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Abstract

Animal models have long been used to study gene function and the impact of genetic mutations

on  phenotype.  Through  the  research  efforts  of  thousands  of  research  groups,  systematic

curation of published literature, and high-throughput phenotyping screens, the collective body of

knowledge for the mouse now covers the majority of protein-coding genes. We here collected

data  for  over  53,000  mouse  models  with  mutations  in  over  15,000  genomic  markers  and

characterized by more than 254,000 annotations using more than 9,000 distinct ontology terms.

We investigated dimensional reduction and embedding techniques as means to facilitate access

to this diverse and high-dimensional information. Our analyses provide the first visual maps of

the landscape of mouse phenotypic diversity.  We also summarize some of the difficulties in

producing and interpreting embeddings of sparse phenotypic data. In particular, we show that

data preprocessing, filtering, and encoding have as much impact on the final embeddings as the

process  of  dimensional  reduction.  Nonetheless,  techniques  developed  in  the  context  of

dimensional reduction create opportunities for explorative analysis of this large pool of public

data, including for searching for mouse models suited to study human diseases.
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Introduction

Measuring the consequences of genetic mutations on organism-level phenotype is instrumental

for  describing  gene  function.  It  is  a  laborious  process  that  requires  breeding  animals  with

controlled genotypes, performing a variety of assays, and describing phenotypes in a systematic

fashion. For the mouse as a model organism, the collective knowledge of genotype-phenotype

associations  now covers around  15,000 genes (Blake et  al.,  2021).  At  the current  pace of

research,  it  may  approach  genome-wide  coverage  within  a  few  years.  A  comprehensive

phenomics dataset would impact many applications, for example, supporting efforts to identify

the causes of rare genetic diseases (Justice & Dhillon, 2016; Meehan et al., 2017). However,

there  are  currently  few  established  methods  to  analyze  phenomic  data  at  scale,  both  for

interactive  exploration  and  for  machine  learning.  Given  recent  advances  in  dimensional

reduction, this promising approach may bring insight to mouse phenotype data and facilitate its

integration with other omic datasets.

Phenotype data consist of links between the genetic characteristics of an animal model and sets

of observations. For the mouse, the latter are usually tracked using the mammalian phenotype

(MP)  ontology  (Smith  &  Eppig,  2015).  The  ontology  is  a  collection  of  more  than  13,000

concepts, also called MP terms, that are related through a hierarchy. For example, a phenotype

describing ‘increased heart weight’ is a more precise annotation for the phenotype of ‘abnormal

heart weight’, which in turn is a specific type of ‘cardiovascular system phenotype’. Individual

terms in the ontology are thus not independent. However, despite the hierarchical connections,

the space of possible phenotypic abnormalities is of high dimension. It covers all organ systems,

fertility, and other factors, and animal models can be described by any combination of ontology

terms.

High-dimensional data poses challenges both for explorative analysis and for machine learning

(ML). The explorative analysis intends to place preliminary findings in context and to direct in-

depth studies.  It  is  often a manual  process that  relies  on visualizations.  Projection of  large

datasets into two dimensions is thus a common technique for this purpose; by placing data

items in a scatter  plot,  it  helps to convey similarity  between many data items through their

positions  and  relative  distances  in  the  embedding.  Machine-learning  models,  by  contrast,

usually serve to automate decision making. In principle, they are not hindered by unintuitive

data. However, training ML models requires fixing values for free parameters. When data is of

high-dimension,  ML  models  must  estimate  many  more  free  parameters  than  with  low-
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dimensional  inputs.  Using  dimensional  reduction  may improve training  efficiency,  especially

when there is limited data available.

A  canonical  approach  to  dimensional  reduction  of  tabular  data  uses  principal  component

analysis.  It consists of a rotation - a linear transformation - followed by truncation to a fixed

number of principal components, or dimensions, that incorporate the most variability. However,

nonlinear embedding techniques can capture more relationships among the original data into

the same number of dimensions. Examples include neural network auto-encoders (Hinton &

Salakhutdinov,  2006),  t-SNE (van der Maaten & Hinton,  2008),  UMAP (Becht  et  al.,  2019),

EmbedSOM  (Kratochvíl  et  al.,  2019),  PHATE  (Moon  et  al.  2019),  and  Poincare  maps

(Klimovskaia et al. 2020). Approaches have also been implemented for non-tabular data. For

example, node2vec provides embeddings of graphs (Grover & Leskovec, 2016). Importantly,

recent implementations are computationally efficient and can process many thousands of data

items. These methods have been instrumental in exploring atlases of mouse transcriptomic data

(The Tabula Muris Consortium, 2018; Han, et al., 2018; Rosenberg et al., 2018; Saunders et al.,

2018;  Cao  et  al.,  2019;  Kalucka  et  al.,  2020).  They  also  open  possibilities  to  analyze  the

phenotypic landscape of animal models. 

Because  ontology  terms  carry  hierarchical  relationships,  dedicated  methods  have  been

proposed to embed the terms into low-dimensional  spaces:  Onto2vec (Smaili,  et  al.,  2018),

Opa2vec (Smaili et al., 2019), HiG2Vec (Kim et al., 2020), and Owl2vec (Chen et al., 2020).

These approaches have also explored describing sets of ontology terms, particularly from the

gene  ontology.  A  common  approach  to  embedding  sets  of  ontology  terms  is  through

composition,  or  averaging,  of  the  coordinates  of  the  individual  terms.  This  is  motivated  by

observations  in  the  context  of  word-based  embeddings  (Mikolov  et  al.,  2013).  It  presents

encouraging results also in the biological context, for example for the prediction of gene-gene

interactions (Duong et al.,  2020). However,  linear composition conflicts with the nonlinearity

inherent in dimensional reduction and is bound to lose effectiveness for sets with many terms.

Moreover,  ontology-based dimensional  reduction  techniques have not  been explored  in  the

context of animal phenotyping.

In this work, we examine a public dataset of mouse phenotypes and visualize the landscape of 

mouse phenotypic variation. We consider dimensional reduction approaches based on a range 

of mathematical techniques. We show that approaches that integrate sets of phenotypes into 

vectors or use text-based descriptions are more informative than approaches that rely on 
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embeddings of individual ontology terms or on graphs. Yet, because mouse phenotype data is 

sparse, results can be sensitive to incomplete phenotyping and pre-processing steps.

