are removed. A second custom nonlinear stabilization was then performed in Matlab to remove large scale tissue 

deformations over time. Frame t+1 first has its histogram equalized to match frame t and then is aligned to frame 

t using the imregdemon procedure with four pyramid levels and steeply decreasing iterations of alignment at 
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successively finer scales (iterations, [100,50,10,1]).  Frame t+2 is then aligned with the transformed frame t+1 

and so on.  Cropping of all regions not in view throughout the movie is again performed via the same procedure. 

-Trafficking 

Background Subtraction A background image is estimated for each frame as the median per pixel over a 

temporal window of 6 s centered on the current frame. Where movie temporal resolution differs, the window in 

frames is adjusted accordingly.  This background estimate is subtracted out of the current frame, largely isolating 

moving cells on a dark background. We experimented with sparse linear methods for background subtraction, but 

found increased distortion in extracted foreground cells were a persistent problem across methods (data not 

shown). Mean and min background estimates were also tried, as well as dividing through by, rather than 

subtracting, background estimates, which desirably enhances dim cells. This advantage was offset by noise 

enhancement in non-vessel voids in the tissue (data not shown). 

 

Tracking Background subtracted images are exported from Matlab as 32bit OME tiffs and imported into Fiji. 

Tracking is then performed in Trackmate30  using DoG spot detection (subpixel=true; radius=7.5pixels (7.5/1.33= 

5.63 micron) ; threshold=1.6) and the LAP tracker with no splitting, merging or gap closing, and a max match 

distance of 20 pixels (20/1.33 = 15.03 micron). The tracklets found are then filtered in Matlab to remove spurious 

tracklets corresponding to imperfectly removed background elements (this occurs particularly during changes in 

z during imaging) or tracks strung together from different fast moving circulating blood cells while preserving 

the desired target population.   Features used to measure tracklet desirability are detailed below.   Thresholds were 

set quantitatively and automatically to maximize correspondence between automated results and manual counts 

on an initial training set of 40 movies (approx. 10% of overall data). Three different temporal windows ranging 

from 0.6s, 0.8 s and 1s were investigated for total quantification of rolling, crawling and adherent cells. 

Constrained optimization within a restricted range was adopted, although fully independent threshold 

optimization was also investigated (Fig S7C-D). Moderate-high correlation (0.79-0.82) was observed during first 

optimization following which trafficking was quantified on remaining videos. Final validation using manual 

counts on a subset of videos (~2.5% of total data) by two readers with high inter-reader concordance (Fig S7E) 

found high correlation (0.74-.0.89) for different temporal windows (Fig 4A, Fig S7F). Temporal window 3 was 

selected for subsequent analysis to ensure inclusion of especially faster trafficking processes (rolling cells) in 

shorter blood vessels. The correlation was worse for videos with remnant motion after two-step motion 

minimization strategy, suggesting need for minimizing in axial and lateral motion during data acquisition, and 

use of more efficient motion removal algorithms in future.  

 

The Tracklet Parameters used are as follows: 
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Displacement=[15.41,16.92,16.92]um([20.5,22.5,22.5]px) 

Consistency=[58,58,58] degrees  

Quality=[1.6,1.65,1.75] arbitrary units;  

Length=[0.6 s, 0.8 s or 1 s]) 

 

Where,  

Displacement- total displacement between tracklet start and end point, in pixels (tracklets with lower displacement 

are discarded) 

Motion Consistency – average angle between the motion vector of the track at successive timepoints in degrees 

(tracklets with higher angular difference are discarded) 

Quality- average quality of detections making up the tracklet as measured by Trackmate (lower average quality 

tracklets are discarded) 

Length – duration in s of tracklet, in all cases this was set to the thresholds used in manual counts (shorter 

tracklets are discarded) 

 

-Blood vessel segmentation: 

Manual segmentation of blood vessels was performed using an open-source segmentation platform called 3D 

Splicer (https://www.slicer.org/)54 on 25 randomly selected videos. Two videos were discarded from analysis 

due to extreme Z-motion. The remaining 23 videos were processed to display only every 10th frame to mimic 

the automated segmentation approach; each frame in the resulting file was  segmented. The entire video 

segmentation was exported as a Nifti (.nii) file format and imported into Matlab as a 3D image array, where 

consecutive images in the array correspond to consecutive frames in the RCM video. Ensuring that the 

consecutive frames are registered, our assumption for detecting the vessels was that the areas of high variation 

between consecutive frames correspond to vessels. In order to suppress the variation due to speckle noise in the 