Results

Embeddings of ontologies offer insight for small annotation sets

Ontology  structures  are  relatively  stable  and  evolve  only  slowly  in  time.  Furthermore,  the

mammalian phenotype (MP) ontology that catalogs possible phenotypic aberrations is agnostic

to animal species. It is thus natural to consider dimensional reduction of the space spanned by

MP terms as a basis for visualizing phenotype data from the mouse and other model organisms.

We  produced  embeddings  of  MP  terms  in  two  dimensions  using  two  distinct  approaches

(Methods). In the first approach, we computed semantic similarities between text descriptions of

MP terms and then created an embedding using uniform manifold approximation and projection

(UMAP) (Becht et al., 2019). For comparison, we also constructed a graph of the hierarchical

relations  between  MP  terms  and  then  created  an  embedding  using  node2vec  (Grover  &

Leskovec, 2016). Of the two, the text-based approach placed the ontology root near the center,

grouped ontology terms into small clusters, and produced a visual pattern that conveyed the

multi-dimensionality  of  the  ontology  (Figure  1A).  In  contrast,  the  graph-based approach  hid

distinctions  between  phenotype  domains  (Figure  S1).  We  continued  to  investigate  animal

models and diseases via the text-based embedding of MP terms. 

We assembled annotations about animal models from the Mouse Genome Database (MGD)

(Blake et al., 2021) and the International Mouse Phenotyping Consortium (IMPC) (Dickinson et

al.,  2016).  This  resulted in  a collection  of  53,629 models  that  describe mouse strains  with

mutations in one of 15,729 distinct genomic markers (Methods). Most markers correspond to

protein-coding  genes  or  non-coding  genes,  but  also  include  other  genomic  constructs;  we

treated all  on an equal level.  The models carried 254,623 annotations to 9,907 different MP

terms. We computed the position of these models in the embedding space by averaging the

coordinates  associated  with  their  phenotypes.  These  projections  appeared  throughout  the

embedding  space  (Figure  1B),  conveying  that  the  animal  models  have  diverse  phenotypic

features. Next, we investigated the distribution of the number of phenotypes per model. 86% of

models were associated with fewer than ten phenotypes and 69% with fewer than five (Figure

1C). Despite the large skew, 31,477 models were associated with between two and 113 MP
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terms,  allowing us to stratify  the dataset.  The number  of  annotations created a bias in  the

position of the models within the embedding: the distance of the model from the center was anti-

correlated  to  the  number  of  phenotypes  (Figure  1D).  This  is  an  indication  that  of  the  two

coordinates in the visualization, one is effectively taken up to capture the number of annotations

rather than their biological meaning.

We performed analogous calculations for phenotype profiles of human diseases (Methods). We

translated disease phenotypes into sets of MP terms, and then projected the translations into

the embedding space (Figure 1E). Diseases were, on average, linked with more phenotypes

than  mouse  models  (Figure  1F)  and  also  exhibited  a  correlation  between  the  number  of

phenotypes and the distance from the center (Figure 1G). Indeed, the bias was more marked

than for mouse models. The bias creates an impression that diseases with rich annotations are

more similar to one another than diseases with few annotations, which is not justified from a

phenotypic perspective. It also drives the distribution of profiles into a unimodular shape, which

does not capture the diversity and multi-dimensionality of human diseases.

While projecting phenotype sets into the ontology embedding through coordinate averaging may

produce insight for small phenotype sets, our results demonstrate that this approach tends to

place well-annotated phenotypic profiles toward the center. The bias becomes more evident as

the number of annotations increases; projections of diseases are more affected than mouse

models. As the bias is related to averaging, it is bound to appear with other embeddings of MP

terms  as  well,  for  example  those  generated  based  on  the  ontology  hierarchy  graph.

Furthermore, because phenotypic annotations are expected to become more detailed with time,

such bias should be expected to grow as well.  Thus,  embeddings of ontology terms in low

dimensions are not recommended for the exploration of complex phenotype profiles.

Embeddings  of  full  phenotype  profiles  capture  the  diversity  of

animal phenotypes 

As an alternative to treating mouse models as sets of phenotypes and averaging coordinates for

ontology terms, we produced embeddings for the mouse phenotype profiles directly. There are

several possible approaches to encode phenotype profiles into a numerical form that can be

processed with dimensional reduction algorithms (Figure S2).
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In a first attempt, we constructed vector representations for individual mouse models using a

previously  described procedure (Konopka & Smedley,  2020).  This  approach estimated prior

probabilities  for  all  phenotypes based on their  frequency in  the cohort,  and then integrated

annotations from model-specific phenotypes to create real-valued vectors. This approach thus

combined information from the entire cohort,  from model-specific  annotations,  and from the

ontology  hierarchy.  We  applied  UMAP  for  dimensional  reduction  and  summarized  53,629

mouse models from MGD and IMPC into a complex layout (Figure 2A). The embedding was not

dominated by technical variables such as data source, mouse genetic background, or zygosity

of  genetic  mutations  (Figure  S3).  It  was,  however,  influenced  by  the  number  of  model

phenotypes (Figure S3). It separated some models with few phenotypes from models with rich

annotations, but also created a complex layout among models with many phenotypes. Overall,

the embedding thus provides a concise visualization of the phenotypic diversity in the dataset. 

For  comparison,  we  produced  embeddings  with  alternative  approaches  spanning  several

mathematical techniques: using binary phenotype vectors, text-based semantic similarities, and

graphs  (Methods).  These  approaches  all  used  more  coarse-grained  representations  of

phenotypes  than  our  real-valued  vectors.  They  resulted  in  embeddings  that  were  all

substantially  different  from  one  another  (Figure  S2).  In  particular,  graph-based  methods

produced homogeneous layouts that did not capture any patterns among mouse models, so

they were not considered further.

One of the approaches that emphasized differences between groups of models used text-based

semantic  similarities  (Figure  2B).  Similarly  to  the  first  embedding,  this  approach suggested

models are part of groups of various sizes (Figure 2B). However, relative distances between

mouse models differed: models that appeared nearby in the first embedding were far-apart in

the  second,  and  vice  versa  (Figure  2B).  Such  disparities  are  not  unexpected  given  the

ambiguities in turning phenotype annotations into a numerical representation. The text-based

embedding also showed a more prominent separation of models according to MGD or IMPC

data source. This may arise because IMPC data, which originate from a systematic screen

rather  than from bespoke experiments,  have a more limited range of  MP terms than MGD

models.  These MP terms may have influenced text-based calculations,  which detect  similar

phrases in model descriptions, more than vector based calculations, which utilize the ontology

hierarchy in a more direct manner.
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Each embedding is rich in interpretable information.  At a fine-grained level,  each data point

corresponds to a specific phenotype profile (Figure 2C) (Lyon et al., 1996; Hayes et al., 1998;

Schreyer et al., 2001; Grigelioniene et al., 2019). Furthermore, each embedding is interpretable

at a regional level. To demonstrate such patterns, we selected a region in our first embedding

(Figure 2D). Enrichment analysis revealed an over-representation of certain phenotypes among

the models within that region (Figure 2E). Such enrichment is not surprising as the embedding

was  constructed  so  that  similar  phenotypes  appear  together.  Indeed,  other  examples  also

exhibited enrichment (Figure S4), validating the embedding as well as providing a mechanism to

assign regions with phenotypic interpretations. 

These experiments demonstrate that our calculations produced more than one reasonable low-

dimensional  embedding  of  mouse  models.  Although  it  is  unclear  how  to  choose  a  single

embedding as a reference map for mouse phenomics, these candidates can be used for data

exploration.

Neighborhoods provide insight for phenotype prediction

Having  demonstrated that  embeddings  summarize  the diversity  among mouse models  and

reveal qualitative patterns, we next investigated whether they can provide quantitative insight for

individual models. To this end, we computed predictions of phenotype profiles based on nearest

neighbors (Figure 3A). For each model, we extracted a ranked list of nearest neighbors in the

high-dimensional representations and in low-dimensional embeddings. We averaged the vector

representations of the neighbors to create a prediction, and evaluated the error between the

prediction  and  the  model’s  true  representation  (Methods).  We  then  investigated  the  mean

prediction  error  as  a  function  of  the  number  of  neighbors,  denoted as  k  (Figure  3B).  This

approach is used in self-supervised learning to calibrate free parameters without a ground-truth

(Batson & Royer, 2019). For predictions based on neighbors evaluated from the original data,

i.e.  from  high-dimensional  vectors,  the  optimal  k  was  k=2.  For  approaches  based  on

embeddings,  the optimal number of neighbors varied with the embedding dimension,  but all

were  below  k=10.  As  expected,  prediction  errors  were  lowest  when  the  neighbors  were

computed from the high-dimensional data, and highest when the neighbors originated from two-

dimensional embeddings used for visualization.

To further investigate the factors that can affect the prediction of phenotypes, we repeated these

calculations  with  a  series  of  approaches.  We  computed  neighbors  using  high-dimensional
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representations  based  on  real-valued  (non-binary)  phenotype  vectors,  binary  phenotype

vectors,  and  text  descriptions.  We  considered  dimensional  reduction  via  UMAP,  principal

component analysis (PCA), and coordinate averaging of MP terms. For each combination of

data  encoding  and  dimensional  reduction  technique,  we  calibrated  the  optimal  number  of

neighbors and reported the mean prediction error (Figure 3C). All errors were computed with

respect to the non-binary vector representations. Given this choice, it is unsurprising that the

smallest  prediction  error  was  achieved  by  the  approach  that  used  neighbors  from  high-

dimensional non-binary vector data. However, this choice is useful because it ensures that the

scales for all errors are comparable. 

Among approaches that used dimensional reduction, we observed an improvement (reduction)

in  prediction  error  with  increasing  embedding  dimension,  d,  for  all  dimensional  reduction

techniques (UMAP, PCA,  MP coordinates).  Interestingly,  the improvement plateaued quickly

with UMAP; there was little change between d=8 and d=10 dimensions. In contrast, prediction

errors  from  PCA  showed  a  steadier  improvement  with  d.  However,  errors  from  PCA

embeddings were higher  than for  UMAP,  and remained higher  for  PCA with d=10 than for

UMAP with d=2.

The  encoding  scheme  (non-binary  phenotype  vectors,  binary  phenotype  vectors,  text

descriptions) had a substantial effect on prediction errors. Variability between encodings was

large compared to differences between UMAP in various dimensions. This indicates that studies

of mouse models are bound to be more influenced by how phenotype data are curated and

encoded  than  by  any  loss  of  resolution  due  to  dimensional  reduction.  At  the  same  time,

prediction errors were relatively similar for binary vector-based and text-based approaches. 

Average prediction errors hide variation within the cohort. To investigate heterogeneity in more

depth, we stratified models according to the number of associated phenotypes (Figure 3D).

Errors for models with few phenotypes were generally low. This is because when a model has a

limited  number  of  phenotype  annotations,  there  may  exist  other  models  with  the  same

characteristics. As an example, our dataset had 14 models annotated with the single phenotype

of  “deafness”.  Averaging  a  small  number  of  nearest  neighbors  that  may  have  equivalent

phenotypes  produces  predictions  with  zero  error.  For  models  with  more  annotations,  the

probability that other models have the same set of phenotypes by chance decreases.

Predictions that deviate from the annotated model representation highlight which of a model’s

phenotypes  are  unusual.  They  can  also  suggest  phenotypes  that  may  be  missing  in  the
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annotations. To illustrate such reasoning, we visualized the discrepancies between two models

and their predictions (Figure 3E) (Luoh et al., 1997; Dickinson et al., 2016). In each case, part of

the discrepancies  originate  from different  weights  assigned  to measured MP terms or  their

ancestors, i.e. MP terms that are upstream in the ontology hierarchy. Other discrepancies arise

from phenotypes that are not related to the models’ annotations. If nearest-neighbors were to be

used as a denoising scheme, these discrepancies would result in imputed phenotypes. Even

without formal imputation, if embedding coordinates were used as inputs for a machine-learning

classifier, these phenotypes would influence how the model would be utilized by the classifier.