RCM images, we first applied a gaussian smoothing filter (sigma = 1px). Then we applied a finite impulse 

response high pass filter (F = [0.5,-1,0.5]) and smooth out the extracted pixel-wise variation in time using a 7-

by-7 median filter. We then subtract the mean variation of each frame to eliminate the slowly varying areas, and 

obtain a variation map for the whole video by accumulating the variation over the entire video sequence. We 

finally apply otsu thresholding the final variation map to find the areas of vessels in the videos. To smooth the 

border of the vessels and clean out the noise in the segmentation, we applied morphological closing operation 

on the binary segmentation map and clean segmented areas smaller than 0.1% and larger 10% of the entire 

frame. Dice similarity coefficients were calculated for comparing manual and automated vessel segmentation 

(Fig S7B, 4A).  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 10, 2021. ; https://doi.org/10.1101/2021.06.10.447835doi: bioRxiv preprint 

https://www.slicer.org/
https://doi.org/10.1101/2021.06.10.447835


14 

 

 

RCM manual evaluation  

RCM features were manually evaluated (Fig S1A-D) by 4 readers with at least 4 years’ experience (AS) or >20 

year experience in interpreting RCM images for the main study on 33 cancers (MC, SG) or treatment response 

study on 14 cancers (CMAF). The major features evaluated on manual reading included number of vessels, 

dilated vessels, trafficking, intratumoral inflammation, peritumor inflammation and perivascular inflammation. 

These features were graded on a scale of 0-3 after exhaustive review of data from each patient. For imiquimod 

response study, type and spatial distribution of vessels and three immune morphologies were accounted for 

assessing time features that associate with response.  

 

Histopathological evaluation 

Same TiME features evaluated on RCM were also graded on digitized histopathological slides of 33 patients by 

a board-certified dermatopathologist (MG). 

 

Agreement and correlation studies  

Agreements between two readers’ manual evaluations for binary RCM feature presence were quantified using 

Cohen’s kappa coefficients. For the evaluations between RCM and histology, agreement regarding the extent of 

each feature presence was quantified using linearly weighted Gwet’s AC1 for each of the two RCM readers to 

the single histology reader. The simple average of the two Gwet’s AC1 scores were reported for each feature. 

Binary feature presence on RCM versus histology was derived the same way after recoding the manual 

evaluations.  

Correlations between automated and manual features were computed using Spearman’s correlation (1-tailed, 

confidence interval-95%). Spearman correlation between RCM quantified features and immune-related 

(nanostring), trafficking-related (Gene ontology reference) and angiogenesis score (ref). 

 

Statistical clustering for TiME phenotyping  

Unsupervised statistical clustering on TiME features was performed to explore classification trends or 

phenotypes. Principal component analysis (PCA) was used for clustering for manual evaluation and quantified 

RCM features. Centered method (data scaled such that mean =0, Sd unchanged) or standardized method (data 

scaled such that mean=0, SD=1) for manual and automated PCA, respectively. PCs were selected such that 

largest eigenvalues together accounted for 95% of the total variance. Loadings and biplot are presented along 

with scatter plot. Six RCM features were selected for (intratumoral, peritumoral and perivascular inflammation, 

vessel area/number, dilated vessels, trafficking). Based on loadings in the manual PCA, patients in the area 
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under the inflammation , trafficking and vessel loading vectors were termed as red phenotype. Patients in the 

area under the inflammation vector were pink phenotype, patients under the vessel and trafficking vectors were 

blue phenotype. Patients close to vessel vectors were categorized as light blue phenotype. PCA for individual 

gene groups (inflammation26, angiogenesis24 and trafficking(GO Pathways55)) were also analyzed to derive 

correlations with RCM phenotypes. Another PCA on response to imiquimod was done using similar parameters.  

PCA was performed in Graphpad 9.0. 