Thus, the neighbor prediction can be informative for interpreting, or explaining,  outcomes of

downstream ML models.

Neighborhoods highlight consistency as well as heterogeneity of

genotype-phenotype annotations

Models in our dataset are characterized by the mouse background strain, mutation of a single

genetic marker, and mutation zygosity. While combinations of these features appear uniquely in

the dataset,  several  models  can be linked  to the same genetic  marker.  A summary of  the

number of models per marker, which we refer to as genes for simplicity, revealed a skewed

distribution (Figure 4A). Thousands of genes were represented by a single mouse model in the

dataset, but thousands of others were mutated more than once. The three most studied genetic

markers appeared in more than 200 models each (Figure 4A, inset).

The multiplicity of models linked with the same gene provides opportunities to study consistency

and heterogeneity among genotype-phenotype associations. For illustration, we picked some of

the most studied genes and highlighted their models in embeddings (Figure 4B, Figure S5).

Some of  the models  appeared close together.  This  suggests consistency  in  the phenotypic

annotations linked to the gene and robustness with respect, for example, to mutation construct.

At the same time, models linked to one gene also split into several close-knit clusters in distinct

parts of  the embedding.  This  suggests an opposite effect,  i.e.  heterogeneity  in  annotations.

Heterogeneity may be due to incompatible curation, incomplete phenotyping measurements on

some of the models, or differences in phenotype due to the genetic background (Figure S5).

The  embedding  cannot  deconvolute  these  effects,  but  the  visualization  provides  qualitative

insight on the scale of the phenomenon in the mouse data.
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To quantify the extent of consistency and heterogeneity, we studied the nearest neighbors of all

models and assessed the proportion of times a model was near another model with the same

gene (Figure 4C). This fraction increased with the multiplicity of mouse models. Among genes

represented by more than 20 models, the proportion of models linked to another model with the

same gene was above a third. This was substantially higher than expected if neighbors were

assigned by chance. Nonetheless, since the level was below 0.5 for most genes, it is more likely

for a randomly selected model to have neighbors with different genetic composition than to link

to at least one model with the same mutated gene. This can be due to difficulties in encoding

the data,  incompleteness in  the dataset,  or  due to overlapping  phenotypes associated with

different genes. 

Embedding diseases alongside animal models provides grounds

for exploring disease-causing genes

Finally, we returned to the dataset of human diseases. For those diseases with annotations in

the form of HP terms, we translated the phenotypes into MP terms and constructed vectors-

based and text-based representations.  We then projected the diseases into our  previously-

generated embeddings (Methods). With both vector-based (Figure 5A) and text-based (Figure

5B) approaches, diseases covered large areas of the embedding space and formed several

disjoint  clusters.  Patterns were robust  to how the disease phenotypes were translated from

human  to  mammalian  phenotype  ontologies  (Figure  S6).  Interestingly,  disease  projections

avoided  certain  areas  of  the  embeddings.  For  example,  one  of  the  areas  omitted  by  the

diseases was enriched in phenotypes related to mortality and ageing (Figure S4). Diseases

linked to well-annotated models with all genetic backgrounds and showed a slight preference

toward models with homozygous mutations (Figure S6).

Next,  we  asked  to  what  extent  similarities  between  diseases  and  mouse  models  can  link

diseases to their associated genes. For simplicity, we called all disease-associated genes as

causative  genes.  We  compared  approaches  based  on  numeric  vectors,  based  on  text

descriptions,  and two previously  described  methods  for  scoring  disease-model  associations

(Smedley  et  al.,  2013;  Konopka  & Smedley,  2020).  The proportion  of  diseases that  had a

mouse model with the causative gene within 15 nearest neighbors was low: below ~4% (Figure

5C). Interestingly, the algorithm used to translate between human and mammalian phenotype

ontologies had a smaller effect than the data encoding or the algorithm for computing neighbors.
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The best performer was a scheme specifically designed to score disease-model associations

(Smedley et al., 2013). Strikingly, text-based approaches performed almost on par, better than

vector-based approaches.

Given that text-based descriptions performed well in matching diseases to causative genes, we

reasoned that this approach could be a gateway to studying diseases without formal phenotype

annotations. Among the dataset of human diseases,  61% did not have any HP annotations

(Figure 5D). These diseases could not be included in calculations that rely on ontologies. They

were also excluded from the gene-mapping assessments to ensure like-for-like comparisons

(Figure 5C). However, these diseases have text descriptions, so they can be used in text-based

calculations. Projections into the embedding of mouse models revealed they fell into the same

regions  as  before  (Figure  5E).  This  indicates  that  un-annotated  diseases  span  the  whole

phenotypic space, and also that our treatment of text descriptions did not introduce excessive

biases that would place these cases apart from well-annotated diseases. In more depth, the un-

annotated diseases linked to mouse models of all genetic backgrounds and annotation levels,

albeit with a preference to mouse models with few phenotypes (Figure S6).

To illustrate explorative analyses based on text  descriptions,  we searched for  two diseases

without  formal  phenotype  annotations  (Figure  5F,  5G).  An  initial  search  for  a  glycogen

deficiency (ORPHA:137625) correctly linked this disease to mouse models with abnormalities in

glycogen homeostasis (Figure 5F). Because of the naive treatment of text in our calculations,

some of the top-ranked models were characterized by opposite directional effects to the disease

description. Among the top hits were models with mutations in Gys1 (Bouskila et al., 2010), the

known causative gene for the disease. Other hits with similar phenotype profiles had mutations

in  Ppp1r3a and  Gyg, both genes that participate in glycogen homeostasis. This confirms that

text search can link human diseases to relevant mouse data. In this case, the top search hits all

had  consistent  phenotype  profiles,  so  a  projection  of  the  diseases  into  low-dimensional

embeddings can also be expected to link the disease with a neighborhood of relevant mouse

models.