 

Immunohistochemistry 

CD3, CD68 and CD20 IHC were performed on BOND RX(Leica) while MPO IHC was performed on Ultra 

Discovery platform(Roche). The protocol for the Bond Rx platform included ER2 (High pH buffer) -30 minutes 

for Heat retrieval followed by 30 minutes incubation time for Primary Abs (Santa Cruz Biotech, US). Polymer 

Detection was through DAB Kit (catalog  DS9800). For the dual CD3/CD20 sequential stain, ER2 -30 minutes 

for heat retrieval, 30 minute incubation time for Primary Ab followed by Polymer Detection kit. This was 

followed by ER2-20 minute, 30 minute -incubation with second  Ab, Polymer refine Red detection KIT , 

(catalog # DS9390). The protocol for Discovery Ultra involved CC1-32 minutes for Heat Retrieval, 32 minutes 

-incubation of Primary Ab. OptiView DAB IHC Detection Kit (catalog # 760-700).  

 

IHC evaluation and quantification 

CD3, CD20 and MPO stains were evaluated on 33 cases by a board-certified dermatopathologist (MG) for 

presence/absence of ulceration/erosion and CD3+ T-cells , CD20+ B-cells , total lymphocytes (CD3+ CD20+) 

and neutrophils. In addition, for each immune marker, features were evaluated on a scale of 0-3 where 0 is 

absent and 3 is highest. These features included predominant distribution, TILs, trafficking and distribution at 

tumor periphery. For MPO, an additional category called intravascular cells was evaluated. Tertiary lymphoid 

structures (TLS) labeled by dual CD3/CD20 staining on 40 cases were also analyzed for total TLS numbers, 

TLS dimensions (maximum dimensions in X and Y) and tissue size (maximum dimensions in X and Y) to 

compute TLS numbers/mm2 and TLS area coverage/mm2. Within defined TLS and non-TLS areas (used as 

control), tumor killing as defined on histopathology was noted, and TILs in TLS-adjacent tumor nests were 

counted. For TLS positive patients, both TLS and non-TLS areas were evaluated for TILs and tumor killing, in 

TLS negative patients, TILs and tumor killing were specified in defined areas (Fig S3). 

Confidence intervals for median proportion of TLS area coverage was derived from percentile bootstrapping 

approach. Mann-Whitney U tests were used to quantify the statistical significance in differences between 

median proportion of TLS coverage across binary clinical factors such as ulceration presence and NMSC 

classification. Generalized estimating equations (GEE) were used to estimate association between local TiME 
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TLS presence with both TILs presence and tumor killing by clustering on histologic specimen using an 

exchangeable correlation structure. This approach was applied to the binary classification of local TLS area 

versus local control area to the continuous outcome of local TILs cell count density. GEE was applied 

exclusively to TLS regions to model the local TLS area coverage to both the continuous outcome of TILs cell 

count using Gaussian link function and to the binary outcome of tumor killing using the logit link function. 

 

RNA analysis on GEO datasets 

Two previously-published RNA-seq data sets (GSE125285, GSE128795)  and one microarray data set 

(GSE53462) for Basal Cell Carcinoma samples were downloaded from the Gene Expression Omnibus. 

GSE125285 and GSE128795 contained pre-processed RNA-seq data, however, the microarray data was 

indexed to Illumina Probes56,57 . First,  those probes with high detection p-values (p > 0.05 for 13 out of the 26 

samples) were filtered out, leaving 23, 176 probes remaining from an initial value of 47, 323. ProbeIDs were 

matched to common gene identifiers using illuminaID2nuID12.  Of the remaining probes, 5, 778 did not have a 

unique gene associated with them. We took the value with the highest expression to have each gene represented 

only once, leaving 17398 genes. We created phenotype groupings a priori via unbiased clustering through  

immune-related genes provided by Nanostring58©. For the whole transcriptome analysis, we used the built-in R 

heatmap function (stats 4.0.2) to create phenotype clusters. The heatmap revealed 2 groups on which the DGEA 

analysis was performed.  Functional enrichment analysis was performed using GO enrichment analysis 

(https://go.princeton.edu/tmp/5497206//query_results.html), and each enriched ontology hierarchy (false 

discovery rate (FDR) < 0.05) was reported with two terms in the hierarchy: (1) the term with the highest 

significance value and (2) the term with the highest specificity 

 

RNA extraction  

FFPE sections were deparaffinized using the mineral oil method. Briefly, 800µL mineral oil was mixed with the 

sections and the sample was incubated at 65°C for 10 minutes. Phases were separated by centrifugation in 

360µL Buffer PKD and Proteinase K was added for digestion. After a three-step incubation (65°C for 45’, 80°C 

for 15’, 65°C for 30’) and additional centrifugation, the aqueous phase containing RNA was removed and 

DNase treated. The RNA was then extracted using the RNeasy FFPE Kit (QIAGEN catalog # 73504) on the 

QIAcube Connect (Qiagen) according to the manufacturer’s protocol with 285µL input. Samples were eluted in 

13µL RNase-free water. 

 

Transcriptome sequencing  
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After RiboGreen quantification and quality control by Agilent BioAnalyzer, 356-500ng of total RNA with 

DV200% varying from 88-93 underwent ribosomal depletion and library preparation using the TruSeq Stranded 

Total RNA LT Kit (Illumina catalog # RS-122-1202) according to instructions provided by the manufacturer 

with 8 cycles of PCR. Samples were barcoded and run on a HiSeq 4000 in a PE100 run, using the HiSeq 

3000/4000 SBS Kit (Illumina).  On average, 78 million paired reads were generated per sample and 20% of the 

data mapped to mRNA.  

 

CIBERSORT analysis  

CIBERSORT was used for the immune cell analysis to delineate immune subsets using 584 genes for 22 

immune cell types25. Transcript per million values were used as input. CIBERSORT chooses the record with the 

highest mean expression across the mixtures during analysis. The gene expression file with 14 cases was uploaded 

to CIBERSORT as a mixture file, and CIBERSORT was run with the following options: relative and absolute 

modes together, LM22 signature gene file, 100 permutations, and quantile normalization disabled. Sample 

distance matrix resulting from immune cell distribution, k-means clustering and differential gene expression 

analysis (DGEA) were used to interpret CIBERSORT output. 

 

Differential gene expression analysis (DGEA) 

DESeq2 (ver 1.28.1) was used to perform differential gene expression analysis comparing RCM groups 1 vs 

2. Genes with an absolute log2 fold change of >= 0.5 an adjusted p-value of < =0.1 were considered significantly 

changed. Log transformation was then performed on the full gene expression matrix with the rlog function and 

the transformed read counts of the 114 significantly changed genes were extracted for unsupervised hierarchical 

clustering analysis with pheatmap (ver 1.0.12, clustering_method = “complete”)  

 

Gene set enrichment analysis 

471 angiogenesis genes were identified to generate the angiogenesis core gene set and 547 immune genes 

were extracted from CIBERSORT analysis as mentioned above. Top 10% genes differentially expressed between 

the RCM groups 1 vs 2 ranked by absolute fold change were identified and ranked from the highest to the lowest 

fold change. Gene set enrichment analysis was then performed on the 2,529 genes to calculate the enrichment 

score for the angiogenesis and immune gene sets with the R package fgsea (ver 1.14.0) and the fgseaMultilevel 

function.  

 

Response to Immunotherapy analysis  
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Correlation of TiME features and phenotypes with response to topical immunotherapy Imiquimod were 

analyzed on 13 lesions (MSK). The patients were imaged at baseline (T0) and the TiME features were further 

analyzed with respect to response to treatment. Linear regression modeling was undertaken to quantitatively 

identify the predictor variables for response to imiquimod and compared against the known “standard” which is 

tumor-infiltrating lymphocytes and intratumoral inflammation. In order to measure the predictive power of each 

feature, we train predictive models in a leave-one-out cross-validation fashion and measure the model 

performance by inferring on the left-out test sample (out-of-bag estimates). This procedure is followed in an 

iterative manner, where we select a single feature that gives the highest performance and add a new feature that 

provides the highest performance in each iteration. Model performance was measured calculating specificity 

(higher the better) on the out-of-bag estimates and Akaike Information Criterion (lower the better) value of the 

model. In this way, the features are prioritized according to their predictive power. Moreover, we also examined 

the linear separability of (i) individual features by looking at the histogram of feature values for each sample, 

and (ii) each pairwise feature combination by examining kernel density estimation plots. 
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Table: 

 

Table 1. High agreement confirms the reproducibility and presence of TiME features on histopathology  

 

Substantial to almost perfect agreement (k=0.62-1.0) was observed for RCM features between 2-readers, k for peritumor 

inflammation and perivascular inflammation agreement could not be computed due to 100% prevalence.  