Separately, we searched for an otorhinolaryngological disorder (ORPHA:141219) characterized

by cysts around the nose and extending into the cranium (Figure 5G). The causative gene for

the disorder is not known. The first two hits in text-based search matched the disease to mouse

models with quite distinct phenotypes. The first was characterized by an intracranial phenotype

(Hart et al., 2000); the second by phenotypes of the epidermis (Mill et al., 2009). Such hits can
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appear in distinct portions of an embedding. Projecting the diseases into the space of models

might  place  the  disease  close  to  one  at  the  expense  of  the  other.  This  can  produce

discrepancies between sets of neighbors computed in the original high-dimensional space and

the low-dimensional embedding. This is a documented effect inherent to dimensional reduction

(Cooley et al., 2020). In the disease context, it highlights the value in scrutinizing raw search

results in addition to a low-dimensional visualization.

Discussion

Animal  models offer  a direct  route to characterizing the impact  of  genetic  mutations.  While

studying the relationship between genotype and phenotype is often performed gene-by-gene,

careful  curation  of  the  literature  (Blake  et  al.,  2021)  as  well  as  systematic  phenotyping  of

hitherto-unstudied genes (Dickinson et al., 2016) mean that the collective data for the mouse

will  approach  whole-genome coverage  in  the  near  future.  This  opens possibilities  to  utilize

mouse phenotypes as a reference dataset  in  genomic analyses.  As such,  it  is  important  to

characterize the potential  such a dataset  offers for  data exploration,  machine learning,  and

downstream applications.  In this work, we explored dimensional  reduction for this data. The

results  visualize  the heterogeneous  landscape  of  mouse phenotypes.  Our  calculations  also

provide qualitative and quantitative observations about the strengths and limitations of this pool

of data.

A challenge in dealing with large-scale phenotype data is that there are several plausible ways

to encode sets of phenotypes so that they can be used for calculations. We explored vector-

based, text-based, and graph-based approaches. There also exist  many algorithms that can

perform dimensional reduction. We focused on approaches that can be used for visualization

and thus  focused  on  dimensional  reduction  into  two dimensions.  Such  embeddings  enable

interactive, human-led data exploration. However, we also investigated embeddings into higher

dimensions, which can be beneficial for machine learning. 

Strikingly,  certain strategies provide sub-optimal visualizations in two dimensions.  A strategy

that first creates an embedding of an ontology and then projects phenotype sets into that space

via coordinate averaging is prone to construct visualizations that are dominated by technical

features, notably the number of phenotypes within a phenotype set (model or disease). This

result has a mathematical justification: averaging summarizes heterogeneous elements, in this

case phenotypes, to a central  value,  with the variability of the outcome decreasing with the
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number  of  elements.  It  is  also  worth  comparing  this  strategy  with  analysis  pipelines  in

transcriptomics,  which  do  not  create  embeddings  based  on  genes  and  project  expression

profiles for samples into that space, but rather create embeddings for samples directly. Another

suboptimal  strategy  is  one  that  uses  the  MP  ontology  as  a  graph  and  performs  a  joint

embedding of the ontology and a set of mouse models. This approach hides much of the rich

phenotypic similarities and differences among models (Figure S2). 

Strategies  based  on  phenotype  vectors  or  text  descriptions  produce  visualizations  that  are

interpretable at the level of single mouse models and group similar models together.  These

visualizations can thus be said to capture the phenotypic diversity among mouse models in the

available data. However, they can also reflect peculiarities and limitations of the underlying data.

Embeddings show many small, isolated groups with peculiar combinations of MP terms. Such

combinations may arise due to targeted phenotyping efforts on those mouse models rather than

true phenomenological specificity compared to other mutants. Small annotation sets may also

arise when phenotyping is carried out as part of  a high-throughput screen (Dickinson et al.,

2016).  Such annotation  sets may grow in  time as  further  observations  are catalogued  and

curated from literature (Blake et al., 2021). Analysis methods can be designed specifically to

track changes of annotations due to steady growth (Konopka & Smedley, 2020). However, in

the context  of  dimensional  reduction,  changes in  the  annotation  set  should  be expected to

disrupt the positioning of individual models within an embedding. Thus, the embeddings should

be expected to be unstable for models with low annotation counts. The overall structure of the

embeddings may change too, albeit to a lesser extent.

Besides  providing  visualizations  of  the  heterogeneous  phenotype  data,  we  investigated

schemes  for  phenotype  prediction  based  on  nearest  neighbors.  These  predictions  are

informative from at least three perspectives. First, they suggest new experimental assays on

individual mouse models that may complete their phenotype profiles. Second, the predictions

can be used for interpreting outputs from machine learning models trained using embedding

coordinates.  Third,  we  used  prediction  errors  to  quantify  the  information  loss  produced  by

various  data-encoding  and  data-embedding  approaches.  The  results  confirm  expected

properties, namely that embedding data into low-dimensional spaces loses some information,

that increasing the target dimension increases the fidelity of the embeddings,  and that non-

linear  methods  like  UMAP  preserve  more  information  than  linear  methods  like  PCA.

Interestingly, the results also show that discrepancies between predictions from original data

and from embeddings can be comparable to discrepancies between different encodings of the
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original data (e.g. binary or real-valued vectors).  This suggests that any analyses based on

phenotype data are likely to be sensitive to how the raw data is prepared. Indeed, they may be

more sensitive to data preparation than to dimensional reduction.

We corroborated this sensitivity in calculations projecting human diseases into embeddings of

mouse models.  We used nearest  neighbors  to link  human diseases  to  mouse models  and

thereby to genes.  Recall  of  established disease-gene associations varied depending on the

encoding strategy (vector, text, etc.). Interestingly, approaches based on text similarities were

among the most performant. Considering that these approaches are tunable (Konopka et al.,

2021), can integrate datasets other than phenotypic  annotations,  and that  they execute two

orders  of  magnitude  faster  than  a  dedicated  scoring  scheme  for  scoring  disease-gene

associations, they represent promising avenues for subsequent analyses.