Good to very good agreement (AC1: 0.74-1.0) was found in the binary analysis between average RCM evaluation and 

dermatopathologist grading of features. 
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Figures. 

 

 

Figure 1. Novel TiME phenotypes correlate with underlying immune and vascular features 

A. Unsupervised principal component analysis (PCA) on 6 RCM features (intratumor, peritumor and perivascular 

inflammation, vessel number, diameter and trafficking) demonstrate four phenotypes: VaschighInfhigh, VaschighInflow, 

VasclowInf(IT)high and VascmodInflow on 27 patients with PC1 loadings (dilated vessels, trafficking) and PC2 (peritumoral and 

perivascular inflammation) contributing high variance in classification. Patients that correspond to both dilated vessels, 

trafficking and peritumor/perivascular inflammation were termed as VaschighInfhigh phenotype, patients located proximal or 
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distal to PC1 loadings (vessels) were termed as VaschighInflow and VascmodInflow , respectively. Patients distal to peritumoral 

and perivascular inflammation and close to intratumor inflammation loading vector were termed as VasclowInf(IT)high. 

Largest number of T-cells (denoted by size of the bubble) seen in VasclowInf(IT)high along with highest density of TLS.  

B. Unsupervised principal component analysis (PCA) on 6 RCM feature on a subset of patients shows similar phenotypes, 

classification driven by intratumoral inflammation and trafficking. Correlation with gene expression shows highest CD3E 

expression in VaschighInfhigh phenotype. 

 C. Unsupervised clustering for phenotypes in inflammation, angiogenesis24 and trafficking gene signatures demonstrate 

similar clustering as RCM phenotyping (same color code for each patient as in 1B) driven mainly by TNFAIP2, SPARCL1 

and CXCL12, respectively  
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Figure 2.  Gene expression explains the biological basis of RCM phenotyping  

A. PCA plot of RCM data grouped in Infhigh and Vascmod/high for gene expression analysis. B. CIBERSORT analysis 

performed to select immune fractions (574 genes from 22 immune cell types) analyzed through k-means clustering also 

yields two groups similar to RCM phenotypes. Differential gene expression analysis (DGEA) on CIBERSORT output 

indicate upregulation of JAK-STAT, chemokine signaling and NK-mediated cell cytotoxicity in the red cluster. C. DGEA 

based on RCM clustering of Infhigh and Vascmod/high groups on all genes found 114 differentially expressed genes (p adj- 

0.1). Of these 85 genes were upregulated in Infhigh and 29 genes in Vascmod/high. D. Gene ontology and pathway analysis 

was performed on the 114 genes. Pro-inflammatory pathways were overexpressed in Infhigh group, while few genes 
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corresponding to leukocyte interactions and vascularity were upregulated in Vascmod/high group (* denotes statistically 

significant results). GO pathway analysis revealed higher biological processes, cell differentiation, cytosolic calcium 

signaling, cytokine secretion, cellular defense in red group while negative tyrosine kinase and positive cell proliferation in 

blue group. E. Gene set enrichment analysis on immune and angiogenesis signatures demonstrates higher scores for Infhigh 

group. F. Unsupervised HCA on the 114 genes found same clustering as DGEA.   
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Figure 3. Molecular analysis on individual phenotypes indicate unique inflammation, angiogenic, trafficking and 

tumor-intrinsic signatures, reveals inflamed and anergized phenotypes and correlates inflamed phenotype with 

response to topical immunotherapy 

A. Highest immune cell gene signatures in VaschighInfhigh and the VasclowInf(IT)high phenotypes, except the M2/M2 ratio 

which was highest in VaschighInflow phenotype. B. High END2, VEGFD in VaschighInflow phenotype while other angiogenic 

genes higher in the VaschighInfhigh phenptype, C. Lower expression of major adhesion molecules (VCAM, ICAM1, 

ICAM2 and SEL-L while higher ITGA3, CCL2 range in the VaschighInflow phenotype. CXCL12 expression delineates 

VaschighInflow from all other phenotypes. D. Higher CTNNB1, PTEN, COX11 and TP53 in the VaschighInflow phenotype 

while higher STAT1 and NF-kB seen in VaschighInfhigh and VasclowInf(IT)high phenotypes. E. Higher T-cell, B-cell counts 
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and TLS density found in all phenotypes except VaschighInflow  F. PCA on TiME features of 13 prospective patients 

receiving imiquimod indicates most responders (5 of 7) belonged to the VasclowInf(IT)high phenotypes; phenotypic 

association with relatively high TLR expression noted (Fig 3D). Incorporating a vascular feature in the regression model 

for predicting response delivers higher accuracy than inflammation alone.  
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Figure 4. Moderate-high correlation seen between automated feature quantification (immune cells and 

vasculature), manual evaluation, and corresponding gene signatures.  

A. Summary of results for validation performed after each automated quantification.  B. Spearman correlation between 

manual grading and automated quantification: r=0.66 for leukocytic inflammation and manual inflammation, r=0.49 for 

total inflammation, r=0.34 for trafficking and r= 0.22 for vessel diameter  C. Spearman correlation for TiME features and 

corresponding gene expression: Strong correlations were observed between RCM inflammation feature of total 

inflammation area with CSF1R (macrophage, r=0.73), CD1E (dendritic cells, r=0.64) and CD3E (T lymphocytes, r=0.51), 

between total lymphocyte area and CD8B (Cytotoxic T- lymphocyte, r=0.6) and GZMA (cytotoxic T-cell activation, 

r=0.53). In vascular features, vessel diameter correlated with VEGF-D (r=0.459) and VEGF-A (r=-0.471) and trafficking 
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positively correlated with CCL-18 (r=0.561), CAV-1 (r=0.46) and negatively with CCL25 (r=-0.7). p values were 

significant for all comparisons,  
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Supplementary Table/Figures: 

 

Cell 

Cell 

Size 

(µ) 

Shape 
Nuclear 

Size (µ) 

Nuclear 

Shape 

Refractive 

Index 

Scattering 

Coefficient 

References 

T Cell 8-10 Round 6-7 

Irregular 

circular 

shape 

1.36 (1.34-

1.37) 

0.54*104 

(STD=0.076*104) 

59, 60 

B-Cell 8-10 Round 6-8 
Nucleus 

indented 

1.36 (1.34-

1.37) 

0.58*104  

(STD=0.075*104) 

61, 60 

Neutrophil 12-14 
Irregular- 

round 
3-4 

Multilobed 

nucleus 

1.4 (1.35-

1.42) 

4*104  

(STD=0.57*104) 

61,62, 60 

Eosinophil 12-15 Round 3-4 Bilobed 
1.4 (1.35-

1.42) 

4.6*104  

(STD=1.04*104) 

63, 60 

Basophil 14-16 

Round, 

pleomorphic 

in tissue 

Unknown Bilobed 
1.4 (1.35-

1.42) 

0.82*104  

(STD=0.135*104) 

61, 60 

Macrophage 20-30 

Large, 

irregular, 

triangular 

Unknown 
Single-lobed, 

round centered 
1.384 ± 0.015 Not Known 

64 

Langerhans 

Cell 
15-25 Dendritic Unknown 

Indented 

"coffee bean" 
Not Known Not Known 

65 

 

 

Table S1. Distinct optical and cellular properties enable visualization and morphological distinction between major 

immune cell classes such as dendritic cells, macrophages and lymphocytes.  
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Figure S1. Tumor-immune microenvironment and vasculature visualized and evaluated on RCM. 

A. Dendritic cells, macrophages and lymphocytes identified by RCM are confirmed using histology and 

immunohistochemistry (CD1, CD68 and CD3, respectively) on targeted biopsies.  B.  RCM image showing blood vessels 

(red arrows) and trafficking of leukocytes on the vessel edges and individual leukocyte trafficking steps: adhering, rolling 

and crawling. Trafficking of lymphocytes and neutrophils confirmed using CD3 and Myeloperoxidase IHC, respectively. 