Methods

Phenotype data

Definitions of the human phenotype (HP) ontology (Köhler et al.,  2018) and the mammalian

phenotype (MP) ontology (Smith & Eppig, 2015) were obtained through the OBO Foundry (HP

version 2021-02-28, MP version 2021-01-12). Terms from the HP ontology were mapped onto

terms in the MP ontology using owlsim (Washington et al., 2009), which is an ontology-aware

algorithm, and using crossmap (Konopka et al., 2021), which performs searches based on text

similarity. Mappings with crossmap were performed using diffusion driven by the MP dataset

and by a set of manual annotations (Konopka et al., 2021). Both owlsim and crossmap map

queries to multiple hits. Translations between the HP and MP ontologies were established using

only the best-ranked mapping.

Mouse model definitions and associated phenotypes were obtained through the data portal of

the International Mouse Phenotyping Consortium (data release 14.0) (Dickinson et al., 2016).

Data downloaded from the IMPC included definitions of mouse models curated by the Mouse

Genomics Database (Blake et al.,  2021). The dataset contained information about lines with

mutations in  only  one marker  or  gene each;  the dataset  did not  cover mouse models with

extended mutations affecting multiple genes. 
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Disease  definitions  and  associated  phenotypes  were  downloaded  from  Orphadata

(http://www.orphadata.org;  data  version  2021-04-01)  and  parsed  using  custom  scripts

(https://github.com/tkonopka/crossmap).

Ontology representations and embeddings

Embeddings for ontology terms were generated using two approaches (Figure S1). In a first

approach,  text strings were constructed for each term in the MP ontology by concatenating

phenotype  name,  definition,  synonyms,  and  comments.  These  strings  were  loaded  into  a

crossmap knowledge-base (Konopka et al, 2021; https://github.com/tkonopka/crossmap). The

crossmap  instance  splits  text  into  bags  of  k-mers,  weights  the  k-mers  according  to  their

information content, and builds a nearest-neighbors index. The crossmap instance was used to

perform searches and compute sets of nearest neighbors for each ontology term. The nearest

neighbors  were  provided  to  the UMAP algorithm (Becht  et  al.,  2018)  implemented  in  R to

produce embeddings in two dimensions.  Settings were left  at  the default  values,  except  for

knn_repeats=3 to increase the quality of nearest-neighbor search, and min_dist=0.2 to increase

space between adjacent points (for visualization).

In a second approach, MP ontology terms were treated as nodes in a graph. Edges between

nodes were set if two MP terms were linked by ‘is a’ relationships in the ontology hierarchy

(which  is  the  only  relationship  type  defined  in  the  MP ontology).  The  resulting  graph  was

processed  using  node2vec  (Grover  &  Leskovec,  2016)  to  produce  embeddings  in  two

dimensions.  Embeddings  were  produced  using  the  snap  implementation

(https://github.com/snap-stanford/snap) with default parameters and the python implementation

(https://pypi.org/project/node2vec/) with default settings. The python implementation was also

executed with non-default settings with num_walks=5 and walk_length=5.

Both  UMAP  and  node2vec  are  stochastic  algorithms  and  embeddings  may  differ  when

repeated. All  calculations were performed twice with two different seeds for random number

generation. Consistency between replicates and between different embedding approaches was

assessed by extracting sets of 15 nearest neighbors in the low-dimensional embeddings, and

computing the mean Jaccard indexes.
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Mouse model representations

Mouse models were defined as sets of phenotypes associated with a specific mouse strain

(genetic background), a single-gene knock-out mutation, and zygosity. For IMPC data, models

were further subcategorized by life stage (embryonic, early-adult, or late-adult). 

Raw data for each mouse model were encoded in several ways: based on numeric vectors, on

text, and using graphs (Figure S2). The numeric representations consisted of vectors of length

equal to the size of the MP ontology. In a binary approach, values were set to zero by default

and changed to one if an MP term was linked with a mouse model, or was an ancestor of such

an MP term. Non-binary vector representations were constructed following a published protocol

(Konopka  &  Smedley,  2020).  Briefly,  values  within  the  vectors  were  initially  set  to  prior

probabilities for each MP phenotype, which were estimated from the ensemble of non-IMPC

models. Values were updated through a Bayesian procedure with phenotype annotations and

then propagated using the ontology hierarchy. 

Two types of representations were constructed starting from text. A ‘concise’ representation was

defined  by  concatenating  the  names  of  all  MP terms  associated  with  a  model.  A  second

‘complete’ representation was constructed in the same way, but also including the names of all

ancestors of MP terms associated with a model. Text strings defined in these ways were loaded

into an instance of a crossmap knowledge-base (Konopka et al., 2021). This software uses k-

merization to turn text into numeric representations. Weights for k-mers were computing using a

corpus  of  text  including  dictionary  definitions  of  English  words  (www.wiktionary.org)  and

phenotype definitions from the MP ontology. 

For graph-based approaches, MP terms and mouse models were used as graph nodes. Edges

were  defined  between  MP  nodes  if  the  corresponding  MP  terms  were  linked  by  ‘is  a’

relationships in the ontology. Edges were defined between mouse nodes and MP nodes from

mouse model associations.

Mouse model embeddings

Embeddings of mouse models based on vector and text representations were performed with

the UMAP algorithm (Becht et al., 2019) through an R implementation. 
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For encodings based on non-binary and binary vectors, all vectors were normalized to unit norm

and  then  provided  to  the  embedding  algorithm.  Settings  were  left  at  default,  except  for

knn_repeats=3 to increase the quality of nearest-neighbors and min_dist=0.2 to spread points

for visualization purposes.  In calculations exploring the impact of the embedding dimension,

UMAP runs were provided with the same set of nearest neighbors, thus eliminating stochasticity

effects due to approximate calculations of neighbors.

For  encodings  based  on  text,  raw  data  were  managed  with  a  crossmap  instance

(https://github.com/tkonopka/crossmap). The crossmap instance was used to search for sets of

nearest neighbors. Nearest neighbors were provided to the UMAP algorithm in R, which was

run as described for the vector approaches. For graph-based approaches, embeddings were

generated  using  node2vec  (Grover  &  Leskovec,  2016)  through  the  snap  implementation

(https://github.com/snap-stanford/snap)  and  python  implementations

(https://pypi.org/project/node2vec/) with default settings. The python implementation was also

run using non-default settings walk_length=5 and num_walks=5. The graph-based approaches

produced a joint embedding of MP terms and mouse models; only mouse models were used in

visualizations.