C.  Intratumoral, peritumoral and perivascular distribution of inflammatory cells as established on histopathology is seen 

on RCM. D. Representative example of features assessed during manual evaluation. For each feature, images with 
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no/minimal feature presence and scored either 0 or 1 are shown on the left, while images with high density of features scored 

as 2 or 3 shown on the right (Red curve= blood vessels, diameter of vessels indicated by length of lines between diamonds; 

trafficking leukocytes encircled in yellow; inflamed area adjacent to vessels or in stroma marked by yellow lines; intratumor 

immune cells encircled in yellow) E. Round to elliptical, large (15-20 micron) immune cells with an eccentric nucleus and 

bright cytoplasm in dermis, often adjacent to blood vessels (perivascularly) resembling plasma cells on histopathology (red 

boxes) with an eccentric nucleus, perinuclear hoff and cytoplasm, seen next to a blood vessel  
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Figure S2. PCA loadings for RCM and gene expression analysis.  

A. PC loadings for PCA on total BCC patients  

B. PC loadings for PCA on BCC patients with gene expression 

C. PC loadings for PCA on BCC patients undergoing imiquimod treatment 

D. PC loadings for PCA on gene expression of major immune cells 

E. PC loadings for PCA on angiogenic signatures 

F. PC loadings for PCA on trafficking-associated genes 
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Fig S3. Tertiary lymphoid structures abound in non-melanoma skin cancers and potentially represent anti-tumor 

immune response manifesting as higher TILs and tumor killing 

A. Representative images from CD3/CD20 staining of non-melanoma skin cancers (BCC and SCC) demonstrates 

differences in size, patterns and frequency of TLS in different patients. In addition to quantification of CD3, CD20 and 

total positive areas using software-based approaches, manual evaluation for number and size of TLS, local TILs and 

tumor killing were noted for a more spatial and context-dependent analysis; B. Representative image highlighting the high 

number of tumor-infiltrating CD3+ cells inside BCC tumor nest adjacent to TLS (bottom); C. Large TLS surrounding 

remains of a tumor as confirmed by H&E; D. Less TILs and no tumor killing was observed in non-TLS patients and 

regions; E. Relative distribution of TLS in 40 NMSC patients suggests a mean area coverage of 4.3% (CI: 3-6%); F. 

Higher TLS coverage in SCC as compared to BCC although the results did not achieve significance possibly because of 
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lower SCC cases in this cohort(p=0.18, ns); G. Although TLS presence corresponded with ulceration in most cases, the 

results were not significant (p=0.43, ns); H. TLS-positive areas demonstrated higher TILs as compared to TLS-negative 

areas (p<0.001) indicating an anti-tumor response; I. Higher TLS coverage (>0.1 mm2) correlated with higher TILs 

(p<0.001); J. Higher TLS area coverage was associated with a statistically higher probability of tumor killing. 
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Fig S4. Gene expression analysis on 3 distinct GEO datasets reveal phenotypes on Master Gene Panel (gene panel 

consisting of cancer-associated and immune-associated genes). 

A. PCA on GEO dataset GSE125285 Wan et al (n= 25 BCC) reveals presence of at least 2 phenotypes (green and blue). 

Unsupervised hierarchical cluster analysis 2 groups also results in two phenotypes. Gene ontology on the DGEA 

demonstrate the following enriched (FDR < 0.01) GO terms (between green and blue) in the top 10: immune system 
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process, cell surface receptor signaling pathway, lymphocyte activation, T cell activation, positive regulation of response 

to stimulus, leukocyte activation, positive regulation of immune system process, regulation of immune system process, 

and cell activation. B. PCA on GEO dataset GSE128795 Sand et al (n=5 BCC) also highlights distinct immune 

phenotypes. Top 4 GO Terms enriched (FDR <-0.05) in green vs blue group: leukocyte homeostasis, regulation of 

lymphocyte activation, cell adhesion, and biological adhesion.  