Calculations of nearest neighbors with crossmap and embeddings with UMAP and node2vec

rely  on  stochastic  algorithms.  All  calculations  were  performed  with  two  different  seeds  for

random number generation. Consistency between replicates and between different approaches

were  assessed  as  for  embeddings  of  ontology  terms.  Sets  of  15  nearest  neighbors  were

computed in  the low-dimensional  spaces,  and Jaccard indexes were computed for matched

points in the various embeddings.

While all embeddings were computed based on all the available data, some visualizations were

truncated to enhance the presentation. Models that were not associated with any phenotype

(MP:0002169, ‘no abnormal phenotype detected’) were excluded from all visualizations, as were

models with only one phenotype. Visualizations excluded these models to focus attention on

31,477 models with rich annotations. (The exception is Figure S3, which includes both zero-

phenotype and one-phenotype models.) Visualizations also set quantile-based limits for axes to

focus attention on the central parts of embeddings with. Quantile intervals were at least as wide

as 2%-98% for each axis. 
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Projections of human diseases into embeddings of mouse models

Human diseases with phenotype annotations from the HP ontology were translated to the MP

ontology by replacing their HP terms with best-matching MP terms. Sets of MP terms derived

from diseases were encoded into non-binary vectors using the same procedures as for mouse

models. Vectors with disease profiles were compared with all mouse models to identify nearest

neighbors, and the position of each disease in an embedding was computed using UMAP. This

calculation initially places a disease at the averaged location of its nearest mouse models, and

subsequently adjusts this position using the UMAP optimization algorithm. 

For encodings based on text,  human diseases were taken to consist  of  a clinical  summary

paragraph, the names of associated phenotypes (MP translations), and the names of curated

genes. These text documents were compared with phenotype descriptions of mouse models

using  crossmap  to  produce  sets  of  nearest  mouse  models.  Projections  of  the  disease

descriptions in embeddings of mouse models were defined as the coordinate of the single most-

similar mouse model. A more sophisticated approach utilizing several mouse models was not

possible in this case due to a technical limitation of the R UMAP package.

Software and Data Availability

Source code for analysis scripts is available on GitHub at https://github.com/tkonopka/mouse-

embeddings.  The  data  underlying  this  article  are  available  in  Zenodo  at

https://doi.org/10.5281/zenodo.4916171.
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Figures

Figure 1. Embeddings of mammalian phenotypes. (A) Embedding of mammalian phenotype

(MP) ontology terms based on text similarity. Labels point to selected ontology terms. (phen.:

phenotype,  abn.:  abnormal,  dev.:  development)  (B)  Projection  of  mouse  models  into  an

embedding of ontology terms via averaging of coordinates of their annotated phenotypes. (C)

Histogram of the number of phenotypes for all mouse models. (D) A summary of the position of

mouse models  in  the projections  in  (B),  stratified  by  the number  of  annotated phenotypes.

Boxes  represent  25%-75%  intervals,  whiskers  represent  5%-95%  intervals,  middle  lines

represent  medians.  (E-G)  Analogous  to  (B-D)  using phenotype profiles  of  human diseases

translated into the mammalian phenotype ontology.
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Figure 2. Embeddings of mouse models. (A) Embedding of mouse models based on vector

representations of their phenotypes. Models are colored by the source of curated data. Labels

and the rectangle point to selected models. (B) Analogous to (A), but with the layout based on

semantic  similarities  of  text  descriptions.  (C)  Lists  of  phenotypes associated with  individual

mouse models highlighted in (A). Some lists are truncated for this visualization. All phenotype

names  match  definitions  from  the  ontology  (abn.:  abnormal,  morph.:  morphology,  incr.:

increased, decr.: decreased). (D) A magnification of a small region of the embedding in (A). (E)

Enrichment analysis comparing the phenotypes associated with mouse models in (D) against

models  outside  of  the  selected  region.  Dots  correspond  to  phenotypes  in  the  ontology.

Statistical significance (p-value) is evaluated using the Fisher test; the significance threshold is

Bonferroni-corrected p=0.05. The most significant phenotype is labeled.
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Figure  3.  Phenotype  prediction. (A)  Schematic  explaining  phenotype  prediction  using

neighbors. Given a mouse model, its predicted phenotype profile is defined as a simple average

over  its  neighbors.  An error  is  defined  as the L2 norm between the model  profile  and the

prediction. (B) Exploration of mean prediction error as a function of the number of neighbors

used in the calculation. Lines correspond to distinct ways of identifying neighbors: from original

vector  representations,  or  from  embeddings  in  various  dimensions.  (C)  Summary  of  best-

achieved errors for prediction approaches using original vector data, original binary vector data,

embeddings in various dimensions, and using text-based similarity measures. (D) Stratification

of mouse models by the number of model phenotypes. Boxes represent 25%-75% intervals,

whiskers represent 5%-95% intervals, middle lines represent medians. (E) Examples of mouse

model  phenotype  vectors and predictions  based on two nearest  neighbors.  Heatmaps only

show a small number of phenotypes that contribute the most to prediction errors. Categorical

phenotype annotations indicate whether a listed phenotype is one of  the models’  annotated

phenotypes,  an  ancestor  of  an  annotated  phenotype,  or  a  phenotype  unrelated  to  model

annotations.
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Figure 4. Phenotype heterogeneity. (A) Multiplicity of models available for individual genes.

The genes represented in the most models are listed in the inset. (B) Embeddings of mouse

models highlighting the location of models with selected genes knocked-out. Highlighted models

are  jittered to  better  display  the number  of  models.  (C)  Proportion  of  genes  for  which  the

nearest-neighbors of a mouse model contain another model with the same gene knocked-out.

The summary is stratified by the number of models available for a gene. Boxes represent 25%-

75% intervals, whiskers represent 5%-95% intervals, middle lines represent medians. Dashed

line indicates an expected level under a null hypothesis that neighbors are selected at random.
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Figure 5. Embedding of human diseases in the mouse phenotypic space. (A) Projection of

human  diseases  into  an  embedding  of  mouse  models  based  on  phenotype  vectors.  (B)

Analogous to (A), but with the underlying embedding produced based on semantic similarities of

text-based descriptions. (C) Summary of causal-gene extraction. Diseases with phenotype and

gene annotations were compared with all mouse models. The percentage in the bar graph is the

proportion of diseases for which one of the k=15 nearest mouse models contained a mutation in

the causal  gene.  (D)  Summary  of  ORPHANET disease  annotations  in  terms  of  phenotype

ontology terms and causative genes. (E) Projection of human diseases without HP annotation

into an embedding of mouse models based on text similarity.  (F,G) Examples of text-based

disease descriptions along with two mouse models, selected manually from among the top five

search hits.
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Supplementary Figures

Figure  S1.  Embeddings  of  mammalian  phenotype  ontology  terms. (A)  Schematic  of

ontology data,  possibilities  for  data encodings,  and algorithms for  creating embeddings.  (B)

Embedding of mammalian phenotype (MP) ontology terms based on text descriptions (name,

definition,  synonyms,  comments,  and  name  of  parent  term).  Similarities  computed  using

crossmap and layout generated with UMAP. (C) Embedding based on the hierarchy relations

between  ontology  terms,  generated  using  snap  implementation  of  node2vec  with  default

settings.  (D)  Embedding  based  on  the  ontology  hierarchy  graph,  generated  using  python
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implementation of node2vec with default  settings. (E) Similar  to (D), generated with settings

walk-length and num-walks set to 5. (F) Comparison of embedding strategies. For each MP

term,  sets  of  15  nearest  neighbors  were  computed  in  all  embeddings.  The  similarity  of

neighborhoods were computed using the Jaccard index. The similarity for a pair of embeddings

was defined as the mean Jaccard index for all  MP terms. All  approaches were analyzed in

duplicate (two embeddings produced with different seeds for random number generators) and

compared with a random layout with MP terms arranged uniformly at random in two dimensions.
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Figure  S2.  Embeddings  of  mouse  models. (A)  Schematic  of  phenotype  data  for  mouse

models, possibilities for data encodings,  and algorithms for creating embeddings.  (B) UMAP

embedding based on non-binary vector representations. (C) PCA based on non-binary vector

representations. (D) UMAP embedding based on binary vector representations. (E) Node2vec

embedding  based  on  a  graph  connecting  mouse  models  to  their  ontology  phenotypes,

generated using  snap  implementation  of  node2vec  with  default  settings.  (F)  Similar  to  (E),

generated using python implementation of node2vec with default settings. (G) Similar to (E),

generated with python implementation of node2vec with settings walk-length and num-walks set

to 5. (H) Embedding based on text descriptions of mouse phenotypes. (I) Similar to (H), but

using text descriptions of complete phenotypes. (J) Comparison of embedding strategies. For

each  mouse  model,  sets  of  15  nearest  neighbors  were  computed  in  all  embeddings.  The

similarity of neighborhoods were computed using the Jaccard Index. The similarity for a pair of

embeddings was defined as the mean Jaccard index for all mouse models. All approaches were

analyzed  in  duplicate  (two  embeddings  produced  with  different  seeds  for  random  number

generators)  and compared with  a random layout  with mouse models arranged uniformly at

random in two dimensions.
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Figure S3.  Mouse model  covariates. Embeddings  of  mouse models  based on non-binary

vectors of phenotypes. Four panels differ by stratification strategy: (A) phenotyping source; (B)

zygosity of  gene knock-out;  (C) animal  genetic  background;  (D) number of  phenotypes.  (E)

Listing of the most frequent MP terms present among models with a single phenotype. Leading

numbers indicate the number of models that are annotated only with the stated term.
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Figure S4. Feature enrichment in embedding regions. (A) Embedding of all mouse models

based on vector representations of phenotypes. Two regions are selected with rectangles. (B) A

detailed  view  of  one  of  the  selected  regions  from (A).  (C)  Enrichment  analysis  comparing

phenotypes observed in animal models shown in (B) compared to all other models outside the
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selected region. Dots correspond to MP phenotypes. Axes show the fraction of selected models

with a given phenotype,  and an enrichment  significance score for  the phenotype computed

using a Fisher test (some p-values are truncated). Significance level is p=0.05 after Bonferroni

correction. The table at the bottom names the most significant phenotypes. (D, E) Analogous to

(B, C), but treating another region. (F-J) Analogous to (A-E), but based on an embedding of

mouse models based on concise text descriptions.
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Figure S5. Effect of genetic background for selected genes. All panels show embeddings of

mouse models based on non-binary vectors.  In each panel,  models with a single gene are

highlighted: (A) Tyr; (B) Trp53; (C) Kit; and (D) Ednrb. One set of highlighted models reveals the

most common genetic background (for that gene). The other highlighted set includes models

with other genetic backgrounds (for that gene). The position of highlighted models are jittered to

better reveal the number of models in dense areas.
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Figure S6. Analyses of diseases. (A) Projection of human disease phenotype profiles (colored

points) into an embedding of mouse models (gray dots). The embedding was created based on

non-binary vectors with mouse model phenotypes, without information about diseases. Disease

phenotype  profiles  were  translated  from  the  human  phenotype  (HP)  into  the  mammalian

phenotype (MP) ontology  terms using owlsim,  encoded into  vectors,  and projected into  the

embedding  using  UMAP.  (B)  Similar  to  (A),  but  with  the  translations  between  human and

mammalian ontologies carried out using crossmap. (C) Comparison of the properties of mouse

models identified during disease analysis to the properties of the entire mouse model cohort.

Disease profiles were compared with all mouse models, recording 15 nearest mouse models for

each disease. The set of thus selected models were stratified according to the mouse model

data  source,  mutation  zygosity,  mouse  strain/genetic  background,  and  the  number  of

phenotypes annotated to the mouse models. The same stratification was applied to the entire

set of  mouse models for comparison.  (D, E, F) Analogous to panels  (A,  B,  C),  but with all

analyses carried out using text-based similarities. Analysis in (F) includes a group of models

identified during analysis  of diseases that  have text  descriptions but  are not  annotated with

formal ontology-based phenotypes.
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