C. PCA on GEO dataset GSE53462 (Jee et al) (n=12 BCC) also again reveals presence of at least 2 phenotypes (green and 

blue). Unsupervised hierarchical cluster analysis of 2 groups also results in two phenotypes. Gene ontology on the 5 

DGEA ( |log2FC| > 0.3785 and FDR < 0.05) demonstrate the following enriched (FDR < 0.01) GO terms (between green 

and blue) in the top 5: immune cell processes, antibacterial peptide production, antibacterial humoral response, 

antimicrobial humoral immune response mediated by antimicrobial peptide, extracellular matrix disassembly, and 

antimicrobial humoral response,  perhaps suggestive of tertiary lymphoid structure and leukocyte trafficking heterogeneity 

in these patient clusters. *Only the subset of BCCs that did not display a “normal-like” or “SCC-like” gene expression 

pattern were kept in the analysis. 
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Fig S5. Gene expression analysis using bulk RNA-seq demonstrates heterogeneity in gene expression  

A. Overall QC analysis suggests high quality and reliable transcriptomic data which was subsequently tested using 

different analytical tools; B. CIBERSORT immune profiling was performed to explore differences in immune sub-

fractions. Results on 14 patients indicate presence of resting mast cells, M2 macrophages and T-follicular helper cells and 

CD4 memory resting T cells in all patients although their relative proportions vary. Plasma cells, CD8 T cells, neutrophils 

and M1 macrophages were seen in some patients; C, D. Based on RCM classification of red and blue phenotypes, 

statistically significant immune cells differences between these groups included CD4 memory resting and memory active 

cells, M1 and M2 macrophages; E, F. HCA on Nanostring Pancancer Immune Panel Genes followed by dendrogram 
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indicates presence of four phenotypes of which P7, P14 and P17 (VaschighInflow) were found to have lower expression of 

immune genes and P5, P6, P21, P23, P26 (Infhigh) showed higher expression of immune panel genes.  
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Figure S6. Modeling of imiquimod response highlights importance of stromal features in improving predictive 

power of linear regression models. Top row- linear separability curves for intratumor inflammation, stromal vessels and 

stromal macrophages (vessels and macrophages were predicted as priority labels in AIC and specificity prioritizing 

models) and combined plot for stromal vessels + intratumoral inflammation shows maximum separability (orange- 

responders, blue-non-responders).  

Bottom row: Models based on prioritizing Specificity or AIC as criteria for selecting features associated with response in 

linear regression models. For specificity, sequential modeling using 13 factors gave optimum performance while for AIC 

models the best performance was seen at 8 features.  
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Figure S7. Automated quantification of TiME and vasculature features on RCM images and correlation with 

TiME features 

A. Exemplar RCM images (original and segmented image) showing segmentation of leukocytes (green), and 

dendritic and macrophages (orange) using a UNet model trained on 1026 images (926-training, 100-validation) yielding a 

Dice coefficient of 0.72. This model was used to segment immune cell density on 652 independent images used in TiME 

analysis. B. Exemplar RCM video frames (original, manually segmented, automated segmented) showing segmentation of 

blood vessels from single field-of-view RCM videos. Comparison of manual and automated segmentations on 23 videos 

yielded a median Dice coefficient of 0.52 (0.29-0.78). This segmentation was used to derive vasculature features such as 
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blood vessel diameter, area and number of vessels used in TiME analysis. C. Summary of optimization for leukocyte 

trafficking done using constrained optimization of parameters: leave-one out and parameter scatter. D. Summary of 

optimization for leukocyte trafficking done using non-constrained optimization of parameters: leave-one out and 

parameter scatter. E. Agreement between manual counts by two independent readers on 10 videos. F. High Spearman 

correlation (0.74-0.89) observed for average manual reader count and automated counts for all 3 temporal windows. 

Highest correlation was observed for the longest temporal window since correlation is lower for faster events such as 

rolling in shorter vessels. 3 frame (0.6 s) temporal window selected for TiME analysis to include both fast and slow 

trafficking events. 
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Fig S8. Flow-based immunophenotyping for understanding T-cell distribution in red and blue RCM phenotypes. 

A. Higher CD8 and lower Foxp3 T-cell populations in BCC-1 (RCM blue) as compared to BCC-3 (red), B. Higher 

activated and proliferating populations of CD8 T cells in BCC-3 (VaschighInfhigh) while BCC-1 (VaschighInflow) showed 

higher proliferating CD4 T cells; C. Representative RCM images from BCC1, 2 and 3 patients highlighting the 

differences in intratumoral inflammation, trafficking and vasculature between the VaschighInfhigh (BCC-1) and 

VaschighInflow (BCC-3) patient. 
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